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Abstract: Due to ion—electron collisions, it is impossible to derive any two-fluid model
for plasma as a direct hydrodynamic limit of the Vlasov—Poisson—Landau system for ions
and electrons. At the same time, electrons are much lighter than their ion counterparts. In
this work, we derive the massless electron limit of the Vlasov—Poisson-Landau system.
This is done via a re-scaling of the electron velocity, leading to multiple velocity scales.
Importantly, we demonstrate that ion—electron collisions vanish in this limit, due to
special structure of the Landau collisions. We also show that this is invalid for the
classical Boltzmann kernel with hard sphere interaction. This mechanism serves as the
first step for the derivation of the two-fluid model for ions from a two-species kinetic
equation.
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1. Introduction

A plasma is a collection of fast-moving, charged particles. It is believed that more
than 95 percent of matter in the universe takes the form of a plasma. Besides this, a
major impetus for the study of plasmas is to obtain nuclear fusion as a means of energy
production. Due to its complex and rich nature, there are three main distinct families
of models (kinetic, two-fluid and magnetohydrodynamic) for describing a plasma in
different physical regimes. The two-fluid models (Euler—Poisson and Euler—Maxwell
systems) describe dynamics of two distinct and separate compressible ion and electron
fluids, interacting with their self-consistent electromagnetic field. Such two-fluid models
are important both from physical as well as mathematical standpoint, serving as an origin
for most well-known dispersive PDEs, for instance KdV [4,36], NLS [34], Zakharov
[37], etc.

It is an important question to derive and justify two-fluid theory from more basic
kinetic models for plasma. Consider a classical kinetic model for ions and electrons, the
Vlasov—Poisson-Landau system, which models the distribution functions F.(¢, x, v)
and F_(t, x, v) for ions (+) and electrons (—) respectively:

ze
(0 +v-Vy+ —E -V, }Fy = 2ne* In(ANZ* Qs (Fy, Fi) + 2201 (F—, Fy)},
my

(9 +v-V, — —E. V) F_ = 2me* In(A)Q__(F_, F_) + Z*Q_(F,. F_)},
m_
—Ayp =dre(Zn, —n_). (1.1)

In the above, € is the electron charge,! and Z is the atomic number of the ion species.
The ion and electron masses are m, and m_ respectively. We also have the densities
ngy = fR3 F.dv, the electric potential ¢, the electric field £ := —V, ¢, and the Landau
collision operators Q14+, O_4, O__ and Q,_ (tabulated in Sect.2.1 below). We refer
the reader to [30], and Chapter 2 of [2] for the physical justification of these models.

It is well known that any straightforward fluid limit must lead to

Z4 Qi (Fy, Fu) + Z2Q_4(F—, F) = 0, (1.2)
Q4 (Fy, Fy) +Z*Q__(F_, Fy) = 0. (1.3)

However, due to the presence of ion and electron interactions Q. and Q_, the only
possible solutions to the above are of the form?

m my|v — Lt|2
F, = n+(2n—+T)3/2 exp (_+T) : (1.4)

1 Not to be confused with the mathematical constant e ~ 2.718.
2 See equation (40) in [30].
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2
m— 3, m_|v — u|
F_=n_(—— - . 1.5
(=) exp( o ) (1.5)

Here, the electron and ion fluids exhibit the same velocity u(z, x) and temperature
T (¢, x), which excludes the possibility of justification of any two-fluid models from
(1.1). It is well-known, however, that it is possible to derive two-fluid models from two-
species kinetic equations if ion—electron collisions Q+— and Q_, are disregarded.
This was done in the context of the Vlasov—Poisson—Boltzmann system [23-25], and
more recently for single-species Landau-type equations [12,33]. We highlight the work
[3], which derives the fluid limit for the Vlasov—Poisson—Boltzmann system, after first
deriving the massless electron limit. This work in parituclar served as a major inspira-
tion for our work. Importantly, however, none of these works consider the inter-species
collisions.?

In all physical situations, the electron mass m_ is much smaller than the ion mass
m.. For instance, 'Zl—: ~ (0.005 for a hydrogen plasma. This small parameter has been
exploited in different contexts in plasma studies both from physical as well as mathe-
matical standpoints. For instance, one can derive the Euler—Poisson system for ions in
this limit [16]. By sending the electron mass to zero, the density of the electrons (and, in
turn, the electrostatic potential) becomes wholly determined by the density of the ions.
This eliminates the need to solve a fluid or kinetic equation for the electrons separately
from the ions, leading to a simpler model.

When the ions and electrons are near thermal equilibrium (say, at temperature 1),

a typical ion speed will be comparable to (m%)%, while a typical electron speed will
be comparable to ( m]_,)%' Because of these divergent velocity scales, it is necessary to

introduce the parameter ¢ := ( ',':l—:) %, and the rescaled electron velocity
& =ev. (1.6)

Applying this rescaling the system (1.1), we get the rescaled system (1.7) below. The
ion—electron collisions then exhibit two velocity scales. Our main result is that by taking
the limit e — 0 in the two-scale system, we are able derive the massless electron system
(1.18) below. A salient feature of this derived equation is that the ion—electron collisions
are no longer present. In the future, we hope this work will clear the way for the derivation
of the Euler—Poisson system for ions. This would be accomplished by first by taking
& — 0, and then taking hydrodynamic limit k — 0, where k¥ > 0 is the analogue of the
Knudsen number for our system.

Besides the relevance to the fluid limit, the massless electron limit in kinetic theory is
of independent interest. There are a number of works that have handled some version of
this limit. For instance, Degond and Lucquin-Desreux [10,11] give formal expansions
for the kinetic equations with Boltzmann and Landau collisions for systems of particles
with disparate masses, including the cross collision terms. The works [6,29], give deriva-
tions the massless electron limit for Vlasov—Poisson system with linear Fokker—Planck
collisions (and in the latter case, with an magnetic field). The aforementioned work [3]
derives the analogue of (1.18) for the Vlasov—Poisson-Boltzmann system. We note that
they require a regularity assumption, and do not include ion—electron collisions.

3 In the case of diffusive limits, the work [31] derives the single fluid Vlasov—Navier—Stokes—Fourier system
from the two-species Vlasov—-Maxwell-Boltzmann system.
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There is also a growing literature on the Vlasov—Poisson system with massless elec-
trons. We refer the reader to [5,7,15,17-20,26-28] and the references therein. In par-
ticular, the overview [18] has a formal derivation of the system with a Landau collision
term. We also mention the recent work [8] for the Vlasov—Poisson—Landau system with
weak collisions.

1.1. The rescaled Vlasov—Poisson—Landau system. In Sect.2.1, we apply a rescaling
procedure to the system (1.1). In particular, we use the rescaled electron velocity & = ev,
as aforementioned. This system depends on three positive parameters: k > 0 (defined in

Sect.2.1), the atomic number Z,and & = (’Z—:) 2. The rescaled versions of the distribution
functions F? (¢, x, v) and F® (t, x, £) then solve the system

{0 +v- Vi + ZE® -V} FE =k YZ3Q(FE, FE) + Z2Q° [ (F°, Fo)},
{60 +& -V, — E® - Vi) FE =k YQ(FE, F&) + ZQ%_(F¢, F)), (1.7
—Ax¢® =4m(nf —n®)

Above, ¢¢ and E® = —V, ¢ are the electric potential and field respectively. The func-
tions n4 (¢, x) are the charge densities, defined by

0 = / Fidv, nf = / Fedt. (18)
R3 R3

The collision operators are given by
0(G1.Gy) =V, - f S — ) [G1W)VoGa(v) — Ga(0)Vy G (W) dv',
R
(1.9)

0% (G1,G)) =V, - /w (v — &) {6G1(E)VyG2(v) — G2(v)VerG(§)} dE,
(1.10)

05 (G1,G2) = Vg - fRs D — ) {G1(W)VEG2(E) — £G2(§)Vy G1(V) } dV'.

(1.11D)
Here, ® gives the Landau collision kernel: for each z € R3,
1
D(2) :=—(1—Z®f). (1.12)
|z |z

From here on this paper, we only consider the case where Z = « = 1, and fix the domain
(x,v) € T x R3, where T? = (R/Z)? denotes the 3D torus.

We recall that the system (1.7) comes equipped with conservation of mass, momentum
and energy:

d d
— Fidxdv=— Fédxdé =0, (1.13)
dt T3 <R3 t JT3xR3

d
— (/ vFidxdv + 8/ SFdedS) =0, (1.14)
dt \ J13xR3 T3 xR3
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d 2 2 1
< / P pegeau +/ B pe g d§+—/ \ES%dx ) =0. (1.15)
dt \Jr3xr3 2 T3xR3 2 3

From (1.7), it is clear that as ¢ — 0, the the term involving d; in the electron
equation vanishes. This is a singular limit. Under appropriate circumstances, the electron
distribution formally converges to an equilibrium solution at every time, evolving quasi-
statically according to the ions. The £-dependence of these equilibrium solutions are
Maxwellians (i.e. Gaussians). We denote the Maxwellians by

[SI[%)

q _ e

g (£) = (—) 3R 45 0. (1.16)
2

On the other hand, the x dependence is determined by the electric field, specifically

lim,_o In(n®.) is proportional to ¢° = lim,_¢® (up to an additive constant). The

main claim of this paper is that for some 8(¢) > 0, we have

. 0
lim F2(1, %, §) = g (§)e’ 0 (1.17)

Here, 80 is the inverse temperature. This is known as the Maxwell-Boltzmann approx-

imation. Here, we shift ¢° by an additive constant to ensure Jrs PO gy — 1,

The above claim is imprecise, because we have not yet made clear our assumptions,
nor the sense in which this limit holds. Nevertheless, when the above holds, then the
formal limit of (1.7), combined with conservation of energy, leads to the following
equation, which we refer to as Vlasov—Poisson-Landau for ions:

{8t+v~V —E°. Vv, )F' = 9(F?, F?)

|”|2 0 1 02 _
— Frdxdv+ — |[E¥|*dx} =0, (1.18)
dt 2,3 T3 <R3 87 J13

— A’ =dn(n® — e ¢’0).

A formal derivation of this system is given in Sect.2.2.

1.2. Main result. The goal of this paper is to show that for appropriate initial data,
this formal limit holds on a small time interval. We first provide local well-posedness
theorems for the systems (1.7) and (1.18) for general initial data. To do this, we must first
define the function spaces which capture the dissipation rate from the collision kernels.
We define the matrix o;; (v) = ®;; * u, with i, j € {1,2,3}. Given u € R3, we have
that

ul'o()u ~ (1> | Pyul? +<—)| Lul? (1.19)

Here, () = /1 + |- |? is the Japanese bracket. The matrices P, and P,. denote the
orthogonal projections onto span{v} and {v} respectively. Using this matrix, we define
the following spaces which will capture the dissipation produced by the various collision
operators. Let H, denote the Hilbert space with inner product (with ¥ = ¥ (v),{ =
¢()

W11, = (01j0u ¥, o, ¥) 2 + (tr(0) Y, ) 2 (1.20)
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Here and throughout the paper, we use repeated index notation, i.e. ugu) = 22:1 UgU),
given any two vectors u, u’ € R>. The above inner product captures the dissipation
associated with self-collisions when linearized near Maxwellian [9,21,22]. We also
define the semi-norms

1117, = (01 )3y ¥, 3, ) 12 (1.21)

1V 13 = e(0ij(E0)du ¥, 00,912 (1.22)
1 v

1Vl = 203 (D)0 ;v 2. (123)

Using these norms, we now define the spaces &, ® and @f by their (semi-)norms which
we use to control Fy. Fix the parameters my = 5(k + 1) for k € {0, 1,2}, and s = 3.4
Given u = u(x, v) (or u = u(x, £)), we define

Il o= @)™ ullfy + 1) (Ve ulfs (1.24)
lld o= 1™ ull 2 )+ 10 (V) ul ] g (1.25)
luldyz = 140) ™03 g e .+ IO VUl e - (1.26)

We note that as spaces, ® and CD;E are the same. However, the norms are only similar
up to a constant which goes to infinity as ¢ — O.

To state the main theorem, we will also make use of the following spaces to measure
the error in the ion distribution:

luller = 1) ulizo + ()™ (V) ullz; . (1.27)

lulZyr = 1) ™ w3 g+ Y™V Ul g (1.28)

Finally, to measure the distance of F® from its limit, we let n > 0 be a constant to be
determined later, and define g, = ¢“"8;, for each o € {1, 2, 3}, where 8;, = B(0).
Then, for o € {1, 2}, we define

2 . 0
E2 1= eV (FE = eI

(1.29)
+ [l PR — pgel )7,
x.§
and
2 0
D° o 1= eV FE = pgeP VT 0 e
o (1.30)

2 0
+ [|edert /A pe Mﬂeﬁd’ }”iﬁ(HUﬂH;QE'

Also, throughout the rest of the paper, we will use the subscript “in” to denote the initial
value of some quantity, for instance, q‘)?n (x) = ¢°(0, x).
We can now state our main theorem:

4 Although these parameters may take on a range of values, it is simpler to fix their values to exact constants.
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Theorem 1.1. Suppose for some To > 0 and M > O, there exists a weak solution
(F2, B, ¢°) to (1.7) with 0 < F? € C([0, Tol; €) N L2([0, To]; D), B € C([0, Ty]) and
oY e C(0,T1: H”?) with

sup {|| ) oo, + IFL e} + 1 In(BO) o, < M. (1.31)
te[0,Ty] P+

(1) There exist positive constants 1, and € depending only on M, as well as T € [0, Tol
depending on (Ff, B, ¢°) such that the following holds. For each ¢ € (0, %), take

(F{ i FE ), withO < FY ;€ € satisfying the estimates
1
sup | ——llege + 1y i lle < M, (1.32)
e€(0g] "4in
IFS = Fiinller + 8 5 4, < Me. (1.33)

Then, for each ¢ € (0, €], there exists a solution (FE, F®) to (1.7) with 0 < F§ €
C([0, T1; &) N L2([0, T]1 N D). This satisfies

sup [|FE(t) — Fo(O)ller Sm e (1.34)
1€[0,7]

T
sup g(sz(z)+[ P ,(t)dt Sy e* (1.35)
t+e[0,7] 0

Moreover, forall t € [0, f"],

(=[S

| 501
E° (1) Smeze D o3t 42, (1.36)

(ii) There exist positive constants 1, § and € depending on M, and T e (0, Ty] depending
on ( 0, B, qbo) and M such that the following holds. For all ¢ € (0, €], we set F¢. =

+,in

+ inand FE . = F_ i, (where F ; is independent of ¢) satisfying
é@&‘

We note the expression on the left is independent of €. We also impose the condition on
the kinetic energy of F_ j,:

// &2 F_ ipdxdt — / [Viinl® — Vi) [2dx = 0. (1.38)
T3 xR3 2,3111

Then, for each ¢ € (0, ], there exists a solution (F:, F®) to (1.7) with 0 < F§{ €
C([0, T1; &) N L2([0, T1 N D). This satisfies

<3é. (1.37)

,2,in —

sup | F(0) = FY(ller Sm /68 +¢ (1.39)
1€[0,7]
7
sup &8 ,(1) + / ¢ ,(dt Sy e(8* +¢) (1.40)
r€[0,7] 0

Moreover, forall t € [0, f],

Lo
E° () Su 8¢ T 1 e33 4 s, (1.41)
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Remark 1.2. This theorem depends on the existence of solutions to the system (1.18).
The local well-posedness theory for this system will be given in a forthcoming paper
[14].

1.3. Methodology and outline. Due to the nature of the rescaled velocity £ in the two-
scale system (1.7), the Landau kernel Qf_ exhibits a severe singularity in & as ¢ — 0.
This is mirrored by the degeneracy of the Q¢ | in this limit. This makes it very difficult to
propagate v derivatives of F and & derivatives of F°. The main technical achievement
of this paper is that we obtain uniform bound in ¢ in weighted Sobolev spaces, without
any & or v derivatives. In other words, all regularity in v and & comes from the diffusive
control from the top order part of the collision operators.

We highlight some of the techniques that go into this. In Lemma 3.2, we obtain a
non-perturbative lower bound for ® x G (where G > 0), which allows us to access
diffusive control from collisions. One challenge we encounter is that we are unable to
close a bootstrap estimate on F?{ solely in the & norm. Proposition 4.1 roughly states
that if F7 is of size M on [0, T'], then we can only say that F will be of size Cjs on
the same interval. In general, C); may grow exponentially in M. However, we can close
a bootstrap estimate by also assuming || F; ||/ is small on this interval. This can be
done uniformly in ¢ by taking 7" small enough that || F_?H@/ is as small as desired, and
then controlling the difference || F; — Ffr)||@r. We do this through the error estimate in
Proposition 4.2.

The next challenge is to control the difference FZ — /36‘3¢0. This is roughly the
content of Proposition 5.1, although we work with what we call the “intermediary quan-
tities” (y*, ¥°) rather than (8, ¢°). This proposition utilizes the linear decay estimates
of the linearized collision operator, via the framework developed in [21,22]. Because of
the small parameter in front of the 9, term in the second line of (1.7), the question of con-
vergence of F? to the Maxwellian ,uyseVg‘”g is in some sense equivalent to the question
of asymptotic stability of the Maxwellian. However, there are a number of complications
in our context. First, the underlying Maxwellian has a varying temperature. To deal with
this, we take a window of time such that y¢ ~ B;,, and choose g1 < g2 < g3 (constant
in time) close enough to B;,, and work with these constants instead. This results in a
perturbed version of the linearized collision operator found in [21,22]. Showing that this
operator retains the desired coercivity properties requires some care. There is also the
ion—electron collision operator Q¢ _, which acquires a singularity at§ = Oase — 0. To
control this, we use Lemma 3.2 to extract a dissipative, albeit singular and degenerate,
top order part. We then use the dissipation from the linearization of Q to control the
singular lower order terms.

