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Abstract3

A fundamental problem in mathematics and network analysis is to find conditions under which a graph4

can be partitioned into smaller pieces. The most important tool for this partitioning is the Fiedler vector5

or discrete Cheeger inequality. These results relate the graph spectrum (eigenvalues of the normalized6

adjacency matrix) to the ability to break a graph into two pieces, with few edge deletions. An entire7

subfield of mathematics, called spectral graph theory, has emerged from these results. Yet these results do8

not say anything about the rich community structure exhibited by real-world networks, which typically9

have a significant fraction of edges contained in numerous densely clustered blocks. Inspired by the10

properties of real-world networks, we discover a new spectral condition that relates eigenvalue powers to a11

network decomposition into densely clustered blocks. We call this the spectral triadic decomposition. Our12

relationship exactly predicts the existence of community structure, as commonly seen in real networked13

data. Our proof provides an e�cient algorithm to produce the spectral triadic decomposition. We14

observe on numerous social, coauthorship, and citation network datasets that these decompositions have15

significant correlation with semantically meaningful communities.16

1 Introduction17

The existence of clusters or community structure is one of the most fundamental properties of real-world18

networks. Across various scientific disciplines, be it biology, social sciences, or physics, the modern study of19

networks has often deal with the community structure of these data. Procedures that discover community20

structure have formed an integral part of network science algorithmics. Despite the large variety of formal21

definitions of a community in a network, there is broad agreement that it constitutes a dense substructure22

in an overall sparse network. Indeed, the discover of local density (also called clustering coe�cients) goes23

back to the birth of network science.24

Even beyond network science, graph partitioning is a central problem in applied mathematics and the25

theory of algorithms. Determining when such a partitioning is possible is a fundamental question that one26

straddles graph theory, harmonic analysis, di↵erential geometry, and theoretical computer science. There is27

large body of mathematical and scientific research on how to break up a graph into smaller pieces.28

Arguably, the most important mathematical tool for this partitioning problem is the discrete Cheeger29

inequality or the Fiedler vector. This result is the cornerstone of spectral graph theory and relates the30

eigenvalues of the graph Laplacian to the combinatorial structure. Consider an undirected graph G = (V,E)31

with n vertices. Let di denote the degree of the vertex i. The normalized adjacency matrix, denoted A, is32

the n⇥n matrix where the entry Aij is 1/
p
didj if (i, j) is an zero, and zero otherwise. (All diagonal entries33

are zero.) One can think of this entry as the “weight” of the edge between i and j.34

Let �1 � �2 . . . � �n denote the n eigenvalues of the non-negative symmetric matrix A. The largest35

eigenvalue �1 is always one. A basic fact is that �2 = 1 i↵ G is disconnected. The discrete Cheeger inequality36

proves that if �2 is close to 1 (has value � 1� "), then G is “close” to being disconnected. Formally, there37
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exists a set S of vertices that can be disconnected (from the rest of G) by removing an O(
p
")-fraction of38

edges incident to S. The set of edges removed is called a low conductance cut.39

We can summarize these observations as:40

Basic fact: Spectral gap is zero =) G is disconnected41

Cheeger bound: Spectral gap is close to zero =) G can be disconnected by low conductance set42

The quantitative bound is one of the most important results in the study of graphs and network analysis.43

There is a rich literature of generalizing this bound for higher-order networks and simplicial complices. We44

note that many modern algorithms for finding communities in real-world networks are based on the Cheeger45

inequality in some form. The seminal Personalized PageRank algorithm is provides a local version of the46

Cheeger bound.47

For modern network analysis and community structure, there are several unsatisfying aspects of the48

Cheeger inequality. Despite the variety of formal definitions of a community in a network, there is broad49

agreement that it constitutes many densely clustered substructures in an overall sparse network. The Cheeger50

inequality only talks of disconnecting G into two parts. Even generalizations of the Cheeger inequality only51

work for a constant number of parts [17]. Real-world networks decompose into an extremely large of number52

of blocks/communities, and this number often scales with the network size[18, 27]. Secondly, the Cheeger53

bound works when the spectral gap is close to zero, which is often not true for real-world networks[18]. Real-54

world networks possess the small-world property[16]. But this property implies large spectral gap. Thirdly,55

Cheeger-type inequalities make no assertion on the interior of parts obtained. In community structure, we56

typically expect the interior to be dense and potentially assortative (possessing vertices of similar degree).57

The main question that we address: is there a spectral quantity that predicts the existence of real-world58

community structure?59

1.1 Main result60

We take inspiration from a central property of real-world graphs, the abundance of triangles [39, 27]. This61

abundance is widely seen across graphs that come by disparate domains. Recent work in network science and62

data mining have used the triangles to e↵ectively cluster graphs. There is much evidence that the triangle63

structure aids finding communities in graphs [26, 36, 3, 37].64

In network science, the triangle count is often expressed in terms of the transitivity or global clustering65

coe�cient [8, 38]. We define the spectral transitivity of the graph G.66

Definition 1.1. The spectral transitivity of G, denoted ⌧(G), is defined as follows1. (Recall that the �is are
the eigenvalues of the normalized adjacency matrix.)

⌧(G) =

P
in

�3
iP

in
�2
i

. (1)

Standard arguments show that the spectral transitivity is a degree weighted transitivity. The numerator67

is a weighted sum over all triangles, while the denominator (squared Frobenius norm) is a weighted sum over68

edges (Lemma3.5).69

Observe that since �i  1, ⌧  1. When ⌧ reaches its maximum value of 1 � 1/(n � 1), one can show70

that G is a clique (Lemma3.6). We formalize the notion of ”clique-like” submatrices through the concept71

of uniformity. For a symmetric matrix M and a subset S of its columns/rows, we use M |S to denote the72

square submatrix restricted to S (on both columns and rows).73

Definition 1.2. Let ↵ 2 (0, 1]. Let A be the normalized adjacency matrix of a graph G. For any subset of74

vertices S, |A|S is called ↵-strongly uniform if at least an ↵-fraction of non diagonal entries have values in75

the range [↵/(|S|� 1), 1/↵(|S|� 1)].76

For s 2 S, let N(s, S) denote the neighborhood of s in S (we define edges by non-zero entries). An77

↵-uniform matrix is strongly ↵-uniform if for at least an ↵-fraction of s 2 S, A|N(s,S) is also ↵-uniform.78

1If G (or the normalized adjacency matrix A) are obvious from context, we simply refer to ⌧ instead of ⌧(G).

2



A toy decomposition

Original Subgraph

Subgraph ordered by extracted clusters

Figure 1: On the left, as a small example, we consider a subgraph induced by 155 vertices and ⌧ = 0.49
from a coauthorship network of Condensed Matter Physics researchers[21], and show a spectral triadic
decomposition of the largest connected component, which has 49 vertices. Each cluster is colored di↵erently.
We see how each cluster forms a densely connected component within an otherwise sparse graph. Also note
that the clusters vary in size. The gray vertices do not participate in the decomposition, since they do
not add significant to the cluster structure. On the right, we look at the adjacency matrices pre and post
decomposition. The top figure is a spy plot of the adjacency matrix of 488 connected vertices from a Facebook
network ([35],[34]) taken from the network repository[25], a graph with ⌧ = 0.122. As a demonstration, we
compute the spectral triadic decomposition of this subnetwork. We group the columns/rows by the clusters
in the spy plot on the bottom. The latent community structure is immediately visible. Note that there exists
many such blocks of varying sizes.
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Observe that the normalized adjacency matrix of a clique is (strongly) 1-uniform. But submatrices of79

this matrix are not. Roughly speaking, a constant uniform submatrix corresponds to a dense subgraph of80

(say) size k where the total degrees of vertices is ⇥(k). Strong uniformity is closely related to clustering81

coe�cients, which is the edge density of neighborhoods. It is well-known that real-world graphs have high82

clustering coe�cients [39, 27]. A strongly uniform submatrix essentially exhibits high clustering coe�cients.83

Our main theorem states that any graph with constant spectral transitivity can be decomposed into84

constant uniform blocks. We use kMk2 to denote the Frobenius norm of matrix M .85

Theorem 1.3 (Spectral Theorem). There exist absolute constants � > 0 and c > 0 such that the following86

holds. Let A be the normalized adjacency matrix of a graph with spectral transitivity ⌧ .87

There exists a collection of disjoint sets of vertices X1, X2, . . . , Xk satisfying the following conditions:88

1. (Cluster structure) For all i  k, A|Xi
is strongly �⌧ c-uniform.89

2. (Coverage)
P

ik
kA|Xi

k22 � �⌧ ckAk22.90

We call this output the spectral triadic decomposition. Our proof also yields an e�cient algorithm that91

computes the decomposition, whose running time is dominated by a triangle enumeration. Details in are92

given in Theorem6.1 and §6.93

1.2 Significance of Theorem1.394

One can think of Theorem1.3 as a type of Cheeger inequality that is relevant to the structure of real-world95

social networks. We explain how it captures many of the salient properties of clusters in real-world networks.96

