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Abstract—Existing Deep  Neural Network (DNNs)
implementations exceed power and time budgets of many
applications. Additionally, DNN accelerators are supervised,
highly specialized, and focus on multiply-and-accumulate
operations. This work proposes a novel ultra-fast low power
unsupervised  neuromorphic  architecture  integrating
programmable threshold voltage transistors for clustering
using squared Euclidean distance.

L. INTRODUCTION

Many existing Deep Neural Network (DNN) accelerators
focus on the multiply-and-accumulate (MAC) function [4]. In
contrast, acceleration of Squared Euclidean Distance (SED) has
seen comparatively little development [1-3, 7-8, 11].
Additionally, many Application Specific Integrated Circuits
(ASICs) are supervised and highly specialized [3, 11]. This
prevents deployment in dynamic or unexplored environments,
as the labeled data may be nonexistent or unreliable. Existing
ASICs are mostly co-developed with CMOS devices such as
SRAMs or DRAMs, making scalability of the DNN dependent
on the scalability of the device [1-3].

We present a novel neuromorphic architecture capable of
performing analog in-memory SED computing via
programmable threshold voltage (Vr) field-effect transistors
(FET). The architecture can train and perform efficient data
clustering at low power. A framework capable of emulating this
architecture is presented. Finally, we demonstrate the feasibility
of this architecture by integrating ferroelectric FETs (FeFETs)
with experimental validation.

II. NEUROMORPHIC SOFM FRAMEWORK
A. In-memory Error Computing Crossbar

SED is among the most common measures of similarity
between points as the shortest (straight line) distance between
the points: d(x,y) = (x — y)?[1, 8, 11]. It is at the center of
supervised algorithms such as K-nearest neighbors and
unsupervised algorithms such as K-means clustering [1, 7].
SED also produces a more symmetrical and unbiased measure
of similarity in comparison to MAC (Fig. 1). While hardware
accelerators for SED have been investigated, they tend to utilize
digital CMOS technology or perform inaccurate computation
of SED [6-7,11]. Meanwhile, programmable V1 FETs show
promise for in-memory computation of SED since the long-
channel saturation drain current Ips is proportional to the SED
between the gate bias Vgs and Vr of the device. For long-

channel FETs, Ips = WE‘Z"” (Vgs — V7)?, where W is the

channel width, L is the channel length, Cox is the oxide
capacitance per unit area, and p is the charge carrier mobility.
Exploiting this basic relationship, Fig. 2. shows the crossbar
architecture of programmable V1 FET synapses for in-memory
computation of SED input (Vgs) and weight (V) of the device.
We developed two implementations of the FET synapses
integrating either only n-channel FETSs, or both n-channel
(nFET) and p-channel FETs (pFET). The nFET only
implementation (Fig. 3) can be used in cases where a pFET
version of the device is not available or well-studied [1]. The
nFET and pFET (Fig. 4) mitigate the overhead of reading Vr
[2]. Therefore, users can write weights by programming the Vt
of the FETs and applying inputs as Vgs for rapid low power
analog in-memory computing of SED. We demonstrate and
validate the framework’s emulation of this circuit behavior in
both Python and SPICE (Fig. 5). Clearly, the framework can
accurately emulate the circuit behavior simulated in SPICE
while performing near-ideal SED computation. More
importantly, the framework allows users to integrate their own
programmable V1 FET device models in the architecture.
Capitalizing on SED acceleration, the framework is tailored for
unsupervised clustering by implementing the self-organizing
feature map algorithm (SOFM) discussed in the next section.

B. Neuromorphic SOFM

SOFM is an unsupervised neural network consisting of a
neuron map that learns the topography of the input data via
competitive learning. NeuroSOFM and DySON are low-power
neuromorphic SOFM architectures integrating FeFETs in the
in-memory SED computing crossbar [1-2]. The framework
emulates both neuromorphic architectures. Fig. 6 demonstrates
different FeFET models with varying number of Vr states. Fig.
7 demonstrates different FeFET models resulting from different
programming schemes [1].

