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Abstract 

 
While engineering cellular solids, either stochastic foams or architected lattices, are usually made of 

polycrystalline or amorphous materials, echinoderms (e.g., sea urchins, starfish, and brittle stars) build their 
microporous skeletal elements with single-crystalline calcite. This class of biomineralized cellular solid, 
known as stereom, also exhibits a vast diversity in pore morphology, ranging from random open-cell foams 
to fully periodic lattices. In particular, the skeletal elements of some starfish species, known as ossicles, are 
composed of a diamond-triply periodic minimal surface (diamond-TPMS) microlattice. In addition, the 
crystallographic symmetries at both atomic (calcite) and lattice (diamond-TPMS) levels are precisely 
aligned. Here we investigate the mechanical performance of this unique dual-scale microlattice and discuss 
the synergistic effects of atomic- and lattice-scale crystallographic coalignment. Our computational and 
theoretical analysis suggests that the mechanical isotropy of ossicles is significantly enhanced due to the 
property compensation between the atomic-level and lattice-level architectures. Moreover, the observed 50 
vol% relative density in the diamond-TPMS microlattice of ossicles may be a result of achieving overall 
mechanical isotropy, minimal surface curvature, and maximized surface area. We believe the methodology 
introduced here will be useful for understanding the mechanical behavior of natural crystalline cellular 
solids such as echinoderms’ stereom and designing dual-scale lattice materials. 
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1. Introduction 
 
Recent advancement of additive manufacturing has enabled the fabrication of 3D architected lattice 

materials from a variety of polymers, metals, ceramics/glass, or composites [1–3]. These architected lattices 
may exhibit some unusual mechanical properties, such as isotropic elastic stiffness approaching theoretical 
limits, negative Poisson’s ratios, and etc [1,3–9]. The introduction of hierarchical designs further expands 
the material property space by tailoring mechanical behaviors at different length scales [10–13]. For 
example, one strategy to introduce structural hierarchy of architected lattices is to design the branches into 
cellular architectures at a smaller length scale [2,10–13]. Another is to engineer the material-level design 
of the branches, including core-shell composites, fiber- and particle-reinforced composites, high-entropy 
alloy with crystallographic texture, and etc [14–22]. However, single-crystalline constituent at atomic scale 
has rarely been taken into consideration for the mechanical design of hierarchical lattices. 

 
Unlike artificial architected lattices that are typically composed of polycrystalline or amorphous 

constituents, the porous, biomineralized skeletal elements of many echinoderms (e.g., starfish, sea urchins, 
and brittle star) is composed of calcite that often diffracts as a single crystal [23–26]. This type of biological 
cellular solids, known as stereom, exhibits a vast diversity in pore morphology, ranging from random open-
cell foams to fully periodic lattices [27]. While significant research efforts have been made to correlate the 
crystallographic orientation of calcite with the orientation of skeletal elements, such as the test (shell) plates 
and spines of sea urchins [23,25,26,28],  how the calcite’s crystallographic orientations are aligned with the 
local pore morphology and organization in stereoms remains largely unknown [29–32]. 

 
Recently, our group has demonstrated that the skeletal elements (known as ossicles) of certain starfish 

species (e.g., Protoreaster nodosus) are composed of a diamond-triply periodic minimal surface (diamond-
TPMS) microlattice (relative density, 𝜌̅ , ~50 vol%) [33]. In this natural architected microlattice, the 
crystallographic symmetries at both atomic (calcite, space group 𝑅3%𝑐) and lattice (diamond, space group 
𝐹𝑑3%𝑚 ) levels are precisely aligned [33]. Specifically, the c-axis of calcite coincides with the [111] 
direction of the diamond-TPMS microlattice, which is also along the normal direction of the animal (e.g., 
from oral to aboral sides of starfish) [33]. Meanwhile, the [44%01%], [044%1%] and [4%041%] directions of calcite 
(the directions formed by the intersection of two adjacent {101%4} cleavage planes) are approximately 
aligned with the directions of non-[111] branches (i.e., [11%1%], [1%11%] and [1%1%1]-branches, respectively) of 
the tetrahedron unit cell in diamond-TPMS lattice [33], through which the in-plane three-fold symmetry 
between calcite (plane perpendicular to c-axis or [0001] direction) and diamond lattice ((111)	plane) are 
precisely registered. 
 

While our previous analysis suggests that this dual-scale crystallographic coalignment in ossicles may 
provide a stiffness compensation for selected crystallographic directions, we lack a full understanding of 
the 3D mechanical properties of starfish ossicles [33,34]. Here we develop a combined computational and 
theoretical methodology for predicting the 3D elastic properties of the dual-scale architected lattices with 
crystallographic coalignment. Furthermore, by analyzing the mechanical isotropy, strength, and structure 
of the dual-scale diamond-TPMS microlattice, we provide insights for the formation of starfish ossicles 
(e.g., why particular relative density and dual-scale coalignment are selected).  
 
2. Methods 
2.1. Model system and modeling 

 
Here, the model system investigated is a dual-scale diamond-TPMS lattice as observed in the 

biomineralized stereom structure found in the ossicles of starfish P. nodosus [33]. This type of stereom has 
been found to possess a diamond-TPMS microlattice structure made of single-crystalline biogenic calcite, 
which was demonstrated by micro-computed tomography (µ-CT) analysis, scanning electron microscopy 
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(SEM) imaging (Fig. 1a-e), and epitaxial overgrowth of calcite (Fig. 1f,g). The crystallographic 
orientations of the constituent calcite and the diamond microlattice have a specific coalignment, resulting 
in a so-called dual-scaled coalignment structure (Fig. 1g) [33] (see detailed structural introduction in section 
3.1). To generate models for mechanical investigation, we constructed diamond-TPMS structures of several 
different types. 