In this discussion, we will assume that ⌧ is a constant.97

The spectral transitivity: We find it remarkable that a bound on a single spectral quantity, ⌧ , implies98

such a rich decomposition. The spectral transitivity ⌧ captures a key property of real-world graphs, the99

abundance of triangles. While there is a rich body of empirical work on using triangles to cluster graphs,100

there is no theory explaining why triangles are so useful. Theorem1.3 gives a spectral-theoretic explanation.101

The spectral transitivity is a weighted version of the transitivity, which is typically around 0.1 for real-102

world graphs2. We also note that the final algorithm that computes the decomposition focuses on triangle103

cuts, which is a popular empirical technique for finding clusters in social networks [3, 37].104

The strong uniformity of clusters: Each cluster Xi of the spectral triadic decomposition is (constant)105

strongly uniform. While there is no one definition of a ”community” in real-world graphs, the definition106

of strong uniformity captures many basic concepts. Most importantly, Xi is internally dense in edges. Let107

|Xi| = k. Then ⌦(k2) entries in Xi are ⌦(1/k), which (by averaging) implies that a constant fraction of108

Xi involves vertices of degree ⇥(k). Thus, a constant fraction of Xi vertices have a constant fraction of109

their neighbors in Xi. Moreover, the submatrix of every neighborhood in Xi is also uniform. This is quite110

consistent with the typical notion of a social network community.111

Crucially, Theorem1.3 gives a condition on the internal structure of the decomposition. This addresses112

a key weakness of the Cheeger inequality.113

The coverage condition: It is natural to measure the ”mass” of a matrix by the squared Frobenius114

norm. The clusters of spectral triadic decomposition of Theorem1.3 capture a constant fraction of this115

squared norm. This is consistent with the fact that a constant fraction of the edges in a real-world graph are116

not community edges [20, 12, 16, 27]. Any decomposition into communities would avoid these ”long-range”117

edges, excluding a constant fraction of the matrix mass.118

Robustness to noise: Taking the above point further, the non-community edges are often modeled as119

stochastic (or noisy). The underlying cluster structure of a real-world graph is robust to such perturbations.120

Adding (say) an Erdős-Rényi graph with ⇥(n) edges can only a↵ect the spectral transitivity by a constant121

factor (by changing the Frobenius norm). Theorem1.3 would only be a↵ected by constant factors. Note that122

the spectral gap, on the other hand, can dramatically increase by such noise.123

Spectral graph theory inspired by real-world graphs: We consider Theorem1.3 as opening up a124

new direction in spectral graph theory. At a mathematical level, Theorem1.3 is like a Cheeger inequality,125

2Our experiments on these real-world graphs yield similar values for the spectral transitivity.
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where a spectral condition implies a graph theoretic property. But all aspects of Theorem1.3 (the notion126

of spectral transitivity and the properties of the decomposition) are inspired by the observed properties of127

real-world graphs.128

1.3 A comparison with Gupta, Roughgarden and Seshadhri’s result129

Our algorithm is heavily influenced by the problem studied by Gupta, Roughgarden and Seshahdri [13], who130

sought a description for real world social networks that did not depend on generative models. We hereafter131

refer to this result as GRS. The objective in their work was to find a combinatorial assumption that holds in132

every common model; but strong enough to imply su�cient structure, and allow algorithms to be devised.133

They define the triangle density of a a graph, which we shall call td(G) for a graph G.134

Definition 1.4 (Triangle Density, from GRS). The triangle density of an undirected graph G = (V,E) is135

defined as td(G) = 3t(G)/w(G). Here, t(G) refers to the number of triangles in the graph, and w(G) refers136

to the number of wedges, or two hop paths in the graph.137

The triangle density is also often referred to as the (combinatorial) transitivity, but we use the former138

term to avoid confusion with spectral transitivity. It is useful to think of this as a measure of rate of closure139

in triples of connected vertices. In this setup, the main theorem of GRS guarantees that if you have a graph140

G such that td(G) = ", then it admits a decomposition into a tightly knit famiily such that each subgraph141

has triangle and edge density ", and the family contains an " fraction of t(G) (no guarantees are given on142

the edges preserved).143

Consider a graph G on n vertices with an apex vertex v that has degree n � 1, and a series of disjoint144

subgraphs G1, . . . , Gn/ logn, each with log n vertices. Assume that each subgraph is a complete graph in145

itself. It is easy to see that:146

1. The number of wedges is ⇥(n2).147

2. The number of triangles is ⇥(n log n).148

3. td(G) is o(1), as most of the wedges that v participates in (of the form (u, v, w) for u,w 2 V (G)) do149

not close to form triangles.150

In this case, where the triangle density is vanishingly small, GRS fails to provide any guarantees. We151

emphasize that this is a very relevant occurence in real world social networks: consider a celebrity who is152

followed by large numbers of people spread across di↵erent dense communities.153

Our crucial technical contribution is finding the right degree based weighting to fix this issue. We154

downweight vertices of high degree such that we can still have a natural quantity that represents this idea155

and also gives us strong guarantees algorithmically. Consequently, observe that the spectral transitivity is156

high for this graph. This reweighting provides objectively stronger guarantees, and allows our results to hold157

for more general classes of graphs.158

Our reweighting procedure brings with it its own set of challenges. The analysis in GRS depends heavily159

on dealing with Jaccard similarity, which is a real in [0, 1]. For the local analysis, we deal with an analogous160

ratio that is not quite as well behaved and can take arbitrarily large values. Consequently, the analysis is161

fairly more complicated to give guarantees in terms of uniformity, and our algorithm must be a lot more162

careful in picking vertices to include in a cluster. Moreover, our results are far more universal, because we163

state results in terms of matrix norms.164

2 Related Work165

Spectral graph theory is a deep field of study with much advancement over the past two decades. We refer166

the readers to the classic textbook by Chung [7], and the tutorial [29] and lecture notes [28] by Spielman.167

The cluster structure of real-world networks has attracted attention from the early days of network sci-168

ence [10, 22]. Fortunato’s (somewhat dated) survey on community detection has details of the key results [9].169

There is no definitive model for social networks, but it is generally accepted that they have many dense clus-170

ters with sparse connections between them [6, 18, 27]. The study of triangles and neighborhood density171
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Figure 2: An example of a graph that GRS fails to tackle. Each shaded circle is a complete subgraph of size
log n, and the apex vertex is connected to every other vertex. There are no edges in between the clusters.
This graph has low triangle density, but high spectral transitivity.

goes back to the early days of social science theory [14, 15, 5, 8]. Early network science papers popularized172

the notion of clustering coe�cients and transitivity as useful measures [39]. The use of triangles to find173

such clusters is a more recent development in network science. A number of contemporary results explicit174

use triangle information for algorithmic purposes [26, 36, 3, 37]. Our main theorem is inspired by these175

applications.176

While the Cheeger inequality by itself is not useful for real-world graph clustering, local versions of177

spectral clustering are extremely useful [30, 2]. We stress that these results do not relate the graph spectrum178

to the partitions. But the algorithm is inspired by the proof of the Cheeger inequality. Many results on179

the cluster structure of real-world graphs [18, 11] use the Personalized PageRank method [2]. Some local180

partitioning methods yield bounds on the internal structure of clusters [17, 23, 24].181

Most relevant to our work is the result of Gupta, Roughgarden, and Seshadhri [13]. They prove a182

decomposition theorem for triangle-rich graphs, as measured by graph transitivity. Their main result shows183

that a triangle-dense graph can be clustered into dense clusters. The results of [13] do not have any spectral184

connection, nor do they provide the kind of uniformity or coverage bounds of Theorem1.3. Our main insight185

is in generalizations of their proof technique, which leads to connections with graph spectrum. We adapt186

the [13] proof to deal with normalized adjacency matrix, which adds many complications because of the187

non-uniformity of entries.188

3 Preliminaries189

We use V,E, T to denote the sets of vertices, edges, and triangles of G, respectively. For any subgraph H of190

