
A Dichotomy Theorem for Linear Time
Homomorphism Orbit Counting in Bounded
Degeneracy Graphs
Daniel Paul-Pena �

University of California, Santa Cruz, CA, USA

C. Seshadhri �

University of California, Santa Cruz, CA, USA

Abstract
Counting the number of homomorphisms of a pattern graph H in a large input graph G is a
fundamental problem in computer science. In many applications in databases, bioinformatics, and
network science, we need more than just the total count. We wish to compute, for each vertex
v of G, the number of H-homomorphisms that v participates in. This problem is referred to as
homomorphism orbit counting, as it relates to the orbits of vertices of H under its automorphisms.

Given the need for fast algorithms for this problem, we study when near-linear time algorithms
are possible. A natural restriction is to assume that the input graph G has bounded degeneracy, a
commonly observed property in modern massive networks. Can we characterize the patterns H for
which homomorphism orbit counting can be done in near-linear time?

We discover a dichotomy theorem that resolves this problem. For pattern H, let ¸ be the length
of the longest induced path between any two vertices of the same orbit (under the automorphisms
of H). If ¸ Æ 5, then H-homomorphism orbit counting can be done in near-linear time for bounded
degeneracy graphs. If ¸ > 5, then (assuming fine-grained complexity conjectures) there is no
near-linear time algorithm for this problem. We build on existing work on dichotomy theorems
for counting the total H-homomorphism count. Surprisingly, there exist (and we characterize)
patterns H for which the total homomorphism count can be computed in near-linear time, but the
corresponding orbit counting problem cannot be done in near-linear time.

2012 ACM Subject Classification Mathematics of computing æ Graph algorithms; Theory of
computation æ Graph algorithms analysis

Keywords and phrases Homomorphism counting, Bounded degeneracy graphs, Fine-grained com-
plexity, Orbit counting, Subgraph counting

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.54

Related Version Full Version: https://arxiv.org/abs/2211.08605

Funding Both authors are supported by NSF CCF-1740850, CCF-1839317, CCF-2402572, and
DMS-2023495.

1 Introduction

Analyzing the occurrences of a small pattern graph H in a large input graph G is a central
problem in computer science. The theoretical study has led to a rich and immensely deep
theory [39, 20, 30, 24, 40, 2, 23, 45, 51, 17, 16]. The applications of graph pattern counts
occur across numerous scientific areas, including logic, biology, statistical physics, database
theory, social sciences, machine learning, and network science [34, 19, 22, 18, 27, 13, 29, 42,
59, 45, 25, 44]. (Refer to the tutorial [53] for more details on applications.)

A common formalism used for graph pattern counting is homomorphism counting. The
pattern graph is denoted H = (V (H), E(H)) and is assumed to have constant size. The
input graph is denoted G = (V (G), E(G)). Both graphs are simple and do not contain

© Daniel Paul-Pena and C. Seshadhri;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 54; pp. 54:1–54:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dpaulpen@ucsc.edu
https://orcid.org/0009-0008-1073-6173
mailto:sesh@ucsc.edu
https://orcid.org/0000-0003-2163-3555
https://doi.org/10.4230/LIPIcs.ISAAC.2024.54
https://arxiv.org/abs/2211.08605
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

self-loops. An H-homomorphism is a map f : V (H) æ V (G) that preserves edges. Formally,
’(u, v) œ E(H), (f(u), f(v)) œ E(G). Let HomH(G) denote the number of distinct H-
homomorphisms in G.

Given the importance of graph homomorphism counts, the study of e�cient algorithms
for this problem is a subfield in itself [35, 3, 18, 27, 26, 24, 13, 23, 14, 51]. The simplest
version of this problem is when H is a triangle, itself a problem that attracts much attention.
Let n = |V (G)| and k = |V (H)|. Computing HomH(G) is #W [1]-hard when parameterized
by k (even when H is a k-clique), so we do not expect no(k) algorithms for general H [24].
Much of the algorithmic study of homomorphism counting is in understanding conditions on
H and G when the trivial nk running time bound can be beaten.

Our work is inspired by the challenges of modern applications of homomorphism counting,
especially in network science. Typically, n is extremely large, and only near-linear time
(n · poly(log n)) algorithms are feasible. Inspired by a long history and recent theory on this
topic, we focus on bounded degeneracy input graphs (we say bounded degeneracy graphs to
refer to graphs belonging to classes of graphs with bounded degeneracy). This includes all
non-trivial minor-closed graph families, such as planar graphs, bounded genus graphs, and
bounded tree-width graphs. Many practical algorithms for large-scale graph pattern counting
use algorithms for bounded degeneracy graphs [2, 38, 45, 43, 37, 44]. Real-world graphs
typically have a small degeneracy, comparable to their average degree ([32, 37, 55, 5, 9], also
Table 2 in [5]).