 
Firstly, the diamond-TPMS structure’s iso-surface (𝑈) is generated by Eq. (1): 
 𝑈 = 𝑆!!𝑆"!𝑆#! + 𝑆!!𝐶"!𝐶#! + 𝐶!!𝑆"!𝐶#! + 𝐶!!𝐶"!𝑆#! − 𝑇 (1), 

where 𝑆$ = 𝑠𝑖𝑛	(𝑘$ ∙ 𝑖)	, 𝐶$ = 𝑐𝑜𝑠	(𝑘$ ∙ 𝑖)	, and 𝑖 = 𝑥%, 𝑦%, 𝑜𝑟	𝑧% represent three orthogonal directions of the 
Cartesian coordinates, corresponding to [100] , [010] , and [001]  directions of the diamond-TPMS 
microlattice, respectively. 𝑘$ = 2𝜋𝑛$/𝐿$  is defined as the periodicity, where 𝑛$  and 𝐿$  represent the 
number of cells and the size of the diamond-TPMS structure along the 𝑥% , 𝑦%  and 𝑧%  directions, 
respectively. 𝑇 is a geometric parameter that controls the relative density of the diamond-TPMS structure 
[35]. The solid region enclosed by 𝑈 < 0 was chosen to generate a diamond-TPMS lattice, while various 
𝑇 was chosen (-0.5, -0.25, 0, 0.25, and 0.5) to produce microlattice with various relative densities 𝜌̅ (30%, 
40%, 50%, 60%, and 70%). 
 

Secondly, four different models were constructed for mechanical simulations and comparisons, 
including the constituent solid calcite, diamond-TPMS microlattice with equivalent isotropic calcite (I-
dTPMS), dual-scale diamond-TPMS microlattices (DS-dTPMS) as observed in starfish ossicles, and DS-
dTPMS (180°) which is a modified DS-dTPMS with calcite rotated 180° about its c-axis (Fig. 2a). The 
material property inputs (i.e., equivalent isotropic and anisotropic calcites, respectively) were illustrated 
along with the simulation method later (Table S1). To build the DS-dTPMS, the diamond-TPMS 
microlattice generated using Eq. (1) was first rotated to a new coordinate system with three principal 
directions of [11%0], [112%], and [111]. These directions correspond to the [12%10], [101%0], and [0001] 
directions of calcite as observed in the ossicles, respectively [36,37]. We further denote these three 
directions as 1, 2, and 3 directions. Therefore, DS-dTPMS (180°) has [11%0] and [112%] directions of the 
diamond-TPMS microlattice aligned with the [1%21%0] and [1%010] directions of calcite, respectively. The 
representative volume elements (RVE) of diamond-TPMS microlattice based on these configurations 
measure 49.0 µm, 42.4 µm, and 60.0 µm along [11%0], [112%], and [111] directions, respectively, where the 
branch length was set 15.0 µm, following the previous measurement of starfish ossicles (Fig. S1a) [33]. 
 
2.2. Structural analysis 

 
Structural analyses, including 3D Fast Fourier Transform (3D-FFT) analysis, surface curvature 

analysis, and surface area analysis, were performed on representative cubic volumes of ossicles and the 
generated diamond-TPMS microlattices, respectively. 

 
3D Fast Fourier Transform (3D-FFT) analysis was performed on the 3D binary data of cubic volumes 

of ossicles using the 3D-FFT module in Avizo 2019.2 (Thermo Fisher Scientific. MA, USA). The 3D 
logarithmic plot of the 3D-FFT data was used for visualization [33]. 

 
A customized Python script was developed to generate the binary image slices of the diamond-TPMS 

microlattice obtained from Eq. (1), which were subsequently fed to Avizo to generate corresponding 
Standard Triangle Language (STL) models. These STL models were used for surface curvature analysis 
and surface-area-to-volume ratio (SAV) calculations. The surface curvature analysis module in Avizo was 
used to obtain the principal curvatures, i.e., minimum and maximum curvatures (𝜅& and 𝜅'). The mean 
surface curvature, H, of each node was calculated using 𝐻 = (𝜅& + 𝜅')/2 . The interfacial shape 
distribution (ISD) of 𝜅&  versus 𝜅'  was plotted using OriginPro 2016 (OriginLab. MA, USA). SAV is 
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calculated by dividing the total surface area of a unit cell (A) of the diamond-TPMS microlattices by the 
total volume of the unit cell (i.e., the volume occupied by the unit cell, V) as: 

 𝑆𝐴𝑉 =
𝐴
𝑉
 (2). 

Therefore, SAV is dependent on the unit cell size and the unit for SAV is the inverse of the unit of length 
(i.e., µm-1). 
 
2.3. 3D elastic property prediction workflow 

 
As described in section 2.1, the constituent solid calcite and various diamond-TPMS models were 

constructed for mechanical comparison (Fig. 2a). To predict the 3D elastic properties of these models, a 
four-step workflow was proposed (Fig. 2b): (1) configurations of material properties and periodic boundary 
conditions (PBCs) for FE simulations on all diamond-TPMS models with imposed compressive strain such 
as 𝜀((  and shear strain such as 𝛾'( , (2) computational simulations of the full stiffness matrix of the 
diamond-TPMS models, (3) transformations of the full stiffness matrix obtained from simulations to 
calculate elastic properties in any arbitrary 3D directions, and (4) visualization of the 3D elastic property 
based on the calculated directional elastic properties. The detailed workflow of simulations and calculations 
were introduced as follows. 
 