A key feature of the linearized collision operator is that it has a five dimensional
kernel, corresponding to the macroscopic quantities of mass, momentum and energy
density. Besides having to work with a perturbation of this operator, there are some
additional challenges in adapting the macroscopic estimates from previous works. One
issue is the effect of Q%_ on the macroscopic quantities. Surprisingly, this term has
a perturbative effect on the mass and energy density, and even contributes an extra
dampening effect on the momentum density (see Lemma 5.6). A second challenge is
how one controls the mean energy of the perturbation. The mean kinetic energy density
of F¢ — uyae”s‘/’S is not conserved, and corresponds to neutral mode at the level of

the linearization of the equation for F¢ — uyse}’s‘/’s. In contrast, all other components
of the macroscopic quantities are either conserved, or dissipated through hypo-coercive
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effects. In part (i) of Theorem 1.1, we can control the mean energy because it is initially
small. In part (ii), we must impose (1.38) and use some nonlinear identities to control
the average energy density, as in the first step of Proposition 5.7. This necessitates the
use of the the intermediary quantities (y¢, ¥¢) instead of (8, ¢0) since 2)3/

better approximation of the mean kinetic energy of F? than 5 35

The structure of the paper is as follows. Section 2 contains all of the formal analysis in
this paper. In Sect.2.1 we derive the rescaled system (1.7). In Sect. 2.2, we give a formal
derivation of the system (1.18) from (1.7). In Sect.2.2, we show how the analogous
derivation does not work in the context of the Vlasov—Poisson—Boltzmann system, and
we highlight the difficulties in defining the limiting system as ¢ — 0.

Section 3 contains two preliminary results that will be used in the paper. The first is
Lemma 3.1. This is a statement of local well-posedness that is compatible with the main
theorem. We do not prove this result, as it follows from straightforward modifications of
the a priori estimates shown in this work. The second result is Lemma 3.2, which gives
upper and lower bounds on @ G This is particularly important for extracting diffusive
control via the norms H,, and H

In Sect.4, we prove a priori estlmates on the ion distribution F;. First, we have
Proposition 4.1, which gives control of F{ € L°°(&) N L?(®) uniform in &. Then, we
have Proposition 4.2, which gives uniform control of F¥ — Ff € L®(¢) N L®®D).
Finally, with Lemma 4.3, we construct the intermediary quantities (y ¢, ¥¢), which solve
the to the system (4.138) below. These are defined in the same way as (8, ¢°), except
using F¢ in place of F?.

In Sect. 5, we prove Proposition 5.1, which gives the error estimate for the electrons
under certain assumptions on the solutions. The proof of this is broken up into two com-
ponents: energy estimates for F& — 1 ee” ¥ (as in Proposition 5.4), and macroscopic
estimates (as in Lemma 5.6 and Proposition 5.7).

Finally, in Sect.6, we prove Theorem 1.1. For both parts (i) and (ii), we make five
bootstrap assumptions, which allow us to satisfy the assumptions made by the various
propositions throughout this paper. We then show show that these assumptions can be
propagated over a time interval independent of & > (. The error estimates then follow
from Propositions 4.2 and 5.1.

2. Formal Analysis

2.1. Non-dimensionalization of the Vlasov—Poisson—Landau system. Here, we show
how to rescale the Vlasov—Poisson—Landau system (1.1) to the non-dimensionalized
form (1.7). The collision operators in (1.1) are
1
01+(G1.G)(W) = V- / O — ) {G1(V)V,Ga2(v) — G2(v)V, G (v) } v,
+ R
2.1

1
0-+(G1,Go)(v) = —V, / P —v)
m R3

+

P———

LG1(v’)VuG2(v) - LGz(v)VvG1(v’)} dv', (2.2)
my m_

1
0+-(G1,Gy)(v) = m—Vv : /113 d(v—1)
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{LGl(v/)VvGﬂU) - LGz(v)VUGl(v/)}dv’, (2.3)
m_ nmy

1
Q- (G1,G)(v) = m—2Vu : /w D =) {G1(WV)VyG2(v) = G2 (v)V,G1 (V) } dV,
(2.4)

In order to define the Coulomb logarithm, we assume F, and F_ have approximately a
common temperature 6 > 0 (with the Boltzmann constant set to 1). To have a charge
balance, the electrons will have on average N total number of particles per unit volume,
and the ions will have total number N /Z per unit volume. For simplicity, one might take
F, and F_ to be perturbations of such equilibrium, i.e.

N m m+|v\
Fer — *)3/2 : (2.5)

m_ \v\

F_ ~N( — )32~ . (2.6)

When F, and F_ are equal to the Maxwelhans, they solve (1.1) with ¢ = 0.

Next, the Coulomb logarithm In(A) arises as logarithmically divergent integral in
the derivation of the Vlasov—Poisson-Landau system from the BBGKY hierarchy [2],
which is then cutoff at length scales where the assumptions of the model break down.
Several choices of cutoffs exist, the most common pair being the Debye length at large

scales
9 1/2
AD = 2.7
P (47re2N ) 7
and the distance of closest approach at small scales
by = 30 (2.8)
0= Ze2 ’
This gives the expression
A
In(A) = In (—D> . (2.9)
bo

Importantly, In(A) does not depend on the m _ or m... Unfortunately, this choice fails in
contexts where Ap < by, forinstance when N is large or 6 is small, and another definition
of In(A) is needed. For our purposes, we shall simply take In(A) to be some positive
parameter independent of the masses. We note here that this logarithmic divergence can
be resolved by using the Lenard-Balescu model for Coulombic collisions. Regarding
this, see chapter 2 of [2], as well as the works [13,35].

We define relevant length, velocity and time scales for our problem. This will allow us
to redefine a non-dimensionalized equation depending on three parameters: the (square
root of the) mass ratio, Z, and a dissipation rate. The relevant velocity scales for each
species are

Vi= (i)l/z. (2.10)
m4

These are the the thermal speeds as in [1]. Next, we define the length scale

o \\/2
:<W) , @2.11)
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which can be thought of the smallest length scale at which the electrostatic force is
significant for a thermal particle. This gives us natural time scales for each species

X ma\1/2
7= 2 <—) 2.12
v+ Ne? (2.12)

While F, and F_ will be re-scaled in v differently, according to V, and V_ respectively,
we will re-scale time by the ion-time scale for both species. The electrons then evolve

according to a faster time-scale than the ions. The ratio of these time-scales is the same
as the square-root of the mass ratio,

T m._ 1/2
T+ my

The final non-dimensional parameter is the dissipation rate, which gives the size of the

collisional effects:
» 1/23

We now perform the non-dimensionalization. Define the re-scaled coordinates

_ t
t=—, 2.15
T, (2.15)
X
xX=—, 2.16
T= (2.16)
Ty = — 2.17)
Ve = —, .
+ Ve
and define re-scaled versions of (F_, F,):
L zv3
F+(t779v+) = N+ F+(t5~xav)5 (2'18)
. V3
F_(1,x,v.) = W_F_(t,x, v). (2.19)
Moreover, define
G0 = [ b7 T, (2.20)
—Ax¢ = 4n (747, %) — - (7, 7)), 2.21)
E(#, %) = —Vsp(, ). (2.22)
In particular,
- 1
E(t,x) = ——E(t, 2.23
(7,%) NXe (t, x) (2.23)
The “Vlasov—Poisson” parts of the Eq. (1.1) transform like
Ze N _ ~ -
{0 +v Vit —E-Vy}Fo = ——{0;+0, - Vs + ZE - Vg, }Fy (2.24)
nm. ZT+V+
e N 3 . s
(0, +v-Vy — —E -V, )F_ = {ed;+v_ - Ve — E - Vy_}F_ (2.25)
m_ T_V
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We now compute the transformations of the collision kernels:

O++(Fy, Fy)(v) (2.26)
N2 ; ; 3 3
ey IS LA N E SN P
2.27)
Q—_+(F-, F1)(v) (2.28)
N? N 2 iy (3 ()} dv
= e [y @ =00 (o P Ve Fute) = P e P ail
(2.29)
T (2.30)
2
- v / S@- — ) [ F@)Vy Fo(v) = Fo(@0)V5 F-@)} dv,
m- V2 R3
2.31)
O+ (Fy, F-)(v) (2.32)
N2 N7 o 2 F_ (U Fo (D v,
— WV57 . /R3 O (V- —ev}) [F+(v+)V57 F_(v_)— 8F_(v—)Vi+F+(v+)] dv,,

(2.33)

Ignoring Z, the ratios of the pre-factors appearing in the expressions above for the
collisions, over that of the transport terms for each species are

—1
N2 N NX N1/2
7 — (2.34)
+Vi

m3 v S omivi o 03%

Multiplying the above by 2e* In(A) gives x .

We now give the non-dimensionalized version of (1.1). By abuse of notation, we
shall use the symbols (¢, x, v) to denote the re-scaled coordinates for the ions; we will
use (¢, x, &) to denote the re-scaled coordinates of the electrons (i.e., we replace f — f,

X — x,vy — v,and v_ — &). Moreover, we write F{ = I:"i, and similarly for the
potential and electric field. Then, these solve (1.7).

2.2. Formal derivation of the ion equation. We give a formal derivation of (1.18) from
(1.7) by setting & = 0. Then,

(0 +v-Ve+E* - V}FO = 9(F°, FO) + Q° , (F°, F9), (2.35)
(Ve — E° -V} FO = Q(F°, FO) + 0_(F?, F?). (2.36)

where
0, (F°, FO(v) = -V, - ( / L PENVe FS(S/)dé/FB(v)) : (2.37)
R

0% (FY, FO ) = ( fR . FE(v/)dv’) Ve - (D(E)VEF()). (2.38)
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We assume F_ is positive at each (¢, x, &), smooth in (x, &), and decays sufficiently
fast in &. We can then use the entropy identity to deduce possible solutions. Multiplying
(2.36) by In(F_), we have

0= f / (Q(F%, F%) + Q° (F®, F%)) In(F_)dxdv (2.39)
T3 xR3
1 0 0 ’
_ __/f/ FOt, x, &) FO (1, x, ') (2.40)
2 T3 xR3xR3
w(®E — ENVe In(F2(t, x, §) — Ve In(F2(1, x, §)))¥)dxdsdE’ (2.41)
—n%(,x) . FOt, x, ©)tr(®E){ Ve In(FO (1, x, £))}%P)dxde.  (2.42)
T° xR

Note that both terms are nonpositive, and therefore zero. The null space of ®(§) is
span{&}, so we deduce that Vg In(FO(t, x)(t, x, ) € span{&} for all (¢, x, &). Thus
F_(t, x, ) is radial in & for each (¢, x). Taking FO(¢,x, &) = FO(z, x, |£|), we have
that

0= 1/// FO@t, x, ENFO(t, x, |E) (2.43)

2 JJJ13xR3xR3
tr(P (€ — s/){é—lar In(FO(t, x, 7))l — %ar In(F2(t, x, 1)), =je )2 dxdEdE’
(2.44)

Then, for every &, &' sothat & # 0,&" # 0and § — &’ # 0, we have

§ = g =
ke In(FO (2, x, 7)) =) — G In(F(t, x. 1) |y € span{s — £} (2.45)
The above implies that on the set where & and &’ are linearly independent, we have
§ =0 _ ¢ =0
e IR 2 sty = 2 INGER 3, )i (2.46)

For any given values of |£], |€/| > 0, we can find &, £’ which are linearly independent.
Thus, for all r, ¥’ > 0, we have

1 -0 1 -0 /
=0 In(FZ(t, x, 7)) = =0 In(FZ (2, x, 1)) 2.47)
r r

In particular, 9, (}8, ln(FQ (t, x, r))) = 0. Thus, there exist functions B(t, x) and ¥ (¢, x)
such that

_ﬂ(ta-x)r2+

ln(ﬁg(t, X, r)) = >

Y(t, x) (2.48)

In other words, F (¢, x, £) is a local Maxwellian centered at £ = 0, i.e.

B.x)E12
FOt,x, £) = e~ "3 0 (2.49)
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Observe that Q(F°, F®) = Q9 (F?, F%) = 0. Therefore,
(£-Vy—E-Vg)F° =0. (2.50)
Thus,

HE

0={ -V, —E -Ve}In(FO) =& -V, +£ - VxﬁT +&-E°B. (2.51)

Taking |£] — oo, we deduce that V. = 0, i.e. B(#, x) = B(t). Finally, we conclude
Vo = —BE? = V,(B¢°). Thus, ¥ — B¢° is independent of x and &. We integrate in

&, use conservation of mass (1.13) to determine this function, and add an appropriate
constant to ¢° to deduce

3
FOt,x, &) = (@> ? PO ) (2.52)
2
0 X
This implies n® (¢, x) = —<-2% " siving the third line of (1.18). As for the first
fT3 BV (1.x") gyt
line, since Ve F* = —BwF°, we have the important vanishing property

0° (F°, FY) = Ve - { /R . DEEF (1, x,£)dEFL ()} = 0, (2.53)

as ®(£)& = (0, 0,0)7. Finally, for the second line, we invoke (1.15) and the identity
2
3
f f ﬂFdedg = . (2.54)
TIxR3 2 2p

2.3. The Boltzmann case. Wenow apply the analogous re-scaling to the Vlasov—Poisson—
Boltzmann system with hard spheres as was done in Sect.2.1. Unlike the Vlasov—
Poisson—-Landau system, the ion—electron collisions do not seem to vanish in the limit
e | 0. Moreover, we show that the formal expansion in ¢ seems to yield a system of
equations that seems difficult, if not impossible, to solve. This is because the the O (1)
terms in the expansion depend on the O(g) terms in a nontrivial way, which in turn
depend on the O (¢?) terms, and so on.

For simplicity, we let Z = e = 1. Following [38], the Vlasov—Poisson—Boltzmann
system reads

1
{0, +v-V, + m_E Vol = Qi (Fy, F) + Q4 (F-, FL)},

1 2.55
(40 Vo= ——E- V)= 0 (Fo P+ Qe (Fy Py, )
+
—Ax¢p =dm(ng —n_)
Once again, £ = —V,¢. The Boltzmann collision operators are given as follows: with

o, B € {—, +}, we have



The Massless Electron Limit of the Vlasov—Poisson-Landau System Page 15 of 73 27

(0w +O'/3)2 / /
Qup (G Gy) = P2 [ =) 01(Gu)G(w)
R3xS?
— Go(u)Gg(v)}dudw, (2.56)

where o4 are the diameters of the particles, and

’ 2mp
U =u+——>(v—u) oo, 2.57)
my +mg
2
v =p— — (v —u) - w)o. (2.58)
my +mg

For simplicity, we set o = 1 as well. We now set § = ¢v (and { = ¢u), and F_ &) =
e 3F_(&/e).

We now rewrite the first two lines of (2.55),

{0 +v-Ve+ E-Vy}Fy = Q(Fy, Fu) + Q° [(F_, F) (2.59)
(€0 +& -V —E-Ve}F_ = Q(F_, F_)+ Q¢ _(F,, F_). (2.60)

Here, O = Q.+ = Q__. Before we define the cross-collision terms, it is worthwhile to
define the reflection matrix

Ryz=7—2(z 0o, (2.61)

where @ € S2. The ion—electron collisions have the following (singular!) effect on the
ions:

0° (F_, Fy) (2.62)

1 - - -
_1 / f 1€ = 60) - OHF_ () Fe (V) = o) Fr()}dede,  (263)
€ R3xS?

where
{'=0+—=((v—10) 0o = Ryl +2:(v- 0)o+ O(e?), (2.64)
l+e¢
vV =v— 2—82((81) —0) 0w =v+2:( - w)o+ 0(E). (2.65)
1+¢

On the other hand, the effect of ion—electron collisions on the electrons are the following:
Q5 (Fy, F) = / f =8 ol F ) F(E) = Fu) F-(§))dudw, (2.66)
R’ xS

where in the above,

W =u+ 26 5 ((§ —eu) - w)w =u — 2¢(E - w)w + 0(82), (2.67)
l+e¢

g =&— 5 (¢ —eu) - ) = Ryé +2e(u - w)w + 0(&?). (2.68)
l+e¢

The ¢! term in Q%_ is the source of the difficulty in describing the formal analysis
as ¢ | 0. In particular, we have no reason to expect that the effect of Q% + will vanish in
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this limit. To better understand this limit, we use a formal asymptotic expansion. First,
we expand the collisons as follows:

0°,(G1.G) = Y &g’ (G, Ga), (2.69)
j=—1

05_(G1.Gy) =Y ¢lq] (G1.G). (2.70)
j=0

We now give the first two terms in these expansions. The first two terms in (2.69) are

q-1(G1,Gy). = (/1{3 ¢ [¢ - wl{G1(Rw) — G1(§)}d§dw> G2 (v) (2.71)
and

q°.(G1,Gr) = — / sgn(¢ - w)(v - w){G1(Rp) — Gl(C)}dCda)) G2(v)
(2.72)

R3xS?
+2 (/3 , 12 - ol(v- v - V;G](Rw;“)dgdw) G»(v) (2.73)
R xS
R3xS?
On the other hand, the first two terms in (2.70) are
°_(Gy,Gy) = (/1{3 G1(u)du> /SZ € - w|{G1(RyE) — G1(§)}dw. (2.75)
and

ql_(G1,Gy) = — (/1{3 uiGl(u)du) /;2 sgn(§ - w)wi{G2(RwE) — G2(§)}dw
(2.76)

+2 (/ uiGl(u)du> [ sgn(é - w)wjw - VeG2(Ryé)dw.  (2.77)
R3 S?
In the above, there is another O (¢) term arising from the expansion G1(u') = G, (u) +

2¢(( - w)w - V, G (1) + O (£?), but this integrates to zero.
Next, we expand F, and F_ into an formal series in &:

o o0
Fo~ Y elFj. Fo~> elF_ (2.78)
=0 =0

where egch F. ; is independent of ¢. Similarly, we expand ¢ ~ Z?io el¢pjand E ~
Z?io g/ E;. Collecting the O (1) terms of (2.60), we see that ng solves

(£ Vo —EY Ve}F_ o= Q(F_0, F_0) +q°,(Fy.0, F0). (2.79)
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It is straightforward to check that
3
3 2
Flo= (ﬂ(t)>ze_ﬁ([)(|2_¢o) 2.80)

solves the above, with (8, ¢°) solving the same equation as in (1.7). Using a similar
entropy identity as was used in Sect. 2.2, we expect that this is the unique such solution.