Secondly, many modern applications for homomorphism counting require more fine-
grained statistics than just the global count HomH(G). The aim is to find, for every vertex
v of G, the number of homomorphisms that v participates in. Seminal work in network
analysis for bioinformatics plots the distributions of these per-vertex counts to compare
graphs [36, 46]. Orbit counts can be used to generate features for vertices, sometimes called
the graphlet kernel [54]. In the past few years, there have been many applications of these
per-vertex counts [10, 59, 52, 57, 4, 58, 50, 60, 61].

Algorithms for this problem require considering the “roles” that v could play in a
homomorphism. For example, in a 7-path (a path of length 6) there are 4 di�erent roles: a
vertex v could be in the middle, could be at the end, or at two other positions. These roles
are colored in Fig. 1. The roles are called orbits (defined in the Section 3), and the problem
of H-homomorphism orbit counting is as follows: for every orbit Â in H and every vertex v
in G, output the number of homomorphisms of H where v participates in the orbit Â. This
is the main question addressed by our work:

What are the pattern graphs H for which the H-homomorphism orbit counting problem is
computable in near-linear time (when G has bounded degeneracy)?

Recent work of Bressan followed by Bera-Pashanasangi-Seshadhri introduced the question
of homomorphism counting for bounded degeneracy graphs, from a fine-grained complexity
perspective [14, 8]. A dichotomy theorem for near-linear time counting of HomH(G) was
provided in subsequent work [6]. Assuming fine-grained complexity conjectures, HomH(G)
can be computed in near-linear time i� the longest induced cycle of H has length at most 5.
It is natural to ask whether these results extend to orbit counting.

1.1 Main Result
We begin with some preliminaries. The input graph G = (V (G), E(G)) has n vertices and
m edges. A central notion in our work is that of graph degeneracy, also called the coloring
number.

D. Paul-Pena and C. Seshadhri 54:3

Figure 1 Examples of orbits and LIPCO values. Vertices in the same orbit have the same color.
The top graph is the 7-path (a path of length 6). There is an induced path of length 6 between
the red vertices, hence the LIPCO of this graph is 6. Theorem 5 implies that we can not compute
OrbitHom in near-linear time.
The bottom graph adds a triangle at the end, breaking the symmetry, and the only vertices in the
same orbit in that graph are the red ones. The LIPCO in this graph is now less than 6 so we can
compute OrbitHom in near-linear time.

I Definition 1. A graph G is Ÿ-degenerate if the minimum degree in every subgraph of G is
at most Ÿ.

The degeneracy of G is the minimum value of Ÿ such that G is Ÿ-degenerate.

A family of graphs has bounded degeneracy if the degeneracy is constant with respect
to the graph size. Bounded degeneracy graph classes are extremely rich. For example, all
non-trivial minor-closed families have bounded degeneracy. This includes bounded treewidth
graphs. Preferential attachment graphs also have bounded degeneracy; real-world graphs
have a small value of degeneracy (often in the 10s) with respect to their size (often in the
hundreds of millions) [5].

We assume the pattern graph H = (V (H), E(H)) to have a constant number of vertices.
(So we suppress any dependencies on purely the size of H.) Consider the group of auto-
morphisms of H. The vertices of H can be partitioned into orbits, which consist of vertices
that can be mapped to each other by some automorphism (defined formally in Definition 6).
For example, in Fig. 1, the 7-path has four di�erent orbits, where each orbit has the same
color. The 7-path with a hanging triangle (in Fig. 1) has more orbits, since the pattern is no
longer symmetric with respect to the “center” of the 7-path and hence the opposite “ends”
of the 7-path cannot be mapped by a non-trivial automorphism.

The set of orbits of the pattern H is denoted �(H). Let �(H, G) be the set of homo-
morphisms from H to G (HomH(G) = |�(H, G)|). We now define our main problem.

I Definition 2. Homomorphism Orbit Counts: For each orbit Â œ �(H) and vertex v œ V (G),
define OrbitHomH,Â(v) to be the number of H-homomorphisms mapping a vertex of Â to v.
Formally, OrbitHomH,Â(v) = |{„ œ �(H, G) : ÷h œ Â, „(h) = v}|.

The problem of H-homomorphism orbit counting is to output the values OrbitHomH,Â(v)
for all v œ V (G), Â œ �(H). (Abusing notation, OrbitHomH(G) refers to the list/vector of
all of these values.)

Note that for a given H, the size of the output is n|�(H)| (recall n = |V (G)|). For
example, when H is the 7-path, we will get 4n counts, for each vertex and each of the four
orbits.

Our main result is a dichotomy theorem that precisely characterizes patterns H for which
OrbitHomH(G) can be computed in near-linear time. We introduce a key definition.

ISAAC 2024

54:4 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

I Definition 3. For a pattern H, the Longest Induced Path Connecting Orbits of H, denoted
LIPCO(H) is defined as follows. It is the length of the longest induced simple path, measured
in edges, between any two vertices h, hÕ in H (where h may be equal to hÕ, forming a cycle)
in the same orbit.

Again refer to Fig. 1. The 7-path has a LIPCO of six, since the ends are in the same
orbit. On the other hand, the second pattern (7-path with a triangle) has a LIPCO of 3 due
to the triangle.

