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Spectral Triadic Decompositions of Real-World Networks

Sabyasachi Basu* Suman Kalyan Bera' C. Seshadhrit

Abstract

A fundamental problem in mathematics and network analysis is to find conditions under which a graph
can be partitioned into smaller pieces. The most important tool for this partitioning is the Fiedler vector
or discrete Cheeger inequality. These results relate the graph spectrum (eigenvalues of the normalized
adjacency matrix) to the ability to break a graph into two pieces, with few edge deletions. An entire
subfield of mathematics, called spectral graph theory, has emerged from these results. Yet these results do
not say anything about the rich community structure exhibited by real-world networks, which typically
have a significant fraction of edges contained in numerous densely clustered blocks. Inspired by the
properties of real-world networks, we discover a new spectral condition that relates eigenvalue powers to a
network decomposition into densely clustered blocks. We call this the spectral triadic decomposition. Our
relationship exactly predicts the existence of community structure, as commonly seen in real networked
data. Our proof provides an efficient algorithm to produce the spectral triadic decomposition. We
observe on numerous social, coauthorship, and citation network datasets that these decompositions have
significant correlation with semantically meaningful communities.

1 Introduction

The existence of clusters or community structure is one of the most fundamental properties of real-world
networks. Across various scientific disciplines, be it biology, social sciences, or physics, the modern study of
networks has often deal with the community structure of these data. Procedures that discover community
structure have formed an integral part of network science algorithmics. Despite the large variety of formal
definitions of a community in a network, there is broad agreement that it constitutes a dense substructure
in an overall sparse network. Indeed, the discover of local density (also called clustering coefficients) goes
back to the birth of network science.

Even beyond network science, graph partitioning is a central problem in applied mathematics and the
theory of algorithms. Determining when such a partitioning is possible is a fundamental question that one
straddles graph theory, harmonic analysis, differential geometry, and theoretical computer science. There is
large body of mathematical and scientific research on how to break up a graph into smaller pieces.

Arguably, the most important mathematical tool for this partitioning problem is the discrete Cheeger
inequality or the Fiedler vector. This result is the cornerstone of spectral graph theory and relates the
eigenvalues of the graph Laplacian to the combinatorial structure. Consider an undirected graph G = (V, E)
with n vertices. Let d; denote the degree of the vertex i. The normalized adjacency matriz, denoted A, is
the n x n matrix where the entry A;; is 1/4/d;d; if (¢, j) is an zero, and zero otherwise. (All diagonal entries
are zero.) One can think of this entry as the “weight” of the edge between i and j.

Let A1 > Xa... > )\, denote the n eigenvalues of the non-negative symmetric matrix A. The largest
eigenvalue )\; is always one. A basic fact is that Ay = 1 iff G is disconnected. The discrete Cheeger inequality
proves that if Ay is close to 1 (has value > 1 — ¢), then G is “close” to being disconnected. Formally, there
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exists a set S of vertices that can be disconnected (from the rest of G) by removing an O(y/e)-fraction of
edges incident to S. The set of edges removed is called a low conductance cut.
We can summarize these observations as:

Basic fact: Spectral gap is zero = G is disconnected
Cheeger bound: Spectral gap is close to zero = G can be disconnected by low conductance set

The quantitative bound is one of the most important results in the study of graphs and network analysis.
There is a rich literature of generalizing this bound for higher-order networks and simplicial complices. We
note that many modern algorithms for finding communities in real-world networks are based on the Cheeger
inequality in some form. The seminal Personalized PageRank algorithm is provides a local version of the
Cheeger bound.

For modern network analysis and community structure, there are several unsatisfying aspects of the
Cheeger inequality. Despite the variety of formal definitions of a community in a network, there is broad
agreement that it constitutes many densely clustered substructures in an overall sparse network. The Cheeger
inequality only talks of disconnecting G into two parts. Even generalizations of the Cheeger inequality only
work for a constant number of parts [17]. Real-world networks decompose into an extremely large of number
of blocks/communities, and this number often scales with the network size[18, 27]. Secondly, the Cheeger
bound works when the spectral gap is close to zero, which is often not true for real-world networks[18]. Real-
world networks possess the small-world property[16]. But this property implies large spectral gap. Thirdly,
Cheeger-type inequalities make no assertion on the interior of parts obtained. In community structure, we
typically expect the interior to be dense and potentially assortative (possessing vertices of similar degree).

The main question that we address: is there a spectral quantity that predicts the existence of real-world
community structure?

1.1 Main result

We take inspiration from a central property of real-world graphs, the abundance of triangles [39, 27]. This
abundance is widely seen across graphs that come by disparate domains. Recent work in network science and
data mining have used the triangles to effectively cluster graphs. There is much evidence that the triangle
structure aids finding communities in graphs [26, 36, 3, 37].

In network science, the triangle count is often expressed in terms of the transitivity or global clustering
coefficient [8, 38]. We define the spectral transitivity of the graph G.

Definition 1.1. The spectral transitivity of G, denoted 7(G), is defined as follows*. (Recall that the \;s are
the eigenvalues of the normalized adjacency matriz.)

Standard arguments show that the spectral transitivity is a degree weighted transitivity. The numerator
is a weighted sum over all triangles, while the denominator (squared Frobenius norm) is a weighted sum over
edges (Lemma3.5).

Observe that since \; < 1, 7 < 1. When 7 reaches its maximum value of 1 — 1/(n — 1), one can show
that G is a clique (Lemma 3.6). We formalize the notion of ”clique-like” submatrices through the concept
of uniformity. For a symmetric matrix M and a subset S of its columns/rows, we use M|s to denote the
square submatrix restricted to S (on both columns and rows).

7(G) = (1)

Definition 1.2. Let « € (0,1]. Let A be the normalized adjacency matriz of a graph G. For any subset of
vertices S, |Als is called a-strongly uniform if at least an a-fraction of non diagonal entries have values in
the range [a/(|S| — 1), 1/a(]S] — 1)].

For s € S, let N(s,S) denote the neighborhood of s in S (we define edges by non-zero entries). An
a-uniform matriz is strongly a-uniform if for at least an a-fraction of s € S, Aln(s,s) is also a-uniform.

f G (or the normalized adjacency matrix .A) are obvious from context, we simply refer to 7 instead of 7(G).



A toy decomposition

Subgraph ordered by extracted clusters

Figure 1: On the left, as a small example, we consider a subgraph induced by 155 vertices and 7 = 0.49
from a coauthorship network of Condensed Matter Physics researchers[21], and show a spectral triadic
decomposition of the largest connected component, which has 49 vertices. Each cluster is colored differently.
We see how each cluster forms a densely connected component within an otherwise sparse graph. Also note
that the clusters vary in size. The gray vertices do not participate in the decomposition, since they do
not add significant to the cluster structure. On the right, we look at the adjacency matrices pre and post
decomposition. The top figure is a spy plot of the adjacency matrix of 488 connected vertices from a Facebook
network ([35],[34]) taken from the network repository[25], a graph with 7 = 0.122. As a demonstration, we
compute the spectral triadic decomposition of this subnetwork. We group the columns/rows by the clusters
in the spy plot on the bottom. The latent community structure is immediately visible. Note that there exists
many such blocks of varying sizes.
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Observe that the normalized adjacency matrix of a clique is (strongly) 1-uniform. But submatrices of
this matrix are not. Roughly speaking, a constant uniform submatrix corresponds to a dense subgraph of
(say) size k where the total degrees of vertices is ©(k). Strong uniformity is closely related to clustering
coefficients, which is the edge density of neighborhoods. It is well-known that real-world graphs have high
clustering coefficients [39, 27]. A strongly uniform submatrix essentially exhibits high clustering coefficients.

Our main theorem states that any graph with constant spectral transitivity can be decomposed into
constant uniform blocks. We use ||M |2 to denote the Frobenius norm of matrix M.

Theorem 1.3 (Spectral Theorem). There exist absolute constants § > 0 and ¢ > 0 such that the following
holds. Let A be the normalized adjacency matriz of a graph with spectral transitivity T.
There exists a collection of disjoint sets of vertices X1, Xo, ..., Xk satisfying the following conditions:
1. (Cluster structure) For all i < k, A|x, is strongly é7°-uniform.
2. (Coverage) ¥y, IAIx, I3 = 67| AJ3.

We call this output the spectral triadic decomposition. Our proof also yields an efficient algorithm that
computes the decomposition, whose running time is dominated by a triangle enumeration. Details in are
given in Theorem 6.1 and §6.

1.2 Significance of Theorem 1.3

One can think of Theorem 1.3 as a type of Cheeger inequality that is relevant to the structure of real-world
social networks. We explain how it captures many of the salient properties of clusters in real-world networks.
In this discussion, we will assume that 7 is a constant.