G, we use VH , EH , TH to denote the corresponding sets within H. For any edge e, let TH(e) denote the set191

of triangles in H containing e.192

For any vertex v, let dv denote the degree of v (in G).193

We first define the notion of weights for edges and triangles. We will think of edges and triangles as194

unordered sets of vertices.195

Definition 3.1. For any edge e = (u, v), define the weight wt(e) to be 1
dudv

. For any triangle t = (u, v, w),196

define the weight wt(t) to be 1
dudvdw

.197

For any set S consisting solely of edges or triangles, define wt(S) =
P

s2S
wt(s).198

We state some basic facts that relate the sum of weights to sum of eigenvalue powers. Let S ⇢ V be199

any subset of vertices, and let A|S denote the submatrix of A restricted to S. We use �i(S) to denote the200
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ith largest eigenvalue of the symmetric submatrix A|S . Abusing notation, we use ES and TS to denote the201

edges and triangles contained in the graph induced on S.202

Claim 3.2.
P

i|S| �
2(S)i = 2

P
e2E(S) wt(e)203

Proof. By the properties of the Frobenius norm of matrices,
P

i|S| �
2
i
=

P
s,t2S

A2
st
. Note that Ast =204

Ast/
p
dsdt. Hence,

P
s,t

A2
s,t

= 2
P

e=(u,v)2E(S) 1/dudv. (We get a 2-factor because each edge (u, v) appears205

twice in the adjacency matrix.)206

Claim 3.3.
P

i|S| �
3(S)i = 6

P
t2T (S) wt(t).207

Proof. Note that
P

i|S| �
3(S)i is the trace of (A|S)3. The diagonal entry (A|S)3ii is precisely

P
s2S

P
s02S

AisAss0As0i.208

Note that AisAss0As0i is non-zero i↵ (i, s, s0) form a triangle. In that case, AisAss0As0i = 1/
p
dids ·1/

p
dsds0 ·209

1/
p
ds0di = wt((i, s, s0)). We conclude that (A|S)3ii is 2

P
t2T (S),t3i

wt(t). (There is a 2 factor because every210

triangle is counted twice.)211

Thus,
P

in
�3(S)i =

P
i
2
P

t2T,t3i
wt(t) = 2

P
t2T

P
i2t

wt(t) = 6
P

t2T
wt(t). (The final 3 factor212

appears because a triangle contains exactly 3 vertices.)213

Claim 3.4.
P

t2T (S) wt(t)  kA|Sk22/6.214

Proof. By Claim 3.3
P

t2T (S) wt(t) =
P

i|S| �
3(S)i/6. The maximum eigenvalue of A is 1, and since A|S is215

a submatrix, �(S)1  1 (Cauchy’s interlacing theorem). Thus,
P

i|S| �
3(S)i 

P
i2|S| �

2(S)i = kA|Sk22.216

As a direct consequence of the previous claims applied on A, we get the following characterization of the217

spectral triadic content in terms of the weights.218

Lemma 3.5. ⌧ =
3
P

t2T
wt(t)P

e2E
wt(e) .219

While the following bound is not necessary for our main result, it is instructive to see the largest possible220

value of the spectral transitivity.221

Lemma 3.6. Consider normalized adjacency matrices A with n vertices. The maximum value of ⌧(A) is222

1 � 1/(n � 1). This value is attained for the unique strongly 1-uniform matrix, the normalized adjacency223

matrix of the n-clique.224

Proof. First, consider the normalized adjacency matrixA of the n-clique. All o↵-diagonal entries are precisely
1/(n� 1) and A can be expressed as (n� 1)�1(11T � I). The matrix A is 1-regular. The largest eigenvalue
is 1 and all the remaining eigenvalues are �1/(n� 1). Hence,

P
i
�3
i
= 1� (n� 1)/(n� 1)3 = 1� 1/(n� 1)2.

The sum of squares of eigenvalue is
P

i
�2
i
= 1 + (n� 1)/(n� 1)2 = 1 + 1/(n� 1). Dividing,

P
in

�3
iP

in
�2
i

= 1� 1/(n� 1).

Since the matrix has zero diagonal, the trace
P

i
�i is zero. We will now prove the following claim.225

Claim 3.7. Consider any sequence of numbers 1 = �1 � �2 . . . � �n such that 8i, |�i|  1 and
P

i
�i = 0.226

If
P

i
�3
i
� (1� 1/(n� 1))

P
i
�2
i
, then 8i > 1,�i = �1/(n� 1).227

Proof. Let us begin with some basic manipulations.
X

i

�3
i
� [1� 1/(n� 1)]

X

i

�2
i

(2)

=) 1 +
X

i>1

�3
i
� [1� 1/(n� 1)] · (1 +

X

i>1

�2
i
)

=)
X

i>1

�3
i
� [1� 1/(n� 1)]

X

i>1

�2
i
� 1/(n� 1). (3)
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For i > 1, define �i := �i + 1/(n � 1). Note that
P

i>1 �i = �1, so
P

i>1 �i = 0. Moreover, 8i > 1,
�i  1 + 1/(n� 1). We plug in �i = �i � 1/(n� 1) in (3).

X

i>1

h
�i � 1/(n� 1)

i3
� [1� 1/(n� 1)]

X

i>1

h
�i � 1/(n� 1)

i2
� 1/(n� 1)

=)
X

i>1

h
�3
i
� 3�2

i
/(n� 1) + 3�i/(n� 1)2 � 1/(n� 1)3

i

� [1� 1/(n� 1)]
X

i>1

h
�2
i
� 2�i/(n� 1) + 1/(n� 1)2

i
� 1/(n� 1).

Recall that
P

i>1 �i = 0. Hence, we can simplify the above inequality.

X

i>1

�3
i
� (3/(n� 1))

X

i>1

�2
i
� 1/(n� 1)2

� [1� 1/(n� 1)]
X

i>1

�2
i
+ 1/(n� 1)� 1/(n� 1)2 � 1/(n� 1)

=)
X

i>1

�3
i
� [1 + 2/(n� 1)]

X

i>1

�2
i
. (Canceling terms and rearranging)

Since �i  (1 + 1/(n � 1)), we get that
P

i>1 �
3
i
 [1 + 1/(n � 1)]

P
i>1 �

2
i
. Combining with the above228

inequality, we deduce that [1+2/(n�1)]
P

i>1 �
2
i
 [1+1/(n�1)]

P
i>1 �

2
i
. This can only happen if

P
i>1 �

2
i

229

is zero, implying all �i values are zero. Hence, for all i > 1, �i = �1/(n� 1).230

With this claim, we conclude that any matrix A maximizing the ratio of cubes and squares of eigenvalues
has a fixed spectrum. It remains to prove that a unique normalized adjacency matrix has this spectrum. We
use the rotational invariance of the Frobenius norm: sum of squares of entries of A is the same as the sum
of squares of eigenvalues. Thus,

X

(u,v)2E

2

dudv
= 1 +

1

n� 1
=

n

n� 1
. (4)

Observe that 2
dudv

� 1/(du(n � 1)) + 1/(dv(n � 1)), since all degrees are at most n � 1. Summing this
inequality over all edges,

X

(u,v)2E

2

dudv
�

X

v2V

X

u2N(v)

1

dv(n� 1)
=

X

v2V

dv
dv(n� 1)

=
n

n� 1
. (5)

Hence, for (4) to hold, for all edges (u, v), we must have the equality 2
dudv

= 1/(du(n� 1)) + 1/(dv(n� 1)).231

That implies that for all edge (u, v), du = dv = n� 1. So all vertices have degree (n� 1), and the graph is232

an n-clique.233

We will need the following “reverse Markov inequality” for some intermediate proofs.234

Lemma 3.8. Consider a random variable Z taking values in [0, b]. If E[Z] � �b, then Pr[Z � �b/2] � �/2.235

Proof. In the following calculations, we will upper bound the conditional expectation by the maximum value
(under that condition).

�b  E[Z] = Pr[Z � �b/2] ·E[Z|Z � �b/2] + Pr[Z (6)

 �b/2] ·E[Z|Z  �b/2] (7)

 Pr[Z � �b/2] · b+ �b/2 (8)

We rearrange to complete the proof.236
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4 Cleaned graphs and extraction237

For convenience, we set " = ⌧/6.238

Definition 4.1. A connected subgraph H is called clean if 8e 2 E(H), wt(TH(e)) � "wt(e).239

Algorithm 1 Extract(H)

1: Pick v 2 V (H) that minimizes dv.
2: Construct the set L := {u|(u, v) 2 E(H), du  2"�1dv} (L is the set of low degree neighbors of v in H.)
3: For every vertex w 2 V (H), define ⇢w to be the total weight of triangles of the form (w, u, u0) where

u, u0 2 L.
4: Sort the vertices in decreasing order of ⇢w, and construct the “sweep cut” C to be the smallest set

satisfying
P

w2C
⇢w � (1/2)

P
w2V (H) ⇢w.

5: Output X := {v} [ L [ C.

The main theorem of this section follows.240

Theorem 4.2. Suppose the subgraph H is connected and clean. Let X denote the output of the procedure
Extract(H). Then X

t2T (H),t✓X

wt(t) � ("8/2000)
X

t2T (H),t\X 6=;

wt(t)

(The triangle weight contained inside X is a constant fraction of the triangle weight incident to X.)241

Moreover, A|X is strongly �"12-uniform.242

We will need numerous intermediate claims to prove this theorem. We use v, L, and C as defined in243

Extract(H). We use N to denote the neighborhood of v in H. Note that L ✓ N .244

For any vertex u 2 N , we define the set of partners P (u) to be {w : (u, v, w) 2 TH}.245

The following lemma is an important tool in our analysis.246

Lemma 4.3. For any u 2 N ,
P

w2P (u)\L
d�1
w

� "/2.247

Proof. Let e = (u, v). Since H is clean, wt(TH(e)) � "wt(e). Expanding out the definition of weights,

X

w:(u,v,w)2TH

1

dudvdw
� "

dudv
=)

X

w2P (u)

d�1
w

� ". (9)

Note that L (as constructed in Extract(H)) is the subset of N consisting of vertices with degree at most
2"�1dv. For w 2 N \ L, we have the lower bound dw � 2"�1dv. Hence,

X

w2N\L

d�1
w

 |N \ L|("/2)d�1
v

 dv ⇥ ("/2)d�1
v

= "/2. (10)

In the calculation below, we split the sum of (9) into the contribution from L and from outside L. We
apply (10) to bound the latter contribution.