The Triangle Detection Conjecture was introduced by Abboud and Williams on the
complexity of determining whether a graph has a triangle [1]. It is believed that this problem
cannot be solved in near-linear time, and indeed, may even require �(m4/3) time. We use
this conjecture for the lower bound of our main theorem.

I Conjecture 4 (Triangle Detection Conjecture [1]). There exists a constant “ > 0 such that
in the word RAM model of O(log n) bits, any algorithm to detect whether an input graph on
m edges has a triangle requires �(m1+“) time in expectation.

Our main theorem proves that the LIPCO determines the dichotomy. Note that because
G is a bounded degeneracy graph we have m = O(n), we will be expressing the bounds in
terms of m.

I Theorem 5 (Main Theorem). Let G be a graph with n vertices, m edges, and bounded
degeneracy. Let “ > 0 denote the constant from the Triangle Detection Conjecture (Conjec-
ture 4).

If LIPCO(H) Æ 5: there exists a deterministic algorithm that computes OrbitHomH(G)
in time O(m log n).1
If LIPCO(H) > 5: assume the Triangle Detection Conjecture. There is no algorithm
with (expected) running time O(m1+“) that computes OrbitHomH(G).

Orbit Counting vs Total Homomorphism Counting
In the following discussion, we use “linear” to actually mean near-linear, we assume that the
Triangle Detection Conjecture is true, and we assume that G has bounded degeneracy.

One of the most intriguing aspects of the dichotomy of Theorem 5 is that it di�ers
from the condition for getting the total homomorphism count. As mentioned earlier, the
inspiration for Theorem 5 is the analogous result for determining HomH(G). There is a
near-linear time algorithm i� the length of the longest induced cycle (LICL) of H is at most
five. Since the definition of LIPCO considers induced cycles (induced path between a vertex
to itself), if LIPCO(H) Æ 5, then LICL(H) Æ 5. This implies, not surprisingly, that the
total homomorphism counting problem is easier than the orbit counting problem.

But there exist patterns H for which the orbit counting problem is provably harder than
total homomorphism counting, a simple example is the 7-path (path with 7 vertices). There
is a simple linear time dynamic program for counting the homomorphism of paths. But the
endpoints are in same orbit, so the LIPCO is six, and Theorem 5 proves the non-existence of
linear time algorithms for orbit counting. On the other hand, the LIPCO of the 6-path is
five, so orbit counting can be done in linear time.

Consider the pattern at the bottom of Fig. 1. The LICL is three, so the total homomorph-
ism count can be determined in linear time. Because the ends of the underlying 7-path lie in
di�erent orbits, the LIPCO is also three (by the triangle). Theorem 5 provides a linear time
algorithm for orbit counting.

1 The exact dependency on the degeneracy Ÿ of the input graph G is O
!
Ÿ|H|≠1"

.

D. Paul-Pena and C. Seshadhri 54:5

1.2 Main Ideas
The starting point for homomorphism counting on bounded degeneracy graphs is the seminal
work of Chiba-Nishizeki on using acyclic graph orientations [20]. It is known that, in linear
time, the edges of a bounded degeneracy graph can be acyclically oriented while keeping the
outdegree bounded [41]. For clique counting, we can now use a brute force algorithm in all
out neighborhoods, and get a linear time algorithm. Over the past decade, various researchers
observed that this technique can generalize to certain other pattern graphs [21, 45, 43, 44].
Given a pattern H, one can add the homomorphism counts of all acyclic orientations of H
for an acyclic orientation of G. In certain circumstances, each acyclic orientation can be
e�ciently counted by a carefully tailored dynamic program that breaks the oriented H into
subgraphs spanned by rooted, directed trees.

Bressan gave a unified treatment of this approach through the notion of DAG-tree
decompositions. [14] These decompositions give a systematic way of breaking up an oriented
pattern into smaller pieces, such that homomorphism counts can be computed by a dynamic
program. Bera et al. showed that if the LICL of H is at most 5, then the DAG-treewidth of
H is at most one [8, 6]. This immediately implies Bressan’s algorithm runs in linear time.

Our result on orbit counting digs deeper into the mechanics of Bressan’s algorithm. To
run in linear time, Bressan’s algorithm requires “compressed” data structures that store
information about homomorphism counts. For example, the DAG-tree decomposition based
algorithm can count 4-cycles in linear time for bounded degeneracy graphs (this was known
from Chiba-Nishizeki as well [20]). But there could exist quadratically many 4-cycles in such
a graph. Consider two vertices connected by �(n) disjoint paths of length 2; each pair of
paths yields a distinct 4-cycle. Any linear time algorithm for 4-cycle counting has to carefully
index directed paths and combine these counts, without actually touching every 4-cycle.

By carefully looking at Bressan’s algorithm, we discover that “local” per-vertex information
about H-homomorphisms can be computed. Using the DAG-tree decomposition, one can
combine these counts into a quantity that looks like orbit counts. Unfortunately, we cannot
get exact orbit counts, but rather a weighted sum of homomorphisms.