Finite element (FE) simulations: To obtain the full stiffness matrix of the diamond-TPMS microlattices, 
we utilized Abaqus/Standard 2016 (Dassault Systems, Vélizy-Villacoublay, France) to perform static 
mechanical simulations, including uniaxial and shear loadings, on the RVEs of diamond-TPMS microlattice 
with PBCs (Fig. S1b-d). 

 
The RVEs for I-dTPMS, DS-dTPMS, and DS-dTPMS (180°) all contained ca. 3 million linear 

tetrahedral elements (C3D4). To evaluate the effects of mechanical anisotropy at constituent material level, 
anisotropic and equivalent isotropic calcite properties were used as material input. For DS-dTPMS and DS-
dTPMS (180°), the full stiffness matrix of single-crystalline calcite was used: 
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⎞
 (3). 

Each stiffness coefficient 𝑐12)*+,$-. (𝑀,𝑁 = 1 − 6 in Voigt notations where 4 → 23, 5 → 13, and 6 → 12) 
is given in Table S1 [37]. For I-dTPMS, the equivalent isotropic material properties of calcite (elastic 
modulus 𝐸345$6*+.7-)*+,$-. = 109	𝐺𝑃𝑎, Poisson’s ratio 𝑣345$6*+.7-)*+,$-. = 0.29) was used [37]. 
 

Six types of mechanical loadings, including compression in 1, 2, and 3 directions, and pure shear in 4, 
5, and 6 directions with a strain of 0.1% were applied on the RVEs (Fig. 2b). Subsequently, the obtained 
stress-strain relationships from the simulations were used to calculate all stiffness coefficients of the 
diamond-TPMS microlattices. Due to the trigonal symmetry, the stiffness matrices for I-dTPMS, DS-
dTPMS, and DS-dTPMS (180°) in the orthogonal system with bases of [11%0], [112%], and [111] share the 
same form as following: 

 𝐶8/:;<=>?1; = (4)
. 
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PBCs were used in all simulations, as shown in Fig. S1b-d. The PBCs are imposed on the opposite 

surfaces, edges, and vertices, separately, where the equations of PBCs are shown in Supplementary Note 1 
(SN1). The displacement gradient defining the strain state of the RVE is 𝑯. Examples of the imposed 
displacement gradients of uniaxial compression in 3 direction and pure shear in 6 direction were given by 
Eq. (5) and (6) (Fig. 2b): 

 𝑯 = d
0 0 0
0 0 0
0 0 𝜀

e (5), 

 
𝑯 = d

0 𝛾 0
𝛾 0 0
0 0 0

e 
(6), 

where 𝜀 and 𝛾 denote the uniaxial and shear strain, respectively. Stress contours of two representative 
simulations on the DS-dTPMS with 50% relative density using PBCs were given in Fig. S1e,f. 
 

After simulations, the volume-averaged stresses due to the applied deformation were calculated using 
the following equation: 

 𝜎% =
∑ ∫𝜎$@7𝑑𝑉72
7A&

𝑉-B-
 (7), 

, where 𝜎% is the volume-averaged stress, 𝜎$@7 is the stress in 𝑖𝑗 direction (i.e., 1 to 6 directions as defined 
above) of the 𝑛-th element, 𝑉7 is the volume of 𝑛-th element, 𝑁 is the total number of elements. 
 

3D transformation of stiffness matrix: After obtaining the stiffness matrices for diamond-TPMS 
microlattices, the matrices were transformed to calculate the elastic property values, i.e., elastic modulus 
(𝐸[DE+]), shear modulus (𝐺[DE+]

&' ), and Poisson’s ratio (𝑣[DE+]
&' ), in any arbitrary directions [ℎ𝑘𝑙] in 3D (Fig. 

2b). Here [ℎ𝑘𝑙] represents the direction in an orthogonal coordinate system in which 1, 2, and 3 directions 
defined above are considered as [100] , [010] , and [001]  directions, respectively. To calculate the 
properties, the stiffness matrix obtained from simulations was transformed to the direction [ℎ𝑘𝑙] using: 

 𝐶G = 𝑁𝐶𝑁> (8), 
where 𝑁> is the transpose of the transformation matrix 𝑁 as shown in SN2, 𝐶 and 𝐶G are the original and 
transformed stiffness matrices, respectively. The elastic property can then be calculated by using the 
following relationships (see detailed derivations in SN2): 

 

⎩
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 (9), 

where 𝐺̅[DE+]
&'  and 𝑣̅[DE+]

&'  are averaged shear modulus and averaged Poisson’s ratio values, respectively, 
obtained from the transformed 2-3 plane (the 𝑦GG − 𝑧GG  plane as shown in Fig. S2), 𝑆G = (𝐶G)<&  is the 
transformed compliance matrix, 𝜃 is the rotational angle on 𝑦GG − 𝑧GG plane (Fig. S2). Similarly, the elastic 
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property values of solid single-crystalline calcite can be also calculated. These directional values of elastic 
properties can be visualized as 3D contours (Fig. 2b). 
 
3. Results 
3.1. Dual-scale diamond-TMPS microlattice in ossicles 

 
The skeletal system of the starfish P. nodosus consists of an assembly of calcite-based, millimeter-sized 

ossicles (Fig. 1a). The ossicles have a periodic lattice-like stereom structure which has been previously 
determined to be a diamond-TPMS microlattice with a relative density of ca. 50 vol% (Fig. 1b-d) [33]. Fig. 
1c,d show a representative volume isolated from an ossicle and the corresponding 3D-FFT result, 
demonstrating the diamond-TPMS microlattice structure of “𝐹𝑑3%𝑚” symmetry (unit cell size of 34.6 ± 8.0 
µm and branch length of 15.0 ± 3.4 µm). An RVE of diamond-TPMS microlattice with 50% relative density 
as shown in Fig. 1e can be used as an idealized model to represent the microlattice structure of ossicles. 
We also observed that the [111] direction of the diamond-TPMS microlattice in ossicles is usually aligned 
with the normal direction of the starfish, which is defined as the direction perpendicular to the plane formed 
by the five arms of the starfish (Fig. 1b) [33]. 