" 
X

w2P (u)

d�1
w


X

w2P (u)\L

d�1
w

+
X

w2N\L

d�1
w


X

w2P (u)\L

d�1
w

+ "/2. (11)

248

Claim 4.4. |L| � "dv/2249
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Proof. SinceH is connected, there must exist some edge e = (u, v) 2 E(H). By Lemma4.3,
P

w2P (u)\L
d�1
w

�
"/2. Hence,

P
w2L

d�1
w

� "/2. Since v is the vertex in V (H) minimizing dv, for any w 2 V (H), dw � dv.
Thus,

"/2 
X

w2L

d�1
w


X

w2L

d�1
v

= |L|d�1
v

. (12)

250

Claim 4.5.
P

e2E(H),e✓L
wt(e) � "2/8.251

Proof. By Lemma4.3, 8w 2 L,
P

w02P (w)\L
d�1
w0 � "/2. We multiply both sides by d�1

w
and sum over all

w 2 L. X

w2L

X

w02P (w)\L

(dwdw0)�1 � ("/2)
X

w02L

d�1
w0 . (13)

By Lemma4.3,
P

w02L
d�1
w0 � "/2. Note that w0 2 P (w) only if (w,w0) 2 E(H). Hence,252 P

w2L

P
w02L,(w,w0)2E(H) wt((w,w

0)) � "2/4. Note that the summation counts all edges twice, so we divide253

by 2 to complete the proof.254

We now come to the central calculations of the main proof. Recall, from the description of Extract, that255

⇢w is the total triangle weight of the triangles (w, u, u0), where u, u0 2 L. We will prove that
P

w
⇢w is large;256

moreover, there are a few entries that dominate the sum. The latter bound is crucial to arguing that the257

sweep set C is not too large.258

Claim 4.6.
P

w2V (H) ⇢w � "3/8.259

Proof. Note that
P

w2V (H) ⇢w is equal to
P

e2E(H),e⇢L
wt(TH(e)). Both these expressions give the total260

weight of all triangles in H that involve two vertices in L. Since H is clean, for all edges e 2 E(H),261

wt(TH(e)) � "wt(e). Hence,
P

e2E(H),e⇢L
wt(TH(e)) � "

P
e2E(H),e⇢L

wt(e). Applying Claim 4.5, we can262

lower bound the latter by "3/8.263

We now show that a few ⇢w values dominate the sum, using a somewhat roundabout argument. We264

upper bound the sum of square roots.265

Claim 4.7.
P

w2V (H)
p
⇢w  2"�1

p
dv266

Proof. Let cw be the number of vertices in L that are neighbors (in H) of w. Note that for any triangle267

(u, u0, w) where u, u0 2 L, both u and u0 are common neighbors of w and v. The number of triangles (u, u0, w)268

where u, u0 2 L is at most c2
w
. The weight of any triangle in H is at most d�3

v
, since dv is the lowest degree269

(in G) of all vertices in H. As a result, we can upper bound ⇢w  d�3
v

c2
w
.270

Taking square roots and summing over all vertices,

X

w2V (H)

p
⇢w  d�3/2

v

X

w2V (H)

cw (14)

Note that
P

w2V (H) cw is exactly the sum over u 2 L of the degrees of u in the subgraph H. (Every edge271

incident to u 2 L gives a unit contribution to the sum
P

w2V (H) cw.) By definition, every vertex in L has272

degree in H at most 2"�1dv. The size of L is at most dv.273

Hence,
P

w2V (H) cw  2"�1d2
v
. Plugging into (14), we deduce that

P
w2V (H)

p
⇢w  2"�1

p
dv.274

We now prove that the sweep cut C is small, which is critical to proving Theorem4.2.275

Claim 4.8. |C|  144"�5dv.276
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Proof. For convenience, let us reindex vertices so that ⇢1 � ⇢2 � ⇢3 . . .. Let r  n be an arbitrary index.277

Because we index in non-increasing order, note that
P

jn
⇢j � r⇢r. Furthermore, 8j > r, ⇢j  ⇢r.278

X

j>r

⇢j 
p
⇢r

X

j>r

p
⇢j 

sP
jn

⇢j

r

X

jn

p
⇢j =

h P
jn

p
⇢j

p
r ·

qP
jn

⇢j

iX

jn

⇢j (15)

Observe that Claim 4.7 gives an upper bound on the numerator, while Claim 4.6 gives a lower bound on (a
term in) the denominator. Plugging those bounds in (15),

X

j>r

⇢j 
2"�1

p
dvp

r · "3/2/
p
8

X

jn

⇢j 
1p
r
· 6

p
dv

"5/2
·
X

jn

⇢j . (16)

Suppose r > 144"�5dv. Then
P

j>r
⇢j < (1/2)

P
jn

⇢j . The sweep cut C is constructed with the smallest279

value of r such that
P

j>r
⇢j < (1/2)

P
jn

⇢j . Hence, |C|  144"�5dv.280

An additional technical claim we need bounds the triangle weight incident to a single vertex.281

Claim 4.9. For all vertices u 2 V (H), wt(TH(u))  (2dv)�1.282

Proof. Consider edge (u,w) 2 E(H). We will prove that wt(TH((u,w)))  d�1
u

d�1
v

. Recall that dv is the
smallest degree among vertices in H. Furthermore, |TH((u,w))|  dw, since the third vertex in a triangle
containing (u,w) is a neighbor of w.

wt(TH((u, v))) =
X

z:(z,u,w)2T (H)

1

dudwdz
 1

dudv

X

z:(z,u,w)2T (H)

1

dw
 1

dudv
⇥ dw

dw
=

1

dudv

We now bound wt(TH(u)) by summing over all neighbors of u in H.

wt(TH(u)) = (1/2)
X

w:(u,w)2E(H)

wt(TH((u,w)))

 (1/2)
X

w:(u,w)2E(H)

1

dudv
=

1

2dv

X

w:(u,w)2E(H)

1

du

 1

2dv
⇥ du

du
=

1

2dv
.

283

4.1 The proof of Theorem4.2284

Proof. (of Theorem4.2) By construction of X as {v} [ L [ C, all the triangles of the form (w, u, u0), where285

w 2 C and u, u0 2 L, are contained in X. The total weight of such triangles is at least
P

vn
⇢v/2, by the286

construction of C. By Claim 4.6,
P

vn
⇢v/2 � "3/16.287

Let us now bound that total triangle weight incident to X in H. Observe that |X| = 1+ |L|+ |C| which288

is at most 1 + dv + "�5144dv, by Claim 4.8. We can further bound |X|  "�5146dv. By Claim 4.9, the total289

triangle weight incident to a vertex is at most (2dv)�1. Hence, the total triangle weight incident to all of X290

is at most 73"�5.291

Thus, the triangle weight contained in X is at least "
3
/16

73"�5 times the triangle weight incident to X. The292

ratio is at least "8/2000, completing the proof of the first statement.293

Proof of uniformity of A|X : We first prove a lower bound on the uniformity of A|X . For convenience,
let B denote the set {e|e 2 E(H), e ✓ L. By Claim 4.5,

P
e2B

wt(e) � "2/8. There are at most
�
dv

2

�
 d2

v
/2
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edges in B. For every edge e, wt(e)  1/d2
v
. Let k denote the number of edges in B whose weight is at least

"2/16.

"2

8


X

e2B

wt(e)"
2
d
�2
v

/16

wt(e) +
X

e2B

wte�"
2
d
�2
v

/16

wt(e)

 |B|⇥ "2d�2
v

/16 + kd�2
v

 d2
v
⇥ "2d�2

v
/16 + kd�2

v

= "2/16 + kd�2
v

.