The spectral transitivity: We find it remarkable that a bound on a single spectral quantity, 7, implies
such a rich decomposition. The spectral transitivity 7 captures a key property of real-world graphs, the
abundance of triangles. While there is a rich body of empirical work on using triangles to cluster graphs,
there is no theory explaining why triangles are so useful. Theorem 1.3 gives a spectral-theoretic explanation.

The spectral transitivity is a weighted version of the transitivity, which is typically around 0.1 for real-
world graphs?. We also note that the final algorithm that computes the decomposition focuses on triangle
cuts, which is a popular empirical technique for finding clusters in social networks [3, 37].

The strong uniformity of clusters: Each cluster X; of the spectral triadic decomposition is (constant)
strongly uniform. While there is no one definition of a ”community” in real-world graphs, the definition
of strong uniformity captures many basic concepts. Most importantly, X; is internally dense in edges. Let
|X;| = k. Then Q(k?) entries in X; are Q(1/k), which (by averaging) implies that a constant fraction of
X, involves vertices of degree ©(k). Thus, a constant fraction of X; vertices have a constant fraction of
their neighbors in X;. Moreover, the submatrix of every neighborhood in Xj; is also uniform. This is quite
consistent with the typical notion of a social network community.

Crucially, Theorem 1.3 gives a condition on the internal structure of the decomposition. This addresses
a key weakness of the Cheeger inequality.

The coverage condition: It is natural to measure the "mass” of a matrix by the squared Frobenius
norm. The clusters of spectral triadic decomposition of Theorem 1.3 capture a constant fraction of this
squared norm. This is consistent with the fact that a constant fraction of the edges in a real-world graph are
not community edges [20, 12, 16, 27]. Any decomposition into communities would avoid these ”long-range”
edges, excluding a constant fraction of the matrix mass.

Robustness to noise: Taking the above point further, the non-community edges are often modeled as
stochastic (or noisy). The underlying cluster structure of a real-world graph is robust to such perturbations.
Adding (say) an Erdés-Rényi graph with ©(n) edges can only affect the spectral transitivity by a constant
factor (by changing the Frobenius norm). Theorem 1.3 would only be affected by constant factors. Note that
the spectral gap, on the other hand, can dramatically increase by such noise.

Spectral graph theory inspired by real-world graphs: We consider Theorem 1.3 as opening up a
new direction in spectral graph theory. At a mathematical level, Theorem 1.3 is like a Cheeger inequality,

20ur experiments on these real-world graphs yield similar values for the spectral transitivity.
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where a spectral condition implies a graph theoretic property. But all aspects of Theorem 1.3 (the notion
of spectral transitivity and the properties of the decomposition) are inspired by the observed properties of
real-world graphs.

1.3 A comparison with Gupta, Roughgarden and Seshadhri’s result

Our algorithm is heavily influenced by the problem studied by Gupta, Roughgarden and Seshahdri [13], who
sought a description for real world social networks that did not depend on generative models. We hereafter
refer to this result as GRS. The objective in their work was to find a combinatorial assumption that holds in
every common model; but strong enough to imply sufficient structure, and allow algorithms to be devised.
They define the triangle density of a a graph, which we shall call t4(G) for a graph G.

Definition 1.4 (Triangle Density, from GRS). The triangle density of an undirected graph G = (V, E) is
defined as t4(G) = 3t(G)/w(G). Here, t(G) refers to the number of triangles in the graph, and w(G) refers
to the number of wedges, or two hop paths in the graph.

The triangle density is also often referred to as the (combinatorial) transitivity, but we use the former
term to avoid confusion with spectral transitivity. It is useful to think of this as a measure of rate of closure
in triples of connected vertices. In this setup, the main theorem of GRS guarantees that if you have a graph
G such that t4(G) = ¢, then it admits a decomposition into a tightly knit famiily such that each subgraph
has triangle and edge density e, and the family contains an e fraction of ¢(G) (no guarantees are given on
the edges preserved).

Consider a graph G on n vertices with an apex vertex v that has degree n — 1, and a series of disjoint
subgraphs G1,...,G, /1050, €ach with logn vertices. Assume that each subgraph is a complete graph in
itself. It is easy to see that:

1. The number of wedges is ©(n?).

2. The number of triangles is O(nlogn).

3. t4(G) is o(1), as most of the wedges that v participates in (of the form (u,v,w) for u,w € V(G)) do

not close to form triangles.
In this case, where the triangle density is vanishingly small, GRS fails to provide any guarantees. We
emphasize that this is a very relevant occurence in real world social networks: consider a celebrity who is
followed by large numbers of people spread across different dense communities.

Our crucial technical contribution is finding the right degree based weighting to fix this issue. We
downweight vertices of high degree such that we can still have a natural quantity that represents this idea
and also gives us strong guarantees algorithmically. Consequently, observe that the spectral transitivity is
high for this graph. This reweighting provides objectively stronger guarantees, and allows our results to hold
for more general classes of graphs.

Our reweighting procedure brings with it its own set of challenges. The analysis in GRS depends heavily
on dealing with Jaccard similarity, which is a real in [0, 1]. For the local analysis, we deal with an analogous
ratio that is not quite as well behaved and can take arbitrarily large values. Consequently, the analysis is
fairly more complicated to give guarantees in terms of uniformity, and our algorithm must be a lot more
careful in picking vertices to include in a cluster. Moreover, our results are far more universal, because we
state results in terms of matrix norms.

2 Related Work

Spectral graph theory is a deep field of study with much advancement over the past two decades. We refer
the readers to the classic textbook by Chung [7], and the tutorial [29] and lecture notes [28] by Spielman.
The cluster structure of real-world networks has attracted attention from the early days of network sci-
ence [10, 22]. Fortunato’s (somewhat dated) survey on community detection has details of the key results [9].
There is no definitive model for social networks, but it is generally accepted that they have many dense clus-
ters with sparse connections between them [6, 18, 27]. The study of triangles and neighborhood density
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Figure 2: An example of a graph that GRS fails to tackle. Each shaded circle is a complete subgraph of size
logn, and the apex vertex is connected to every other vertex. There are no edges in between the clusters.
This graph has low triangle density, but high spectral transitivity.

goes back to the early days of social science theory [14, 15, 5, 8]. Early network science papers popularized
the notion of clustering coefficients and transitivity as useful measures [39]. The use of triangles to find
such clusters is a more recent development in network science. A number of contemporary results explicit
use triangle information for algorithmic purposes [26, 36, 3, 37]. Our main theorem is inspired by these
applications.

While the Cheeger inequality by itself is not useful for real-world graph clustering, local versions of
spectral clustering are extremely useful [30, 2]. We stress that these results do not relate the graph spectrum
to the partitions. But the algorithm is inspired by the proof of the Cheeger inequality. Many results on
the cluster structure of real-world graphs [18, 11] use the Personalized PageRank method [2]. Some local
partitioning methods yield bounds on the internal structure of clusters [17, 23, 24].

Most relevant to our work is the result of Gupta, Roughgarden, and Seshadhri [13]. They prove a
decomposition theorem for triangle-rich graphs, as measured by graph transitivity. Their main result shows
that a triangle-dense graph can be clustered into dense clusters. The results of [13] do not have any spectral
connection, nor do they provide the kind of uniformity or coverage bounds of Theorem 1.3. Our main insight
is in generalizations of their proof technique, which leads to connections with graph spectrum. We adapt
the [13] proof to deal with normalized adjacency matrix, which adds many complications because of the
non-uniformity of entries.

3 Preliminaries

We use V, E, T to denote the sets of vertices, edges, and triangles of G, respectively. For any subgraph H of
G, we use Vi, Ey, Ty to denote the corresponding sets within H. For any edge e, let T (e) denote the set
of triangles in H containing e.

For any vertex v, let d, denote the degree of v (in G).

We first define the notion of weights for edges and triangles. We will think of edges and triangles as
unordered sets of vertices.

Definition 3.1. For any edge e = (u,v), define the weight wt(e) to be ﬁ. For any triangle t = (u,v,w),

define the weight wt(t) to be -———.

For any set S consisting solely of edges or triangles, define wt(S) =) g wt(s).

We state some basic facts that relate the sum of weights to sum of eigenvalue powers. Let S C V be
any subset of vertices, and let A|s denote the submatrix of A restricted to S. We use \;(S) to denote the
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ith largest eigenvalue of the symmetric submatrix A|g. Abusing notation, we use Fgs and Ts to denote the
edges and triangles contained in the graph induced on S.