With this ansatz, we have qiﬁ(ﬁ_,o, G) = O forboth j = —1 and j = 0, and any

G, due to the radial symmetry of 17"_,0. In particular, the O(é) term in (2.59) vanishes.
Collecting all the O(1) terms in (2.59), we then have

O Feo+{v-Ve+E® -V} Fro=Q(Fio. Fro)+q {(F_ 1. Fro).  (281)

Thus, in order to solve for F; o, we must solve for F _.1 as well. Then, collecting all the
O(e) terms in (2.60), we have

{(£-Vy—Eo-Ve}F_ 1 —E-VeF_ (2.82)
— Q(F_1,F_0) = OQ(F_0, F-1) — q°_(Fyp, F_ 1) (2.83)
=& F_o+q' (Fro, F_p) (2.84)

In the above, we used the fact that qO(F+,1, ﬁ_,o) = 0. Now we arrive at the issue: in
order to solve for F o, we must solve for I:l,l as well. However, the equation for F_ |
depends on E1, which in turn depends on F; 1, which depends on 17“_,2, and so on. In
summary, it seems difficult to solve for the solve the terms in the expansion (2.78), in
order to get a well-defined limiting equation.

3. Preliminaries

3.1. Well-posedness. In this section, we state a prerequisite local well-posedness result
that guarantees solutions to (1.7) in our context. The proof follows by the methods in
this paper, so we omit it.

Lemma 3.1. Fix M, T > 0, and suppose (Ff_), B, d)o) is a solution to (1.18) satisfying
the hypothesis of Theorem 1.1. Fix ¢ > 0. Then there exists T, € (0, Ty] (depending
on ( ,B.9%), & > 0and M) and ¢ = o(M) (depending only on M) such that the
followmg holds. If we take (F¢ ins f i) Satisfying

e + I1F i lle < M, 3.1

-
+ in

IFE iy = FPinller +/& 50, <o (3.2)

then there exists a unique weak solution (F{, F®) with 0 < F{ e C([0, T;]; &) N
L2([0, T.1; ©) to (1.7) with the initial data, satisfying the estimates

sup <|| e +||F€(l)||e)52M, (3.3)
nf (1)

1€[0,T,]

0
s (IF0) = FlOlle +J6250)) Su 1F gy = Flale +\[62 5,0 G4
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3.2. Lower and upper bounds on the diffusion matrix. Inorder prove local well-posedness
for the system (1.7) and (1.18), we first prove the following lemma, which gives upper
and lower bounds on the diffusion matrix appearing in the collision kernels:

Lemma 3.2. Let G(v) = G : R3 > R veS2 Then for all v € R3,
@y % G)vivs| < I1(v) Gl 201 (W)viv;. (3.5)
Assuming G > 0, we have the lower bound

Gl
(I{V)*Gll2/I1G 1)

Proof. We first prove (3.5). Observe that [®;; * G(v)v;v;| < ®;; * |G|(v)v;v;. Thus, it
suffices to consider the case when G > 0. First we have uniform boundedness,

170ij(v)vl-vj 5 (Dij * G(U)U,’l)j. (36)

10 Givjlie S I(=A) " Gllize < 102Gl 3.7)
Alternatively,
a2 o 2
@i % G(v)vv; < / vV = W0 G (3.8)
20| <|v] v — v/
a2 _a/ 2
+/ oV W W sona. (39)
20 1=|v| v — v/
Now,
VIv=vP2 = (w—v,v)2=|P,L(v—1) <|P,Lv|+]|P,LV], (3.10)
SO
P,vf? +|P, vl
(3.8) < / [Pyivl |, 3”“}| Gdv' G.11)
20| <|v] v — ']
|P 1v|? 1
S g NG+ Wlnv’FGnLl (3.12)
[Pov> 1
S( Tvl + W)Il(v/)SG(v’)lng, (3.13)
On the other hand, we have
1
(3.9) < / ~G)dv' (3.14)
2|2 |v] 10— V']
1 1 73 / /
<— —— PGy (3.15)
(V> Jop =) [0 =V
1 —1 N3 /
< WII(—AW) ()" Gl (3.16)
1 "5 /
< WH(v) GW) 2, (3.17)
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Thus,

®;j * G(v)vy;v; < minfl,

[Pv2 1
L+ W) G 2, (3.18)
lv] [v] v
which implies (3.5).
We now prove (3.6). By re-scaling G — G/||G||1, it suffices to show (3.6) in the
case |G| ;1 = 1. For convenience, we define

kG = (1{v)* Gl 2). (3.19)
Letv e S,
sin2 6
/ /
iy % GV, =f S0 G v — v)du (3.20)
R [V']

where 8 = 0(v’) is the angle between v’ and v. Taking 6y > 0 to be a constant to be
chosen later, we bound the above from below by

1 1
®;; * G(v)vv; > sin® 6y </ —G—v)dv' — / —G(v— v’)dv’)
R? [V sin? 6 <sin? 6y [V
(3.21)
Now,
1 / / 1 / /
—GWw—v)dv = ——G®)dv (3.22)
R V| [i=10]v] [V — ']
9
> GWWdv (3.23)
101v] Jyv)= 10|
9
> 10 (1 —/ GWdv) (3.24)
[v] [u]<10]v/|
9 /=2 72 /
> Tlvl(l = IV I\UISIOIU’IHL%,HW "G (v )Ing,) (3.25)
9 kg
> 1—-— 3.26
> 10|v|( |U|) (3.26)
On the other hand, for any A > 0,
1 / / 1 / !/
—Gw—v)dv >—-|1- G(v—v)dv (3.27)
R3 [V'] A [V/[>
1 =2 72 /
= 2 (1= 1Ll 2 0 = VPG ) (3:28)
1 kg (v)?
2 (- le ) (3.29)
2

Taking A = 4kZ (v)*, and combining with (3.26),

kg 1 P> 51
k% {v)

1 1
/ —G( —v)dv 2 min{— (1 —
R

—), —— 3.30
[ w2y 330
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We now consider the second term in (3.21). First,

1
1 2
L G- vy <kg (f 7511/) (3.31)
~£1n20<s1n2 ) [v'] sin% 6 <sin? 6y |U/|2(U - U/)4
1
1 3
<kg </ dv’) .
sin? 6 <sin? 6y |U/|2(l + |U|2 +2(v, V') + |U/|2)2
(3.32)

We then use spherical coordinates to evaluate the integral above, setting the span of
v to be the z-axis, and the span of P,1v to be the x axis. Letting vy = (v, v), and
|P,Lv] = v, we get

1
dv' 3.33
/sinzksinza) WA+ 2+ 20, o) + D2 639

2 sin 6
dodadr
[0,60]U[ —6p.7] (1 +v +vJ_ +2r(v) cos® + v cosasind) +r2)2
(3.34)

We now rewrite
vﬁ +vi +2r(v) cosf + v cosa sinf) +72 (3.35)
= vﬁ sin® 6 + vi(cos2 6 + sin” « sin’ 0) + (r + v cos@ + vy cosa sin 9)2 (3.36)

2

> v cos? 0 + (r +vj cosé + vy cosa sin 9)2 (3.37)

Extending the domain of integration to be r € (—00, 00), and using shift invariance in
r, and then the symmetries of sin 6, we bound the integral by

(3.33) < / /60 sin 0 dod (3.38)
. r .
~JrJo (1+0% cos26 +72)2
Taking 6y < T, we have cos’ 6 > + 5- This ensures that
b sin@
333) < ——dfd 3.39
(392 // ror it G
< sin 6d6 (3.40)
(v¢>3 /0
92
S 2. (3.41)
{v1)

Combining with (3.21), we have

1 2
@i x G)vv; 2 605 <k4 o — kg o 0)3) (3.42)
L

At this point, we take 8y = A+=* (L o U> ,where A € (0, L 7 ) is to be chosen later (not necessarily
the same A from before). In particular, vj6p S A(vL), so

A2 (v1)? 1 *
@ * Gy, > T 3.43
e 2 = \Bw T -
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Taking A = ; Ok6 , we deduce
(vi)? |Py|?  |P,ivf?
®;:x G VD + . 3.44
ij * (U)V:Vj ~ k1G7(U>3 k17( <U> (U> ) ( )
We deduce (3.6). O

4. Estimates on the Ion Distribution

4.1. Boundedness of the ion distribution. We now prove a priori estimates for the ion
distribution.

Proposition 4.1. Let M, T, ¢ > 0. Suppose (F2, F£) is a weak solution to (1.7) with
0<FLeC(0,T]; &N L2([0, T]; ©). Assume the following bootstrap assumptions:

sup IFEOIG + ) < M 4.1)
+e{—,+},0<t<T :I:( )

2
[

In particular, there exists 25 (t) ~yu |F{|g (depending on M) such that

d 3
Ee%”fHIFf(t)II%; < Cu(lFillo)2. 4.2)

Alternatively,

3
—I|F5||@+—|IF€(I)||@+ < Cu((IFfllo)2 + II(v)m‘Ff(t)llii(H“nH;_E)v)- (4.3)

Proof. tis convenient to ignore dependence on M: we write C = Cyy, and “<” instead
of “<p." We also drop the dependence on ¢, for instance, F,. = F{. Given m',s’ € R,
we define
F = )" (V) B, (44
FOsD gy (v ) F 4.5)

It is also convenient to split the collision operators into their “diffusion” (second order)
and “transport” (first order) parts in divergence form:

0(G1,Gy) = 0p(Gyr, Go) + O71(Gy, Go), (4.6)

where
Op(G1, G2) 1= 3y; ((Pij *y G1)0y; G2), 4.7)
07(G1, G2) 1= 8y, (0y; (Pij *y G1)G2). (4.8)

We split Q% = Qf Gxpt Q° ey similarly. We now proceed with the proof, broken

into several steps.

Step 1: We have the following estimates:
d 0 0
ol Ll ||F""2 12

L2y, SCA+ 115, @9)
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and for all € > 0,

d sz L s 2

E”F_'_ ”L.,ZC,U + EI|F+ ”L%(’}:{UQH(‘:;S)U
<C+||[FmM0)2, +IF_ID)
= + L2(HoNHE )0 —han

(4.10)

The proof of (4.9) follows by a similar method as (4.10), so we only show the latter. To
prove (4.10), observe that F"**) satisfies

(B +v-Ve+ E-V)F"S 4 [(0)"(V,)', E - V,]F, 4.11)
= (0)"(V) {Q(Fy, Fy) + QF [ (F_, F})). 4.12)

Multiplying the above by by F"!**) integrating, we have

Ld .52
EEIIFJ’“ ’ Iz, (4.13)
= {[E - Vo, (0)"(Va)'1Fa, ") 2 (4.14)
+ ()" (V) Q(Fy, Fy), F" ) (4.15)
()" (V) QL (Fo, Fi), F™) (4.16)

What follows are estimates for each term on the right-hand side.
Step 1.1 (electric field commutator): We now bound (4.14):

@14) ST+ IF" 2, ), - 4.17)
Observe first that

[E - Vo, (0)"(Ve)' 1Fe = E - Vy((0)"'(Va)* Fy) = ()" E - Vi (Vi)' Fy (4.18)

"M E - V(Y Fe — (0)" (Vo) (E-VoF)  (4.19)
=0 EF" 7 4 )™MV, - (E(Vo) Fy — (Vo) (EF}))
(4.20)
Thus,

(4.14) = (v- EF"29, Fi’”l*”)% 421
—{E(V2)' Fy = (Vo) (EF). V(0" F" ) o (422)
SNEN=IE" 1 (4.23)

FUVE Nl ™ 1B L E 2 I 5
(4.24)
S AR O A I ) (4.25)

Next, note that we have the interpolation inequality

3 s=1 3s 1
5,5—1 s s 5,0) s
”F(m1+2,v )”LE_U < ”FJ£m1 s)||L%U||F(m1+2 )”L§v S| Felle S 1, (4.26)
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since mj + 375 < my. We conclude with (4.17).

Step 1.2 (self-collisions): Next, we have the following bound on (4.15):

1 : 0
(415) < =S IE" VI + CA+IEM O, 0 ). (42])

For this, we separate

(4.15) = (Qp(Fy, F"), F™9) 1 (4.28)

()" (Va) Qp(Fy, Fy) = Qp(Fr, FM), B 0 (4.29)
)"V Q7 (Fr, i), By s (4.30)

Using (3.6), we have the bound

(428) = —((®y 5 Fdy F", 0, F™ D) 12 (“31)
1 )
< ——1FE" N, (4.32)
kr, *
where
kr, = max {1, | (v)>Fyll o2, I3 e} (4.33)
Now,
5,2
1) Full oz SNES PN, S (4.34)

so kr, < 1. Using these estimates, we get that

~

1 2
(428) < — Pl (4.35)

Next, we have the commutator term (4.29). Let us first write

(V)™ (V) Qp(Fy, Fy) — Qp(Fy, F™) (4.36)
= (V)*Qp(Fy, F") — Qp(Fy, FI"Y) (4.37)
+ (V) (1) Qp(Fy, Fy) — Qp(Fy, FM ) (4.38)
Now, let
Cj = (V) (@i 50 Fr)dy F D) — (04 5y Fi)dy FI"Y (4.39)
Then
((4.37), Fm5)y 2, = 1(Ci, 0y Fi)p2, (4.40)

1 1
< (@ 7ijCi. C)2, (o3, FIM 9, FIM0) 2, (44D

2 2
LXVU Lx,v

Now, the latter factor is bounded by || F4 || L2(Ho)y- On the other hand, writing

v

1

A =0 2D %, Go 2. (4.42)
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Note that by (3.5), ALy S | (v)? G||L% given a function G = G (v). Therefore, we
have

_1 ‘ 1 ,0 1 ,
lo™2ClL2, = (V) (Apo 2 Vo ") — Apo 2V " | - (443)
1 s—1
S Ao l2eello 2 VoVl (4.44)
,s—1
SIE g, (4.45)
1 s—1
< | pmOys (my.s)) =5
S W0 S g (4.46)
Thus,
(m1.) (m1.0) 5 (mis) 25
(@37, ") S UEM O g TR (4.47)

Next, we have
(4.38) = —my (Vi) {0 (Dij 5y F)dy FL" 720 40, (0 (D4 5, F) M 20)
(4.48)
— (my = 2)v;v;(Dyj %y F M0 (4.49)

Thus,

((4.38), F" ) 0 = —my (Vo) (0 (@i 50 F)dy F20) FM) - (4.50)
(V) [0)™ 20y (B FO 20, 9, FI)
4.51)
+my(my = 2)((Vi)* (v (g % F)F 0 EY)

x,v

(4.52)

(m1,s)
12 | Fy ”L%_U

(4.53)

1 1 mip—2,s
S [l ollA oo 2 o 9, F 29
+ X

1 (m1,s)
||02VUF+1 ”L,%.v

(4.54)

1 (m1—2,5)
+ |loollA oo 2 IF 2 g

Ly

1 4,
+ @ @TDIA Lo 2 I F

(my,s)
LIE ey,

(4.55)
SIE N 20, (4.56)
Therefore,
1 2s5—1
< gy M0 5 (m1.$) 25
(429) SIE" gz, + IE Ol NE N Sy o (@ST)

Next we estimate (4.30). We bound this as follows:

(4.30) = (Vi) (B, (ij o FOFS0), 0, FM) 5 (4.58)
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+ (Vi) {00y, (@i 9y F)FM ™20}, FOmy (4.59)
_1 1
IV {02 (Vo @ %y FOFl 2 lo 2V F" ) (4.60)
—-2,0 K
# I(V2) (000, (@i 0 FOFM 22 IF ) (4.61)
_1 — 0, s ,
S o2V (=A) T O o lES N IE 2y, 462)
— 0, K X
IV = AD T EO N e IES N IES 2 (4.63)
3 _ 0,s .S
S V(=AD" O 2o QL+ I 2 ) )- (4.64)
Now, by
0.) s 0.) s
<v>%|vv(—Au)”F£°’”|§<v>%/ F ” @)l (/Uz)ldv’+(v>2[ B @l
y>2pv| v —"1"] =<2p’| lv—"1"]
(4.65)
(%*S) /
_1 s F (O8]
< (©0.5) / |Fy /
SETEM I LS (4.66)
Thus,
3 1 (0, 0, 139
1) 2 Vo (= A) T EO 2o S Uz + 1Vl T HEZ M2 (467)
2, 3039
SIEE gz, + 1V F2 e (4.68)
< (3913
STHIE (4.69)
< (m19))1 1
SL+IFT L2(Fa)e (4.70)
1 3
In the above, we use the interpolation inequality [ul| g34 < ||u||22||u||}‘i,, followed by
the fact that Vv|u|| = |V,u| a.e., for any function u € H'(R3). Thus,
7
< (mys)pz
(430) S THIE" VI, 4.71)
Combining the estimates (4.28), (4.29) and (4.30), we conclude
1
(my,s) 12
(@15) < =2 IEM N, (4.72)
7 1 2s5—1
(m1,s) 7 (m1,0) s (mi,8)) =5
FCA+IE" I, g+ NV g I g ). (473)

We then use Holder’s inequality to get (4.27).
Step 1.3 (control of ion—electron collisions): Now, we turn to (4.16), for which we have
the bound

1
(m1.8) 12 (my,s) 2
(416) < = ZE" P iagqr o, = B g, )
,0
HCIE" VT4, (4.74)
3
+C A+ [FMO2, ),
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for all A > 0. We decompose this term in the same way as (4.15),

4.16) = (0%, p(F_, F"), F"%) (4.75)

X,V

+()MU(VL) 08, p(F, Fy) — QF, p(F, F™) FY) 5 (4.76)

X

(YUY O, (P, ), B ) 4.77)

The terms (4.75) and (4.76) using the same approach as (4.28) and (4.29),

1
(@.75) < = IE" I, (4.78)

(Hy. v’

@.76) SIF2gr ), + IF o Fm (4.79)

L2(H+ ) | L2(H+ )

The final term (4.77) requires a different approach: we separate it into a main term and
commutators,

A77) = (Q° , p(F_, F{""™), Fim) 5 (4.80)

FUV QT p(F, FIMO)y = @F L p(F FM), Fmy ) (4.81)
UV )M QE (Fo, Fy) = Q°, p(Fo, F™O)), oMy s

(4.82)

For the first term, we note that 9, 8vj<I>,- j(v) = —8md(v) in the sense of distributions,
where ¢ is the Dirac mass. Hence,

(4.80) = 47 e(F_|e—ey F™Y), FIM) 2, (4.83)

S ell(ev)F Folemell oo 1e0) TE | F" Ve (484)

< HES e lten) (4.85)

Now, using the generalized Minkowski inequality and Sobolev embedding,

3

(G0 (G.5) (7.5
VSN ns S IV FE ez SIVFE 12 S 14 IFE VN, 436)

On the other hand,
lev) FF s S IF ”an ||<sv>2F(”“ ”anHl (4.87)
< e HEM)] (4.88)
L2(HY. v )
We conclude that
(4.80) < Ced||F™ S’||L2(H+ N IES ) 2, - (4.89)
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As for (4.81), we have

(4.81) = 87 (Vi)' {Ve (—Ag) ' F_|g—ey F0)

— Ve(=A) T Folemen MY VM) (4.90)
3 - 0,s s—1 S
< [ @309 T EO el 2 N )IIL;‘L%IIFS"' Ny, (@91
(m+ s—1) ,
< Mvel =P ”|||L2Loo||F = IR 2, (4.92)
0,: m+%.0), ,
S NFS ‘>||| e lng, IFm ”uLz IE" o, (493)
E
< ”F(ml »5) ” ”F(ml,S) I . (4 94)
LZ(H )e + L%(Hn)v' '
The second commutator (4.81) is bounded as follows:
(481) = 87 ((Va)* v - Ve (=Ae) ' Folemen " 20N FMY) - (495)
— 0,s )8
SNVl FEO g I (4.96)
SHE N 204, - (4.97)
Thus,
4.77) < (||F<m| S)||L2(Htr)£ X ||F(m1 A)”LZ(H+ . | FY ”Lz(Hn)g (4.98)
FNE N 2 g, IFE ”an(H - (4.99)

Now, combining the bounds on (4.75), (4.76), (4.77), and Young’s inequality, we con-
clude (4.74).

To conclude step 1, we combine (4.17), (4.27) and (4.74), taking A sufficiently small,
to get (4.10).

Step 2 (combining the estimates): Take 0 < x| < «p, and set 2 := k|| Fy

Ko || F2 012 7 . Then by (4.9) and (4.10), we have

S,

5&1 + —||F("” )12 (4.100)

LZ(HmH+ v L2(H, OHY. v

“_ (m2.,0) 2
+ (=) IFm0)
< Cler + k(I F- o) (4.101)

Taking «; sufficiently large and « sufficiently small depending on M, we get (4.2).
Alternatively, by simply adding (4.9) and (4.10), we have (4.3). |
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4.2. Error estimate for the ion distribution.

Proposition 4.2. Let M, T > 0, and let (F£, F?) be a solution to (1.7) satisfying the

same hypotheses as in 4.1, and (Ff, B, ¢°) be a solution to (1.18), satisfying the hy-
pothesis of Theorem 1.1. Then, there is a function %F : [0, T*) — Ry such that
Y ~m IFy = Fle and

d 02
S |FE — PRIy

Su (IFL, FO) o) (€2 + 25) + 9 .

(4.102)

Proof. Let G = F¢ — F?. Then,

3G +{v-Vy+E- V)G — (E° —E% - V,F' — Q(F,G) — Q(G, FY) (4.103)
= Q_4(F, F9) (4.104)

Similarly to the proof of the previous proposition, givenm’, s’ € R, we denote G’ =
WY (V)SG, (F5)™5) = ()" (V,)S F%, etc. The above gives

1d
EEIIG(’”O’” 172 = (L@ (Va)*, E° - V]G, G") 12 (4.105)
+ ()" (V) ((E® — E®) - V, FP), G(’"O’S))Lz_g (4.106)
+ ((0)"(V) Q(FY, G), GV 1o (4.107)
+ ()" (V) Q(G, F), G o (4.108)
+ ()"(V2) QL (F2, F), GT0) pa (4.109)
We modify the estimates from Proposition 4.1 to get
|4.105) S I1Glle (IGller + 1G22, (4.110)
1
—_1imo.s) 2 . e 2 2 (m1,0)2
|(4107)] = =2 0G ™V, gy )+ CUINFE 101G G + 16 VN2 g ),
4.111)
1 N ]
|(4108)] S IGlig + Gl NG "N oy, + IFND)IG NGV 251,
(4.112)

What’s left is to bound (4.106) and (4.109). For the former, we have

3
|(4.106)] S IE® = E* g (NCED ™2+ NCED M2 ) MGz

(4.113)
0
S UGy g+ 1FE = ppe?® g =D L l0) 4.114)
0
S UIGHe +IFE — ppeP? | e)(I1F) 1) (4.115)

In the above, we used the fact that mg + % < mj, and

—A@F — ") = / Gdv — / FE — ugeP? ds. @.116)
R3 R3
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As for (4.109), we split the term as follows:
(4.109) = ()™ (V,)* 0%, (FE — ugeP? | FY), G (4.117)
() (VL) 0, (el FD), G0y @.118)
Now,

_ 0 3 _3
@ 1D)] S el A FE = ppeP) e s 1CED ™ 2 2y 1G22 gy

(4.119)
— 0 3 _3
+ VAL (FE = el e s I CFD ™ 2 2 1G0T 20
(4.120)
S e F o) UIGe + 1G24, (4.121)

0 1 0 3
+IFE = upeP? NG IIFE = upeP? N5 (IG e + 1G™ N 2 51,,)
(4.122)

In the above, we use mo+3 < mj. Next, in order to bound (4.118), we compute directly
from (1.10) that

0, (upe? | F?) (4.123)
— 'y, . /R (PG = elenpE) Vo FL () + BEupE) FL(0))dE  (4.124)

— ey, . {® * g (ev)(Bv + V) FE(v)). (4.125)

In the above, we use (¢ — sv)& = e®(§ — ev)v. Now, || ®;; * ug(v) |z~ S 1,50

5 3
|4 118) S e(I(FD ™39 2 1G9

IED T | GO39 | ) (4.126)
SelFEID) UGl e + 1G™ V12 34,),)- (4.127)
Thus,
o 1 0 3
4.109)] S (e(IFE ) +I1FE — upeP? NG IFE = 1egeP? 114 (4.128)
(Gl + 16" 2 57,,)- (4.129)
Combining the bounds on (4.105) through (4.109), we have
d 1
— (mo,s) |2 _ (mo,s) )12 .
NGV, + NG (4.130)
< CUIE EDI0)*E +1GIE) + 16 V1, o (4.131)
o 1 0o 3
+|FE = upePP N2 FS — pnpeP? 115) (4.132)

Following a similar argument, we can show the following upper bound on G 1:0;

d 1
NGO+ ZNG OV, g (4.133)
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< CUII(FE, F) o) (e + G lig)
1P — e IS — ppeb® )13, “.134)
Now, choosing 0 < x1 < k3 appropriately, we have that
2 = kallGM VN7 +kllGTV 0, (4.135)

saqtisfies
L e G2 4.136
T+ Gy (4.136)

o 1 0 3
SUEE D02 + G113 + IIFE — npeP? | 2 NIFE — upeP? |12, (4.137)
From this, we deduce (4.102). |

4.3. The intermediary quantities. In preparation for Sect. 5, we introduce the what we
call the intermediary potential ¢ and intermediary inverse temperature y°. Fixing an
initial inverse temperature j;,, the pair (¢, ¥¢) solve the Poincaré-Poisson system for
each ¢ > O:

2
// |U| ZL Fedxdv +—f IV Pdx b =0,
dl 2)/ T3 xR3

y£(0) = Bin
— A YE =da(nf — e’ V)

(4.138)

We call 1° the intermediary potential because like ¢°, it solves a Poincaré-Poisson sys-
tem; however, unlike qbo, we use F; instead of Ff. Thus  serves as a better approxima-

2
tionto (1)'s than ¢°. Similarly, 23 = serves as a better approximation of | ng R3 |§2| Fé¢dxdv

than = 35 ﬂ The lemma below gives existence and uniqueness for the pair (y¢, ¥¢), for a
given F;, along with bounds that will be used in the coming section.

Lemmad4.3. Let M, T, n € (0, 1] and Bi, € (efM, eM). Assume also that (FE¢, F€) is
a weak solution to (1.7) with0 < F{ € C([0,T]; &) N L%([0,T]; ©) satisfying

sup [

p L + IFL()]le < M. (4.139)
te{—+)re(0,7] Ng(2)

Then there exists 0 < T™ such that there exists a unique solution (y¢, ¥°) € C([0, T1N
[0, T*); Ry x H**?) to (4.138). Moreover, if T* < T, then B(t) 1 +oo ast { T*.
Moreover; assume that for some T' € (0, T, that

sup |ln(y )
t€[0,7'] in

N =<n,. (4.140)

Note that T < T* necessarily. Then, we have the estimates

sup [V |l s S 1, (4.141)
+€[0,77] *
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sup ([0l gger + 1751 Su HEV FE N 2, ), ) (4.142)
t€[0,77] *

Next, assume (Ff, B, ¢°) is a weak solution to (1.18) and satisfies the hypotheses of
Theorem 1.1 (with To = T ), with the given Bi,. Then, we also control the difference of

(v®, ¥*) and (B, ¢°):

sup {[y*(1) = BOI+1¥° @) =Dl g1} S sup IIFE() — FY(0ller. (4.143)
te[0,T7] t€[0,T]

Proof. We break the proof up into 3 parts: first, the bounds (4.141), and (4.142); second,
the bound (4.143); and third, we sketch how to construct the solutions. Once again, all
bounds involved may depend on M.

Step 1: We now show (4.141), and (4.142). For this step, it is convenient to drop the
superscripts of ¢, i.e. Ff = F,, F® = F_, etc. We now prove (4.141), from the third
line of (4.138), and the maximum principle, we have the estimate

1
(K4S ;II In(n)llee S 1. (4.144)
Next, applying |V, |® to both sides of the third line of (4.138),
1 ! /
2 Vel Y = IV — 7). (4.145)
T

Using Theorem 5.2.6 in [32],

||ey¢||H§ = Ciylo Yl + 1) S llas +1. (4.146)
Hence,
s 2
IVl gy S U+ lInellag + 1l S 1+ ||1/f||;;§+2||1/f| 2*;- (4.147)

Now, using [|¥/ |2 S ¥ liLee < 1 and Young’s inequality, we deduce 11l gse2 <1
Next, we have

1
(ve = —A)hY =diny =y y. (4.148)
o4
The maximum principle implies

—-C 00 . C 0
" WIE 3l < Cllame g + 171 1y i, (4.149)

From the continuity equation, we know |[|3;7.| o < ||0sny]] gs-1 < 1; in combination
with the estimates on ¥/, this implies

19 llLee S 1+ 171 (4.150)
Similarly as was done to get the bound on ||/ || Hy+2> We deduce

10l gt S 1+ 171 (4.151)
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We now estimate y: first,

1 1
=5 //T% o |v|29, Frdxdv + o sz Ve - 8 Vyrdx. (4.152)
We first analyze the last term. From (4.148),
1 1
G o VeV OV = = Ay 8i) 1 (4.153)
! vy _ LAy
= —4—(Axw, (ye’’ — 4—Ax) Oony) 2 (4.154)
Y
(A (ye'V — 4—Ax) NPy (4.155)
Looking more closely at the latter term, we observe
1 1 _
A e = A THE ) (4.156)
1 1 _
—{re" = —A0Y, (e = AT Y (4.157)
1
+r(e iy, (e — — AT ) (4.158)

1
—( Y =y (@ (e’ = —ADTHE YY) S0 (4159)
Thus, we have that

o 3 s ags WP Frdxdv — 2o (A, (ye'V — A0 oy 2
y = L (4.160)

57— 2w (Bx¥ (ve?V — L A)TH eV ) 2

with the denominator being strictly bounded from below by # On the other hand, by
the continuity equation 9,74 + fR3 v - VyFydxdv = 0, we have

1 _
Ay, (ye'V — i) Yo 2l S 1. (4.161)
Thus,
[yl <1+ //T} . |v|%0; Frdxdv. (4.162)
X
Now,
// |v|%0; Frdxdv = 2[/ v- EFidxdv + // |v|2QS_+(F_, Fdxdv
T3 xR? T3xR3 T3 <R3
(4.163)

The first term has the bound
fo v-EFidxdv S| Ell 2 vl Fell2 (4.164)
TXXR:S X X v

S UE?F-ll2, + 1) Falla DI Fell2 - (4.165)
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<1, (4.166)

Next,
/ / lv|? Q% ,(F_, Fy)dxdv (4.167)
T3 xR3
=-=-2 // Vi{e®;j e F_|e—gpOy, Fr — 05, Djj ke F_|e—go Fy}dxdv (4.168)
T3 xR3

= 2// {e tr(® g F_|g—ey) + (1 + 82)1)/'351. D;j *#e F_|e=gp} Frdxdv (4.169)
T3 xR3

Therefore,
| / / WOE (. Fo)dxdyl (4.170)
T3 xR3
S AT Follzpge + IVe(—AD)T Follgpgo)lvFellzry - A171)
S (Vo) -l 10) Fell2 (4.172)
S UEFoll g ) N0 Fell 2, (4.173)
S EV F-ll 27, ,)- (4.174)

From this, we conclude (4.142).