To extract exact orbit counts, we dig deeper into the relationship between orbit counts
and per-vertex homomorphism counts. This requires looking into the behavior of independent
sets in the orbits of H. We then design an inclusion-exclusion formula that “inverts” the
per-vertex homomorpishm counts into orbit counts. The formula requires orbit counts for
other patterns H Õ that are constructed by merging independent sets in the same orbit of H.

Based on previous results, we can prove that if the LICL of all these H Õ patterns is at
most 5, then OrbitHomH(G) can be computed in (near)linear time. This LICL condition
over all H Õ is equivalent to the LIPCO of H being at most 5. Achieving the upper bound of
Theorem 5.

The above seemingly ad hoc algorithm optimally characterizes when orbit counting is linear
time computable. To prove the matching lower bound, we use tools from the breakthrough
work of Curticapean-Dell-Marx [23]. They prove that the complexity of counting linear
combinations of homomorphism counts is determined by the hardest individual count (up to
polynomial factors). Gishboliner-Levanzov-Shapira give a version of this tool for proving
linear time hardness [31]. Consider a pattern H with LIPCO at least six. We can construct
a pattern H Õ with LICL at least six by merging vertices of an orbit in H. We use the tools
above to construct a constant number of linear sized graphs G1, G2, . . . , Gk such that a linear
combination of H-orbit counts on these graphs yields the total H Õ-homomorphism count on
G. The latter problem is hard by existing bounds, and hence the hardness bounds translate
to H-orbit homomorphism counting.

ISAAC 2024

54:6 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

2 Related Work

Homomorphism and subgraph counting on graphs is an immense topic with an extensive
literature in theory and practice. For a detailed discussion of practical applications, we refer
the reader to a tutorial [53].

Homomorphism counting is intimately connected with the treewidth of the pattern H. The
notion of tree decomposition and treewidth were introduced in a seminal work by Robertson
and Seymour [47, 48, 49]; although it has been discovered before under di�erent names [11, 33].
A classic result of Dalmau and Jonsson [24] proved that HomH(G) is polynomial time solvable
if and only if H has bounded treewidth, otherwise it is #W [1]-complete. Díaz et al [26]
gave an algorithm for homomorphism counting with runtime O(2knt(H)+1) where t(H) is
the treewidth of the pattern graph H and k the number of vertices of H.

To improve on these bounds, recent work has focused on restrictions on the input G [51]. A
natural restriction is bounded degeneracy, which is a nuanced measure of sparsity introduced
by early work of Szekeres-Wilf [56]. Many algorithmic results exploit low degeneracy for
faster subgraph counting problems [20, 28, 2, 38, 45, 43, 37, 44].

Pioneering work of Bressan introduced the concept of DAG-treewidth for faster al-
gorithms for homomorphism counting in bounded degeneracy graphs [14]. Bressan gave an
algorithm for counting HomH(G) running in time essentially m·(H), where · denotes the
DAG-treewidth. The result also proves that (assuming ETH) there is no algorithm running
in time mo(·(H)/ log ·(H)).

Bera-Pashanasangi-Seshadhri build on Bressan’s methods to discover a dichotomy theorem
for linear time homomorphism counting in bounded degeneracy graphs [7, 8]. Gishboliner,
Levanzov, and Shapira independently proved the same characterization using slightly di�erent
methods [31, 6].

We give a short discussion of the Triangle Detection Conjecture. Itai and Rodeh [35] gave
the first non-trivial algorithm for the triangle detection and finding problem with O(m3/2)
runtime. The current best known algorithm runs in time O(min{nÊ, m2Ê/(Ê+1)}) [3], where
Ê is the matrix multiplication exponent. Even for Ê = 2, the bound is m4/3 and widely
believed to be a lower bound. Many classic graph problems have fine-grained complexity
hardness based on Triangle Detection Conjecture [1].

Homomorphism or subgraph orbit counts have found significant use in network analysis and
machine learning. Przulj introduced the use of graphlet (or orbit count) degree distributions
in bioinformatics [46]. The graphlet kernel of Shervashidze-Vishwanathan-Petri-Mehlhorn-
Borgwardt uses vertex orbits counts to get embeddings of vertices in a network [54]. Four
vertex subgraph and large cycle and clique orbit counts have been used for discovering special
kinds of vertices and edges [59, 50, 60, 61]. Orbits counts have been used to design faster
algorithms for finding dense subgraphs in practice [10, 52, 57, 4, 58].

3 Preliminaries

We use G to denote the input graph and H to denote the pattern graph, both
G = (V (G), E(G)) and H = (V (H), E(H)) are simple, undirected and connected graphs.
We denote |V (G)| and |E(G)| by n and m respectively and |V (H)| by k.