 
In addition to the lattice-level single-crystallinity, each ossicle is made of single-crystalline calcite at 

atomic-level [33]. This is evident from the epitaxial overgrowth experiment, where the overgrown calcite 
crystals all follow the same orientation as the underlying ossicle (Fig. 1f). Please see details of overgrowth 
experiments in SN5. This overgrowth experiment also reveals that the [111] direction of the diamond 
lattice is aligned with the c-axis of calcite as schematically shown in Fig. 1g. Furthermore, the three-fold 
symmetry of the basal plane of calcite is aligned with the three-fold symmetry of the diamond lattice: the 
non-[111]  branches in the diamond lattice generally follow the direction of the intersected edges of two 
adjacent {101%4} cleavage planes of calcite, i.e., the 〈44%01%〉 directions [33] (Fig. 1g and Fig. S3). This 
results in the so-called dual-scale single-crystalline microlattice. 

 
3.2. 3D elastic properties 
 

To evaluate the mechanical properties of the dual-scale microlattice in starfish ossicles, we built four 
models for mechanical modeling comparison as introduced in methods: (1) the solid calcite, (2) I-dTPMS: 
a diamond-TPMS microlattice with equivalent isotropic calcite properties, (3) DS-dTPMS: a dual-scale 
diamond-TPMS microlattice as observed in ossicles, and (4) DS-dTPMS (180°): a modified DS-dTPMS 
microlattice with calcite rotated by 180° about its c-axis (Fig. 2a). The 3D elastic properties of these four 
models were then calculated using the four-step workflow described in Methods, including (1) the FE 
simulation configurations of material properties, PBCs, and mechanical loading, (2) calculation of the full 
stiffness matrices of all four models, (3) 3D transformation of the obtained stiffness matrices, and (4) 
visualization of the 3D elastic property contours (Fig. 2b). 

 
We first conducted detailed analysis of the mechanical properties of the DS-dTPMS in starfish ossicles 

in comparison to solid calcite and I-dTPMS microlattice. Representative 3D contours of elastic modulus 
(𝐸[DE+]), averaged shear modulus (𝐺̅[DE+]

&' ), and averaged Poisson’s ratio (𝑣̅[DE+]
&' ) of the solid calcite, I-

dTPMS microlattice, and DS-dTPMS microlattice at 50% relative density, were shown in Fig. 3. The 
maximum, and minimum shear modulus and Poisson’s ratio contours (i.e., 𝐺K*!, 𝑣K*!, 𝐺K$7, and 𝑣K$7), 
respectively, as well as 2D visualizations of all elastic properties of all models were summarized in SN3 
and Fig. S4-9. 

 
For solid calcite, the elastic modulus contour exhibits a three-fold symmetry about its c-axis, resembling 

a 6-pointed star-like shape, agrees with the previous result (Fig. 3a,b, Table S1) [37]. For some 
characteristic planes of calcite, such as  (101%4), (101%8), and (0001), the moduli are calculated as 72.4 



7 
 

GPa, 74.8 GPa and 74.6 GPa along their plane normals, respectively, which agree well with the previous 
values obtained from simulations and indentation experiments and hence validate our calculation process 
(Table S3) [33,38,39]. We also found that the maximum elastic moduli of 152.9 GPa are along 〈55%01〉 
directions. The directions close to the c-axis are generally more compliant, and the minimum elastic moduli 
of 72.0 GPa are along 〈101% '(

L%
〉 directions (Fig. 3b). Moreover, the 3D contours of 𝐺̅[DE+]

&'  and 𝑣̅[DE+]
&'  of 

calcite also show the trigonal symmetry where the directions with high 𝐸[DE+] has relatively low 𝐺̅[DE+]
&'  and 

𝑣̅[DE+]
&'  (Fig. 3b-d). 
 
For I-dTPMS microlattice, the elastic modulus contour exhibits a three-fold symmetry about the [111] 

direction due to the trigonal symmetry of the diamond-TPMS lattice and possesses a cube-like shape (Fig. 
3e,f, Table S2) [40]. Furthermore, the calculated elastic moduli of [11%0], [111], and [100] directions are 
27.2 GPa, 30.9 GPa, and 20.1 GPa, which match with the previously reported values and, thus again, 
validate our simulation and calculation process [33,35]. Again, we found that the maximum elastic moduli 
of 30.9 GPa are along 〈111〉 directions, while the minimum elastic moduli of 20.1 GPa are along 〈100〉 
directions (Fig. 3f). Similarly, Fig. 3g,h show the 3D contours of 𝐺̅[DE+]

&'  and 𝑣̅[DE+]
&'  of I-dTPMS, further 

demonstrating that the directions with high 𝐸[DE+] has relatively low 𝐺̅[DE+]
&'  and 𝑣̅[DE+]

&'  (Fig. 3g-h). 
 