An advantage of these architectures is the neuron-sliceable
or chip-sliceable implementation improving scalability as
shown in Fig. 8. Therefore, the size and shape of neuron maps
can be defined in the framework, as desired by application.
Emulating the DySON architecture, the framework implements
a growing SOFM which dynamically grows in response to the
data. Growth allows users to emulate and test the architectures
to identify the optimal size for their application (Fig. 6-7).

The best matching unit (BMU) is the neuron with highest
similarity with the presented input. The BMU is often selected
via competitive learning by exhaustively comparing neuron
errors [1]. However, the framework enables users to select
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between competitive BMU selection and thresholded BMU
selection adopted from [2]. The thresholded BMU selection is
done via a separate architecture, shown in Fig. 9. This threshold
also acts as a filter for the SED produced in the crossbar
accelerator.

C. Variability Testing

To test the impact of non-idealities, the framework contains
parameters for adding variability to the Vr states of FETs via
gaussian distribution. Overall variability to the crossbar can be
applied via a gaussian distribution to the SED to produce an
effective error (Fig. 10).

An additional user-defined parameter emulates Random
stuck-at-faults (SAF) in neurons (Fig. 11). To account for non-
idealities due to short-channel effects in scaled technologies, a
user-defined parameter is added that reduces the Ips (Fig. 12).
The framework was tested using FeFET device models
benchmarked against experimental data, discussed next.

III. EXPERIMENTAL VALIDATION USING FEFETS

Of several available candidates for programmable Vr
FETs, (ex. floating gate, charge trap memory, etc.) FeFETs are
promising options for the proposed clustering architecture [1-
2]. In FeFETs, the Vr is modulated via polarization of the
ferroelectric material integrated in the gate stack [1]. The
proposed clustering architecture and framework was validated
on experimental data obtained using Barium Titanate (BTO)
Ferroelectric material and FeFETs based on BTO that can
achieve multiple Vrs and provide IDS proportional to the SED
between Vgs and Vr.

A. BTO Electrical Testing for Multi-State Polarization

BTO is a promising ferroelectric material [9-10]. The
programmable polarization characteristics of BTO were
experimentally evaluated by fabricating ferroelectric capacitors
(Fig. 13). BTO was deposited using pulse laser deposition
(PLD) reported in [9-10]. We demonstrated multiple
polarization states in BTO by multiple voltage sweeps (Fig. 14).
Fig. 15 demonstrates the excellent retention, at room
temperature (RT), of multiple polarization states in BTO that
were measured using the technique reported in [S]. Endurance
of BTO was measured by cycling it through PUND pulsing
cycles (Fig.16). As evident from this data, BTO demonstrated
high endurance, which is crucial for the proposed neuromorphic
architecture for on-chip clustering.

B. Fabrication and Testing of BTO-based FeFET

FeFET devices were fabricated using BTO in back-gated
configuration shown in Fig.17. On Nb:STO substrate BTO was
deposited using PLD [10]. Thereafter, 70 nm amorphous IGZO
channel material was deposited using PLD at RT. W was
deposited using RF magnetron sputtering and patterned to form
a source and drain. Fig. 18 (a) shows Ips vs. Vps and (b) shows
Ips vs. Vs characteristics of these FeFETs. Fig. 19 shows that
the Ips is indeed proportional to the SED between the
programmed Vr and the applied input Vgs. This experimentally
validates the in-memory SED computation emulated in our
developed framework integrating the FeFET device model.

IV. ARCHITECTURE SCALABILITY

The framework produces a SPICE netlist using models
specified by the user. This SPICE netlist can be used for circuit
level simulation for analyzing power and timing. We
demonstrated the power consumption as the architecture is
scaled (Fig. 20a). Comparing with existing SED computation
methods (Fig. 20b) we observe that the in-memory SED
accelerator is extremely power and time efficient.