A pattern graph H is divided into orbits, we use the definition from Bondy and Murty
(Chapter 1, Section 2 [12]):

I Definition 6. Fix a graph H = (V (H), E(H)). An automorphism is a bijection ‡ : V (H) æ
V (H) such that (u, v) œ E(H) i� (‡(u), ‡(v)) œ E(H). The group of automorphisms of H is
denoted Aut(H).

D. Paul-Pena and C. Seshadhri 54:7

Define an equivalence relation on V (H) as follows. We say that u ≥ v (u, v œ V (H)) i�
there exists an automorphism that maps u to v. The equivalence classes of the relation are
called orbits.

We refer to the set of orbits in H as �(H) and to individual orbits in �(H) as Â. Note
that every vertex h œ V (H) belongs to exactly one orbit. We can represent an orbit by a
canonical (say lexicographically least) vertex in the orbit. Somewhat abusing notation, we
can think of the set of orbits as a subset of vertices of H, where each vertex plays a “distinct
role” in H. Fig. 1 has examples of di�erent graphs with their separate orbits.

We now define homomorphisms.

I Definition 7. An H-homomorphism from H to G is a mapping „ : V (H) æ V (G) such
that for all (u, v) œ E(H), („(u), „(v)) œ E(G). We refer to the set of homomorphisms from
H to G as �(H, G).

We now define a series of counts.

HomH(G): This is the count of H-homomorphisms in G. So HomH(G) = |�(H, G)|.
OrbitHomH,Â(v): For a vertex v œ V (G), OrbitHomH,Â(v) is the number of
H-homomorphisms that map any vertex in the orbit Â to v. Formally, OrbitHomH,Â(v) =
|{„ œ �(H, G) : ÷u œ Â, „(u) = v}|.
OrbitHomH,Â(G), OrbitHomH(G): We use OrbitHomH,Â(G) to denote the list/vector
of counts {OrbitHomH,Â(v)} over all v œ V (G). Similarly, OrbitHomH(G) denotes the
sequence of lists of counts OrbitHomH,Â(G) over all orbits Â.

Our aim is to compute OrbitHomH(G), which are a set of homomorphism counts. We
use existing algorithmic machinery to compute homomorphism counts per vertex of H, so
part of our analysis will consist of figuring out how to go between these counts. As we will
see, this is where the LIPCO parameter makes an appearance.

Acyclic orientations. These are a key algorithmic tool in e�cient algorithms for bounded
degeneracy graphs. An acyclic orientation of an undirected graph G is a digraph obtained by
directing the edges of G such that the digraph is a DAG. We will encapsulate the application
of the degeneracy in the following lemma, which holds from a classic result of Matula and
Beck [41].

I Lemma 8. Suppose G has degeneracy Ÿ. Then, in O(m + n) time, one can compute an
acyclic orientation Gæ of G with the following property. The maximum outdegree of Gæ is
precisely Ÿ. (Gæ is also called a degeneracy orientation.)

The set of all acyclic orientations of H is denoted �(H). Our algorithm will enumerate
over all such orientations.

Note that all definitions of homomorphisms carry over to DAGs.

3.1 DAG-tree decompositions
A central part of our result is applying intermediate lemmas from an important algorithm
of Bressan for homomorphism counting [14]. This subsection gives a technical overview of
Bressan’s techique of DAG-tree decompositions and related lemmas. Our aim is to state the
key lemmas from previous work that can be used as a blackbox.

ISAAC 2024

54:8 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

The setting is as follows. We have an acyclic orientation Gæ and a DAG pattern P
(think of P as a member of �(H); P is an acyclic orientation of H). Bressan’s algorithm
gives a dynamic programming approach to counting �(P, Gæ).

We introduce some notation. We use the standard notion of reachability in digraphs:
vertex v is reachable from u if there is a directed path from u to v.

S: The set of sources in the DAG P .
ReachP (s): For source s œ S, ReachP (s) is the set of vertices in P reachable from s.
ReachP (B): Let B ™ S. ReachP (B) =

t
sœB

ReachP (s).
P [B]: This is the subgraph of P induced by ReachP (B).

I Definition 9 (DAG-tree decomposition [14]). Let P be a DAG with source vertices S. A
DAG-tree decomposition of P is a tree T = (B, E) with the following three properties:
1. Each node B œ B (referred to as a “bag” of sources) is a subset of the source vertices S:

B ™ S.
2. The union of the nodes in T is the entire set S:

t
BœB B = S.

3. For all B, B1, B2 œ B, if B lies on the unique path between the nodes B1 and B2 in T ,
then Reach(B1) fl Reach(B2) ™ Reach(B).

I Definition 10. Let P be a DAG. For any DAG-tree decomposition T to P , the DAG-
treewidth ·(T) is defined as maxBœB |B|. The DAG-treewidth of P , denoted ·(P), is the
minimum value of ·(T) over all DAG-tree decompositions T of P .

Two important lemmas. We state two critical results from previous work. Both of these
are highly non-trivial and technical to prove. We will use them in a black-box manner. The
first lemma, by Bera-Pashanasangi-Seshadhri, connects the Largest Induced Cycle Length
(LICL) to DAG-treewidth [8].