Rearranging, k � "2d2
v
/16.294

Hence, there are at least "2d2
v
/16 edges contained in X with weight at least "2d�2

v
/16. Consider the

random variable Z that is the weight of a uniform random edge contained in X. Since |X|  "�5144dv, the
number of edges in X is at most "�10(144)2d2

v
. So,

E[Z] � "2d2
v
/16

"�10(144)2d2
v

⇥ "2d�2
v

/16 � 2�"14d�2
v

. (17)

The maximum value of Z is the largest possible weight of an edge in E(H), which is at most d�2
v

. Applying295

the reverse Markov bound of Lemma3.8, Pr[Z � �"14d�2
v

] � �"14. Thus, an "14 fraction of edges in |X| have296

weight at least �"14d�2
v

� �"c/|X|2. Moreover, every edge has weight at most d�2
v

 1/(�"c|X|2). So we297

prove the uniformity of A|X .298

The largest possible weight for any edge in E(H) is d�2
v

. The size of |X| is at least dv and at most299

"�5144dv. Hence, A|X is at least �"12-uniform.300

Proof of strong uniformity: For strong uniformity, we need to repeat the above argument within301

neighborhoods in X. We prove in the beginning of this proof that the total triangle weight inside X is at302

least "3/16. We also proved that |X|  146"�5dv. Consider the random variable Z that is the triangle weight303

contained in X incident to a uniform random vertex in X. Note that E[Z] � ("3/16)/(146"�5dv) � 2�0"8d�1
v

.304

By Claim 4.9, Z is at most (2dv)�1. Applying Lemma3.8, Pr[Z � �0"8d�1
v

] � �"8. This means that at least305

�0"8|X| vertices in X are incident to at least �0"8d�1
v

triangle weight inside X.306

Consider any such vertex u. Let N(u) be the neighborhood of u in X. Every edge e in N(u) forms a
triangle with u with weight wt(e)/du. Hence, noting that du � dv,

X

e✓N(u)

wt(e)d�1
u

� �0"8d�1
v

=)
X

e✓N(u)

wt(e) � �0"8. (18)

There are at most |X|2  "�10(146)2d2
v
edges in N(u). Let Z denote the weight of a uniform random307

edge in N(u). Note that E[Z] � �0"8/("�10(146)2d2
v
) � 2�"18d�2

v
. The maximum weight of an edge is at308

most d�2
v

. By Lemma3.8, at least �"18 fraction of edges in N(u) have a weight of at least �"18d�2
v

. Since309

|N(u)|  |X|  "�5146dv, this implies that N(u) is also �"c-uniform. Hence, we prove strong uniformity as310

well.311

312

5 Obtaining the decomposition313

We first describe the algorithm that obtains the decomposition promised in Theorem1.3.314

We partition all the triangles of G into three sets depending on how they are a↵ected by Decompose(G).315

(i) The set of triangles removed by the cleaning step of Step 4, (ii) the set of triangles contained in some316

Xi 2 X, or (iii) the remaining triangles. Abusing notation, we refer to these sets as TC , TX , and TR317

respectively. Note that the triangles of TR are the triangles “cut” when Xi is removed.318

Claim 5.1. wt(TC)  (⌧/6)
P

e2E
wt(e).319
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Algorithm 2 Decompose(G)

1: Initialize X to be an empty family of sets, and initialize subgraph H = G.
2: while H is non-empty do
3: while H is not clean do
4: Remove an edge e 2 E(H) from H such that wt(TH(e)) < (")wt(e).
5: end while
6: Add output Extract(H) to X.
7: Remove these vertices from H.
8: end while
9: Output X.

Proof. Consider an edge e removed at Step 4 of Decompose. Recall that " is set to ⌧/6. At that removal, the320

total weight of triangles removed (cleaned) is at most (⌧/6)wt(e). An edge can be removed at most once, so321

the total weight of triangles removed by cleaning is at most (⌧/6)
P

e2E
wt(e).322

Proof. (of Theorem1.3) Let us denote by H1, H2, . . . , Hk the subgraphs of which Extract is called. Let the323

output of Extract(Hi) be denotedXi. By the uniformity guarantee of Theorem4.2, eachA|Xi
is �⌧ c-uniform.324

It remains to prove the coverage guarantee. We now sum the bound of Theorem4.2 over all Xi. (For
convenience, we expand out " as ⌧/6 and let �0 denote a su�ciently small constant.)

X

ik

X

t2T (H),t✓X

wt(t) � (�0⌧8)
X

ik

X

t2T (H),t\X 6=;

wt(t). (19)

The LHS is precisely wt(TX). Note that a triangle appears at most once in the double summation in the
RHS. That is because if t \ Xi 6= ;, then t is removed when Xi is removed. Since Hi is always clean, the
triangles of TC cannot participate in this double summation. Hence, the RHS summation is wt(TX)+wt(TR)
and we deduce that

wt(TX) � �0⌧8(wt(TX) + wt(TR)) (20)

Note that wt(Tc)+wt(Tx)+wt(Tr) =
P

t2T
wt(t). There is where the definition of ⌧ makes its appearance.

By Lemma3.5, we can write the above equality as wt(Tc) +wt(Tx) +wt(Tr) = (⌧/3)
P

e2E
wt(e). Applying

Claim 5.1, (20), and the relation of edge weights to the Frobenius norm (Claim 3.2),

(�0⌧8)�1wt(TX) � (⌧/6)
X

e2E

wt(e) =) wt(TX) � �⌧ ckAk22 (by Claim 3.2) (21)

By Claim 3.4,
P

ik
kA|Xi

k22 � wt(TX), completing the proof of the coverage bound.325

6 Algorithmics and implementation326

We discuss theoretical and practical implementations of the procedures computing the decomposition of327

Theorem1.3. The main operation required is a triangle enumeration of G; there is a rich history of algorithms328

for this problem. The best known bound for sparse graph is the classic algorithm of Chiba-Nishizeki that329

enumerates all triangles in O(m↵) time, where ↵ is the graph degeneracy.330

We first provide a formal theorem providing a running time bound. We do not explicitly describe the331

implementation through pseudocode, and instead explain the main details in the proof.332

Theorem 6.1. There is an implementation of Decompose(G) whose running time is O(R+(m+n+T ) log n),333

where R is the running time of listing all triangles. The space required is O(T ) (where T is the triangle count).334

Proof. We assume an adjacency list representation where each list is stored in a dictionary data structure335

with logarithmic time operations (like a self-balancing binary tree).336
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We prepare the following data structure that maintains information about the current subgraph H. We337

initially set H = G. We will maintain all lists as hash tables so that elementary operations on them (insert,338

delete, find) can be done in O(1) time.339

1. A list of all triangles in T (H) indexed by edges. Given an edge e, we can access a list of triangles in340

T (H) containing e.341

2. A list of wt(TH(e)) values for all edges e 2 E(H).342

3. A list U of all (unclean) edges such that wt(TH(e)) < "wt(e).343

4. A min priority queue Q storing all vertices in V (H) keyed by degree dv. We will assume pointers from344

v to the corresponding node in Q.345

These data structures can be initialized by enumerating all triangles, indexing them, and preparing all346

the lists. This can be done in O(R) time.347

We describe the process to remove an edge from H. When edge e is removed, we go over all the triangles348

in T (H) containing e. For each such triangle t and edge e0 2 t, we remove t from the triangle list of e0. We349

then update wt(TH(e0)) by reducing it by wt(t). If wt(TH(e0)) is less than wt(e), we add it to U . Finally,350

if the removal of e removes a vertex v from V (H), we remove v from the priority queue Q. Thus, we351

can maintain the data structures. The running time is O(|TH(e)|) plus an additional log n for potentially352

updating Q. The total running time for all edge deletes is O(T + n log n).353

With this setup in place, we discuss how to implement Decompose. The cleaning operation in Decompose354

can be implemented by repeatedly deleting edges from the list U , until it is empty.355

We now discuss how to implement Extract. We will maintain a max priority queue R maintaining the356

values {⇢w}. Using Q as defined earlier, we can find the vertex v of minimum degree. By traversing its357

adjacency list in H, we can find the set L. We determine all edges in L by traversing the adjacency lists of358

all vertices in L. For each such edge e, we enumerate all triangles in H containing e. For each such triangle359

t and w 2 t, we will update the value of ⇢w in R.360

We now have the total
P

w
⇢w as well. We find the sweep cut by repeatedly deleting from the max361

priority queue R, until the sum of ⇢w values is at least half the total. Thus, we can compute the set X to362

be extracted. The running time is O((|X|+ |E(X)|+ |T (X)|) log n), where E(X), T (X) are the set of edges363

and triangles incident to X.364

Overall, the total time for all the extractions and resulting edge removals is O((n +m + T ) log n). The365

initial triangle enumeration takes R time. We add to complete the proof.366

Practical considerations: In our code implementation, we apply some simplifying heuristics. Instead367

of repeatedly cleaning using a list, we simply make multiples passes over the graph, deleting any edge that368

is unclean. On deletion of edge e, we do not update the TH(e) values. We only perform the update after a369

complete pass over the graph. We do two to three passes over the graph, and leave any unclean edges that370

still remain. Typically, the first two passes remove almost all unclean edges, and it is not worth the extra371

time to find all remaining unclean edges.372

7 Empirical Validation373

7.1 Datasets374

We now present an empirical validation of Theorem1.3 and the procedure Decompose. We show that spectral375

triadic decompositions exist in real-world networks; moreover, the clusters of the decompositions are often376

semantically meaningful. We perform experiments on a number of real-world networks, whose details are377

listed in Tab. 1. Most of our graphs are undirected, and the network names are indicative of what they378

are: names beginning with ‘ca’ refer to coauthorship networks (ca-CondMat is for researchers who work379

in condensed matter, ca-DBLP does the same for researchers whose work is on DBLP, a computer science380

bibliography website), ones beginning with ‘com’ are social networks (socfb-Rice31 is a Facebook network,381

soc-hamsterster is from Hamsterster, a pet social network), and ‘cit’ refers to citation networks. While382

citation networks are in reality directed graphs, we consider any directed edge to be an undirected edge for the383
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purposes of our experiments. Graphs have been taken from the SNAP dataset at https://snap.stanford.384

edu/data/ [19] and the network repository at https://networkrepository.com/ [25]. The exceptions to385

this are the cit-DBLP dataset, which has been taken from https://www.aminer.org/citation [32] and the386

ca-cond-matL dataset, which has been taken from [21] ; the L is for labelled. Not all graphs are used for387

all tasks and datasets have been specified with the associated experiments; the majority of the quantitative388

evaluation has been done on the first four graphs. The ground truth results have been performed on the389

ca-DBLP graph, and the last two are used to exhibit semantic sensibility of the extracted clusters.390