Part 2: We now control the difference (4.143). reintroduce the superscripts of €, so as
to distinguish F? from Ff, etc, although we still ignore the dependence of constants on
M. We first bound the difference ¥, — ¢an' It suffices to show this in the case

sup ||[FE(r) — FO(D)|ler < a, (4.175)
t€[0,T]

where ¢ = (M) is sufficiently small. If this bound does not hold, then we use the
bound

sup |y () — B+ |¥° (1) — d)o(t)llygu <Cy (4.176)
1€[0,T1] ’
Cu e 0
< — sup [|[F;(t)—F (®le.
& 10,7
4.177)
‘We first control the difference at time zero:
1 o .
—— ALY, — o) =0, —nd, + PP — Pinin, (4.178)

4
Using the maximum principle, we have

R -0
lePinVin — ePinin| oo < [0S 1 — 1 llie S sup [FE@) — FDller.  (4.179)

+,in ~

t€[0,T]

By the mean-value theorem, this implies ||y, —¢?n Lo S supepo.ry 1FE (1) — FO(t)|| e
In fact, by writing

1
eﬁin¢0 _ eﬁinw,fg,, = Bin [ ek¢()+(1—)\4)1/18 (¢0 —¥)dx, (4.180)
0
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it is easy to show that after applying (V,)* to (4.178), we get

1, = doull e S 0 i = 9 il + 195, — il - (4.181)
Thus, by interpolation, we get
I, = inllgge S sup IFE@) = FY (D)l e (4.182)
te[0,T]

Now, we show how to bound the differences for positive times. Take « € (0, 1] to be
a constant to be determined later, and let 7' be the longest time such that 7 < T" and

sup 1B — 1+ 1v° = ¢l < k. (4.183)
1€[0,7]

The equation we have for the difference ¢ — ¢ is
—A(WF = ¢%) = dn(nf —nd + P — V), (4.184)

Rearranging, we have

eV — LAyt — ¢ (4.185)
4
=nt —nQ+e" V(P TI _1— (Be" =yt + (B — v (@° — ¥))
(4.186)
+(B—yO)e Vy. (4.187)

Then, on the interval ¢ € [0, Te], we have

& & 1 & &
195 =" = (B =y eV = AN Y e

(4.188)
SIES = Flle +.(y® = BI+ 119 = ¢%llgpe2).
In particular, taking « small enough,
e = ¢Ollgen S sup IFE() — FYO)lle + 1y — Bl. (4.189)
1€[0,T]
Now,
1
‘— / Ve = ¢%) - Ve +¢°)dx (4.190)
8 T3
l &€ 1 E €
+ —f B=yHeV — —A) (Y ws)Astdx‘ (4.191)
4 T3 4

& £ 1 & &
< V (W =% — (B—yH) e’V — —A)T "V YA Y dx
T3 47'[

(4.192)

+ / IV (y — ¢°)|2dx (4.193)
T3

< sup |FE() — FY(0lle + 1yE — Bl (4.194)

te[0,T]
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Next,
d (3 3
— = - 4.195
( ﬂ 21/5) ( )
2
( J[, B - s o [ -6 vx(wgwo)dx)
dt T3 xR3 8 T3
(4.196)
Then, using B;, = y (t = 0)° and integrating the above, we have
_ 2
3(’/ ﬂ ) / / l(FS FO)dxdv 4.197)
T3><R3
+— v W — 9% - Ve +¢")dx (4.198)
2
f/ '”' FE 0 — FO,dxdv (4.199)
T3 xR3
Ve (Wl — é0) - Ve (W, + df))dx. (4.200)

81

Using the previous bounds, plus (4.182), we have

ly* —ﬂl’ if (yseyg"’s—iAx)—l(eVWw)Axwdx (4.201)
2By¢ 7T J13 4

Slyf =B+ sup |FE() — FY (Ol (4.202)
tel0,T]

By a similar argument as was used to bound y, we have that
E.1.€ 1 €.
/ YV — — ATV YA YA < 0. (4.203)
T3 4

‘We conclude that for all ¢ € [0, T],

ly* () = B S kly™ (1) = B@)|+ sup |Fi(t) — FY(D)le (4.204)
tel0,T]

Taking « sufficiently small, we have lye(t) — B(t)| < Coua for some Cy. So, by taking
o = 2C ,wehaveT T.

Step 3: Finally, we sketch how to construct solutions (y¢, ¥¢) satisfying (4.138). We
refer the reader (ii) of Theorem 1.4 in [3] and its proof. Using standard elliptic theory,
there exists a unique ¥/, € H* *2 solving the system

— AL, = dr(nt,, — ePinVin). (4.205)

+,in

Now, for ¢t > 0, define

E@t) =

v |2 1 / 5
— FE()dxdv+ — | |Voyf, Pdx.  (4.206
Zﬂm »//1‘3><R3 +m +(l)) xav + 87 Jo3 | xwm| x. ( )
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Then, for all # > 0 such that E(¢) > 0, there exists (y(¢), ¥ (z)) € Ry x Hs*2 solving

third line of (4.138), and the first line integrated on [0, ¢]. Since ¢ > fngng - Fg(t)
dxdv is continuous, and the above condition holds at t = 0, we take T* > 0 to be the
first time less that 7 such that the above condition does not hold, or take T* = T if
no such time exists. Then there exists a unique (y, ) satisfying (4.138), with In(y) €
LY ([0, T*)) and ¢ € L7, ([0, T™); H“z) Moreover, 2y2(t) < E(t),s0 y°(t) —> o0
ast — T* whenever T* < T.
Next, we note that y is continuous in time. This follows by the identity (4.160), and
the fact that

2
||a,n+(t)||Lz,f/ ua,Fs(t x, v)dxdv € L'([0, T)), (4.207)

also shown above. It is straightforward to show ¢ € C([0, T*); H ”2) from this, and
(4.148).
O

5. Estimates on the Electron Distribution

5.1. Stability of the Maxwellian. The main result of thisese;ction is Proposition 5.1,
which, roughly speaking, shows that the Maxwellian 11, e” V" is stable; that is, if F® in

is close to uyeeyg‘”g , then it will remain close. We also utilize the stretched exponential
decay to acquire some form of asymptotic stability.

To state the result, let n > 0, and recall g, = ¢*"B;, for each o € {1, 2, 3}. Then,
similarly to &- , and Z_ ,, we define for each « € {1, 2},

~, 2 £.1.€
EF = (BT ) (FE — e yee? Y }||§2§

(5.1)
2 €16
+ ||ttt B4 pE yee? 4 }”iz

and

o~ . o 2 4 EUEyn2

@i’a = ||eq €17/ <VX>S{FE — /‘LJ/EI/fey v }HL)Z:(HHHH;S)E (5 2)
QustlEP /A pe _ VUt 2 )
L A G v
Proposition 5.1. Fix M > 0. Then there exists positive constants n, ¢ and € such that
the following holds. Assume 0 < ¢ < €. For each such g, let (F£, F£) be solution to the
system (1.7) with O < F§ € C([0, T1; €) N L2([0, T; ®). Fixing Bin € (e™M, eM), let
(¥, ¥°) be the corresponding solution to the system (4.138), assuming that

sup (|l Lo + 1 Fi(D)]le) < M, (5.3)
refo,r] ni()
JE L, <., 5.4
zes[gpr] =g 4
ye()
sup |ln( ) <n, (5.5)

tel0,T] in
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T
/ 10, (n® — e V)| 2drt < 1. (5.6)
0 X

We also impose the following assumption on the initial data:

&1 - 1
/R3 . T(Ff,m — ug, ePinVinydxde + & /T3 IVegf 12 — Vol [2dx| < Me.
T3
5.7
Then, we have
~ T ~ ~
3 s{gpﬂ E° () + /0 P H(t)dt < Cy(e&° 5, +€%) (5.8)
€[V,
and for all t € [0, T], we have
_L(L)% 5 1
E° (1) < Cp(e Cme sup &° (') +€313) (5.9
’ rel0,7]

Throughout the rest of this section, we will not make reference to (Ff, B, ¢>0) and its
derived quantities, and instead only work with (F£, F?). With this understood, through-
out this section, we will write F; = F,, F® = F_, and so on, with the dependence on
& being implicit.

5.2. Setup. We introduce a = n_ — e”¥ and note that

dra = —A (¢ — V), (5.10)
Using (5.5), we note
y(@) <q1 < q2 < gs. (5.11)
Next, we separate
Fo— eV = iy f =/ 1g,e%%ga (5.12)

where « € {1, 2, 3}.
The equation for f reads as follows

ey 20y fI+1{E - Vi + E - (% ~VOlf +e"V Ly f+ My r f

1
—dnyE VoA lapge?V (5.13)
1 1
= —epu oy e’y — "V My gl + Ty (f, )
where
_1 1 1
Lyh =y {Q(uyh, ny) + Oy, nyh)}, (5.14)

_1 1
My ph =y, > Q5 _(Fy, uyh), (5.15)
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_1 1 1
Ty (h1. ho) = —py > QUi hy, w3 ha). (5.16)
On the other hand, g,, @ € {1, 2, 3} solve the equation
e{0 +qoiplga +{v- Vi — E - Velga + €'V L, g8 + Mg, ., 8a
— 47'['}/%: . VXA;IaLeVW7%¢
M4 (5.17)

dlpye’V} _ga -1 4
_Sty— - eVlﬁ 2 ¢Mqa,F+(,uqa2 My) +e? ¢an(g017 8a)

/Mqae%ﬂp

where M, r, and I'y, are defined the same way as M, r, and I'), respectively, with
y substituted with g,. The operator L, , is defined as follows.

~ _1 1 1
Lyq¥ = g {Qug ¥, ny) + Quy, ng ¥} (5.18)

Now, in addition, we define the operator P, to be the L?-projection (in the £ variable)
to the kernel of £, and we take P),l =1Id L2R3) — P,. From [21], we have that this
kernel is

1 1

1 1 1 1 1
N(Ly) = span{u} (&), wip, Eap, Eus, €713 ). (5.19)

In addition to the density of the perturbation a already defined, we define the macroscopic
variables ¢ : T3 — R and b : T> — R3 as the coefficients of this projection on f:

o LooylEP -3 )
P, f=apny; +y2b-wuy +CT,LLV (5.20)

We note that the representation above is in terms of an orthonormal basis for N (L, ).
Moreover,

a= / (F- —pye?Vyde =n_ — eV (5.21)
R3
1 1
b=f y2E(F- — pye’V)dg =yff §F_d§ (5.22)
R3 R3
_ [ wIEP=3) vrge L 2
Cc = . T{F_ — ,u,,ey }dé = % (]/ /1;3 |€:| F_dg — 3l’l_> . (523)

Thus, (a, b, ¢) form a linear transformation of the physical macroscopic variables of
density, current and local kinetic energy of the electrons. Given r > 0, we shall denote
a” = (V) a, g = (V) ga, and so forth.

Finally, we close this section by mentioning some commonly occurring estimates
that will occur throughout this section. We note that under the bootstrap assumptions,
1l sz + 1Y Nl gy <y 1. Therefore,

2 < > < > < 2 5.24
1752, Son gz, Swelgallz, S lsslyz (524)

17Uz, <o 18172, S les” iz, S lgs” e, (5.25)
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The same inequalities hold over the spaces L)ZC (Ho)g and L)ZC (’H; )& Moreover,

Ea~u ||g£;‘>||izE + lgasll?2 : (5.26)

(s)

= 2 2
gf,a ~Mm ”g(x ”L,%(HUHH;;S)E + ||g0l+1 ”L%(HUQH;:S)E (527)

5.3. Preliminary estimates. Next, we have upper and lower bounds on the linearized
collision operators Ly, .

Lemma 5.2. Assume (5.5). Let hy, hy, h3 : R3 — R. We have the following:
(i) Then
”,PVLI,””%'[U SA(Lyhi b2 S ||77;,Lh1||%10- (5.28)

(i) Taking q € {q1, q2, g3}, and hy, hy : R® — R,

(Ly.qhi. h2) 2 S WPyl 1Py halle, +nllhiliag, Izl . (5.29)
1Pyl S (Lyqhis )+ w2 I1Py il s (5.30)

(iii) Take n > O sufficiently small. Suppose hy = /Z—th where q € {q1, q2, q3}. Then,

1Py hllg, S nllPyhillgs + 1Py hally, - (5.31)
Also,

il S IPyhllzz + 1Py Rl - (5.32)

(iv) If g € {q1, q2}, then, taking q' € [0, q), we have
q'le1? 712
(Tq(h1, h2), h3) 2 S e+ hallp2llhalizg, + e+ il lh2ll p2) 123114, -
(5.33)

Proof. For (i), the equivalence (5.28) in the case y = 2 can be found in [21]. The case
of general y follows by re-scaling in &.
For (ii), we compute

Byt h2) iz = Ly o)+ = (0] i, 9 o) 2 = (0789 . o) 2)
(5.34)
(v — 97
- %(%};‘éiéjhl, ha) g2 (5.35)

It is clear from the above that we have (5.29). In the case iy = hi, we have by (5.28)
and the computation above that

(Ly.ght. )2 2 (Lyhn bz = CoPllhn 3y, (5.36)

1
> (G = CnOIPy hully, = Co*IPymly, - (5.37)
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Taking n sufficiently small, we get (5.30).
We now prove (iii). We write ¢ = Z—Z Now,

1Py kil = 1Py @Ch)lln, < Py @ Pyh)lln, + 1Py (EPyrha)lln, — (5.38)
SIPy (¢ = DPyho)lig, + 1Py halln, — (5.39)
S @ = DPyhalln, + 1Py halin, (5.40)

Now, [¢ — 1| S g, and [Py ha(8)] S (€)2e™ TEP 1P, ol 2, 12 — DPyhallzg, S
NPy hall 2. Now,

1Py h2ll2 < IPy @ Pyhllzz + 1Py (" = DPy k)2 (5.41)
SAIPyhillg2 +0lPyhill 2. (5.42)

Combining these bounds, we deduce (5.31) after taking n sufficiently small. From the
latter estimate, we deduce (5.32).

Finally, we prove (iv). The bound (5.33) in the case ¢ = 2 follows from the proof of
Theorem 3 in [21]. The case of general g follows by re-scaling in &. |

Lemma 5.3. Suppose q € {q1, q2, q3} and assume (5.5) with n taken sufficiently small.
Let G, hi,hy :R? > R, G =GW), hy = hi (&), hy = ha(§).

(i) We have the upper bound
(Mg.hi ha)rz S 1P Gl kil
106 1 106 1
+82”(Z> 2h1||L2)(||h2||'H;S+52||<;) Thallz2)  (5.43)

1 7 E _1
+&2|[(v)2G |5, ||<g> 2hy ”L2”h2“’}—(;'8~

(i) Assume G > 0, ||(v)3 Gl 2, ||(v)%G||HU < 00 and ||G||L11) > 0. Let

kg = sup{l, [(v)*Gl| 2, b (5.44)

IGlI.1

Then,

1 7
Maghi i)z = o 17113, = Crgelw)2Gllag, llhill2.  (545)
G i€

o

Proof. Recall that M, gh = ﬁQi, (14g, /Hqgh), with Q% _ defined in (1.11). Then,

(My,Ghi, h2>L§ (5.46)

1 & &
= (@) % G, e (B — LD, 0+ THm) 2 (5.47)

— (0 ®ij + Ol _e 1, (O, + ‘%E")h])Lg. (5.48)
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For the first term, we have

1 1 1
(547) S —((@ij * |G, _e (0 —ﬁm (2, - 2 )h1> (5.49)
(@ # |G, _e (9 + q&)hz (3, + qé’)fms (5.50)
1
SURPG I, + (o], skt ) )2 (5:51)
1 |
Sl + (o], EiEjh2, ) 2)? (5:52)

Above we used the upper bound (3.5). Now, recall that by (1.19), 0;;(2)zizj ~ %

Hence,

LooE o IEP_elg/el e . 1
TS S ey T e < (e S MME gl G099
Thus,
G471 SN0PGlz (il + eIl Wl +eb Il (559

Next, we consider the second term: using (1.19) again, and recalling the definition of
H, _ in (1.23), we have

[{(Qu; Dy * G)|v:§hls (0g; + %&)hz)Ly (5.55)
1

S (A}(U_l)ij(i)avk i * Gl _g Oy Py * lezgh%(é')dé) ’ (5.56)

(Ulj(g)(ag, + ﬁ)hz (0g; + @)hﬂ 2 (5.57)

(/ )1 (Vo(— Av)_lG)(SN h (§)d$> (5.58)

1

1 1
Se? sup {(v)2|Vv(—Au)_lG(v)|}||(§)_7h1IILz(llhzlle +87II<§)_%h2||L2)
veR3,ie(1,2,3} & § oe e £
(5.59)
Now, we have
7
sup ||(v)2|3v,- @i x G| < ||<v)2G||Hg S {v)2Gllgy, - (5.60)
veR3 )
Proof of (ii): We write
qé&i qéi
(Mq,thhl)Lg = ((% * G, g( - —)hl (0g; + _)hl) 2 (5.61)
qéi
= {0 ®ij # )|, _ehi, (O, + 7’>h1>L§ (5.62)

1
= (i) G, _e B . O ) 2 (5.63)
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1
= {(@ij x G _e&igjhi. b}y (5.64)

= (0, @ij % G, _ehn, (O + 9% S (5.65)

Now, applying (3.6), we have

1
(5.63) > Croe (Gij|U:§3é,~hl, 8;,.h1)L§. (5.66)
Once again, we apply (3.5) to get
1 ¢ ke & kel€l> _ kee
— sup |(Pj; * G)( )6i§j| S —oi ( )Ei&j S < - (5.67)
Eeepr| BIS T TR N e fe)d T (g /e
Hence,
§ 1 2
15.64)] = Crgell(=)"2h1ll;2 (5.68)
e
Finally, we reuse the bound from part (i) to get for all » > 0,
11 £ 1
1(5.65)] < &2 ||(U>2G||Ha||<—> 2hall 2l (5.69)
Cie 7 & _1
< e - ||(v)2Gll3, 1) 2hy 3. (5.70)

Taking A sufficiently small so that the first term in the above is dominated by (5.63), we
deduce (5.45). |

5.4. Energy estimates.

Proposition 5.4. We assume that (5.3), (5.4) and (5.5) hold. Then, for all k > 0, t €
[0, T]:

1) for o € {1, 2, 3}, we have

d 2 -1_2 1 1, 2 2
SE{IIgaIIL’%’E A YA alla} + APy gall2 gy, + lgall7z - )

<C(s+c¢c+n +K)||P)/f“%%(7'ln)s

(5.71)
+Celldal +IFD)lally2
+Cee? (I Fello)?
(i) For o € {1 2},
(s) 1,0 (s)
M R, 22, + {||7> 86 112 01,0 + 188717204 )
<C(e+g+n+x>||7>yf“>||Lz(H) + Cocllgant 132 g, i 5.7

+Cellldall 2 + I FellH) s 13

+Cee* (I Fsllo)?
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Proof. We separate the proof into each part:
Proof of (i): We multiply (5.17) by g, and integrate:

S ||ga||L2

+ T(at(bgou ga)Lig
+ (eyw‘c%qagou ngig

+ <Mq0,,F+goc» g"‘)Li.s

— Ay VXA;laLve*qTa‘i’, 8a) 2

- <ey ¢Mq0, F+( v ), ga)L)ZC

v

+(e 2Ty (8 8a)s 8a) L
By (4.142),
1570 S el ¥l + 1AL drall L) | ga ||§§.s
S ellgall 2, ) + ||aua||L;>||ga||§§_s
S et +elldaliligalzs +<lsalizgn,,

Next, we apply (5.30) to get

(5.75)

v

S W Pl 2, - Ce Wl 1Py galz2

v

1
o Py gallzz —Cn ||ga||i§ma)g.
In the second line, we use [|¢ L S M + ¢ < 1. Next, we apply (5.45) to get
(5.76) = —|lgall? — Cip e {ll(v)? Fy | )l gell?
= Chy, B0 e T R HILE (o) ! 18erll2

where
3 -1
kr, = max{L, [[{0)* Fell oo 2. 5 'z} S 1.