For DS-dTMPS microlattice, its elastic modulus contour merges the morphological characteristics of 

the elastic modulus contours of calcite and I-dTPMS together, resulting in a “Saturn”-like geometry with 
trigonal symmetry (Fig. 3i,j, Table S2). In this case, the stiff [111] direction of the diamond-TPMS 
microlattice is coaligned with the compliant c-axis of calcite (Fig. 3i,j) [33]. In addition, the directions of 
minimum elastic modulus ([01%1 '(

L%
], [1%10 '(

L%
], and [101% '(

L%
] directions, respectively, cyan arrows in Fig. 

3b) in calcite are approximately aligned (22.6° difference relative to c-axis) with the directions of the 
highest elastic modulus in I-dTPMS microlattice ([11%1%], [1%11%] and [1%1%1] directions, red arrows in Fig. 3f). 
Therefore, the dual-scale coalignment in DS-dTPMS allows the elastic modulus compensation in 3D and 
results in a nearly transversely isotropic shape of its elastic modulus contour (Fig. 3j). This morphological 
combination can also be observed in the 𝐺̅[DE+]

&'  and 𝑣̅[DE+]
&'  contours (Fig. 3k,l). We performed FE 

simulations to validate the theoretically calculated elastic modulus values at several orientations of the DS-
dTPMS, which demonstrates the accuracy of our prediction method (SN4, Fig. S10, and Table S4). 

 
3.3. Effect of relative density 

 
We next explore how the relative density affects the structural-mechanical properties of the dual-scale 

microlattice, and whether the often-observed 50% relative density in ossicles possesses any special 
structural-mechanical significances. 

 
For I-dTPMS, as the relative density increases, the faces of the cube-like shape of the elastic modulus 

contour become less concave, agreeing with previous results [40] (Fig. 4a). This leads to an increase in 
overall mechanical isotropy. For DS-dTPMS, the elastic modulus contour first becomes smoother and more 
isotropic up to 60% relative density, however, it starts to resemble the morphology of elastic modulus 
contour of calcite beyond 70% relative density (Fig. 4b and Table S2). This is expected since the increase 
of relative density of the microlattice results in the increased similarity of mechanical properties to its bulk 
constituent. The change in mechanical isotropy as a function of relative density can be more quantitatively 
represented by a universal anisotropic index calculated based on the full stiffness matrix (Fig. 4c) [41]. The 
higher the index, the lower the mechanical isotropy. The results reveal that the anisotropic indices of DS-
dTPMS are always higher than those of the I-dTPMS, where their values are always smaller than that of 
calcite. The anisotropic indices closely approach to each other as the relative density reaches 60% (Fig. 4c). 
Furthermore, for DS-dTPMS, the anisotropic indices of 60% and 70% relative densities are similar, 
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implying a minimal value in between as proposed above (Fig. 4b,c). Therefore, the dual-scale coalignment 
in ossicles improves the mechanical isotropy significantly compared to calcite, however, 50% is not the 
relative density that maximizes the isotropy. 

 
Other than the 3D distributions, the elastic modulus values also depend on relative densities (Fig. 4d). 

As expected, the higher the relative densities, the larger the elastic modulus in general (Fig. 4d). In addition, 
all distributions show two peaks where one is at the lower end while another is at the higher end. Among 
them, the DS-dTPMS with 50% relative density has elastic moduli ranging from 17 to 30 GPa with peaks 
at ca. 19 and 29 GPa. 

 
Other than mechanical properties, we also investigated the effect of relative density on the structural 

characteristics of diamond-TPMS microlattice (Fig. 4e-g). First of all, the diamond-TPMS microlattice with 
50% relative density yields the zero mean surface curvature (𝐻 = 0), while others result in the constant-
mean-curvature surfaces (Fig. 4e, Fig. S11, and Table S5) [42]. The increase of relative density changes 
𝐻 from positive to negative values, suggesting that the surfaces become less curved (Fig. 4e). Secondly, 
we found that SAV of the diamond-TPMS microlattice with relative density of 50% is maximal, regardless 
of the change of unit cell size (Fig. 4f, Table S5,6) [43]. Thirdly, we calculated the throat size (𝑟-DMB*-), 
which is defined as the smallest radius in the void phase, and the minimal solid branch thickness (𝑟K$7) of 
the diamond-TPMS microlattice (Fig. 4g). As expected, the increase of relative density yields lower 𝑟-DMB*- 
and higher 𝑟K$7, while at 50% relative density, 𝑟-DMB*- ≈ 𝑟K$7. We previously have shown that the small 
throat size in natural ceramic foams such as sea urchin spines provides an efficient mechanism to locally 
jam the fractured fragments during deformation, leading to enhanced energy absorption capability  [33,44]. 
Therefore, with the throat size comparable to the minimal branch size at 50% relative density, the structure 
may contribute to efficient jamming for improved toughening behavior as observed in [33]. 

 
3.4. Effect of dual-scale coalignment 

 
We next investigated the effects of the crystallographic coalignment configurations on the mechanical 