Claim 3.2. }_,_ g A2(S); = 2> cen(s) Wt(e)

Proof. By the properties of the Frobenius norm of matrices, ZK‘S‘ A o= > sies A2,. Note that Ay =
Agt/Vdsdy. Hence, 30, A3, =237, ems) L/dudy. (We get a 2-factor because each edge (u,v) appears
twice in the adjacency matrix.) O

Claim 3.3. 3,5 A3(S); = 6> ser(s) WH(t)-

Proof. Note that Zig\S\ A3(S); is the trace of (Alg)?. The diagonal entry (A|g)3; is precisely > oo > e g AisAssr Asri-

Note that A;5.As5 Ay is non-zero iff (i, s, s') form a triangle. In that case, A;sAssr Asr; = 1/3/dids-1//dsds -
1/\dgd; = wt((i,s,s)). We conclude that (A|g)3; is 2 > ter(s),t5i WE(t). (There is a 2 factor because every
triangle is counted twice.)

Thus, Y, A*(S); = 222 erami W) = 2D er D e WH(E) = 63, cpwi(t). (The final 3 factor
appears because a triangle contains exactly 3 vertices.) O

Claim 3.4. 3, 75 Wi(1) < || Als]|3/6.

Proof. By Claim 3.3 32,7y Wt(t) = 32,5 A3(S);/6. The maximum eigenvalue of A is 1, and since A|g is
a submatrix, A(S)1 <1 (Cauchy’s interlacing theorem). Thus, 3, g A3(9); < icls| N2(9); = || Alsl3. O

As a direct consequence of the previous claims applied on A, we get the following characterization of the
spectral triadic content in terms of the weights.

33 er WH(t)
> cep wi(e)

While the following bound is not necessary for our main result, it is instructive to see the largest possible
value of the spectral transitivity.

Lemma 3.5. 7 =

Lemma 3.6. Consider normalized adjacency matrices A with n vertices. The mazimum value of T(A) is
1—1/(n—1). This value is attained for the unique strongly 1-uniform matriz, the normalized adjacency
matriz of the n-clique.

Proof. First, consider the normalized adjacency matrix A of the n-clique. All off-diagonal entries are precisely
1/(n—1) and A can be expressed as (n —1)71(117 — I). The matrix A is 1-regular. The largest eigenvalue
is 1 and all the remaining eigenvalues are —1/(n—1). Hence, >, A} =1—(n—1)/(n—1)3=1-1/(n—1)%
The sum of squares of eigenvalue is Y ;A7 =1+ (n—1)/(n —1)? =1+ 1/(n — 1). Dividing,

Zign )‘5)

Since the matrix has zero diagonal, the trace ), A; is zero. We will now prove the following claim.

=1-1/(n—1).

Claim 3.7. Consider any sequence of numbers 1 = XAy > Aa... > A\, such that Vi, |[A\;| <1 and Y, \; = 0.
IF S N> (1—1/(n—1)) >, A2, then Vi > 1,\; = —1/(n —1).

77

Proof. Let us begin with some basic manipulations.
DN -Yn-1]Y N (2)
= 1+> N >[1-1/(n=1)]- 1+ X))

i>1 i>1
:>ZA§2[1—1/(n—1)}ZA3_1/(n_1). (3)
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For i > 1, define 6; := X\; +1/(n —1). Note that ), ; A;
9;<1+4+1/(n—1). Weplugin \; =6; —1/(n—1) in (3).

= —1,80 > ,.,0; = 0. Moreover, Vi > 1,

3 [51- —1/(n— 1)}3 >[L-1/n-1)Y [51- —1/(n— 1)}2 —1/(n—1)

:>Zl [5? —302/(n— 1) +38;/(n— 1) —1/(n — 1)3}

> [1=1/(n = D] Y [62 =26/ (0= 1)+ 1/(n = 1) =1/(n = 1).

i>1

Recall that >_._, §; = 0. Hence, we can simplify the above inequality.

D8 =B/(n=1)) 6 -1/(n—1)

i>1

i>1 i>1
>[1-1/(n-1]> & +1/(n-1)=1/(n—1)>—1/(n—1)
i>1
= Z 82 > [1+2/(n—1)] Z 62.  (Canceling terms and rearranging)
i>1 i>1

Since 6; < (1+1/(n — 1)), we get that > ,. ;67 < [1+1/(n —1)] Zz>1 §2. Combining with the above
inequality, we deduce that [14+2/(n—1)] > .., (522 < [141/(n—1)] > ;- 6;. This can only happen if 3, 67
is zero, implying all §; values are zero. Hence, for all i > 1, \; = —1/(n — 1). O

With this claim, we conclude that any matrix .4 maximizing the ratio of cubes and squares of eigenvalues
has a fixed spectrum. It remains to prove that a unique normalized adjacency matrix has this spectrum. We
use the rotational invariance of the Frobenius norm: sum of squares of entries of A is the same as the sum
of squares of eigenvalues. Thus,

2 71+L: e (4)

d,dy 1 n-1

Observe that T > 1/(dy(n — 1)) + 1/(dy(n — 1)), since all degrees are at most n — 1. Summing this
inequality over all edges,

w)EE
Hence, for (4) to hold, for all edges (u,v), we must have the equality ﬁ =1/(dy(n—1)) +1/(dv(n —1)).

That implies that for all edge (u,v), d,, = d, =n — 1. So all vertices have degree (n — 1), and the graph is
an n-clique. O

dy n
>Z Z q,n—l :Uezvdv(n—l):n—l' (5)

veV ueN (v)

'lL v

We will need the following “reverse Markov inequality” for some intermediate proofs.
Lemma 3.8. Consider a random variable Z taking values in [0,b]. If E[Z] > ob, then Pr[Z > ob/2] > 0 /2.

Proof. In the following calculations, we will upper bound the conditional expectation by the maximum value
(under that condition).

ob < E[Z] =Pr[Z > 0ob/2]-E[Z|Z > ob/2] + Pr[Z (
< ob/2]-E[Z|Z < 0b/2] (
<Pr[Z >ob/2]- b+ ob/2

(=2}

)
)
)

We rearrange to complete the proof. O

—
oo



237

238

239

240

241

242

243

244

245

246

247

248

249

4 Cleaned graphs and extraction

For convenience, we set e = 7/6.

Definition 4.1. A connected subgraph H is called clean if Ve € E(H), wt(Th(e)) > ewt(e).

Algorithm 1 Extract(H)

1: Pick v € V(H) that minimizes d,.

2: Construct the set L := {u|(u,v) € E(H),d, <2 'd,} (L is the set of low degree neighbors of v in H.)

3: For every vertex w € V(H), define p,, to be the total weight of triangles of the form (w,u,u) where
u,u’ € L.

4: Sort the vertices in decreasing order of p,,, and construct the “sweep cut” C' to be the smallest set
satisfying 32 ,cc pw 2 (1/2) Xev ) Pu-

5. Output X := {v} ULUC.

The main theorem of this section follows.

Theorem 4.2. Suppose the subgraph H is connected and clean. Let X denote the output of the procedure
Extract(H). Then

> wt(t) > (820000 > wi(h)

teT(H),tCX teT(H) tNX#D

(The triangle weight contained inside X is a constant fraction of the triangle weight incident to X.)
Moreover, Alx is strongly de'2-uniform.

We will need numerous intermediate claims to prove this theorem. We use v, L, and C as defined in
Extract(H). We use N to denote the neighborhood of v in H. Note that L C N.
For any vertex w € N, we define the set of partners P(u) to be {w : (u,v,w) € Ty }.

The following lemma is an important tool in our analysis.

Lemma 4.3. For anyu € N, > A dot >e/2.

weP(u)

Proof. Let e = (u,v). Since H is clean, wt(Tg(e)) > ewt(e). Expanding out the definition of weights,

3 dudlvd zdjdv — Y 4} z- 9)

w:(u,v,w)ETyH

Note that L (as constructed in Extract(H)) is the subset of N consisting of vertices with degree at most
2e71d,. For w € N\ L, we have the lower bound d,, > 2¢~'d,. Hence,

> dyt <IN\ L|(e/2)d, " < dy x (2/2)d, " = g/2. (10)
weN\L

In the calculation below, we split the sum of (9) into the contribution from L and from outside L. We
apply (10) to bound the latter contribution.

e< Y odt< > dyt+ D dyt < Y dyt a2 (11)

weP(u) weP(u)NL weN\L weP(u)NL

Claim 4.4. |L| > &d,/2
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Proof. Since H is connected, there must exist some edge e = (u,v) € E(H). By Lemma4.3,3" c pu)nr d,t >

/2. Hence, Y, o, dy' > /2. Since v is the vertex in V(H) minimizing d,,, for any w € V(H), dy > d,.
Thus,
e/2< Y dyt <Y dyt =|L)d, " (12)
weL weL
O
Claim 4.5. 3 5y ecp Wh(e) > g2/8.
Proof. By Lemma4.3, Yw € L, )", '€ P(w)NL dw,l > ¢/2. We multiply both sides by d,' and sum over all

w € L.