I Lemma 11 (Theorem 4.1 in [8]). For a simple graph H: LICL(H) Æ 5 i� ’P œ
�(H), ·(P) = 1.

The second lemma is an intermediate property of Bressan’s subgraph counting al-
gorithm [15]. We begin by defining homomorphism extensions. Think of some directed
pattern P that we are trying to count. Fix a (rooted) DAG-tree decomposition T . Let P Õ be a
subgraph of P , P ÕÕ be a subgraph of P Õ. A P Õ-homomorphism „Õ extends a P ÕÕ-homomorphism
„ÕÕ if ’v œ V (P ÕÕ), „Õ(v) = „ÕÕ(v). Basically, „Õ agrees with „ÕÕ wherever the latter is defined.

ext(P Õ, G; „): Let „ be a homomorphism from a subgraph of P Õ to G. Then ext(P Õ, G; „)
is the number of P Õ-homomorphisms extending „.
P [down(B)]: Let B be a node in the DAG-tree decomposition T of P . The set down(B)
is the union of bags that are descendants of B in T . Furthermore P [down(B)] is the
pattern induced by Reach(down(B)).

A technical lemma in Bressan’s result shows that extension counts can be obtained
e�ciently. We will refer to the procedure in this lemma as “Bressan’s algorithm”.

I Lemma 12 (Lemma 5 in [15]). Let Gæ be a digraph with outdegree at most d and P be a
DAG with k vertices. Let T = (B, E) be a DAG-tree decomposition for P , and B any element
of B. There is a procedure, that in time O(|B|poly(k)dk≠·(T)n·(T) log n), returns a dictionary
storing the following values: for every „ : P [B] æ Gæ, it has ext(P [down(B)], G; „).

D. Paul-Pena and C. Seshadhri 54:9

Let us explain this lemma in words. For any bag B, which is a set of sources in P , consider
P [B], which is the subgraph induced by ReachP (B). For every P [B]-homomorphism „, we
wish to count the number of extensions to P [down(B)] (the subgraph induced by vertices of
P reachable by any source in any descendant bag of B).

4 Obtaining Vertex-Centric Counts

We define vertex-centric homomorphism counts, which allows us to ignore orbits and sym-
metries in H. Quite simply, for vertices h œ V (H) and v œ V (G), we count the number of
homomorphisms from H to G that map h to v.
I Definition 13. Vertex-centric Counts: For each vertex h œ V (H) and vertex v œ V (G),
let VertexHomH,h(v) be the number of H-homomorphisms that map h to v.

Let VertexHomH(G) denote the list of VertexHomH,h(v) over all h œ V (H) and v œ V (G).
We can show that the vertex-centric counts can be obtained in near-linear time when

LICL(H) Æ 5:
I Theorem 14. There is an algorithm that takes as input a bounded degeneracy graph G and
a pattern H with LICL(H) Æ 5, and has the following properties. It outputs VertexHomH(G)
and runs in O(n log n) time.

Before proving this theorem we need to introduce two more lemmas. First, we invoke the
following lemma from [15]:
I Lemma 15 (Lemma 4 in [15]). Given any B ™ S, the set of homomorphisms �(P [b], Gæ)
has size O(dk≠|B|n|B|) and can be enumerated in time O(k2dk≠|B|n|B|).

Second, we show how to use the output of Bressan’s algorithm to obtain the Vertex-centric
counts:
I Lemma 16. Let P be a directed pattern on k vertices, T = (B, E) be a DAG-tree decompos-
ition of P with ·(P) = 1 (All nodes/bags in T are singletons), and Gæ be a directed graph
with n vertices and max degree d. Let b be the root of T and h be any vertex in P [b]. We can
compute VertexHomP,h(v) in time O(poly(k)dk≠1n log n).
Proof. The algorithm of Lemma 12 will return a data structure/dictionary that gives the
following values. For each „ : P [b] æ Gæ, it provides ext(P [down(b)], G; „). Note that b is
the root of T . By the properties of a DAG-tree decomposition, down(b) contains all vertices
of P and P [down(b)] = P . Hence, the dictionary gives the values ext(P, Gæ; „), that is, the
number of homomorphisms „Õ : P æ Gæ that extend „.

Let h be a vertex in P [b]. We can partition the set of homomorphisms from
P [b] to Gæ, �(P [b], Gæ), into sets �b,h,v defined as follows. For each v œ V (G),
�b,h,v := {„ œ �(P [b], Gæ) : „(h) = v}.

By Lemma 15 we can list all the homomorphisms �(P [b], Gæ) in O(k2dk≠1n) time, by
the same lemma we know that �(P [b], Gæ) will have size at most O(dk≠1n), hence we can
iterate over the list of homomorphisms and check the value of „(h). We can then express
VertexHomP (Gæ) as follows:

VertexHomP,h(v) = |{„Õ œ �(P, Gæ) : „Õ(h) = v}|

=
ÿ

„œ�(P [b],Gæ):„(h)=v

ext(P, Gæ; „)

=
ÿ

„œ�b,h,v :„(h)=v

ext(P, Gæ; „)

ISAAC 2024

54:10 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

We can compute all of these values by enumerating all the elements in „ œ �b,h,v (over
all v), and making a dictionary access to get ext(P, Gæ; „). The total running time is
O(k2dk≠1n log n), where log n is extra overhead of accessing the dictionary.