Using this, we have

1 2 2 2
(5.76) = E”ga”L%(H;s)g — Ce(l| Fillo) ”ga“Lﬁ_E

(5.73)

(5.74)

(5.75)
(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)
(5.82)
(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)
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For the next term, we write

g VS _ f +< 1 _m)f: f +(%_1)ez¢go{

Mgy Mgy Py My Mgy My 155% NIZP
(5.89)
Then,
(5.77) = 4y (& - Vi AL la i, eV V9e?, Pz, (5.90)
-1 Hge — Ky — o
- VAT B Y vy —5¢ )
4y (- VAL a N e 2 ’gd)Li,s 591
= —4wy (VoA la, b)2, (5.92)
—4xy (V% — 1)V, A a, b)2, (5.93)
1 Mgy — M _4a
—4 VAT g B Y v =59 04
nyé - VyAl a M e »ga>L)2CV§ (5.94)
For term (5.92), we use the continuity equation (see (5.201) below)
gda+yVy -b=—ed (e"V), (5.95)
which gives
d _
(5.92) =27 \fye IVl 1a||i§ — 47 fye(di(e’?), a)p2 (5.96)
— i -1 2
—2n8dt{\/7lllvx| alga} (5.97)
ey _
- me lall7, — 4 ye(d ). a) (5.98)

Now, by (4.142),

ey _ .
v lallf, +4mye@ "), a) 2] S e+ P+ 180 lIo)llall 2 (5.99)
S e+ lIgall 2y gl 227, e (5.100)
2 2
Se +elalliagy, .- (5.101)
Hence,
15.92) — 276 L {UFUIVAal2 )] S 6+ ellgal? (5.102)
' ar VYIS 8allL2,)e :
For (5.93), we have
lerV7ae? — 1l e = eV ANV TITUATE 0 S 6, (5.103)

Thus,
15.93)] < (5 +mllall 2 1512 (5.104)
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S +mlgalz2y, ), - (5.105)

Third, we have (5.94). For this, we note that when 7 is taken sufficiently small, we can
guarantee that

- Bin
|M| < ne—TIEI2 (5.106)
M‘]a
Hence,
(5991 S nllgal}z g, .- (5.107)

Combining these bounds, we find

d -1 2 2
[(5.77) —27TEE{«/7|||V;¢| a2 S e+ e+ s+ mlgallz g, ), (5.108)
We move on to our next term:

Yy
1 {mye’v}

1
(5.78) < ell(§) 2 (&) 2gull;2 (5.109)
/_ane%ﬂﬁ x§ x.§
1y’’’
S ellg) ——=12 l8allr2(n,),- (5.110)
Mqae4a¢ v ’
Now,
dlny eV} 7 3 i _ga
T T = (L E =y (P = 9) + ydp) —Le? VG, G.111)
/I,ane‘ht(b Y 2 «/l/‘qa
_ Binlel?

_1
Taking n sufficiently small, we ensure that (é)%,uqaz uy S e” 8 . Thus, combining
this with (4.142),

(5.78) S eIyl + 10 ¥ llLgo)lIgall 2 (31, (5.112)

< Cee® + (e +OlIgall T2, .- (5.113)

Next, we bound (5.79) using (5.43):

-1 108 1 -1 108 1
(5.79) S (IIqu,uyIIH;g+82II<E> 2“4012“)/||L§)(||ga||L§(H;,£)E +52”<E> 2ga||L)2{€)

(5.114)
1 E_1 -1
+82||F+||©||<g> zl"l’qazl"(’y||L§||ga||L§(H;‘8)E (5.115)
Now, by (1.19) again, we have
_1 1 s _ﬂtJ 2
legy oy lly- S —/ 0ij(2)EEje” 10 ge (5.116)
oE & JR3 &

LI R G
<< /w e Melae (5.117)
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582/ L et e
3 [§]
<62

~

since |§ is locally integrable. Similarly,

§_1 -3
”(g> 2 gy My”LiE Se

Moreover, by Sobolev embedding

P. Flynn, Y. Guo

(5.118)

(5.119)

(5.120)

E 1 1 _1 _1
”<E) 2goc||L§é S ezl (6)IE] Zgoc”LiS + (&) ZgallL)zms < I8allz2(H,) -

Hence,

IGIDIS edlF I Ngall 204,020 )

Thus, taking A > 0 to be chosen later,
[(5.79)] < Kllgalle(H H;. e

Finally, applying (5.33), we have
(5.80) < ||gl||LOOL2“ga”L2(H e
S ”gY)”LﬁfHga”L%('Hﬁg

2
rg §||got ||L%(HU)E .

Combining the upper bounds for (5.74) through (5.80), we conclude

2di
= C(5+§+7)+’<)”ga”L2(H e

+Ce(llorall 2 + ||F+||©)||got”L2§

+Cee (| Fy o).

Using (5.32) and taking ¢, ¢, n and « sufficiently small, conclude (5.71).

We now prove (ii). Let g(s) (Vi) gq. Then,

()12
57 @ gt 72
o (%) {a,¢ga},g£;”>L§E

+ (V) (Egal — B, Vusi)) 2,

(V) @V Lyg 80087712,

+Cee (|| Fy o).

(5.121)

(5.122)

(5.123)

(5.124)
(5.125)
(5.126)

{Ilgall 2, +4m /Y l1A:] " all z}+—{IIPLga|I 2 +11gall7 0 |} (5:127)
L Ly Ly (Ho)e Ly(H,.,)

(5.128)
(5.129)

(5.130)

(5.131)
(5.132)
(5.133)

(5.134)
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Ky ‘ —1 _da 5
_4ny<ﬁ<vx>‘{s-vax ae’V = E0) g2, (5.135)
H(Va) (Mo, F.80)- 887012, (5.136)
9 12
= —&((Vy)* Oluye) 89N 2 (5.137)
Gath &
I’ane “
EERVATIRZ AE X Ky ) 1
((Vi)*{e My ( _M%»,ga )2, (5.138)
(V) (€T Ty, (8ar 80 8870 12 (5.139)
First,
|5.132)] = qae (V) @y +4m AT D008l 857) 12, (5.140)
< sf (U Nz g8 172 + N0vall ys-2llgarllzee 18571 12 (5.141)
+ 1AL allre g 2)dE (5.142)
Applying (5.95) to the second term, we get
£ / 19:all 2l gall e 185 1 2dE (5.143)

5/ 151 511128~ ”||Lz||g“>||des+e<1+|y|+||azw||Hs)||g<”||Lz€ (5.144)

< Bl g 1V 288 2 )28z, + o1+ 171+ 130 ) I8N

(5.145)
Collecting terms,
(5-132)1 5 161160265l 2, (5.146)
e+l + 171+ 100 1) 18s” 17 (5.147)
Applying (4.142), we get
eI+ 109 lmples” 172 S &* +elles’ Iz +5ls’ iz, (5:148)

On the other hand, using interpolation, we have

16)288 V2 16) 2802, = CollgastlFzgr, ), + 1850 1320,))- (5:149)
Thus,

(G131 S ellhall2)gg Nz +Celigs’ 12, + Cullgari Nz gy, (5:150)
Next,

15.133)] S 11(6)2 (Vi)' {Ega) — Egg 2 1881204, e (5.151)
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1 1 _
S UENa 1462 gal o2 + IV E N 1E) 288 ™12 N8e 134,
(5.152)

Above we use the usual commutator estimate for [(V,)®, E;]. Next we interpolate

1€ 268z, < ||<s>“%ga||f§£ Ie)2 “)anE (5.153)
S G Fgunlz 1) 1T (5.154)
< cn||<s>*%ga+1||;%)§||<s> “)an(H , (5.155)
This implies
15.133)] < kg 172 + Cy, K||<s>—%ga+1||gma)s. (5.156)

Next, applying (5.29) and (5.30), we have

(5.134) = (" Ly 08 8812, (5.157)
+<qu{<vx>S<eV'”ga) Ve gtz (5.158)
||PLg“>||L2(H e — €188 7204, (5.159)

= CIV2Y @V ga) = "V 81241, N8 N 12070, (5.160)

Now,

V) €Y ga) = €V P 200, S MV @Vl iz, (5-161)
S 188 VL2, (5.162)

Hence, we can interpolate to get

(5.134) = — ||7)Lg<”||L2(H S (5.163)
= Cillgar1 ”Lzmak (5.164)
For the next term, we have
1(5.135)] < 1"V EOV AT all s 1850 1 124, (5.165)
S 188 V2, 188 2004, e (5.166)
<xllg® Ile(H e TG IIga+1I|L2(H e (5.167)
For our next term, we have
(5.136) = (Mg, 1,8 887) 12, (5.168)
+ (Vo) (Mg, o 80) — Mg, 88, 80,2 (5.169)

x,é—’
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For the first term, similarly to (5.134), we have

(5.168) > — llg“)llL;(H—, e~ CoUFE ), 18N (5.170)

Next, combining the commutator estimate with the proof of (5.43), we have

, -1 18 L (5o
161691 S IE" i (gt gy +e2 1 26 V2 ) (517D
1 &
18 N2y, €21 28 2 ) (5.172)
+e?|Fyllollgt " ®) (5.173)
& + D”gl ”LZ ||gl ||L2(7—[_ e .
2s5—1
S Ulgall 204, +elgall 20" (18al 2 e *€l8all 1207000
(5.174)
3 Fllolel O 2o 5.175
+eZ| +||©||gl ”I&E”gl ||L)2((Hm£)g~ (. )
Thus, we get
() 2 2
(5.136) > ||g 2z e — ClgantIZagy ) +18ertlzgy,, ) (5:176)
- cS<||F+||@> ||g<”||L2§ (5.177)
Next, similarly to (5.78),
(5.137) < Cye +K||g§;)||L§(HU)E (5.178)
and, as with (5.79), we use (5.43) to get
(5.138) < kllgg” 1723, + Cee (I Fill0)?. (5.179)
Finally, using (5.33),
(5.139) < 18Nz, 188 172, (5.180)
(s)
< 518 12, (5.181)
We now combine the estimates for the terms (5.132) through (5.139):
1
3 L 22, + {||7>Lg‘”||L2(H e 8 Iz g ) (5.182)
<Cle+s+n+r)gd ||L2(H e TCn, K{Ilga+1IIL2(H- e Flgan ||L2(H )
(5.183)
+Celldallzy + 1FD)l8s” 72 (5.184)
+Cee (|| Fillo ). (5.185)

Using (5.32) again, we conclude with (5.72). |
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5.5. Macroscopic estimates. What remains is to get bounds on P, f. This requires
analysis of the local conservation laws. In order to derive these equations efficiently,
and, in particular, see how the transport part of (5.13) couples (a, b, c), we introduce the
ladder operators: the lowering and raising operators are respectively

Aj = y%% ryTI0, AL = y%% —y R, je{l,2,3L  (5.186)
We recall the identities
Aju? =0, [Aj Al =g, jok e {1,2.3). (5.187)
Recall also that the family of Hermite functions
1 1
{W(AT)M (A" (A3 gy }nl,n2,n3eN3 (5.188)

gives a complete orthonormal basis for Lé (R3). We shall denote the (unnormalized)
Hermite functions

1

1 1

bh=wuy, bjiju=Aj-Aj iy, Jis.sjm €{1,2,3} (5.189)

We can represent the kernel of £, using the hermite functions as follows:

1
N (L) = span{b, by, b2, b3, —=b;;}. (5.190)
pan{h, b1, b2, b ng.l./
We can thus rewrite (5.20) as
1
P,f=abh+bjhj+c—=b;j; (5.191)
yf h Jb] «/ghjj

It is also convenient to define the following projection of £, involving third-order hermite
functions:

dj = jefl,2,3) (5.192)

1
\/_I_O(hjkk’f)L§’

We now rewrite the transport part of (5.13) in terms of A, A*
§ _1 1 _1
E-Vy+E- (Ve — E) = (y 20y +y2E)NA; +y 20y, A;. (5.193)

We also will need to evaluate projections of ,f%a,(;ﬁ f). Let ¢(&) be some linear

combination of the hermite functions in y 2£, i.e. there exists a polynomial p : R — R
(with coefficients independent of y) such that

£(E) = ply ()’ (5.194)
Then, 1 1 o
(G mT30 W2 )2 = 00l8, £z = OGu™ D, £ (5.195)

Now,

e 1) =0, p(yie)) = %s Velp(yE)) = %é VefeuTi). (5.196)
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Therefore,
dlen Hipt = 1(& Ve + yf'Z); (5.197)
= —s,: (Ve +ﬁ)g (5.198)
= 5(,4.,' + ADAjC (5.199)
In summary,
(20 (3 )2 = e, £ = %((A,- +ADAL e (5.200)

The following lemma contains formulas for relevant projections of the equation (5.13).

Lemma 5.5. The following formulas hold:
1
eda+y 20y,bj = —ed; ("), (5.201)
/ _1 1 1 _ 2
e — %)b, +(y 720y, +y2Eja —4my2e’V o AL a+ \gaxjc

0, (06 Py )12+ (0j, My p. iz = ="V {bj, My b2 (5202)

y 3 2 1 1 5 1
s(atc—;(c+ 5a))+ E(y 20y, +V2Ej)Dj + 3V 20y;d;

+L(h.. M 1) —8\/§Zeyw+£(b-- M b) (5.203)
% Jjs IViy Fy Lg— 2y «/— Ji» IViy Fy Lgs :

' 32 3V3
%<3dj+fb,»» N4 29, + v E))e

2 1 1 L _1
+ —(J/ 20n +y 2Bk Py fz +y 2

S(B[dj -

1
\/_l—oaxk(bjkllv fhpz
¢— i, Ly f+ My p, 2 = (hju, ="V My, g o +Ty (f, £)). (5.204)

Proof. These formulas follow from direct computation of the & integral of (5.13) multi-
pliedby b, b;, ﬁ b;; and ﬁ b ju. We only give the details for (5.202). The proof of the

other formulas are similar. Using (5.193) and (5.200), and the fact that £,, f, M_% orvy
and I', (f, f) are orthogonal to by ;, we have

s(dbj — %«AkAk + ALAOY;. f) 2). (5.205)
{0 (20 + v EOAL + 7200 A ) 2 (5.206)
+(bj, My,af)Lg (5.207)

—(bj. "V My.F.h) 2. (5.208)
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It remains to evaluate terms involving the ladder operators. Using (5.187), one computes

(A + ADAch; = (A + A A A%h (5.209)
= (A7 +A)jb (5.210)
=b; (5.211)
and

(b Ay ™20 + 72 EDAL+ 7 100 A 2 (5.212)
= (AT, (205, + v EOf) 2 (5.213)
IAL A, O f) 12 (5.214)
= (y‘%ax,- +y2EDa (5.215)
+y 20, (bjk, P;f>L§ (5.216)
+ %V_é“)jk, bll)Lgt?ka. (5.217)

Finally, noting that in the last term,
(B ks hlz)Lg =25, (5.218)
we conclude with (5.202). |

Lemma 5.6. Assume the hypotheses of Proposition 5.1. Then, for all r > 0,
1oy <ot 1Py F 20, + 1P N2y, + 2 0@ Ol (5.219)

Proof. 1t suffices to show the case when r = 0. Because of radial symmetry of h and
b;j, we have

IH, B llg Se. (5.220)

Hence,

LI F byt 1 — Cll(@. o)} (5.221)

”f”LZ(H ) = 2 LZ(H— )
Now, writing u = P)}f +bjh;, we have

1 1
”””LZ(H* e 8<Uij|§3‘§;u,3sju>Lis > E(Uijlngf(%')as,-u,35_,M)L§_§- (5.222)

On the other hand, for all v € S2, and & e R3\Bl , we have

Oij(é)vlv] No't](i:)vl‘}] (5.223)

Now, we expand u as follows:

1
;(Uij|§13f(§)8§,-u» aéj“)Li,E (5.224)
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1
=~ {oijl e Lp; (§) 0 (brb). 0g; (bibo)) 2 (5.225)
2
+ (ol e 1 (§) 9 (b %Py f), (5.226)
1
g(o'tﬂélB‘(E)aE,P £ P f)L (5.227)

Now %(ai i |§ 1 B (§)g-, 0g; ) 2, defines a semi-inner product. So, we apply Cauchy-

Schwarz and Young’s inequality to the cross term to get

1
g(aij|%131c($)8§iu, ngu)L)%S (5.228)
1
> —8<Uij|§13§($)3§,- (bihi), 9, (b’h’»Lﬁg
g<cr|1(a73L 3%, Py 5.229
EIJEB‘S)S, féj f>g (. )
> L Wb, bz — CIPEFI2 (5.230)
- C ’ Lx 14 L%(HG)E’ ’
where
1
Wi = E(Uij|%18f(§)3$i B, O, bl)Lg- (5.231)
We now show that
1
Wkiviv > — (5.232)
C
forall v € S2. Now,
V% 14 ;
Og; b = T(Sik - Efifk)ll;% (5.233)

Then, by the reverse triangle inequality,

011 9, bk, 0 by = ol,|s(vl—%(u-é)&)(u,»—%(v-é)&,-my (5.234)

4¢
(v-§)°
z{glamgv,-vj—c : oijle&i&jluny (5.235)
I 3 £ €
Now, for |£] > 1, we have
1 57 51
g%lg&éﬁ, (éj/—e)?’ & E (5.236)

On the other hand,

1|Pervf? - | Pev]?