properties. In starfish ossicles, the match of the two three-fold symmetries of calcite and diamond is 
achieved via a specific coalignment, i.e., [0001]calcite//[111]diamond and [44%01%]calcite//[111%]diamond. If we rotate 
calcite by 180° about c-axis while keeping the diamond-TPMS lattice unchanged, we will obtain a new 
dual-scale microlattice, i.e., DS-dTPMS (180°) (Fig. 2, Fig. S12). In this DS-dTPMS (180°), both three-
fold symmetries of calcite and diamond lattice are also precisely registered. However, in stark contrast to 
the increased mechanical isotropy due to 3D property compensation observed in DS-dTPMS, the DS-
dTPMS (180°) microlattice has decreased mechanical isotropy (Fig. 5b, Fig. S13-17, and Table S7). This 
is because, for DS-dTPMS (180°), the misorientation angle between the stiffest directions of calcite 
([55%01], [055%1], and [5%051]) and the stiffest directions of the diamond lattice ([1%11], [11%1]and [111%]) is 
only 2.5° relative to c-axis. The increase in mechanical anisotropy for DS-dTPMS (180°) can be 
demonstrated by the 3D elastic modulus contour of DS-dTPMS (180°) which maintains 6-pointed star-like 
shape similar to that of calcite (Fig. 5b). Moreover, the isotropy improvement and reduction for DS-dTPMS 
and DS-dTPMS (180°), respectively, can be also visualized in the shear moduli distribution on a 
representative plane (Fig. 5c,d). Specifically, for DS-dTPMS, the highest shear modulus of calcite is 
approximately aligned with the lowest shear modulus of I-dTPMS, exhibiting the property compensation 
for improved mechanical isotropy (Fig. 5c). While for DS-dTPMS (180°), the closely aligned directions 
with highest shear moduli of both calcite and I-dTPMS increase and decrease the maximum and minimum 
shear moduli, respectively, compared to I-dTPMS, enhancing the mechanical anisotropy (Fig. 5d). We 
further calculated the universal anisotropic indices for the microlattices, which confirmed that the 
mechanical anisotropy of DS-dTPMS (180°) is higher than DS-dTPMS at relative density over 40% and 
nearly independent of the change of relative density (Fig. 5e). 
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So far, our analyses are primarily focused on elastic properties. Fracture behavior, particularly for those 
constituents that undergo cleavage fracture, is an important aspect to consider. Here, to demonstrate the 
effects of cleavage fracture behavior on the strength of dual-scale single-crystalline lattices, we considered 
a bio-inspired dual-scale diamond lattice made of single-crystalline geological calcite (Fig. 5f). Geological 
calcite is known to undergo easy fracture along cleavage planes, i.e., (101%4), (1%104), and (01%14), while 
cleavage fracture is suppressed in biogenic calcite in stereoms due to the nanoscopic intra-crystalline 
organic inclusions [45,46]. To simplify, the shear effect of the branches is neglected, which requires the 
bioinspired dual-scale lattice to have low density or large branch length-to-thickness ratio. We considered 
a compressive loading along the [111] direction of the diamond lattice, which induces bending stress on 
the inclined (i.e., non-[111]) branches (denoted as 𝜎N.7=$7O

7B7<[&&&]) (Fig. 5f). The corresponding resolved 
normal stress on the cleavage planes of the calcite-based branches, denoted as 𝜎-.7P$B7

,+.*6*O. , can then be 
calculated as 𝜎-.7P$B7

,+.*6*O. = 𝜎N.7=$7O
7B7<[&&&] ∙ (𝑐𝑜𝑠	'𝛼). Here, 𝛼 is defined as the angle between the bending stress 

and the normal direction of the cleavage planes of calcite, and 𝑐𝑜𝑠	'𝛼 is defined as the resolved stress factor 
(𝑆𝐹) (Fig. 5f) [47]. Next, we introduce a dual-scale misorientation angle 𝛾, which is the azimuthal angle 
between the original 1-axis and rotated 1’-axis with respect to c-axis of calcite (Fig. 5f). Therefore, 𝛾 = 0° 
corresponds to the coalignment in DS-dTPMS microlattice, while 𝛾 = 180° corresponds to that of the DS-
dTPMS (180°) microlattice (Fig. 2a). At a given 𝛾, we can use 𝑆𝐹 as the measure of the resolved normal 
stress on different cleavage planes, and determine the maximum scenario of 𝑆𝐹 (or 𝑆𝐹K*!) (Fig. 5g). The 
increase of 𝑆𝐹K*!  results in increased maximum of 𝜎-.7P$B7

,+.*6*O.  among cleavage planes, indicating the 
decreased strength of the dual-scale diamond lattice with given 𝛾. Considering the three equivalent cleavage 
planes of calcite across all 𝛾 values, we found that, at 𝛾 = 0°, the bioinspired diamond lattice has highest 
𝑆𝐹K*! = 0.81, while when 𝛾 = 180°, it has the smallest 𝑆𝐹K*! = 0.32 (Fig. 5g). Therefore, although 𝛾 =
0° results in the highest isotropy of elastic properties due to property compensation, it yields the lowest 
strength among all surveyed 𝛾 based on the simplified analyses (Fig. 5g). 
 
4. Discussions 

 
The calcitic ossicles in the starfish P. nodosus possess a unique dual-scale single-crystalline nature. At 

atomic scale, it is a single-crystalline calcite, whereas at microlattice level, it is a diamond-TPMS lattice 
with a relative density of ~50%. In addition, we showed that the crystallographic symmetries at these two 
length scales are precisely registered following [0001]calcite//[111]diamond and [44%01%]calcite//[11%1%]diamond. The 
combined computational and theoretical methodology developed here allows us to investigate the 
mechanical properties of this unique DS-dTPMS microlattice. Our results suggest that, in 3D, the DS-
dTPMS microlattice achieves enhanced mechanical isotropy by aligning the compliant and stiff directions 
from calcite and diamond-TPMS lattice together. This enhanced mechanical isotropy in ossicles, 
particularly within the basal plane, i.e., the (0001) plane in calcite or (111) plane in diamond lattice, may 
be beneficial for the biomechanical performance of starfish. In the starfish endoskeletal system, the ossicles 
are arranged as a tessellated array, where the adjacent ossicles are connected by fibrous tissue [48]. During 
locomotion, the ossicles resist in-plane compressive and tensile loads resulted from the relative movements 
of ossicles and fibers in various directions, particularly within the basal plane [48,49]. The enhanced 
mechanical isotropy may reduce deformation mismatch among adjacent ossicles. Further analysis of the 
mechanical performance of the ossicles assembly are needed to provide more insights in this regard [49,50]. 
Moreover, the above computations and analysis were allowed by the fact that the ossicles are constructed 
by a single-crystalline calcite. For stereom exhibiting different crystallographic orientations of the 
constituent calcite or the lattice structure at different domains, such mechanical compensation due to 
symmetry matching need to be reanalyzed, as such coalignment may be lost. 