Implementation details: The code is written in Python, and we run it on Jupyter using Python 3.7.6391

on a Dell notebook with an Intel i7-10750H processor and 32 GB of ram. The code requires enough storage392

to store all lists of triangles, edges and vertices, and may be found on github at https://bitbucket.org/393

Boshu1729/triadic/src/master/. We set the parameter " to 0.1 for all the experiments, unless stated394

otherwise. In general, we observe that the results are stable with respect to this parameter, and it is395

convenient choice for all datasets.396

The ⌧(G) values and spectral triadic decompositions: In Tab. 1, we list the spectral triadic content,397

⌧(G), of the real-world networks. Observe that they are quite large. They are the highest in social networks,398

consistently ranging in values greater than 0.1. This shows the empirical significance of ⌧(G) in real-world399

networks, which is consistent with large clustering coe�cients.400

In Tab. 2 we list the minimum and 10th percentile uniformity of the clusters in the decomposition (if the401

uniformity is, say 0.1, it means that at least a 0.1-fraction of entries in the submatrix have value at least402

0.1 times the average value). We discuss these results in later sections as well; but the high uniformity in403

extracted clusters is a good indicator of the e�cacy of the algorithm.404

Relevance of decomposition: For the ca-DBLP graph, we do a detailed analysis of the clusters Xi of405

the decomposition with respect to a ground truth community labeling. We consider the first 10000 clusters406

extracted and investigate their quality. The ground truth here is defined by publication venues, and we407

restrict the evaluation to the top 5000 ground truth communities as described in [40], where the authors408

curate a list of 5000 communities that they found worked well with community detection algorithms.409

For each set Xi, we find the ground truth community of highest Jaccard similarity with Xi. We plot410

the histogram of Jaccard similarities in Fig. 8. We ignore clusters that have fewer than 5 vertices for the411

purposes of this experiment; this accounts for only 42 of the total clusters extracted. For the remainder, we412

observe that the mean Jaccard density is 0.3, and 46 communities have a perfect value of 1. Moreover, we413

plot a similar histogram for size of intersection of our clusters with the ground truth. Here too we observe414

that the mean is 6.48. We look at how this average varies with sizes of the extracted clusters in Fig. 9.415

While there is no clear trend observed in Jaccard density by cluster size, the mean intersection size clearly416

grows as we look at larger clusters.417

Details of clusters: A spectral triadic decomposition produces a large number of approximately uniform418

dense clusters, starting from only the promise of a large ⌧(G) value. In Fig. 11 and Fig. 12, we show a419

scatterplot of clusters, with axes of cluster size versus uniformity across various networks. We see that there420

are a large number of fairly large clusters (of size at least 20) and of uniformity at least 0.5; further discussion421

on the clusters and their sizes is in Tab. 3. These plots are further validation of the significance of Theorem1.3422

and the utility of the spectral triadic decomposition. The procedure Decompose automatically produces a423

large number of approximately uniform (or assortative) blocks in real-world networks. We summarize the424

data with some numbers in Tab. 2. We also plot the edge density and triangle density of these clusters,425

which are more standard parameters in network science. Refer to the first two rows of Fig. 10 respectively426

for these plots. Since edge density is at least the uniformity, as expected, we see a large number of dense427

clusters extracted by Decompose.428

In Fig. 3, we show graph drawings of two example clusters in a co-authorship network of (over 90K)429

researchers in Condensed Matter Physics. The cluster on the left has 16 vertices and 58 edges, and has430
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extracted a group of researchers who specialize in optics, ultra fast atoms, and Bose-Einstein condensates.431

Notable among them is the 2001 physics Nobel laureate Wolfgang Ketterle. The cluster on the right has432

18 vertices and 55 edges, and has a group of researchers who all work on nanomaterials; there are multiple433

prominent researchers in this cluster, including the 1996 chemistry Nobel laureate Richard Smalley, who434

discovered buckminsterfullerene. We stress that the our decomposition found more than a thousand such435

clusters. Similar extracted clusters of research papers and articles extracted from the DBLP citation network

(a) Condensed Matter Physics: Cluster of researchers
working on optics, ultra fast atoms, and Bose-Einstein
condensates

(b) Condensed Matter Physics: Cluster of researchers
working on graphene, nanomaterials and topological in-
sulators

Figure 3: We show two example clusters from a spectral triadic decomposition of coauthorship network of
researchers in Condensed Matter Physics [21], a graph with ⌧ = 0.25. The left cluster is a set of 16 researchers
(58 edges) working on optics and Bose-Einstein condensates (notably, the cluster has the 2001 Physics Nobel
laureate Wolgang Ketterle). The right cluster has 18 researchers (55 edges) working on nanomaterials,
including the 1996 Chemistry Nobel laureate Richard Smalley.

436

can be seen in Fig. 4. In this case, one cluster is a group of papers on error correcting/detecting codes, while437

the other is a cluster of logic program and recursive queries papers.438

It is surprising how well the spectral triadic decomposition finds fine-grained structure in networks,439

based on just the spectral transitivity. This aspect highlights the practical relevance of spectral theorems440

that decompose graphs into many blocks, rather that the classic Cheeger-type theorems that one produce441

two blocks.442

Total content of decomposition: Even though Decompose does not explicitly optimize for it, the clusters443

capture a large fraction of the vertices, and triangles. In Tab. 3, we see the latter values for all the decomposi-444

tions constructed. A significant fraction of both vertices and the total triangle weight is preserved. Coverage445

is also impressive across the board; this is the total Frobenius norm of the decomposition, as a fraction of the446

total Frobenius norm of A.. The cluster sizes vary with the dataset; the Facebook network shows especially447

large clusters; it also exhibits lower triangle weight retention, which may be an artefact of the fact that it is448

easier to retain triangle density in smaller clusters. A distribution of cluster sizes across datasets in shows449

in the histograms in the bottom row of Fig. 10.450
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(a) DBLP: Cluster of papers on error correcting codes (b) DBLP: Cluster of papers on logic programs and recursive
queries

Figure 4: We show example clusters from a spectral triadic decomposition of a DBLP citation network,
involving papers in Computer Science [40]. For ease of viewing, we label each vertex with relevant phrases
from the paper title. The left cluster involves 16 papers (47 edges) on the topic of error correcting codes.
The right cluster of 24 papers (69 edges) are all on the topic of logic programs and recursive queries, from
database theory. Observe the tight synergy of topic among the vertices in a cluster; our procedure found
thousands of such clusters.

Variation of ": The algorithm Decompose has only one parameter, ", which determines the cleaning451

threshold. We vary the value of " from 0.1 to 0.5 on the network ca-HepTh. When " is smaller, the cleaning452

process removes fewer edges, but this comes at the cost of lower uniformity. For the mathematical analysis453

in §5, we require " to be smaller than ⌧ . On the other hand, the algorithm works in practice for large values454

of ". The output of Decompose on fairly large values of " is quite meaningful.455

We carry out the same experiments for four values of ": 0.1, 0.2, 0.3, and 0.5. The primary takeaway456

is that cleaning is far more aggressive for higher values of ", and clusters extracted at higher values of are457

sparser. This is especially more pronounced for " = 0.5. We summarize the data and provide charts in a458

similar manner as before in Fig. 13, Fig. 14, Fig. 15 and Tab. 4.459

7.2 Experiments on Protein Networks460

We carry out a few experiments on the protein-protein interaction networks of some organisms, sourced461

from the StringDB database [31] at https://string-db.org/. For these results, we look at a few clusters462

extracted from the protein-protein interaction networks of E. coli K12 substrain MG 1655, and Strepococcus463

pneumoniae strain TIGR4. The network visualizations have been created with the helpful API of the464

database, and a detailed index from the website is provided in Fig. 5. While our dataset did not include465

any information on the nature of the interactions beyond a�nity scores, we observe that these visualizations466

often provide more information which the reader may find instructive.467

We look at two examples extracted from E. coli first in Fig. 6. The first shows us a group of 60 proteins468

with dense interactions with each other; these are a mix of di↵erent kinds of membrane associated proteins469
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that participate in cell division. Similarly, we have another group of 33 proteins in the second; including470

tightly bound groups of cytochromes, ATPG and NDHs that participate in aerobic respiration.471

The second group in Fig. 7 has two such clusters from Streptococcus. The first is a smaller cluster of472

11 proteins that participate in the energy-coupling factor transport system. The second is a dense cluster473

of 37 proteins that participate in the phosphoenolpyruvate phosphotransferase system (PTS), the primary474

mechanism by which bacteria such as Streptococcus transport sugars; a large number of these are specifically475

associated with the celloboise PTS.476

Figure 5: The key to the visuals for protein complexes, taken from STRINGdb. The indicators include color
of node, color of edges, and content of nodes. Multiple edges in di↵erent colors denote di↵erent kinds of
interaction; two proteins may have multiple simultaneous interactions.