SR e < T

(5.237)
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Hence,
1 | Pev]? 5
Wivkvr > — Hyd§ — e &1y dE (5.238)
C Jra\p, [§] R3\ B
1
> — — Cg2. (5.239)
C

Taking ¢ small enough, we deduce (5.232), and thus

1 1
(04l 1p @) u, 0gu) 2, = IBIG: = CIPy fllLa gy, - (5.240)

From this, we conclude (5.219) in the case r = 0. |
The next lemma allows us to control (a, b, ¢).
Proposition 5.7. Let M > 1, and let 1, ¢ and ¢ be sufficiently small depending on
M. Assume the bootstrap assumptions (5.3) through (5.6). Then, exists two real valued
functions 4 = GM) and Greg = %r(e{g) on [0, T satisfying, forall t € [0, T]
90| Sm ||f(r)||§zé, (reg (] Su ||f‘”(r>||§2$ (5.241)

such that

d 2
e 90+ 1Py f1;

S 82<”F+”®)2+<H2§m 1PE s, + el )
~ aefl,2,3} 14 L2(Ho )t o L2,
and
6T )+ 1P FO1
E . (5.243)

<. &2 2 ; L ()2 ()12
Sw HIF o)+ min (1P 8852, + 188 20 )

Proof. We break the proof into a number of steps. Given u : T3 — R, we split u =
u* +u,whereu(t) = fT3 u(t, x)dx. The first step concerns the bounds on (a, ¢). In step
2, we bound ||a||L§. In step 3, we bound (CAZ step 4, we bound ||(a, )las- In

step 5, we synthesize these bounds.
Step 1 (estimate on a and ¢): Regarding a, from (5.21), we simply have

f a(t,x)dx =0 (5.244)
T3

for all times. In particular, A;la is well defined.
We now discuss the zero mode of c. Subtracting the first line of (4.138) from (1.15),

we have
[3d (@) d HE
il (A I 2L (F. — w,e?)dxd 5.245
2dt<y> dt/T3xR32( wye’Vydxdé ( )
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Integrating in time, we have

3¢(t) 3 Cin L ' 2 ‘ ’
\/>y(t) 2 Bin * 3. /;3 IVi@in ()7 — |Vxhin(x)|"dx (5.2406)
+ —/ IV (t, )|* — |V (2, x)[2dx (5.247)
8 T3

On the other hand, from (5.10),

/3 IV (1, )P = |V (1, 1) Pdx = =2(Vo i, VoA a) 12 — VoA all 2
T

(5.248)
2y, a) — 1Ay aIILz (5.249)
Combining these with (5.7), we get
3¢) 1 5
‘\/7)/(1) - E (v, a)L)Z( Se+ ”a”L% (5.250)

In what follows, it will become clear that we cannot control ¢* directly. Instead, we can
only get a bound on (ce”¥)*. It is then necessary to compute ¢* in terms of (ce?¥)*
and c. Observe that

e’V (e 7V e)* +ey‘”/ e "Vedx' =c* +¢. (5.251)
R3

Since ng e?Vdx = 1, the above integrated in x yields

/ e "Vedx =E—/ e’V (e "V e)¥dx. (5.252)
R3 T3
Thus, we have the identity
=@V —De+e’V (e Vo)t — e”¢°/ e’V (e "V ey dx (5.253)
T3

In particular, |lcll 2 < < el +[[(e "V e)* 2.
Step 2 (estimate for a): Now, we turn to bounding a. We claim that the following
estimate holds:

d 1
- sE<e—VWvXA—1a, b2 + —||a||22
< ClEX(IFello)? + 11b1 72 + 1™V X117, + 1Py f 7244, )E+||f||L2(H7 o)

(5.254)
To prove this, first observe

(y Vit yIE)a =y 2V Vi(e "V a) — dnaViAya, (5.255)
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Therefore,

d _ 1y Yy _ _
—e— (e "VVeA a, b)p +y T2 lle” T all}, +4nle T VoA all], +4nc
- X X

dt
(5.256)

2
= —(e_VwVXA;la, eo;b + (y_%Vx + y%E — 4ny%eV‘”VxA;1)a + \/;ch)Lg

(5.257)
—e(e VYV AT 0, b) g2 (5.258)
+e(0 (yv)e "V, AL a, b)p2 (5.259)
+4ne(e 7VV, A a, avViA'a) (5.260)
+47c* + \/g(e_y‘//VXA;la, Vic) 2. (5.261)
From (5.202), we have
ledibj + (v~ 20y, + v 2 Ej)a — 4ny%erxA;1a||H;l (5.262)
- “glbj + ﬁ&x.c + 0 (Bjks PEFY 2+ (07 My f) 2 (5.263)
2y 3 v G
+e" (b, My p.b) 2 e (5.264)
Selpllbllzz + llellz2 + 1Py fll24, (5.265)
+11(h; My Fy 2l (5.266)
e (b, My g ) 21l (5.267)
Applying (5.43) to the latter two terms, we have
(5266 < [IES O 130 Ve, + 1 N0, (5.268)
+e IIFf%’O)II(m)v I (Mg - (5.269)
S IIfIIL;(H;E)s +e(IFello) N f 222, - (5.270)
and
(5267 S el EL Vi + el o, (5271)
S e(llFello)- (5.272)
Then,
|(5:257)] < le?V Va(=A0) " all gy (5.273)
Nedb+(y 2V, +y2E)a — 4ny%eWVxA;1a||H;l (5.274)

< llall 2 telbllzz + 1PE £ll2, (5.275)
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I l2ae e + e NS N L2 (1,00 (5.276)
Now, note that
1Az e S Nallz + 1612 + (2 + 1Y 2 + 1P Fllzg, - (5277)

Then, taking A > 0, and using Young’s inequality, and the bootstrap assumptions, we
have

(5.257)] < C(e + s + M) (llall 2 +) (5.278)
+ Cule?(1F ) + 1By @V N + 1Py FlLz 0,5, + 1 W20 )
(5.279)
We now turn to bounding (5.258) and (5.259). Using (4.142) and (5.201), we have
elldrall g1 S 16Nz +elde Il - S 1bll2 + e 20, )- (5.280)
Hence,
15.:258)] S €I F L2 30,)e) + 1B 1216112 (5.281)
S 1 Iz + 1b17; (5.282)
< ellallgz + 1217 + 10, VN + 1Py flT2y,,  (5283)
Next,
1(5.259)] < e(laiyllLee + 1Y Dllall 2Bl 2. (5.284)
Applying (4.142) again, the above reduces to
152591 S el fl 2k Nall 2 151 2 (5.285)
< elallgz + 1217 + 1B, @@V N + 1Py 2y, (5286)
Thus,
1(5.260)] < ellalizllall7;—1 < ellal7,. (5.287)
Now to bound (5.261), we use (5.253) to get
IVxe =y Vae Vel 1 Sl Ve 2 (5.288)

Hence,
(€A a, Ve — v (VAT a, Vigo) 28| S llallp2 eV e) I 2. (5.289)

Combining the above with (5.250), we have

2
(5.261) < \/;}(e—y‘/fva;la, Vic)2 — v (Ve a, Vig) o€ (5.290)
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_ 2
e — \/;V@O, a)L%

S sllally + llall 2 lie ™" e) 2 +elel (5.292)

+ Ic] (5.291)

Now, combining the bounds on (5.257) through (5.261), we now have

d
— e TVVAT a by + y 2T a2, +4nc> (5.293)
<Cle+s+M)(lal, +c%) (5.294)
2 2 2 —y oax 2 12 2
+ Cle™ (I F o)™ + 1DN + 1™ O N + 1P fll2 g, ), + IIfIILJZC(H;E)E}-
(5.295)
Thus, taking ¢, ¢ and X sufficiently small, we have (5.254).
Step 3 (estimate for a(s)): Next, we have the following estimate for a®:
d =1 _(s) 1,(s) 1 2
_8E<VXAX a 7b )L)Z{ +E”a”[_]x (5296)
S eHIF0) + lallzs + 1B, gy + 1Py f 201, (5.297)
To show this, we have
d
— e (VAT b0 1y 4y T AV, (5.298)
= (VAW 63,09 +y 71V, (5.299)
— (Vi AT'9,a9, b)) 12 (5.300)
From (5.202), we have
led b\ +y =20, (5.301)

4 1 Lovy —1 2 il
- Hegbj+y2Eja—47ry2e ey A7 a4\ S0y, 0 4+ 0y (e Py f) 2 (5.302)

05 My iz + e 07 My sz | (5.303)
S el 1ol g1 + (NEN ge-0)llall g1 + lellas + 1Py f 121, (5.304)
072 My £ )izl g+ 1€ (0. My £9) 12 gt (5.305)
S e N2 10l g1 +llall gt + lellmg + 1Py fC " 2gg,),  (5:306)
P00 e +eUF)XI ™20, 0) (5.307)

In the final line, we use the bootstrap assumptions, plus (4.142) and (5.43) as before,
combined with algebra estimates for H*~!. Hence, with the bootstrap assumptions,
Young’s inequality and interpolation, for any A > 0 we have

(5.299)] < C(e+ g +M)[la™|?, (5.308)
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+ Cule?(I1Fello) +llallzs + 11, o)y
P F Nz + 1P 20 )
Next, from (4.142) and (5.201),
15.300)] < 161172 + elld: (@) g1 16112

S EUS DNz + 16912016112
< g2 b, + 1P
S e lall gz + 116, s + 1Py F 204,

Taking ¢, ¢ and A sufficiently small, we conclude (5.296).
Step 4 (estimate on (¢’ ¢)*): We now show the following bound,

- s%<e—V“’VXA;1<e—V‘”c)X,d>L; + én@—””c)X [
< CleX(I1Fell0)? + (e + ) (llall7, +[21)
17 + 1Py 172 00,0 + 1 W2 00 ),
By writing
(y_%Vx + y%E)c = y_%ey’/’Vx(e_’”/’c) - 47ry%chA;1a,

we have

d _ o 33
— e (eI VAT e y"’C)X,d>L§+ﬁII(€ ey

343
—(eT"VV AT @V ), edd + \Tf(yévx +y E)) 2

— (e "VV AT eV de)%, d)p2

—e(0(e 7 NVAT @V ) d)

—ele VAT @) d)
3V3 )

_ 477_)/ 2 _V‘/’VXA;I(e_V‘l’C)X, CVXA;IQ)L%.

First, from (5.204), we have

3V3 1 1
|I83zd+T(V Vit y2E)c|y
SSI?I(IIbIIH;HIIdIIH;I)

_1 1
+ sup {20y + ¥ 2 E(bjk. Py )2l -
jke{1,2,3) &0

19 B jrar, )2l g
+ Ly bjus Pzl
+ ”(hjllv M}/,ﬂ.f)[é ”Hx_l
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(5.309)

(5.310)
(5.311)
(5.312)

(5.313)
(5.314)
(5.315)

(5.316)

(5.317)

(5.318)

(5.319)
(5.320)
(5.321)

(5.322)

(5.323)
(5.324)

(5.325)
(5.326)

(5.327)
(5.328)
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+ 1t ju, eV My, By (5.329)
+ 10 jus Ty CFs I 1) (5.330)
Going line by line, we see that
(5.324) S e(Ibllz2 + 1Py fll 20, )) (5.331)
Next up, we have
(5.325) +(5.326) + (5.327) < IIP],LfHLg(HJ)S. (5.332)
Next, by (5.43), we have
(5.328) I 2 s + ENF DS N L2, (5.333)
(5.329) S e(l Fello) (5.334)

Finally, from (5.33), we have

(5.330) < lf 204, e (5.335)
Hence,

15:318)] < litee” ) 2 Ublz + 1Py flliz e + 1 N2z ), (5:336)
+ellFllo) 260 + S 1Lz, ) (5.337)

Using (5.277), we deduce that for any A > 0,
1(5.318) < C(e + g + MV ) |17, (5.338)
+ Cule® (I Fello)® + (e + ©)(llallj, + [27) (5.339)
BT + WPy L2, + 1 V220 ) (5.340)

Next, we have the term (5.319). From (5.203), and (4.142),
elldrclly—1 S ely i@, oll2) + b, iz + el Fello) 1 fllr23¢,).)  (5:341)
S U F N Flz2r,e) + €l (@, Ol 2
1Bl + WP Fllize + 1 2o ), (5.342)
Thus
2 2 2 2 L2 2
(53191 S eI Fxllo)” +elia, Ol +1bl2 + 1Py fll72q,), + IIfIIL%(H;:S)g
(5.343)
Next,

15.320)| +1(5.32D) S ellcllzzIdll 2 S € + 1Py f1I7 (5.344)

(HU)E :

Finally,

15.322)] S eV ) M2 (leVea all e + eV AT S —nd)ll2)  (5.345)
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- 0
Sllallag €Y o) 2 el 2 + I1FE — FOllen) (5.346)
- 0
< slEe™ o 2l + I1FE = FOlle) (5.347)

Combining these bounds for (5.318) through (5.322), we conclude that

d _ o 3V3
—e—-e SN ”wc)x,d)L§+ﬁ||(e " eyX Iz, (5.348)
< Cle+s+MIE o7, (5.349)
+ Cle? (I Fello) + (e + ) (lall7, +[eP) (5.350)

+ 16172 + 1P f1I7 (5.351)

2
By taking €, ¢ and X sufficiently small, we conclude (5.313).
Step 5: Estimate on ¢*): Following the same method as previous bounds, we have the
estimate

d _ 1
_ SEWXAX 1 d©) 5 + E"C”%’f (5.352)
< Cle*(IF o) + (e + ©)lallz, (5.353)
+llelgs + W17 + 1Py F T2, + 1N 2 ) (5.354)

The proof is similar to that of (5.296).
Step 6: Combining the bounds: Combining the upper bounds on (5.254), (5.296),
(5.219), (5.313), (5.352) there is a choice of constant ¥ > 0 taken sufficiently small,
such that the functional

Grog(t) 1= k(e "V V AT a, b) 2 — 1 (VAT W, b)) (5.355)

—(eTYVAN TV d) = VA YY) (5356)

satisfies
e Lo 0) + = IP, O, (5.357)
dr™"® c'"'r L} (Ho)e
= ClEX (I Fell0)* + e+ OIPy N2 (5.358)
Py F N, + 1N, + I = FLIG (5.359)

On the other hand by (5.31), for each o € {1, 2},
IPE PR e+ 1 B, S IPEEE a0 188 e, (5360
(s)2
0Py fN 72 4, (5.361)

Thus, by taking ¢, ¢ and n sufficiently small, and re-scaling ¢ if necessary, we conclude
with (5.243). To get (5.242), we take ¥ > 0 and

G(t) = —xc(e "IV A a, by — (€Y AT @V ) d) g (5.362)
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so that

d 1
o0+ GIPy 300, = CLEMIFel0) + E+ OIP fl: — (5:363)

HIPF W2, 1 W2 (5.364)
And, once again, by (5.31), foreach @ € {1, 2, 3},

1 2 2 1 2 2 2
”Py f”L%(Hd)S + ”f”L)Zc(H;;g)E 5 ”Py ga”LE»(Hv)E + ||ga||L%(H;:8)§ + U||ny||L%(HU)€
(5.365)

Again, taking ¢, ¢ and n sufficiently small, and re-scaling ¢ if necessary, we deduce
(5.242). ]

We conclude this section with a corollary of Propositions 5.4 and 5.7:

Corollary 5.8. Let M > 1, and let n be sufficiently small depending on M. We let ¢
and ¢ be sufficiently small depending on M and n. Assume the bootstrap assumptions
(5.3) through (5.6). Then, for each M, n > 0, and a € {1, 2, 3} there exists a function

YW oy = @_(%"’) : [0, T1 — R, such that

~

Yo ~My 6-a (5.366)
and
d o 2
SE@_’Q + Do SMpy € (5.367)

Proof. We take ko, k1, k2 and k3 € (0, 1) be constants to be determined. We combine
(5.71) in the case @ = 2 and (5.242) as follows:

d _
sa{nganizg +an Y lAcl ™ allz; + a9 (5.368)

1
+ (5 = ClIPy galliapy,, + 18l 40IPy fliT2y,,  (5:369)

< Cletg+n+k0)Pyfl72 g, (5.370)
+Celldallzy +1Flp)lsally: (5.371)
+ Cpe (| Fell)?. (5.372)