By Lemma 12, the dictionary construction takes O(|B|poly(k) dk≠·(T)n·(T) log n) time.
Since ·(T) = 1 and |B| = O(k), we can express the total complexity as O(poly(k)dk≠1n log n).

J

We can now complete the proof of Theorem 14:

Proof of Theorem 14. The first step of our algorithm is to construct the degeneracy orient-
ation Gæ of G. By Lemma 8, it can be computed in O(m + n) time. Since G has bounded
degeneracy, Gæ has bounded outdegree. When orienting G as Gæ, each homomorphism
from H to G becomes a homomorphism of exactly one of the directed patterns P œ �(H)
to Gæ. We can hence compute VertexHomH(G) as the sum of VertexHomP (Gæ) for every
acyclic orientation of H. This is given by the following equation:

VertexHomH(G) =
ÿ

P œ�(H)
VertexHomP (Gæ) (1)

Because LICL(H) Æ 5, Lemma 11 implies that for all P œ �(H), ·(H) = 1. There exists
a DAG-tree decomposition T = (B, E) of P with ·(T) = 1. We use the output of Bressan’s
algorithm to obtain the Vertex-centric counts.

The DAG-tree decomposition T can be arbitrarily rooted at any node b. Moreover, for
each h œ V (P), there must exist some source b such that h œ P [b] (meaning, h is reachable
from b). So, by rooting T at all possible nodes (singleton bags), we can ensure that h is in
P [b]. We can apply Lemma 16 to get all counts VertexHomP,h(v).

We complete the proof by bounding the running time and asserting correctness.
From Lemma 8, we can compute Gæ in O(m + n). Since G has bounded degeneracy,

m = O(n) and the outdegree d is bounded. The number of acyclic orientations of H, |�(H)|
is bounded by O(k!). In each iteration, by Lemma 16, we will take O(poly(k)dk≠1n log n).
For constant k and constant d, the running time is O(n log n).

Now we prove the correctness of the algorithm. Consider each P œ �(H). Let T = (B, E)
be the DAG-tree decomposition of P . For each b œ B, we compute VertexHomP,h(Gæ) for
all the vertices in h œ P [b]. By looping over each singleton bag b, we update counts for
all vertices in P . Hence, we are computing VertexHomP (Gæ). Finally, we sum over all
P œ �(H), which by Equation 1, gives us VertexHomH(G). J

5 From Vertex-Centric to Orbit Counts

We now show how to go from vertex-centric to orbit counts, using inclusion-exclusion. Much
of our insights are given by the following definitions.

I Definition 17. IS(Â): Given a pattern graph H, for every orbit Â œ �(H) we define
IS(Â) as the collection of all non empty subsets S ™ Â, such that S forms an independent
set (i.e. there is no edge in E(H) connecting any two vertices in S).

Formally, IS(Â) = {S ™ Â, S ”= ÿ : ’ h, hÕ œ S, (h, hÕ) /œ E(H)}.

I Definition 18. HS: For each set S œ IS(Â) we define HS as the graph resulting from
merging all the vertices in S into a single new vertex hS, removing any duplicate edge.

We state two more tools in our analysis. The first lemma relates the counts obtained in
the previous section (VertexHomHS (G)) to the desired output (OrbitHomH(G)).

D. Paul-Pena and C. Seshadhri 54:11

I Lemma 19 (Inclusion-exclusion formula).

OrbitHomH,Â(v) =
ÿ

SœIS(Â)
(≠1)|S|+1VertexHomHS ,hS (v)

In order to prove this lemma, we need to define the Signature of a homomorphisms. Let
„ be a homomorphism from H to G, we define Sig(„, Â, v) to be the subset of vertices from
the orbit Â that are mapped to v in „. Formally Sig(„, Â, h) = {h œ Â : „(h) = v}.

We prove a series of claims regarding the signature.

B Claim 20. The Signature of „ from Â to v, Sig(„, Â, v), must form an independent set of
vertices in V (H), that is, there are no edges in E(H) connecting two vertices in Sig(„, Â, v).

Proof. We prove by contradiction. Assume that S = Sig(„, Â, v) is not an Independent Set
of vertices of V (H), that means that we have a pair of vertices h, hÕ œ S such that there is an
edge connecting them. But from the definition of signature we have that „(h) = „(hÕ) = v,
however this is not a valid homomorphism from H to G as it is not preserving the (h, hÕ)
edge. C

The next claim allows us to relate the Signature with the Homomorphism Orbit Counts.

B Claim 21.