>y (dwdw,)—l > (/2) Y dy). (13)
weL w'€P(w)N w’'€L
By Lemma4.3, > o/ d,} > e/2. Note that w' € P(w) only if (w,w’) € E(H). Hence,
Dowel 2wl (ww)erm Wi(w,w') = £2/4. Note that the summation counts all edges twice, so we divide
by 2 to complete the proof. O

We now come to the central calculations of the main proof. Recall, from the description of Extract, that
pw is the total triangle weight of the triangles (w,w, ), where u,u’ € L. We will prove that ), p., is large;
moreover, there are a few entries that dominate the sum. The latter bound is crucial to arguing that the
sweep set C' is not too large.

Claim 4.6. 3_ v (g) Pw = e3/8.

Proof. Note that 3, oy () pw is equal to 3 cpip) ecr, WH(TH(€)). Both these expressions give the total
weight of all triangles in H that involve two vertices in L. Since H is clean, for all edges e € E(H),
wt(T(e)) = ewt(e). Hence, 3- cpipry ecr WHTH(E)) 2 €3 cep(m),ecr Wh(e). Applying Claim 4.5, we can
lower bound the latter by €%/8. O

We now show that a few p, values dominate the sum, using a somewhat roundabout argument. We
upper bound the sum of square roots.

Claim 4.7. 3, v gy vPuw < 2¢e~/d,

Proof. Let ¢, be the number of vertices in L that are neighbors (in H) of w. Note that for any triangle
(u,u', w) where u,u’ € L, both u and v’ are common neighbors of w and v. The number of triangles (u, u’, w)
where u,u’ € L is at most ¢2. The weight of any triangle in H is at most d 3, since d, is the lowest degree
(in G) of all vertices in H. As a result, we can upper bound p,, < d,3c2.

Taking square roots and summing over all vertices,

S oV <d? Y e (14)

weV (H) weV (H)

Note that ev () ¢y is exactly the sum over u € L of the degrees of u in the subgraph H. (Every edge
incident to u € L gives a unit contribution to the sum ZwGV )cw.) By definition, every vertex in L has

degree in H at most 26~ 'd,. The size of L is at most d,.
Hence, -, cv () Cw < 2e1d2. Plugging into (14), we deduce that Ywev() VPuw < 2e"1/d,. O

We now prove that the sweep cut C' is small, which is critical to proving Theorem 4.2.

Claim 4.8. |C| < 144¢75d,,.

10
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Proof. For convenience, let us reindex vertices so that p; > p2 > p3.... Let r < n be an arbitrary index.
Because we index in non-increasing order, note that > j<n Pj = Tpr. Furthermore, ¥j > r, p; < p,.

ijﬁ\//Trz\/FjS MZ\/@:[M}ZpJ (15)
j>r j>r " ji<n \/77 ngn Pji” j<n

Observe that Claim 4.7 gives an upper bound on the numerator, while Claim 4.6 gives a lower bound on (a
term in) the denominator. Plugging those bounds in (15),

1
Zpﬂ— NG 63/2/\[2: 3—7' 55/2 pr (16)

j>r i<n

Suppose r > 144¢75d,. Then s Pi < (1/2) 32,4, pj- The sweep cut C is constructed with the smallest
value of 7 such that » . p; < (1/2)3,, p;. Hence, |C| < 144e~°d,. O

An additional technical claim we need bounds the triangle weight incident to a single vertex.
Claim 4.9. For all vertices u € V(H), wt(Tg(u)) < (2d,)*

Proof. Consider edge (u,w) € E(H). We will prove that wt(Ty ((u,w))) < d;'d;!. Recall that d, is the
smallest degree among vertices in H. Furthermore, |Tx((u,w))| < d,,, since the third vertex in a triangle
containing (u,w) is a neighbor of w.

1 1 1 1 dw 1
wi(Tu((w o) = Y <o Y <o x =
z:(zu,w)ET(H) urwEE wr z:(z,u,w)ET(H) w we w

We now bound wt(Ty(u)) by summing over all neighbors of v in H.

wt(Tr(w) = (1/2) Y wi(Tu((u,w)))

w:(u,w)EE(H)

1 1 1
< E— _
SCCRED D Nt D DI

w:(u,w)EE(H) w:(u,w)EE(H)
1 dy 1
< X — = .
—2d, d 2d,,

4.1 The proof of Theorem 4.2

Proof. (of Theorem 4.2) By construction of X as {v} UL U C, all the triangles of the form (w,u,u’), where
w € C and u,u’ € L, are contained in X. The total weight of such triangles is at least >, _, p,/2, by the
construction of C. By Claim 4.6, >, . p,/2 > €%/16.

Let us now bound that total triangle weight incident to X in H. Observe that |X| = 1+ |L| + |C| which
is at most 1 +d, +¢°144d,,, by Claim 4.8. We can further bound | X| < e75146d,,. By Claim 4.9, the total
triangle weight incident to a vertex is at most (2d,)~!. Hence, the total triangle weight incident to all of X
is at most 73¢™

Thus, the triangle weight contained in X is at least 73/ — times the triangle weight incident to X. The
ratio is at least €8/2000, completing the proof of the first statement.

Proof of uniformity of A|x: We first prove a lower bound on the uniformity of 4| x. For convenience,
let B denote the set {e|e € E(H),e C L. By Claim 4.5, 3" wt(e) > €2/8. There are at most (%) < d2/2

11
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edges in B. For every edge e, wt(e) < 1/d?. Let k denote the number of edges in B whose weight is at least
£2/16.

% < Z wt(e) + Z wt(e)

ecB e€B
wt(e)<e?d;%/16 wte>e2d; 2 /16

< |B| x €%d; /16 + kd?
< d? x £2d; /16 + kd,?
=¢e?/16 + kd,>.

Rearranging, k > ¢2d2/16.

Hence, there are at least €2d?/16 edges contained in X with weight at least £2d,2?/16. Consider the
random variable Z that is the weight of a uniform random edge contained in X. Since | X| < e7°144d,,, the
number of edges in X is at most e710(144)2d2. So,

B[] > e2d2/16

2 7—2 14 ;—2
_mxfdv /162265 dv . (17)

The maximum value of Z is the largest possible weight of an edge in E(H), which is at most d; 2. Applying
the reverse Markov bound of Lemma 3.8, Pr[Z > §e'4d, 2] > de'4. Thus, an e!* fraction of edges in | X| have
weight at least de'*d, 2 > 6¢¢/|X|2. Moreover, every edge has weight at most d;2 < 1/(3e°|X|?). So we
prove the uniformity of A|x.

The largest possible weight for any edge in E(H) is d;2. The size of |X| is at least d, and at most
£75144d,,. Hence, A|x is at least de'?-uniform.

Proof of strong uniformity: For strong uniformity, we need to repeat the above argument within
neighborhoods in X. We prove in the beginning of this proof that the total triangle weight inside X is at
least £3/16. We also proved that | X| < 146e=5d,. Consider the random variable Z that is the triangle weight
contained in X incident to a uniform random vertex in X. Note that E[Z] > (£3/16)/(146e~°d,) > 25'e8d; .
By Claim 4.9, Z is at most (2d,)~!. Applying Lemma 3.8, Pr[Z > §'8%d, '] > §e®. This means that at least
8’8 X | vertices in X are incident to at least §’e%d, ! triangle weight inside X.

Consider any such vertex u. Let N(u) be the neighborhood of w in X. Every edge e in N(u) forms a
triangle with u with weight wt(e)/d,,. Hence, noting that d,, > d,,

Z wt(e)d, ! > §'edd;! = Z wt(e) > 6'ed. (18)

eCN(u) eCN(u)

There are at most |X|? < £719(146)2d2 edges in N(u). Let Z denote the weight of a uniform random
edge in N(u). Note that E[Z] > §'e8/(e719(146)2d?) > 25¢'8d,; 2. The maximum weight of an edge is at
most d, 2. By Lemma3.8, at least de'® fraction of edges in N(u) have a weight of at least 6e'8d, 2. Since
|N(u)] < |X| < e75146d,, this implies that N(u) is also de¢-uniform. Hence, we prove strong uniformity as

well.
O

5 Obtaining the decomposition

We first describe the algorithm that obtains the decomposition promised in Theorem 1.3.

We partition all the triangles of G into three sets depending on how they are affected by Decompose(G).
(i) The set of triangles removed by the cleaning step of Step 4, (ii) the set of triangles contained in some
X; € X, or (iii) the remaining triangles. Abusing notation, we refer to these sets as T¢, Tx, and Tg
respectively. Note that the triangles of Tz are the triangles “cut” when X is removed.

Claim 5.1. wt(T¢) < (7/6) > .cp wt(e).