(a) E. Coli : cell division proteins (b) E. Coli : aerobic respiration proteins

Figure 6: We show example clusters from a spectral triadic decomposition of protein-protein interaction
network of the E. Coli K12 substrain MG 1655 [31]. The cluster on the left is a group of 60 proteins
associated with cell division, and the one on the right is a cluster of 33 proteins associated with aerobic
respiration.
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(a) Strep: energy binding proteins (b) Strep: celloboise PTS proteins

Figure 7: We show example clusters from a spectral triadic decomposition of protein-protein interaction
network of the Strepococcus pneumoniae strain TIGR4 [31]. The cluster on the left is a group of 11 proteins
associated with energy binding processes, and the one on the right is a cluster of 37 proteins associated with
celloboise PTS.

7.3 Examination of Metadata Asssociated with Real Communities477

In this last section, we look at a DBLP citation network from aminer.org: citation network V1 [32]. While478

the usual interpretation of a citation network is a a directed graph, we interpret it as an undirected graph479

with each directed edge in the graph corresponding to a corresponding undirected edge. While this dataset480

too gives us similar favorable statistics, the most compelling evidence provided by it is the corresponding481

metadata associated with the citation network. Given this, we evaluate it to see if the extracted clusters482

are semantically meaningful. This is strongly corroborated by the data: we exhibit an extracted cluster483

and the metadata associated to exhibit our case. Given that edges here are actual citations (agnostic to484

the direction), this shows that the internal density is an important metric to keep track of, as opposed to485

methods that find minimum edge cuts irrespective of what internal density of the components may look like.486

The results are listed in Tab. 5, Tab. 6, Tab. 7 and Tab. 8, where we lit the paper title, venue of publication,487

and the year of publication.488
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Figure 8: This figure looks as the quality of our extracted clusters compared with ground truth data. We
compare results for the first 10000 communities extracted by our algorithm, and look at intersection size,
excluding clusters with fewer than 5 vertices. We compare our clusters with the 5000 ‘high quality’ clusters
from [40].

(a) Mean Jaccard density by cluster size (b) Mean intersection by cluster size

Figure 9: Here we look at the mean values of Jaccard density and intersection size across clusters of di↵erent
sizes. We compare results for the first 10000 communities extracted by our algorithm, and look at Jaccard
density and intersection size, excluding clusters with fewer than 5 vertices. We compare our clusters with
the 5000 ‘high quality’ clusters from [40].

Dataset Mean Uniformity 10th percentile Min uniformity

soc-hamsterter 0.67 0.27 0.14
socfb-Rice31 0.24 0.15 0.08
ca-HepTh 0.28 0.22 0.11

ca-CondMat 0.28 0.21 0.08
ca-cond-matL 0.66 0.32 0.11
cit-HepTh 0.39 0.22 0.11
cit-DBLP 0.46 0.23 0.05

Table 2: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, minimum of cluster
sizes, maximum of cluster sizes, average of cluster sizes when "� 0.1..
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(a) ca-CondMat (b) socfb-Rice31 (c) soc-hamsterster

(d) ca-CondMat (e) socfb-Rice31 (f) soc-hamsterster

(g) ca-CondMat (h) socfb-Rice31 (i) soc-hamsterster

Figure 10: Scatter plot for edge density (top, (a)-(c)), triangle density (center, (d)-(f)) as a function of cluster
size, and histogram of cluster sizes (bottom, (g)-(i)) for ca-CondMat, socfb-Rice31, and soc-hamsterster
respectively, for " = 0.1.

Dataset #Clusters % Vtx % Tri-Wt Coverage % Cluster Sizes
Min Max Avg

soc-hamsterster 208 76.09 80.94 85.34 3 81 8.88
socfb-Rice31 86 86.84 24.71 36.76 3 230 41.27
ca-HepTh 849 77.46 71.43 73.79 5 47 9.01

ca-CondMat 2049 95.45 71.61 58.84 5 68 10.78
ca-condmatL 1566 75.57 77.90 78.64 3 47 7.85
cit-HepTh 1664 73.74 53.81 58.84 3 79 12.31
cit-DBLP 7265 27.57 70.04 77.15 3 111 8.25

Table 3: Summary of data about the extracted clusters across datasets: number of clusters, percentage of
total number of vertices preserved in clusters, total triangle weight preserved in clusters, coverage, and cluster
sizes (minimum, maximum and average). We observe great diversity in the nature of clusters extracted; most
datasets have average cluster sizes between 7 and 13, with the exception of socfb-Rice31, where the average
is as high as 41. Number of vertices preserved is consistently high except for the cit-DBLP network, which
had remarkably low edge and triangle density to begin with. Triangle weight preserved and coverage are
also remarkably high across all datasets; albeit a bit lower in socfb=Rice31.
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Dataset #Vertices #Edges #Triangles ⌧

soc-hamsterster 2,427 16,630 53,251 0.215
socfb-Rice31 4,088 184,828 1,904,637 0.122
caHepTh 9,877 24,827 28,339 0.084

ca-cond-matL 16,264 47,594 68,040 0.255
ca-CondMat 23,133 93,497 176,063 0.125
cit-HepTh 27,770 352,807 1,480,565 0.122
cit-DBLP 217,312 632,542 248,004 0.087
ca-DBLP 317,080 1,049,866 2,224,385 0.248

Table 1: Summary of datasets used for di↵erent experiments. Most of our graphs are undirected, and the
network names are indicative of what they are: names beginning with ‘ca’ refer to coauthorship networks
(ca-CondMat is for researchers who work in condensed matter, ca-DBLP does the same for researchers
whose work is on DBLP, a computer science bibliography website), ones beginning with ‘com’ are social
networks (socfb-Rice31 is a Facebook network, soc-hamsterster is from Hamsterster, a pet social network),
and ‘cit’ refers to citation networks. While citation networks are in reality directed graphs, we consider
any directed edge to be an undirected edge for the purposes of our experiments. Graphs have been taken
from the SNAP dataset at https://snap.stanford.edu/data/ [19] and the network repository at https:
//networkrepository.com/ [25]. The exceptions to this are the cit-DBLP dataset, which has been taken
from https://www.aminer.org/citation [32] and the ca-cond-matL dataset, which has been taken from
[21] ; the L is for labelled. For cit-DBLP, the ⌧ value is for the 2-core of the graph.

" #Clusters % Vtx % Tri-Wt Cluster Min Cluster Max Cluster Avg

0.1 849 11.13 58.63 5 47 9.01
0.2 866 10.56 59.04 5 57 8.39
0.3 652 8.08 54.99 5 48 8.52
0.5 296 3.85 36.00 5 61 8.95

Table 4: Summary of data about the extracted clusters on caHepTh for " 2 {0.1, 0.2, 0.3, 0.5}: number
of clusters, percentage of total number of vertices preserved in clusters, total triangle weight preserved in
clusters, minimum of cluster sizes, maximum of cluster sizes, average of cluster sizes.
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Paper Title Venue Year

Some comments on the aims of MIRFAC Communications of the ACM 1964

MIRFAC: a compiler based on standard mathematical notation
and plain English

Communications of the ACM 1963

MIRFAC: a reply to Professor Djikstra Communications of the ACM 1964

More on reducing truncation errors Communications of the ACM 1964

The dangling else Communications of the ACM 1964

MADCAP: a scientific compiler for a displayed formula textbook
language

Communications of the ACM 1961

Further comment on the MIRFAC controversy Communications of the ACM 1964

An experiment in a user-oriented computer system Communications of the ACM 1964

Automatic programming and compilers II: The COLASL auto-
matic encoding system

Proceedings of the 1962 ACM na-
tional conference on Digest of tech-
nical papers

1962

Table 5: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.472
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(a) Scatter plot for uniformity (b) Histogram for uniformity

soc-hamsterster

(c) Scatter plot for uniformity (d) Histogram for uniformity

socfb-Rice31

(e) Scatter plot for uniformity (f) Histogram for uniformity

cit-HepTh

Figure 11: A look at uniformity across clusters in the decomposition obtained from various networks as
labelled. The figures on the left are straightforward scatter plots that looks at uniformity across clusters of
varying sizes. Those on the right are complementary cumulative histograms for the uniformity values. The
x-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity value.
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(a) Scatter plot for uniformity (b) Histogram for uniformity

ca-CondMat

(c) Scatter plot for uniformity (d) Histogram for uniformity

ca-cond-matL

(e) Scatter plot for uniformity (f) Histogram for uniformity

cit-DBLP

Figure 12: (Continued)A look at uniformity across clusters in the decomposition obtained from various
networks as labelled. The figures on the left are straightforward scatter plots that looks at uniformity across
clusters of varying sizes. Those on the right are complementary cumulative histograms for the uniformity
values. The x-axis is the uniformity value, and the y axis the fraction of clusters with at least that uniformity
value.
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(a) " = 0.1 (b) " = 0.2