V. DISCUSSION AND SUMMARY

This work provides a framework to catalyze the
development of ASIC to accelerate SED calculations and
online training in unsupervised data-clustering neuromorphic
architectures using programmable Vr FETs, even with non-
idealities. The framework was evaluated using FeFET models
benchmarked on experimental data. The proposed architecture
shows potential to be power and time efficient. This work lays
a solid foundation for extending the application of emerging
memory devices beyond dot-product multiplication.
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Fig. 4. Synapse implemented using n-channel and p-
channel programmable V1 FETs. [ produced by

synapse is proportional to SED between input and
weight.
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Fig. 7 a) Vy state distributions for 64 state FeFET
device models programmed using 3V pulses and
pulses of increasing amplitude from 0-40V. b)
Emulation of 20 x 20 growing SOFM architecture
using framework integrating the two device model
programming schemes. Different distributions of Vr
may require different architectural parameters.
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Fig. 10. Framework emulating device variability
reflected in the variance induced in the in-memory
computed error. Framework implemented 20x20
growing SOFM with increasing variability. Higher
variability requires more neurons.
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Fig. 2. Programmable Vr synaptic crossbar for SED
computation acceleration. Each synapse computes
pointwise SED, between input x and weight w, in
parallel while each neuron N accumulates the error to
produce a total error.
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Fig. 5. Three identical 20x20 synaptic crossbars
were simulated, with an input of 0.013, in both
Python and SPICE using the BSIM4 model. Inputs
were applied as a voltage input of 0.013V in Python
and SPICE models of the architecture. Black
indicates high error while white indicates low error.
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Fig. 8 Neuron or chip-slice of neuromorphic
SOFM architecture. Each slice contains a crossbar
for error computation, BMU selection, and
neighborhood controller. Neighborhood
controllers allow slices to interact with adjacent
slices for weight update for clustering.
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Fig. 11. Framework emulating 20 x 20 growing SOFM

architecture trained on Fashion MNIST with 0-50%
neurons with SAF. Neuron map clusters around the
SAFs.
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Fig. 3. Synapse 1mplemented using two n-
channel programmable Vr FETs. V1 of top FET
must be read and applied as gate bias of bottom
FET. The presented input must be programmed
into the Vr of the Bottom FET. I produced by
synapse is proportional to SED between input
and weight.
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Fig. 6. FeFET models with 64, 32, 16, and 8 states
were simulated using the framework with a 20 x 20
growing SOFM architecture trained on RGB colors.
Clusters are still present with as little as 8 states
albeit with lower quality. Number of neurons
required to meet satisfiable error criteria is larger as
number of states decreases; indicating users with
low state devices may need larger maps.
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Fig. 9. BMU threshold architecture utilizing an
additional reference neuron which produces a
reference error using its programmed weights. This
reference error thresholds neuron error indicating
sufficiently low error (high similarity) between
neuron weights and presented input.
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Fig. 12. Short-channel effects are emulated by
having sub-squared non-linear Ips modulated by
user-defined parameter 1 < a < 2. Shorter
channel lengths will result in a smaller . Shorter
channel lengths may require larger neuron maps.
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Fig. 19. a) V state for each programming pulse amplitude follows trend from amplitude programming in Fig. 6a. b) Ipg is proportional to SED computed by all
FeFET states with some scaling and offset variance. ¢) 20x20 growing SOFM emulated by framework using error scaling and offset variance from measured data.

@ NVIDIA
® Tesla P100
Ll 1642 1
@ Intel Xeon
6E-2 = 2-core CPU
5 P = 5.39E-5n + 2.26E-4 2
= ] 20x20 SOFM
5 4E-2 H *
; 2 1E+0 using
‘_.LO Framework
2E-2 & ® FPGA
Zedboard
0E+0 1E-2 Zyng-7000
0 400 800 1200 1E-10 1E-8 1E-6 1E-4
FeSyn Time (s)

a) b)
Fig. 20. Framework utilized 45nm BSIM4 FETs and state-of-the-art FeFET switching speed [9]. a) Power consumption per synapse using framework emulating
varying crossbar sizes. b) In-memory SED computation accelerator compared to state-of-the-art CPU [7], GPU [7], and FPGA [8] implementations. Since Ipg

computes the SED and each synapse computes the error in parallel, the computation speed is entirely limited by the switching speed of the FETs. Therefore, any time
bottleneck of this architecture will be from peripheral circuitry.
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