12
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Algorithm 2 Decompose(G)

Initialize X to be an empty family of sets, and initialize subgraph H = G.
while H is non-empty do
while H is not clean do
Remove an edge e € E(H) from H such that wt(Tg(e)) < (¢)wt(e).
end while
Add output Extract(H) to X.
Remove these vertices from H.
end while
Output X.

Proof. Consider an edge e removed at Step 4 of Decompose. Recall that ¢ is set to 7/6. At that removal, the
total weight of triangles removed (cleaned) is at most (7/6)wt(e). An edge can be removed at most once, so
the total weight of triangles removed by cleaning is at most (7/6) > .5 wt(e). O

Proof. (of Theorem 1.3) Let us denote by Hy, Ha, ..., Hy the subgraphs of which Extract is called. Let the
output of Extract(H;) be denoted X;. By the uniformity guarantee of Theorem 4.2, each A|x, is d7°-uniform.

It remains to prove the coverage guarantee. We now sum the bound of Theorem 4.2 over all X;. (For
convenience, we expand out € as 7/6 and let ¢’ denote a sufficiently small constant.)

S w) = ()> YD wi(). (19)

i<k teT(H),tCX i<k teT(H),tNX#)

The LHS is precisely wt(Tx). Note that a triangle appears at most once in the double summation in the
RHS. That is because if t N X; # @, then ¢ is removed when X; is removed. Since H; is always clean, the
triangles of T cannot participate in this double summation. Hence, the RHS summation is wt(Tx ) +wt(Tr)
and we deduce that

wt(Tx) > 6’78 (wt(Tx) + wt(TRr)) (20)

Note that wt(T.)+wt(T%)+wt(T;) = >, o0 wt(t). There is where the definition of 7 makes its appearance.

By Lemma 3.5, we can write the above equality as wt(T¢) + wt(T) + wt(T;.) = (7/3) >, p wt(e). Applying
Claim 5.1, (20), and the relation of edge weights to the Frobenius norm (Claim 3.2),

(') twt(Tx) > (7/6) Z wt(e) =  wt(Tx) > 67°|Al3 (by Claim 3.2) (21)
ecEl

By Claim 3.4, Zz‘gk | Alx, |3 > wt(Tx), completing the proof of the coverage bound. O

X

6 Algorithmics and implementation

We discuss theoretical and practical implementations of the procedures computing the decomposition of
Theorem 1.3. The main operation required is a triangle enumeration of G; there is a rich history of algorithms
for this problem. The best known bound for sparse graph is the classic algorithm of Chiba-Nishizeki that
enumerates all triangles in O(ma«) time, where « is the graph degeneracy.

We first provide a formal theorem providing a running time bound. We do not explicitly describe the
implementation through pseudocode, and instead explain the main details in the proof.

Theorem 6.1. There is an implementation of Decompose(G) whose running time is O(R+(m+n+T)logn),
where R is the running time of listing all triangles. The space required is O(T) (where T is the triangle count).

Proof. We assume an adjacency list representation where each list is stored in a dictionary data structure
with logarithmic time operations (like a self-balancing binary tree).

13
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We prepare the following data structure that maintains information about the current subgraph H. We
initially set H = G. We will maintain all lists as hash tables so that elementary operations on them (insert,
delete, find) can be done in O(1) time.

1. A list of all triangles in T'(H) indexed by edges. Given an edge e, we can access a list of triangles in
T(H) containing e.

A list of wt(Ty(e)) values for all edges e € E(H).
A list U of all (unclean) edges such that wt(Tg(e)) < ewt(e).
4. A min priority queue @ storing all vertices in V(H) keyed by degree d,. We will assume pointers from

v to the corresponding node in Q.

w N

These data structures can be initialized by enumerating all triangles, indexing them, and preparing all
the lists. This can be done in O(R) time.

We describe the process to remove an edge from H. When edge e is removed, we go over all the triangles
in T(H) containing e. For each such triangle ¢ and edge ¢’ € t, we remove ¢ from the triangle list of /. We
then update wt(T(e’)) by reducing it by wt(t). If wt(Tx(e')) is less than wt(e), we add it to U. Finally,
if the removal of e removes a vertex v from V(H), we remove v from the priority queue Q. Thus, we
can maintain the data structures. The running time is O(|Tg(e)|) plus an additional logn for potentially
updating @. The total running time for all edge deletes is O(T 4+ nlogn).

With this setup in place, we discuss how to implement Decompose. The cleaning operation in Decompose
can be implemented by repeatedly deleting edges from the list U, until it is empty.

We now discuss how to implement Extract. We will maintain a max priority queue R maintaining the
values {p,}. Using @ as defined earlier, we can find the vertex v of minimum degree. By traversing its
adjacency list in H, we can find the set L. We determine all edges in L by traversing the adjacency lists of
all vertices in L. For each such edge e, we enumerate all triangles in H containing e. For each such triangle
t and w € t, we will update the value of p,, in R.

We now have the total >  p, as well. We find the sweep cut by repeatedly deleting from the max
priority queue R, until the sum of p,, values is at least half the total. Thus, we can compute the set X to
be extracted. The running time is O((|X| + |E(X)| + |T(X)|) logn), where E(X),T(X) are the set of edges
and triangles incident to X.

Overall, the total time for all the extractions and resulting edge removals is O((n + m + T')logn). The
initial triangle enumeration takes R time. We add to complete the proof. O

Practical considerations: In our code implementation, we apply some simplifying heuristics. Instead
of repeatedly cleaning using a list, we simply make multiples passes over the graph, deleting any edge that
is unclean. On deletion of edge e, we do not update the Ty (e) values. We only perform the update after a
complete pass over the graph. We do two to three passes over the graph, and leave any unclean edges that
still remain. Typically, the first two passes remove almost all unclean edges, and it is not worth the extra
time to find all remaining unclean edges.

7 Empirical Validation

7.1 Datasets

We now present an empirical validation of Theorem 1.3 and the procedure Decompose. We show that spectral
triadic decompositions exist in real-world networks; moreover, the clusters of the decompositions are often
semantically meaningful. We perform experiments on a number of real-world networks, whose details are
listed in Tab.1. Most of our graphs are undirected, and the network names are indicative of what they
are: names beginning with ‘ca’ refer to coauthorship networks (ca-CondMat is for researchers who work
in condensed matter, ca-DBLP does the same for researchers whose work is on DBLP, a computer science
bibliography website), ones beginning with ‘com’ are social networks (socfb-Rice31 is a Facebook network,
soc-hamsterster is from Hamsterster, a pet social network), and ‘cit’ refers to citation networks. While
citation networks are in reality directed graphs, we consider any directed edge to be an undirected edge for the
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purposes of our experiments. Graphs have been taken from the SNAP dataset at https://snap.stanford.
edu/data/ [19] and the network repository at https://networkrepository.com/ [25]. The exceptions to
this are the cit-DBLP dataset, which has been taken from https://www.aminer.org/citation [32] and the
ca~cond-matL dataset, which has been taken from [21] ; the L is for labelled. Not all graphs are used for
all tasks and datasets have been specified with the associated experiments; the majority of the quantitative
evaluation has been done on the first four graphs. The ground truth results have been performed on the
ca-DBLP graph, and the last two are used to exhibit semantic sensibility of the extracted clusters.

Implementation details: The code is written in Python, and we run it on Jupyter using Python 3.7.6
on a Dell notebook with an Intel i7-10750H processor and 32 GB of ram. The code requires enough storage
to store all lists of triangles, edges and vertices, and may be found on github at https://bitbucket.org/
Boshul729/triadic/src/master/. We set the parameter € to 0.1 for all the experiments, unless stated
otherwise. In general, we observe that the results are stable with respect to this parameter, and it is
convenient choice for all datasets.

The 7(G) values and spectral triadic decompositions: In Tab. 1, we list the spectral triadic content,
7(G), of the real-world networks. Observe that they are quite large. They are the highest in social networks,
consistently ranging in values greater than 0.1. This shows the empirical significance of 7(G) in real-world
networks, which is consistent with large clustering coefficients.

In Tab. 2 we list the minimum and 10th percentile uniformity of the clusters in the decomposition (if the
uniformity is, say 0.1, it means that at least a 0.1-fraction of entries in the submatrix have value at least
0.1 times the average value). We discuss these results in later sections as well; but the high uniformity in
extracted clusters is a good indicator of the efficacy of the algorithm.

Relevance of decomposition: For the ca-DBLP graph, we do a detailed analysis of the clusters X; of
the decomposition with respect to a ground truth community labeling. We consider the first 10000 clusters
extracted and investigate their quality. The ground truth here is defined by publication venues, and we
restrict the evaluation to the top 5000 ground truth communities as described in [40], where the authors
curate a list of 5000 communities that they found worked well with community detection algorithms.