 
We also note that despite the increase of mechanical isotropy for DS-dTPMS in ossicles due to 3D 

property compensation, the mechanical isotropy is not maximized at 50% relative density as observed in 
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ossicles. Instead, the maximized isotropy is achieved when the relative density is within 60%-70%, beyond 
which the 3D modulus contour of DS-dTPMS approaches to that of calcite. Therefore, if maximizing 
mechanical isotropy is one of the driving forces of evolutionary selection for ossicles’ microstructure, other 
driving factors should also play roles in determining the microscopic structural characteristics of ossicles. 
For example, we show that 50% relative density in diamond-TPMS yields the zero mean surface curvature 
and highest SAV ratio. This minimal surface structure can avoid stress concentration to improve strength 
and damage tolerance compared to sharp connections between branches [51,52]. In addition, it has been 
previously postulated that the minimal surface and highest SAV in echinoderm stereom provide maximum 
contact between the stroma within the void phase and mineralized phase, which may maximize the 
biomineralization efficiency [53]. Another factor may be related to the damage tolerance of stereom by 
considering the jamming mechanism of fractured fragments. By having similar 𝑟-DMB*- and 𝑟K$7 values in 
the diamond-TPMS microlattice at 50% relative density, the fractured fragments from the solid branches 
can be efficiently jammed locally by the small throat openings, leading to the formation of densified damage 
bands and contributing enhanced energy dissipation [33,44]. Therefore, the observed 50% relative density 
may be a compromised result considering mechanical properties (isotropy, stress distribution, damage 
tolerance via local jamming), light weight, and formation pathways. 

 
Regarding the particular dual-scale coalignment observed in ossicles (i.e., [0001]calcite//[111]diamond and 

[44%01%]calcite//[11%1%]diamond), our results indicate that other alignments, particularly DS-dTPMS (180°) which 
is achieved by rotating the calcite about its c-axis by 180°, exhibits reduced mechanical isotropy. Note here 
that the DS-dTPMS (180°) microlattice still maintains a precise registration of two three-fold symmetries 
from atomic and microscopic scales. However, it is not appropriate to conclude that the particular 
crystallographic coalignment in ossicles is a result of maximizing mechanical isotropy. Other factors like 
particular growth or the biomineralization process may play a significant role here. On one hand, it is known 
that the growth of sea urchin larval spicules and some calcareous sponges grow their spicules along specific 
crystallographic directions, namely, along their a* axes [54–56], which is different from the DS-dTPMS 
microlattice here. On the other hand a diverse variety of stereom microstructures in echinoderm skeletal 
elements exists, which range from fully stochastic porous structure [27] to the highly regular microlattice 
as seen in the starfish ossicles here. Most of these structures all diffract as single crystals [23]. In these 
cases, the branches in stereom microscopically do not necessarily have to align with any specific 
crystallographic orientations of constituent calcite. This suggests that it is theoretically possible that 
echinoderms can produce the diamond microlattice with a different calcite orientation. Therefore, it is still 
an open question why this particular coalignment is achieved in the starfish ossicles. 

 
Furthermore, other than the mechanical isotropy, strength is another critical factor in designing dual-

scale lattices. Here, we proposed a dual-scale geometrical analysis method to study the effect of cleavage 
fracture behavior on strength of dual-scale lattices. By varying the dual-scale misorientation angle (𝛾), we 
found that the external loading that induces cleavage fracture can be increased at 𝛾 = 180° which improves 
the strength of dual-scale lattices. This method can be extended to predict the fracture behavior of other 
dual-scale lattices with constituent experiencing easy cleavage fracture. 

 
5. Conclusions 

 
In this work, we investigated the mechanical properties of the dual-scale (i.e., atomic-scale and lattice-

scale) crystallographic coalignment found in the ossicles of P. nodosus. We first utilized a combined 
theoretical and computational method to predict the structural symmetry and 3D elastic property contours 
of dual-scale diamond-TPMS microlattice in ossicles. The results demonstrate that the ossicles with 50% 
relative density are a structural feature of improved yet unmaximized mechanical isotropy among surveyed 
relative densities and dual-scale coalignments. Combining the structural analysis, we propose that the 
ossicles possess a trade-off between mechanical (i.e., mechanical isotropy, improved stiffness, strength, 
and toughness) and morphological advantages (i.e., zero mean curvature and highest surface-to-volume 
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ratio). Finally, we envision that the method in this work can be adopted to understand other echinoderm 
stereoms made of single-crystalline calcite and design dual-scale microlattice for desired mechanical 
isotropy, strength and structural symmetry.  
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Figures 

 
 