(c) " = 0.3 (d) " = 0.5

Figure 13: Scatter plot for edge density for ca-CondMat with varying values of ".
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(a) " = 0.1 (b) " = 0.2

(c) " = 0.3 (d) " = 0.5

Figure 14: Scatter plot for triangle density for ca-CondMat with varying values of ".
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(a) " = 0.1 (b) " = 0.2

(c) " = 0.3 (d) " = 0.5

Figure 15: Histogram of cluster sizes for ca-CondMat with varying values of ".
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Paper Title Venue Year

Measurement-based characterization of IP VPNs IEEE/ACM Transactions on Net-
working (TON)

2007

Tra�c matrices: balancing measurements, inference and modelingProceedings of the 2005 ACM SIG-
METRICS international conference
on Measurement and modeling of
computer systems

2005

Data streaming algorithms for accurate and e�cient measurement
of tra�c and flow matrices

ACM SIGMETRICS Performance
Evaluation Review

2005

An information-theoretic approach to tra�c matrix estimation Proceedings of the 2003 conference
on Applications, technologies, archi-
tectures, and protocols for computer
communications

2003

Atomic Decomposition by Basis Pursuit SIAM Review 2001

Solving Ill-Conditioned and Singular Linear Systems: A Tutorial
on Regularization

SIAM review 1998

Structural analysis of network tra�c flows ACM Sigmetrics performance evalu-
ation review

2004

How to identify and estimate the largest tra�c matrix elements
in a dynamic environment

Proceedings of the joint interna-
tional conference on Measurement
and modeling of computer systems

2004

Relative information: theories and applications Book 1990

Estimating point-to-point and point-to-multipoint tra�c matri-
ces: an information-theoretic approach

IEEE/ACM Transactions on Net-
working (TON)

2005

Tra�c matrix tracking using Kalman filters ACM Sigmetrics performance evalu-
ation review

2005

Towards a meaningful MRA of tra�c matrices Proceedings of the 8th ACM SIG-
COMM conference on Internet mea-
surement

2008

Table 6: Metadata for cluster extracted from cit-DBLP: Cluster of size 12, edge density of 0.83
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Paper Title Venue Year

A Cell ID Assignment Scheme and Its Applications Proceedings of the 2000 Interna-
tional Workshop on Parallel Pro-
cessing

2000

High-Performance Computing on a Honeycomb Architecture Proceedings of the Second Interna-
tional ACPC Conference on Parallel
Computation

1993

Optimal dynamic mobility management for PCS networks IEEE/ACM Transactions on Net-
working (TON)

2000

Higher dimensional hexagonal networks Journal of Parallel and Distributed
Computing

2003

Addressing and Routing in Hexagonal Networks with Applications
for Tracking Mobile Users and Connection Rerouting in Cellular
Networks

IEEE Transactions on Parallel and
Distributed Computing

2002

Addressing, Routing, and Broadcasting in Hexagonal Mesh Mul-
tiprocessors

IEEE Transactions on Computers 1990

Performance Analysis of Virtual Cut-Through Switching in
HARTS: A Hexagonal Mesh Multicomputer

IEEE Transactions on Computers 1990

HARTS: A Distributed Real-Time Architecture Computer 1991

Cell identification codes for tracking mobile users Wireless Networks 2002

Table 7: Metadata for cluster extracted from cit-DBLP: Cluster of size 9, edge density of 0.33
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Paper Title Venue Year

Classical linear logic of implications Mathematical Structures in Com-
puter Science

2005

Logic continuations Journal of Logic Programming 1987

Axioms for control operators in the CPS hierarchy Higher-Order and Symbolic Compu-
tation

2007

Formalizing Implementation Strategies for First-Class Continua-
tions

Proceedings of the 9th European
Symposium on Programming Lan-
guages and Systems

2000

Linearly Used E↵ects: Monadic and CPS Transformations into
the Linear Lambda Calculus

Proceedings of the 6th International
Symposium on Functional and Logic
Programming

2002

On Exceptions Versus Continuations in the Presence of State Proceedings of the 9th European
Symposium on Programming Lan-
guages and Systems

2000

What is a Categorical Model of Intuitionistic Linear Logic? Proceedings of the Second Interna-
tional Conference on Typed Lambda
Calculi and Applications

1995

Using a Continuation Twice and Its Implications for the Expres-
sive Power of call/cc

Higher-Order and Symbolic Compu-
tation

1999

From control e↵ects to typed continuation passing Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on
Principles of programming lan-
guages

2003

Continuations: A Mathematical Semantics for Handling
FullJumps

Higher-Order and Symbolic Compu-
tation

2000

Comparing Control Constructs by Double-Barrelled CPS Higher-Order and Symbolic Compu-
tation

2002

Linear Continuation-Passing Higher-Order and Symbolic Compu-
tation

2002

Definitional Interpreters for Higher-Order Programming Lan-
guages

Higher-Order and Symbolic Compu-
tation

1998

Essentials of programming languages Book 1992

Glueing and orthogonality for models of linear logic Theoretical Computer Science 2003

Frame rules from answer types for code pointers Conference record of the 33rd
ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming
languages

2006

Table 8: Metadata for cluster extracted from cit-DBLP: Cluster of size 16, edge density of 0.42
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8 Comparisons with other methods489

8.1 Shortcomings of Spectral k-way cut490

In this section, we first look at some comparisons with the traditional spectral k-way clustering algorithm.491

The implementation here is the scikit-learn version, which uses the celebrated algorithm due to Ng,492

Jordan and Weiss [23]. The primary drawback of this procedure is that this gives no strong guarantees on493

internal density. Moreover, they are quite susceptible to minor changes in the graph: small perturbations494

can vastly alter the clusters obtained. We observe the results of the k-way clustering algorithm on some of495

our graphs: consistently, we notice that the algorithm overwhelmingly prefers a large single component, even496

for k as large as 100. The majority of the clusters obtained are otherwise quite small, often of size less than497

3 or even singletons and disconnected. Moreover, even the edge densities in these components is remarkably498

low. Note that at such low values of edge density, triangle density is only further lower.This provides more499

evidence that while k-way clustering succeeds in some aspects, it does not perform particularly well if our500

objective is to find dense communities in networks.501

Dataset #Vertices k Clusters< 3 Clusters> 10 Max. Cluster %Vertices in max ED of max

soc-hamsterster 2,427
20 25.00% 40.00% 2,224 91.64% 0.0005
60 8.33% 21.67% 1,960 80.67% 0.0006
100 23.00% 10.00% 1,887 77.75% 0.0007

socfb-Rice31 4,088
20 25.00% 65.00% 1,745 39.97% 0.0076
60 45.00% 33.33% 1,891 46.26% 0.0011
100 54.00% 22.00% 1,598 39.09% 0.0016

ca-cond-matL 16,264
20 0.00% 40.00% 14,854 91.33% 7.372⇥10�5

60 6.67% 53.33% 14,535 89.37% 7.699⇥10�5

100 2.00% 46.00% 14,261 87.68% 7.998⇥10�5

ca-CondMat 23,133
20 0.00% 65.00% 22,467 97.12% 4.583⇥10�5

60 5.00% 35.00% 22,132 95.67% 4.779⇥10�5

100 9.00% 19.00% 21,924 94.77% 4.813⇥10�5

Table 9: Summary of data about the extracted clusters across datasets, ED refers to edge density and size
refers to the number of vertices. The columns ‘Clusters< 3’ and ‘Clusters> 10’ respectively refer to the
percentage of the (k) clusters that have size less than 3 and greater than 10, ‘Max. Cluster’ refers to the
size of the largest cluster, ‘%Vertices in max’ is this size as a fraction of the entire graph, and ‘ED of max’
refers to the density in the largest cluster. We look at the variation in some metrics as we increase k. We
observe that the algorithm, in its search for sparse cuts, ends up finding less meaningful clusters. Across all
datasets, the majority (in some cases nearly all) the vertices have gone to a single large cluster, and most of
the rest is in small clusters, often fewer than 3 vertices.

8.2 Shortcomings of the Louvain algorithm502

The classic Louvain algorithm [4, 1] produces clusters with low uniformity value. We show scatter plots503

of the uniformity values in Fig. 16. Observe that, compared to the high uniformity values of the spectral504

triadic clusters, Louvain clusters have lower values. Hence, Louvain clusters are much less assortative. This505

is consistent with the literature that shows that Louvain’s clusters are often disconnected [33].506
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(a) soc-hamsterster (b) socfb-Rice31

(c) ca-cond-matL (d) ca-CondMat

Figure 16: Scatter plots for uniformity (↵) across di↵erent datasets, for both spectral triadic decomposi-
tions and the classic Louvain algorithm. We observe that the uniformity values of the Louvain clusters is
significantly lower.
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