For each set X;, we find the ground truth community of highest Jaccard similarity with X;. We plot
the histogram of Jaccard similarities in Fig.8. We ignore clusters that have fewer than 5 vertices for the
purposes of this experiment; this accounts for only 42 of the total clusters extracted. For the remainder, we
observe that the mean Jaccard density is 0.3, and 46 communities have a perfect value of 1. Moreover, we
plot a similar histogram for size of intersection of our clusters with the ground truth. Here too we observe
that the mean is 6.48. We look at how this average varies with sizes of the extracted clusters in Fig.9.
While there is no clear trend observed in Jaccard density by cluster size, the mean intersection size clearly
grows as we look at larger clusters.

Details of clusters: A spectral triadic decomposition produces a large number of approximately uniform
dense clusters, starting from only the promise of a large 7(G) value. In Fig.11 and Fig. 12, we show a
scatterplot of clusters, with axes of cluster size versus uniformity across various networks. We see that there
are a large number of fairly large clusters (of size at least 20) and of uniformity at least 0.5; further discussion
on the clusters and their sizes is in Tab. 3. These plots are further validation of the significance of Theorem 1.3
and the utility of the spectral triadic decomposition. The procedure Decompose automatically produces a
large number of approximately uniform (or assortative) blocks in real-world networks. We summarize the
data with some numbers in Tab.2. We also plot the edge density and triangle density of these clusters,
which are more standard parameters in network science. Refer to the first two rows of Fig. 10 respectively
for these plots. Since edge density is at least the uniformity, as expected, we see a large number of dense
clusters extracted by Decompose.

In Fig.3, we show graph drawings of two example clusters in a co-authorship network of (over 90K)
researchers in Condensed Matter Physics. The cluster on the left has 16 vertices and 58 edges, and has
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extracted a group of researchers who specialize in optics, ultra fast atoms, and Bose-Einstein condensates.
Notable among them is the 2001 physics Nobel laureate Wolfgang Ketterle. The cluster on the right has
18 vertices and 55 edges, and has a group of researchers who all work on nanomaterials; there are multiple
prominent researchers in this cluster, including the 1996 chemistry Nobel laureate Richard Smalley, who
discovered buckminsterfullerene. We stress that the our decomposition found more than a thousand such
clusters. Similar extracted clusters of research papers and articles extracted from the DBLP citation network
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(a) Condensed Matter Physics: Cluster of researchers (b) Condensed Matter Physics: Cluster of researchers
working on optics, ultra fast atoms, and Bose-Einstein working on graphene, nanomaterials and topological in-
condensates sulators

Figure 3: We show two example clusters from a spectral triadic decomposition of coauthorship network of
researchers in Condensed Matter Physics [21], a graph with 7 = 0.25. The left cluster is a set of 16 researchers
(58 edges) working on optics and Bose-Einstein condensates (notably, the cluster has the 2001 Physics Nobel
laureate Wolgang Ketterle). The right cluster has 18 researchers (55 edges) working on nanomaterials,
including the 1996 Chemistry Nobel laureate Richard Smalley.

can be seen in Fig. 4. In this case, one cluster is a group of papers on error correcting/detecting codes, while
the other is a cluster of logic program and recursive queries papers.

It is surprising how well the spectral triadic decomposition finds fine-grained structure in networks,
based on just the spectral transitivity. This aspect highlights the practical relevance of spectral theorems
that decompose graphs into many blocks, rather that the classic Cheeger-type theorems that one produce
two blocks.

Total content of decomposition: FEven though Decompose does not explicitly optimize for it, the clusters
capture a large fraction of the vertices, and triangles. In Tab. 3, we see the latter values for all the decomposi-
tions constructed. A significant fraction of both vertices and the total triangle weight is preserved. Coverage
is also impressive across the board; this is the total Frobenius norm of the decomposition, as a fraction of the
total Frobenius norm of A.. The cluster sizes vary with the dataset; the Facebook network shows especially
large clusters; it also exhibits lower triangle weight retention, which may be an artefact of the fact that it is
easier to retain triangle density in smaller clusters. A distribution of cluster sizes across datasets in shows
in the histograms in the bottom row of Fig. 10.
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(a) DBLP: Cluster of papers on error correcting codes  (b) DBLP: Cluster of papers on logic programs and recursive

queries

Figure 4: We show example clusters from a spectral triadic decomposition of a DBLP citation network,
involving papers in Computer Science [40]. For ease of viewing, we label each vertex with relevant phrases
from the paper title. The left cluster involves 16 papers (47 edges) on the topic of error correcting codes.
The right cluster of 24 papers (69 edges) are all on the topic of logic programs and recursive queries, from
database theory. Observe the tight synergy of topic among the vertices in a cluster; our procedure found
thousands of such clusters.

Variation of e: The algorithm Decompose has only one parameter, £, which determines the cleaning
threshold. We vary the value of € from 0.1 to 0.5 on the network ca-HepTh. When ¢ is smaller, the cleaning
process removes fewer edges, but this comes at the cost of lower uniformity. For the mathematical analysis
in §5, we require € to be smaller than 7. On the other hand, the algorithm works in practice for large values
of €. The output of Decompose on fairly large values of ¢ is quite meaningful.

We carry out the same experiments for four values of e: 0.1,0.2,0.3, and 0.5. The primary takeaway
is that cleaning is far more aggressive for higher values of €, and clusters extracted at higher values of are
sparser. This is especially more pronounced for € = 0.5. We summarize the data and provide charts in a
similar manner as before in Fig. 13, Fig. 14, Fig. 15 and Tab. 4.

7.2 Experiments on Protein Networks

We carry out a few experiments on the protein-protein interaction networks of some organisms, sourced
from the StringDB database [31] at https://string-db.org/. For these results, we look at a few clusters
extracted from the protein-protein interaction networks of E. coli K12 substrain MG 1655, and Strepococcus
pneumoniae strain TIGR4. The network visualizations have been created with the helpful API of the
database, and a detailed index from the website is provided in Fig.5. While our dataset did not include
any information on the nature of the interactions beyond affinity scores, we observe that these visualizations
often provide more information which the reader may find instructive.

We look at two examples extracted from F. coli first in Fig. 6. The first shows us a group of 60 proteins
with dense interactions with each other; these are a mix of different kinds of membrane associated proteins
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that participate in cell division. Similarly, we have another group of 33 proteins in the second; including
tightly bound groups of cytochromes, ATPG and NDHs that participate in aerobic respiration.

The second group in Fig.7 has two such clusters from Streptococcus. The first is a smaller cluster of
11 proteins that participate in the energy-coupling factor transport system. The second is a dense cluster
of 37 proteins that participate in the phosphoenolpyruvate phosphotransferase system (PTS), the primary
mechanism by which bacteria such as Streptococcus transport sugars; a large number of these are specifically

associated with the celloboise PTS.

Nodes:

Network nodes represent proteins Node Color Node Content

splice isoforms or post-translational modifications colored nodes: £ empty nodes:

are collapsed, i.e. each node represents all the query proteins and first shell of interactors \__/ proteins of unknown 3D structure
proteins produced by a single, protein-coding gene _ —_

! ? yasnasp o9 £ white nodes. £ filled nodes:

oeus \%/ second shell of interactors \ZJ some 3D structure is known or predicted

Edges:

Edges represent protein-protein Known Ir Predicted Interactions Others

associations are meant to be specific and —@)  from curated databases @—E  gene neighborhood @—O  textmining

3 ful, J a PR = A =y A

(R O Rl CE T D0 —@ experimentally determined »—  gene fusions 3= co-expression
shared function; this does not necessarily mean

they are physically binding to each other.

@—O  gene cooccurrence @—O protein homology

Figure 5: The key to the visuals for protein complexes, taken from STRINGdb. The indicators include color
of node, color of edges, and content of nodes. Multiple edges in different colors denote different kinds of
interaction; two proteins may have multiple simultaneous interactions.

(a) E. Coli: cell division proteins

(b) E. Coli: aerobic respiration proteins

Figure 6: We show example clusters from a spectral triadic decomposition of protein-protein interaction
network of the E. Coli K12 substrain MG 1655 [31]. The cluster on the left is a group of 60 proteins
associated with cell division, and the one on the right is a cluster of 33 proteins associated with aerobic

respiration.
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(a) Strep: energy binding proteins (b) Strep: celloboise PTS proteins

Figure 7: We show example clusters from a spectral triadic decomposition of protein-protein interaction
network of the Strepococcus pneumoniae strain TIGR4 [31]. The cluster on the left is a group of 11 proteins
associated with energy binding processes, and the one on the right is a cluster of 37 proteins associated with
celloboise PTS.