Using (5.32), we first fix «; sufficiently small such that the ‘% — Ck1" in the above is
strictly positive, and

L= ||ga||izs +an Sy A algs + 0 (5.373)

satisfies

X~ ||ga||izé- (5.374)
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Then, we fix kg to be a sufficiently small constant, and also require that €, ¢ and n are
sufficiently small so that

d 1 2
Sd_t‘%;,ol + _”gOl“LZ(H ﬂH_ )%_ (5375)
= Cle(lldrallz + IFsl%) 2=« + ([ Fello)?). (5.370)
Next, we combine this bound with (5.72),
(Ilg(” 172, +K3%eq) (5.377)

+ (— = kP 88 12 pg, e + 1867 1 2 g N +83IPy F O N2 5y, (5:378)

= Clet s +n+ )Py f VN 200, + Cralgarilizgg, oo ), (5.379)
+Celldrall o+ 1P D) ls” 172 (5.380)
+ CK282(|IF+|I:9> (5.381)
We now fix «3 small enough so that the “& — Ck3" in the above is positive, and
lga” 7z + Kk3%res ~ llss” 72 (5.382)
and fix k7, and take ¢, ¢ and n small enough that
<||g<‘>||Li§ +K3%reg) + — ||ga>||L2(H e (5.383)
< cnngaﬂuizm e (5.384)
Cle(llorall 2 + (TSI L2, +e2(|| Fillo)?}. (5.385)
FInally, we take K(") sufficiently small depending on 7 so that
P o = kUSSP +k3Greg) + 2 (5.386)
—.a,reg * 8o 4%5 3reg —a+l .
satisfies
d o l 5
E%—,reg,a + C—WQ_,,X (5.387)
< Coledldallz + 1 Felld) 27, o + €2 (I Fell0)?}. (5.388)
By (4.2), we have
1 d ~
—(IFillp)? < ——2:+C(1+ D_4). 5.389
¢ IFllo)” = =2 2y + C( ) ( )
Taking ¢ and ¢ sufficiently small depending on 7 now, we can hide the || g(s) 112 12(Ho e

term and get for some collection of constants Cf"), C;n) and Cén),
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d_ . cmd m . 1~
E(E +C)" E'% — Gy l3all2) 20 o + @@_,a (5.390)
= ¢, (5.391)
We now define
t
QW (1) == C™ 2 (t) — Cérﬂ/ I3t 2)de 5.392)
0

By the (5.3) and (5.6), we have that |27 | is less than or equal to some constant depending

o)
on 7, say C‘(ln) > 0. Thus, if we set @/j(") = Cén)esncﬁ %—(Z)eg,a’ we have a function

which satisfies (5.366) and (5.367). |

5.6. Proof of Proposition 5.1. We now conclude this section with a proof of Proposi-
tion 5.1.
Proof of Proposition 5.1: Throughout this proof, we take n sufficiently small so as to
satisfy the hypothesis of Corollary 5.8. Any of the constants appearing in the estimates
will implicitly depend on the constants M, n > Oie. C = Cy ;.

For each o € {1, 2}, we integrate the bound in Corollary 5.8 on ¢t € [0, T'] and use
(5.366) to get

7
& sup éa_’a(t)+/ D_ o (t)dt (5.393)
1€[0,7] 0
< C(e2 +eb- 4(0)). (5.394)

Taking j = 2, this implies (5.8).
We now show (5.9). For this, we introduce 8 > 0, to be chosen latter. Now, for any
h = h(&), observe that

1
Iy, 2 [ | ke rde (5.395)
R3 (&)
1
> — / | h() dE (5.396)
013 J(g)=<o13
1
z (llhlliz —/ | h($)2d€> (5.397)
0t3 (£)=013
2
> L (IIhlliz —f 1 ei@”—”ﬁfn('é'z“—@z’3>h(g)2d§> (5.398)
0t3 (£)=013
1 2
"o <Ilh||iz —e‘i“”‘”f‘mgz’“||ei<€”—”f‘f"<'f'2+”h||iz) (5399)
13

Applying this to & = gis) and g, and integrating in x, and re-scaling 6, we have

~ 1 2
D-12 o7 (@,1 —e 3 %z) (5.400)
13
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Thus, using (5.4) with (5.367), we have

d 2 2 -
e+ W < CEr+——e " sup & (1), (5.401)
dt 3C0O13 3013 1el0.7T]
and so
d 1.3 A3 L1253 >
— (e " A 1) < C(eeT'” + ——e'To > sup & (). (5.402)
dt €013 1€[0,T]

1
Hence, by taking 6 = (é) 3 with C as in the above, we get some for some Cy, C1, Ca,

d L(L)% L(L)% d _L(L)% ~ ’
—(eC0 " H ) < Cy(geCo s’ 4+ —e C17¢ sup &- (1) (5.403)
dt dt t'el0,T]
Now,
o3 21 11 L3 21 ()3
/ e® D ar < £§t§/ S LA TS TEPSI (5.404)
0 0 g§(t/)§

Thus, by integrating (5.403), we get

N ~
V(1) < e DY sup E(t) +edts. (5.405)
1'€[0,T]
for all t € [0, T']. Using (5.366), we conclude (5.9). m|

6. Proof of Theorem 1.1

In this section, we conclude with the proof of the main theorem.

Proof of Theorem 1.1: We break the proof of the Theorem into the proofs of parts (i) and
(i1).

Proof of part (i): We break the proof of (i) into a number of steps: the setup of the
bootstrap argument, combining the estimates of the preceding results, and closing the
bootstrap argument.

Step 1 of part (i) (setup & bootstrap assumptions): We take k = k(M) > 0 to be a
constant to be determined later. We take (F?, 8, ¢°) to be a weak solution to (1.7) on
[0, To] satisfying the hypotheses of the theorem. In addition, we may as well take Ty > 0
small enough so that

To
/0 IF2() |5 dr < k2. 6.1)

Now, for all ¢ sufficiently small, there exists a unique weak solution (F{, FZ) to (1.7)
on some interval containing zero, in the sense described in Lemma 3.1. Moreover, we
let (¥, ) be the solution to (4.138) in the sense of Lemma 4.3, defined on some time
interval containing 0. We then take 7, €, and ¢ as in Proposition 5.1, and take ¢ € (0, €].
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By continuity in time of the quantities considered, there exists T, > 0 such that the
following conditions hold:

sup (|l + | F{(D)lle) < 2M, (6.2)
refo.f (0
sup [|FE(t) — FO(0)ller <k (6.3)
t€[0,T,]
sup \/EF (1) <k, (6.4)
t€[0,Te]
ye@)
sup | In(——=)| <, (6.5)
tef0,Te] in

IA

j::&‘ & €
[ o = eV (6.6)
i ,

By Lemmas 3.1 (taking k < @) and 4.3 (using condition (6.5)), we may take « small

enough so that the interval of existence of (F?, F?) and (y¢, ¥*) is strictly larger than
[0, fg]. Hence, we may take YA”E > ( to be the largest such time, so that either at least

one of the above conditions holds with equality, or T, = Tp.
Next, we note that by condition (6.4) and (6.5), we have

sup {]| lzee + IFE@ e} < Cum, (6.7)

1
refo.7) (1)
so the consequences of Propositions 4.1 and 4.2 both hold, up to replacing M with some
C in their hypotheses.
Step 2 of part (i) (combining estimates): We now combine the estimates of the preceding
propositions and lemmas. We first show that the hypotheses of Proposition 5.1 are
satisfied. By (4.143), foreach @ € {1,2},and T € [0, T¢], we have

qalE? 0 e e
sup (le 2 (Vi) (Ve) (upeP? — pyee?” V) 2 (6.8)
t€[0,T] x.§
dgs1 1612 0" youe
e T (Ve) el — pyee” V)2 ) (6.9)
Smosup (1B =yl +110° — ¥ llmy) (6.10)
t€[0,T]
Smosup |FE(t) — FO() e (6.11)
t€[0,T]

Hence, for all such T, and for each o € {1, 2}, we have

sup |67 (1) — E° (D] < Cy sup ||FE(t) — FA(0)|1 % (6.12)
tel0,T] tel0,T]

sup |2° (1) — 7% ()] < Cy sup [|FE(t) — F)(0) - (6.13)
tel0,T] te[0,T]

Using (6.12) with T = 0, we have

EE qin SM EF g+ Cue? S € (6.14)
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By the condition &° , . < Me, we have

£ . 1
/R3 - —(Ff,in - My&eﬂ’”w’")dxdé + - . |Vx¢;?n|2 _ |wal§n|2dx (6.15)
X

2
SVE-pin+E i (6.16)
< Cp(e+2). (6.17)

Thus, we have that (5.7) holds in Proposition 5.1. On the other hand, by (6.3), (6.4)
and (6.12), we have sup, (g 7] ,/gf,a(t) <um k. Taking k < %, we have that the

conclusions of Proposition 5.1 are hold on [0, f"g].
From (5.8), we have

T;
£ sup 5f’2(t)+/ ZF H()dt < Cy(e6F 5, +67). (6.18)
1€[0, 7] 0

Combining the above with (5.9), we have and for all ¢ € [0, IA};], we have

_1(1y3
E° () < Cule” ' g w6313 462, (6.19)
We now prove the estimate
00112 T 0012 2
sup [|Fy (1) — F (D]l +/ | Fi (1) — FL (Dl dt Sy e (6.20)
0

1€[0.7;)

Using the above and (5.8), then for all 7 < fg, we integrate (4.102) on ¢ € [0, T'] to get

T
sup ||Ff(t)—Ff(t)||2€,+/ IFE(t) — F(0)||%dt (6.21)
t€(0,T] 0
< IIFE0) — F20) (1% (6.22)
T
+ /0 (ICFE, EQ)llp)* (e + IFE(t) — FA(D)lle) + P (t)dt (6.23)
T
<m fo (ICFE, FO) o) (e + sup |FE(W) — FA(t)|5)de + &2 (6.24)
t'e€[0,1]

In the final line, we used (6.18). Using the time integrated form of Gronwall’s inequality,
we deduce (6.20), provided the follow bound holds true:

’f‘&‘
/0 (ICFL@), FL@)llo)dr Spr 1. (6.25)

Indeed, by integrating (4.2) in Proposition 4.1, and using (6.18) to control the right-hand
side, we have

T
| iEz ol . (6.26)
0
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Combined with (6.1), we have (6.25).
Step 3 of part (i) (closing the bootstrap): We now show that T:= infee(0,5] YA} > k. To
show this, we suppose T, <k to yield a contradiction. Now, one of (6.2) through (6.6)
holds with equality. We now show that in each of these five cases, the condition T, <«
cannot hold.

First, suppose (6.2) holds with equality. By integrating (4.3), and using (6.18) to
control the right-hand side, we have for all ¢ € [0, fg],

IFE@IE < I1FL e + Cau + 1 (o)™ FL 12 dr) (6.27)

L2(H,y NHy. v
We claim that
/ 1™ FEI2, e S kv, (6.28)
Indeed,
/n O ELO g e )dt</ IFE @) e’ +/ 1) W) e 4 (6:29)

Now, by (6.1) and (6.20),

t t t
/0 1FE ()2 di’ < fo |FEI2 e + fo IEE() — FOU) 2 dt’ Sy € + 42,

(6.30)

On the other hand, recalling (1.22), we note that for all v € S2,
£0ij(ev)viv; S e < e(v) oij (Wviv;. (6.31)

Hence, using (6.25),
t
m £ / m & /

fo 10" FE e dt <r+f 1™ 132 e (6:32)
<u t+8/0 | FEN5dr (6.33)
<mt+e. (6.34)

Using t < f"g < k, we conclude (6.28) holds true. Taking the supremum of (6.27) over
allt € [0, T, ], we deduce

sup |Fi®lle < |l +,,,Ilcz +Cp(k +¢). (6.35)
tel0,Te]

Next, by the continuity equation, we have for all ¢ € [0, 7.1,

1 1
ni(t,x) nt i (X) — fot Jr3 v+ Ve Fi(t, x, v)dvdt

+,

(6.36)
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Taking « smaller if necessary, we get

I < a1 1 <. (637
LY = LY == Lgo- .
Wi 1= Cli=liellFillex ~ 2 ng,,

sup || —
refo.fyy ()

Now, taking ¢ and « sufficiently small, we have

2M = sup (|——=llr +||F8(t)||€)<§|| e + 1FL i lle + Car(ic +€)
tef0,Te] (1) +m
(6.38)
3
=_M. 6.39
5 (6.39)

Next, assume (6.3) holds with equality. However, by (6.20), we have sup re[0.7:] | FE(t)

- F,; O)|ler <m &, so we may take e sufficiently small to reach a contradiction.

Next, assume (6.4) holds with equality. However by (6.18), /&%_ » <y +/¢. Thus,
by taking ¢ small enough, we ensure

k=& _o(Ty) < g (6.40)
a contradiction.
Next, assume (6.5) holds with equality. By (4.142) and (6.18),
“(T)
n =X (6.41)
m
T e
‘ t
< f ro, (6.42)
o v
7
< / L+ [7° di (6.43)
0 ,
1
R 1 T: 2
<T.+T; ( _@f’zdt> . (6.44)
0

Combining with (6.18), we conclude n < T.. We conclude n=nM) <y 7. < «.
Taking « sufficiently small, we reach a contradiction.
Now, assume (6.6) holds with equality. By (5.201), (4.142), (5.8), we have

’fg & &
1= / ||[ (F¢ — MyseV"”‘)dsandt (6.45)
0 R3 *

7’\‘8 1 £ £ & &
Su fo H /R 0 Va(FE — e Vg | + 1 YOV zdr (646)

>

e l =
<m / “g 7° ,dt (6.47)
0

N\

<, 741 (6.48)
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This implies 1 < M T, <«. Taking x small enough we reach a contradiction.
In conclusion, Tg > k for all ¢ small enough, so T > k. The bounds (6.18) and (6.19)
imply (1.34) and (1.35) respectively.
Proof of part (ii): The proof is similar to part (i), so we omit some details. In the same
way as in part (i), we take solutions (Fy, B, (]50) to (1.18) (satisfying (6.1)). We also take
the solution (FZ, F®) to (1.7) and (y¢, ¥?) satisfying the conditions (6.2) through (6.6)
for some 7, > 0. We note that the conclusions of Propositions 4.1 and 4.2 both hold.
By (1.38), and the fact that v/, = qb?n, we have that the expression in (5.7) is
exactly zero. The bounds (6.12) and (6.13) both hold in this context as well, so we can

guarantee sup, o 7 18 2 < & by taking « small enough. Thus all the hypotheses of

Proposition 5.1 are satisfied upto 7' = T,. Next, we have that &* win = = &* ain <y 8%
(and this expression is independent of ¢). Therefore, by (5.8), we have

o
e sup E° (O + | ZF,(0)dt < Cy(ed® +&7). (6.49)
1€[0,T;] 0

On the other hand, the above and (5.9) give the bound

1(t) Sme o (& )3 8246313 + 6%, (6.50)

Next, similarly to (6.20) in part (i), we have

i,
sup [IF5 (1) = FY(0)g + fo IFE (@) = )0l dt See+8%). (651
t€[0,T¢]

Now, combining (6.51) with (6.12), (6.13), and (6.49) and (6.50), we have

.
e sup L)+ / D H()dt < Cy(e8” +6%) (6.52)
1€[0,7;] 0

and for all 7 € [0, f‘g], we have
1 t 2
E () S e T8 1 g3t 4682, (6.53)

We now show that 7 = inf £€(0,7] f‘g is positive. As before, we take f"s < k, and show
that each of (6.2) through (6.6) holding with equality yields a contradiction, provided «
is taken small enough. In the cases of (6.2), (6.3), (6.4) and (6.5), the proof is essentially
same as in the case of part (i), up to taking é sufficiently small in addition to x and .

We now address the case of when (6.6) holds with equality at 7 = T,. Next, take 0 <
to < T, to be chosen later. Through a trivial modification of the proof of Proposition 5.1,
we have that the estimate (5.8) holds with « = 1 instead of « = 2, and [#g, T'] instead
of [0, T']. This gives

~ 7.
e sup &° (1) + D 1dt Sy E° (o) + &2 (6.54)
telty, T] 1o
03

1
<y (e T 3 S2+e3)+ed (659
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Taking typ = €(Cp|In(e)]) 5 , we can bound last expression by by 2. On the other hand,
integrating (6.50) on [0, 7p], we have

10 = 7
/0 JE [(Odt Sy e +eTil +etg Sy ed+ e (6.56)

Therefore, combining these bounds, we deduce
7/\’:2 & &
[0 ] 9 e (657)
0 R x

1
to — o 2
SM /0 ,/(gaf’l(l‘)dl‘ + ([) @6’1(l‘)dl> SM €. (6.58)

Now, combining the above with (5.201), (4.142), and (6.52),
t
V= [0 [ R = e e ar (6.59)
0 JR3 *

7Awgl E.1.€ E.1.€
S /O Sl fR B VR(FE = pyee” VOdE N 2 + 10, (Y )e”V pdt - (6.60)

A A

3
Smed+e2+Te+ T,

0=

6.61)

<eS+e0 +i2. (6.62)

Taking ¢, § and « sufficiently small, we have a contradiction.

In conclusion, we have 7 > « > 0. Moreover, (1.39), (1.40) and (1.41) follow from
(6.51), (6.52), and (6.53) respectively. O
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