Figure 1. Dual-scale crystallographic coalignment in the ossicles of starfish Protoreaster nodosus. (a) 
The endoskeleton of starfish P. nodosus, showing radially-arranged arrays of ossicles and the normal 
direction (black solid arrow) from the oral to aboral sides. The cyan plane roughly indicates the plane of 
the starfish perpendicular to the normal direction. (b) SEM image of the ossicles where the exposed 
crystallographic planes of (111) are closely parallel to the plane of starfish. (c) A cubic volume of stereom 
in the ossicle. Here, the [111] direction is along the normal direction of the starfish’s skeleton. Inset: 3D-
FFT pattern of the cubic volume of an ossicle with diffraction spots. (d) The RVE of diamond-TPMS 
microlattice as a model to represent the lattice-scale structure of ossicles. (e) Scanning electronic 
microscope (SEM) image of the calcite crystals overgrown on the underlying ossicle. (f) Zoom-in image of 
the crystallographic orientation coalignment between the intersection between two adjacent {101%4} 
cleavage planes (cyan planes) of calcite and the inclined branches (orange lines) of ossicle’s diamond-
TPMS microlattice. (g) Schematic of the dual-scale coalignment between atomic-scale crystallography of 
calcite and lattice-scale crystallography of diamond-TPMS microlattice in ossicles.  
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Figure 2. Introduction to models and methodology. (a) Schematic models of (1) single-crystalline solid 
calcite, (2) I-dTPMS, (3) DS-dTPMS, and (4) DS-dTPMS (180°). Here, DS-dTPMS represent an 
idealized model of ossicles. (b) Methodology of the elastic properties prediction, including (1) material 
properties and PBC configurations for FE simulations, (2) calculation of the full stiffness matrix of four 
models, (3) transformation of the full stiffness matrix to calculate elastic properties in any arbitrary [ℎ𝑘𝑙] 
directions, and (4) visualization of the 3D elastic property contour.  
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Figure 3. 3D elastic property contours of single-crystalline calcite, I-dTPMS, and DS-dTPMS. (a) 
Geometrical representation of the calcite’s crystallographic symmetry. (b-d) 3D contours of elastic modulus 
𝐸[DE+]  (b), averaged shear modulus 𝐺̅[DE+]

&'  (c), and averaged Poisson’s ratio 𝑣̅[DE+]
&'  (d) of calcite, 

respectively. The top view (-3 direction) of the 3D elastic modulus contour of calcite is shown, in which 
the cyan arrows indicate the most compliant directions of calcite. (e) Geometrical representation of 
crystallographic symmetry of I-dTPMS. (f-h) 3D contours of elastic modulus 𝐸[DE+] (f), averaged shear 
modulus 𝐺̅[DE+]

&'  (g), and averaged Poisson’s ratio 𝑣̅[DE+]
&'  (h) of I-dTPMS, respectively. The [1%1%1%] view of 

the 3D elastic modulus contour of I-dTPMS is shown, in which the red arrows indicate the stiffest directions 
of I-dTPMS. (i) Geometrical representation of the resultant crystallographic symmetry of DS-dTPMS. (j-
l) 3D contours of elastic modulus 𝐸[DE+] (j), averaged shear modulus 𝐺̅[DE+]

&'  (k), and averaged Poisson’s 
ratio 𝑣̅[DE+]

&'  (l) of DS-dTPMS, respectively. The view along [1%1%1%] direction of the 3D elastic modulus 
contour of DS-dTPMS is shown. Here, the red (c), yellow (e), blue (r), and green (a) dots on all 3D elastic 
property contours indicate the property values of the c-axis direction, plane normal of (101%8), plane normal 
of (101%4), and [21%1%0] direction (𝑎&-axis). Their values are summarized in Table S3. 
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Figure 4. Effect of relative density on the mechanics and structure of DS-dTPMS. (a,b) Evolution of 
the 3D elastic modulus contours of the I-dTPMS (a) and DS-dTPMS (b) with various relative densities. (c) 
Universal anisotropic index of I-dTPMS, and DS-dTPMS with different relative densities, respectively. (d) 
Histogram representation of distributions of elastic modulus of DS-dTPMS with different relative densities. 
(e) Mean surface curvatures of the diamond-TPMS microlattice with 34 µm unit cell size and different 
relative densities. The standard deviations of principal curvatures 𝜅& and 𝜅' are used for error bars. (f) SAV 
(surface-area-to-volume ratio) and normalized SAV by the maximum value of various relative densities 
and unit cell sizes. (g) Throat size (𝑟-DMB*- ) and minimal branch thickness (𝑟K$7 ) of diamond-TPMS 
microlattice with 34 µm unit cell size and different relative densities. 
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Figure 5. Effect of dual-scale coalignment. (a) Schematic representation of the property compensation of 
DS-dTPMS. (b) Schematic representation of the anisotropy enhancement of DS-dTPMS (180°). (c,d) Shear 
moduli on the (11%0) plane of DS-dTPMS (c) and DS-dTPMS (180°) (d), respectively. (e) Universal 
anisotropic index of DS-dTPMS and DS-dTPMS (180°) with different relative densities, respectively. (f) 
Schematic of the dual-scale crystallographic coalignment in a dual-scale diamond lattice. Blue area: three 
inclined or non-[111]  branches; 𝛾: misorientation angle of the single-crystalline calcite about its c-axis 
from 1-direction; 𝛼: angle between the normal direction of the cleavage plane (purple arrow) and the 
longitudinal direction of the non-[111] branch (pink arrow); 𝜎N.7=$7O

7B7<[&&&] denotes the bending stress on the 
non-[111] branch, while 𝜎-.7P$B7

,+.*6*O. denotes the normal resolved stress on the cleavage plane; cyan box: 
(101%4) plane. (g) Relationship between 𝛾 and resolved stress factor 𝑆𝐹 ((cos 𝛼)'). Orange arrow indicates 
𝑆𝐹K*!<%° = 0.81 which is the maximum 𝑆𝐹K*!  for 𝛾 = 0°. Green arrow indicates 𝑆𝐹K*!<&Q%° = 0.32  
which is the maximum 𝑆𝐹K*! for 𝛾 = 180°.  
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