7.3 Examination of Metadata Asssociated with Real Communities

In this last section, we look at a DBLP citation network from aminer.org: citation network V1 [32]. While
the usual interpretation of a citation network is a a directed graph, we interpret it as an undirected graph
with each directed edge in the graph corresponding to a corresponding undirected edge. While this dataset
too gives us similar favorable statistics, the most compelling evidence provided by it is the corresponding
metadata associated with the citation network. Given this, we evaluate it to see if the extracted clusters
are semantically meaningful. This is strongly corroborated by the data: we exhibit an extracted cluster
and the metadata associated to exhibit our case. Given that edges here are actual citations (agnostic to
the direction), this shows that the internal density is an important metric to keep track of, as opposed to
methods that find minimum edge cuts irrespective of what internal density of the components may look like.
The results are listed in Tab. 5, Tab. 6, Tab. 7 and Tab. 8, where we lit the paper title, venue of publication,
and the year of publication.
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Figure 8: This figure looks as the quality of our extracted clusters compared with ground truth data. We
compare results for the first 10000 communities extracted by our algorithm, and look at intersection size,
excluding clusters with fewer than 5 vertices. We compare our clusters with the 5000 ‘high quality’ clusters

from [40].
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Figure 9: Here we look at the mean values of Jaccard density and intersection size across clusters of different
sizes. We compare results for the first 10000 communities extracted by our algorithm, and look at Jaccard
density and intersection size, excluding clusters with fewer than 5 vertices. We compare our clusters with
the 5000 ‘high quality’ clusters from [40].

H Dataset H Mean Uniformity | 10th percentile | Min uniformity

soc-hamsterter 0.67 0.27 0.14
socfb-Rice31 0.24 0.15 0.08
ca-HepTh 0.28 0.22 0.11
ca-CondMat 0.28 0.21 0.08
ca-cond-matL 0.66 0.32 0.11
cit-HepTh 0.39 0.22 0.11
cit-DBLP 0.46 20 0.23 0.05

Table 2: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, minimum of cluster
sizes, maximum of cluster sizes, average of cluster sizes when ¢ — 0.1..



Edge density variation across cluster

sizes

o
o
.

Edge Density

20 40

Size of cluster

(a) ca-CondMat

60

sizes

Triangle density variation across cluster
0.6 .
.
z
2041 .
L L]
[s] age
@
g |0
g 0.2 (] . o
£ * .’- .
= d
00 and .

20 40

Size of cluster

60

(d) ca-CondMat

Histogram of cluster sizes

& wm
(=2 =]
S o

Number of clusters
8 8
o o

=
o
o

o

40 60

Size of cluster

20

(g) ca-CondMat

Edge density variation across cluster sizes

101 =
.
,.081"°
=
%]
5 0.6 :‘ .
a -, L]
o g'- .
0.4
8 '0" ¢ '° o* . .
02 W e et . .
L
0 50 100 150 200

Size of cluster

(b) socfb-Rice3l

Triangle density variation across cluster sizes

Edge density variation across cluster sizes

1.0 - e e
_’3. .
»0871 @5 o .
E) 2%
[} o
c 'g M
806 ** e
e
) u’ LY
o (1]
© 0.4 oP
i} e © .
ot .
- ..
0.2 o . e e
0 20 40 60 80

Size of cluster

(c) soc-hamsterster

Triangle density variation across cluster sizes

101 e 10] == oo
208 208{ o
206 206 °
@ ¢ o =8 .
204 D041 SN,
= = . = b ol
E0.2{ gee o S 027 @ gy
% o o0 oo Pys .
0.0 e S8 Sewe, e ool Pien o, e e
0 50 100 150 200 0 20 40 60 80
Size of cluster Size of cluster
(e) socfb-Rice31 (f) soc-hamsterster
- Histogram of cluster sizes Histogram of cluster sizes
n w 80
g 20 o
E z
< 15 s} 60
] bS]
3 10 5 40
Q2 =
£ £
zZ 5 220
0 0
0 50 100 150 200 0 20 40 60 80

Size of cluster

(h) socfb-Rice31

Size of cluster

(i) soc-hamsterster

Figure 10: Scatter plot for edge density (top, (a)-(c)), triangle density (center, (d)-(f)) as a function of cluster
size, and histogram of cluster sizes (bottom, (g)-(i)) for ca-CondMat, socfb-Rice31, and soc-hamsterster
respectively, for € = 0.1.

Dataset #Clusters | % Vtx | % Tri-Wt | Coverage % Cluster Sizes
Min ‘ Max ‘ Avg ‘

soc-hamsterster 208 76.09 80.94 85.34 3 81 8.88
socfb-Rice31 86 86.84 24.71 36.76 3 230 | 41.27
ca-HepTh 849 77.46 71.43 73.79 5 47 9.01
ca-CondMat 2049 95.45 71.61 58.84 5 68 10.78
ca-condmatL 1566 75.57 77.90 78.64 3 47 7.85
cit-HepTh 1664 73.74 53.81 58.84 3 79 12.31
cit-DBLP 7265 27.57 70.04 77.15 3 111 8.25

Table 3: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, coverage, and cluster
sizes (minimum, maximum and average). We observe great diversity in the nature of clusters extracted; most
datasets have average cluster sizes between 7 and 13, with the exception of socfb-Rice31, where the average
is as high as 41. Number of vertices preserved is consistently high except for the cit-DBLP network, which
had remarkably low edge and triangle density to begin with. Triangle weight preserved and coverage are
also remarkably high across all datasets; albeit a bit lower in socfb=Rice31.
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H Dataset H #Vertices ‘ #FEdges ‘ #Triangles ‘ T H

soc-hamsterster 2,427 16,630 53,251 0.215
socfb-Rice31 4,088 184,828 1,904,637 | 0.122
caHepTh 9,877 24,827 28,339 0.084
ca-cond-matL 16,264 47,594 68,040 0.255
ca-CondMat 23,133 93,497 176,063 0.125
cit-HepTh 27,770 352,807 1,480,565 | 0.122
cit-DBLP 217,312 632,542 248,004 0.087
ca-DBLP 317,080 1,049,866 | 2,224,385 | 0.248

Table 1: Summary of datasets used for different experiments. Most of our graphs are undirected, and the
network names are indicative of what they are: names beginning with ‘ca’ refer to coauthorship networks
(ca-CondMat is for researchers who work in condensed matter, ca-DBLP does the same for researchers
whose work is on DBLP, a computer science bibliography website), ones beginning with ‘com’ are social
networks (socfb-Rice31 is a Facebook network, soc-hamsterster is from Hamsterster, a pet social network),
and ‘cit’ refers to citation networks. While citation networks are in reality directed graphs, we consider
any directed edge to be an undirected edge for the purposes of our experiments. Graphs have been taken
from the SNAP dataset at https://snap.stanford.edu/data/ [19] and the network repository at https:
//networkrepository.com/ [25]. The exceptions to this are the cit-DBLP dataset, which has been taken
from https://www.aminer.org/citation [32] and the ca-cond-matL dataset, which has been taken from
[21] ; the L is for labelled. For cit-DBLP, the 7 value is for the 2-core of the graph.

H € H #Clusters ‘ % Vtx ‘ % Tri-Wt | Cluster Min | Cluster Max | Cluster Avg H

0.1 849 11.13 58.63 5 47 9.01
0.2 866 10.56 59.04 5 57 8.39
0.3 652 8.08 54.99 5 48 8.52
0.5 296 3.85 36.00 5 61 8.95

Table 4: Summary of data about the extracted clusters on caHepTh for ¢ € {0.1,0.2,0.3,0.5}: number
of clusters, percentage of total number of vertices preserved in clusters, total triangle weight preserved in
clusters, minimum of cluster sizes, maximum of cluster sizes, average of cluster sizes.
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Paper Title 'Venue 'Year
Some comments on the aims of MIRFAC Communications of the ACM 1964
MIRFAC: a compiler based on standard mathematical notationCommunications of the ACM 1963
and plain English

MIRFAC: a reply to Professor Djikstra Communications of the ACM 1964
More on reducing truncation errors Communications of the ACM 1964
The dangling else Communications of the ACM 1964
MADCAP: a scientific compiler for a displayed formula textbooklCommunications of the ACM 1961
language

Further comment on the MIRFAC controversy Communications of the ACM 1964
An experiment in a user-oriented computer system Communications of the ACM 1964
Automatic programming and compilers II: The COLASL auto-Proceedings of the 1962 ACM na-{1962

matic encoding system

tional conference on Digest of tech
nical papers

Table 5: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.472
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Figure 11: A look at uniformity across clusters in the decomposition obtained from various networks as
labelled. The figures on the left are straightforward scatter plots that looks at uniformity across clusters of
varying sizes. Those on the right are complementary cumulative histograms for the uniformity values. The
z-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity value.
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Figure 12: (Continued)A look at uniformity across clusters in the decomposition obtained from various
networks as labelled. The figures on the left are straightforward scatter plots that looks at uniformity across
clusters of varying sizes. Those on the right are complementary cumulative histograms for the uniformity
values. The z-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity
value.
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Figure 13: Scatter plot for edge density for ca-CondMat with varying values of €.
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Figure 14: Scatter plot for triangle density for ca-CondMat with varying values of €.
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Figure 15: Histogram of cluster sizes for ca-CondMat with varying values of €.
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Paper Title 'Venue 'Year

Measurement-based characterization of IP VPNs IEEE/ACM Transactions on Net-2007
working (TON)

Traffic matrices: balancing measurements, inference and modelingProceedings of the 2005 ACM SIG-2005

METRICS international conference
on Measurement and modeling of
computer systems

Data streaming algorithms for accurate and efficient measurement
of traffic and flow matrices

ACM SIGMETRICS Performance
Evaluation Review

2005

An information-theoretic approach to traffic matrix estimation

Proceedings of the 2003 conference
on Applications, technologies, archi-
tectures, and protocols for computer]
communications

2003

Atomic Decomposition by Basis Pursuit

SIAM Review

2001

Solving Ill-Conditioned and Singular Linear Systems: A Tutorial
on Regularization

SIAM review

1998

Structural analysis of network traffic flows

ACM Sigmetrics performance evalu-
ation review

2004

How to identify and estimate the largest traffic matrix elements
in a dynamic environment

Proceedings of the joint interna-
tional conference on Measurement,
and modeling of computer systems

2004

Relative information: theories and applications Book 1990

Estimating point-to-point and point-to-multipoint traffic matriIEEE/ACM Transactions on Net-2005

ces: an information-theoretic approach working (TON)

Traffic matrix tracking using Kalman filters ACM Sigmetrics performance evalu-2005
ation review

Towards a meaningful MRA of traffic matrices Proceedings of the 8h ACM SIG-2008

COMM conference on Internet mea-

surement

Table 6: Metadata for cluster extracted from cit-DBLP: Cluster of size 12, edge density of 0.83
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Paper Title 'Venue 'Year

A Cell ID Assignment Scheme and Its Applications Proceedings of the 2000 Interna-2000
tional Workshop on Parallel Pro-
cessing

High-Performance Computing on a Honeycomb Architecture Proceedings of the Second Interna-1993

tional ACPC Conference on Parallel]
Computation

Optimal dynamic mobility management for PCS networks

IEEE/ACM Transactions on Net-
working (TON)

2000

Higher dimensional hexagonal networks

Journal of Parallel and Distributed
Computing

2003

Addressing and Routing in Hexagonal Networks with Applications
for Tracking Mobile Users and Connection Rerouting in Cellular|
Networks

IEEE Transactions on Parallel and
Distributed Computing

2002

Addressing, Routing, and Broadcasting in Hexagonal Mesh Mul-IEEE Transactions on Computers (1990
tiprocessors

Performance Analysis of Virtual Cut-Through Switching in[EEE Transactions on Computers (1990
HARTS: A Hexagonal Mesh Multicomputer

HARTS: A Distributed Real-Time Architecture Computer 1991
Cell identification codes for tracking mobile users 'Wireless Networks 2002

Table 7: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.33
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Paper Title 'Venue 'Year

Classical linear logic of implications Mathematical Structures in Com-2005
puter Science

Logic continuations Journal of Logic Programming 1987

Axioms for control operators in the CPS hierarchy Higher-Order and Symbolic Compu-2007

tation

Formalizing Implementation Strategies for First-Class Continua-
tions

Proceedings of the 9th European|
Symposium on Programming Lan-
guages and Systems

2000

Linearly Used Effects: Monadic and CPS Transformations into|
the Linear Lambda Calculus

Proceedings of the 6th Internationall
Symposium on Functional and Logic|
Programming

2002

On Exceptions Versus Continuations in the Presence of State

Proceedings of the 9th European|
Symposium on Programming Lan-
guages and Systems

2000

'What is a Categorical Model of Intuitionistic Linear Logic?

Proceedings of the Second Interna-
tional Conference on Typed Lambdal
Calculi and Applications

1995

Using a Continuation Twice and Its Implications for the Expres-Higher-Order and Symbolic Compu-{1999
sive Power of call/cc tation
From control effects to typed continuation passing Proceedings of the 30th ACM2003

SIGPLAN-SIGACT symposium on|

Principles of programming lan-
cuages
Continuations: A Mathematical Semantics for HandlingHigher-Order and Symbolic Compu-2000
FullJumps tation
Comparing Control Constructs by Double-Barrelled CPS Higher-Order and Symbolic Compu-2002
tation
Linear Continuation-Passing Higher-Order and Symbolic Compu-2002
tation
Definitional Interpreters for Higher-Order Programming Lan-Higher-Order and Symbolic Compu-{1998
guages tation
Essentials of programming languages Book 1992
Glueing and orthogonality for models of linear logic Theoretical Computer Science 2003
Frame rules from answer types for code pointers Conference record of the 33rd2006

ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming
languages

Table 8: Metadata for cluster extracted from cit-DBLP: Cluster of size 16, edge density of 0.42
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«» 8 Comparisons with other methods

w 8.1 Shortcomings of Spectral k-way cut

s In this section, we first look at some comparisons with the traditional spectral k-way clustering algorithm.
w2 The implementation here is the scikit-learn version, which uses the celebrated algorithm due to Ng,
w03 Jordan and Weiss [23]. The primary drawback of this procedure is that this gives no strong guarantees on
s internal density. Moreover, they are quite susceptible to minor changes in the graph: small perturbations
ws can vastly alter the clusters obtained. We observe the results of the k-way clustering algorithm on some of
w6 our graphs: consistently, we notice that the algorithm overwhelmingly prefers a large single component, even
a7 for k as large as 100. The majority of the clusters obtained are otherwise quite small, often of size less than
ws 3 or even singletons and disconnected. Moreover, even the edge densities in these components is remarkably
w9 low. Note that at such low values of edge density, triangle density is only further lower.This provides more
s evidence that while k-way clustering succeeds in some aspects, it does not perform particularly well if our
s objective is to find dense communities in networks.

Dataset #Vertices || k Clusters< 3 | Clusters> 10 | Max. Cluster | %Vertices in max | ED of max
20 25.00% 40.00% 2,224 91.64% 0.0005
soc-hamsterster | 2,427 60 | 8.33% 21.67% 1,960 80.67% 0.0006
100 | 23.00% 10.00% 1,887 77.75% 0.0007
20 25.00% 65.00% 1,745 39.97% 0.0076
socfb-Rice31 4,088 60 | 45.00% 33.33% 1,891 46.26% 0.0011
100 | 54.00% 22.00% 1,598 39.09% 0.0016
20 | 0.00% 40.00% 14,854 91.33% 7.372x107°
ca-cond-matL 16,264 60 | 6.67% 53.33% 14,535 89.37% 7.699x107°
100 | 2.00% 46.00% 14,261 87.68% 7.998x107°
20 0.00% 65.00% 22,467 97.12% 4.583%x10~°
ca-CondMat 23,133 60 5.00% 35.00% 22,132 95.67% 4.779%107°
100 | 9.00% 19.00% 21,924 94.77% 4.813x107°

Table 9: Summary of data about the extracted clusters across datasets, ED refers to edge density and size
refers to the number of vertices. The columns ‘Clusters< 3’ and ‘Clusters> 10’ respectively refer to the
percentage of the (k) clusters that have size less than 3 and greater than 10, ‘Max. Cluster’ refers to the
size of the largest cluster, ‘%Vertices in max’ is this size as a fraction of the entire graph, and ‘ED of max’
refers to the density in the largest cluster. We look at the variation in some metrics as we increase k. We
observe that the algorithm, in its search for sparse cuts, ends up finding less meaningful clusters. Across all
datasets, the majority (in some cases nearly all) the vertices have gone to a single large cluster, and most of
the rest is in small clusters, often fewer than 3 vertices.

52 8.2 Shortcomings of the Louvain algorithm

s3 The classic Louvain algorithm [4, 1] produces clusters with low uniformity value. We show scatter plots
sa  of the uniformity values in Fig.16. Observe that, compared to the high uniformity values of the spectral
sos triadic clusters, Louvain clusters have lower values. Hence, Louvain clusters are much less assortative. This
6 1is consistent with the literature that shows that Louvain’s clusters are often disconnected [33].
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Figure 16: Scatter plots for uniformity («) across different datasets, for both spectral triadic decomposi-
tions and the classic Louvain algorithm. We observe that the uniformity values of the Louvain clusters is

significantly lower.
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