OrbitHomH,Â(v) =
ÿ

SœIS(Â)
|{„ œ �(H, G) : S = Sig(„, Â, v)}|

Proof. From the definition of Homomorphism Orbit Counts we have that OrbitHomH,Â(v) =
|{„ œ �(H, G) : ÷h œ Â, „(h) = v}|. Hence, su�ces to show that |{„ œ �(H, G) : ÷h œ
Â, „(h) = v}| =

q
SœIS(Â) |{„ œ �(H, G) : S = Sig(„, Â, v)}|.

Let „ œ �(H, G) be a homomorphism from H to G such that ÷h œ Â, „(h) = v. Let
S = Sig(„, Â, v), we know that S ”= ÿ as h is mapped to v and from Claim 20 we know that
it forms an independent set on the vertices of H. Hence S œ IS(Â).

To prove the other direction of the equality, su�ces to note that if a homomorphism „
contributes to the right side of the equation, then its signature S belongs to IS(Â), hence
there is at least one vertex h œ V (H) that is mapped to v, and thus „ contributes to the left
side of the equation. C

Now, we will relate the Signature with the Vertex-centric Counts:

B Claim 22. For each orbit Â in H and each vertex v in V (G) we have that ’ S œ IS(Â):

|„ œ �(H, G) : ’h œ S, „(h) = v| =
ÿ

S
Õ´S

S
ÕœIS(Â)

|„ : Sig(„, Â, v) = SÕ|

Proof. If „ is mapping all the vertices in S to v, then the Signature of „ from Â to v must be
a superset of S, Sig(„, Â, v) ´ S. Hence summing over such sets will reach the equality. Note
that we can add the restriction of SÕ belonging to IS(Â) as it is implied from Claim 20. C

Let �Õ = �(HS , G) be the set of homomorphism from HS to G. When S forms an
independent set there is an equivalence between the homomorphisms in �Õ that map hS to v
and the set of homomorphisms in �(H, G) that map all the vertices of S to v. In fact we
can prove the following claim:

ISAAC 2024

54:12 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

B Claim 23. If S is not empty and form an independent set:

|„ œ �(H, G) : ’ h œ S „(h) = v| = VertexHomHS ,hS (v)

Proof. From the definition of Vertex-centric Counts we have that VertexHomHS ,hS (v) =
|„Õ œ �(HS , G) : „(hS) = v|. Hence it su�ces to show that:

|„ œ �(H, G) : ’h œ S „(h) = v| = |„Õ œ �(HS , G) : „(hS) = v|

We do so by proving that there is a bijection between both sets, that is, a one to
one correspondence between them. Let �S = {„Õ œ �(HS , G) : „(hS) = v} and
�Õ

S
= {„ œ �(H, G) : ’h œ S, „(h) = v}. We show an invertible function f : �S æ �Õ

S
:

Given a homomorphism „ œ �S we obtain „Õ = f(„) œ �Õ
S

by setting „Õ(h) = „(h) ’ h œ
H \ S and „Õ(hS) = v. This is a valid homomorphism as we are mapping all the vertices
in HS to G and we are preserving the edges.
Given a homomorphism „Õ œ �Õ

S
we obtain „ = f Õ(„Õ) œ �S by setting „(h) = „Õ(h) ’ h œ

H \ S and „(h) = v ’ h œ S. Again this is a valid homomorphism as we are mapping all
the vertices in H to G and we are still preserving the edges.

Additionally, we have that for all „ œ �S , „ = f Õ(f(„)), which completes the proof. C

We will show one last claim that will be important when deriving the inclusion-exclusion
formula:

B Claim 24. Given a graph H, for every orbit Â œ �(H), any subset SÕ œ IS(Â) satisfies:
ÿ

S™S
Õ

S ”=ÿ

(≠1)|S|+1 = 1

Proof.

ÿ

S™S
Õ

S ”=ÿ

(≠1)|S|+1 =
|SÕ|ÿ

i=1

3
|SÕ|

i

4
(≠1)i+1

=
|SÕ|ÿ

i=1

33
|SÕ| ≠ 1

i ≠ 1

4
+

3
|SÕ| ≠ 1

i

44
(≠1)i+1 =

3
|SÕ ≠ 1|

0

4
(≠1)2 = 1 C

We now have all the tools required to prove Lemma 19:

Proof of Lemma 19.
ÿ

SœIS(Â)
(≠1)|S|+1VertexHomHS ,hS (v)

=
ÿ

SœIS(Â)
(≠1)|S|+1|„ œ �(H, G) : ’ h œ S „(u) = v| (Claim 23)

=
ÿ

SœIS(Â)
(≠1)|S|+1

ÿ

S
Õ´S

S
ÕœIS(Â)

|„ : Sig(„, Â, v) = SÕ| (Claim 22)

=
ÿ

SœIS(Â)

ÿ

S
Õ´S

S
ÕœIS(Â)

(≠1)|S|+1|„ : Sig(„, Â, v) = SÕ| (Factor in)

D. Paul-Pena and C. Seshadhri 54:13

=
ÿ

SÕœIS(Â)

ÿ

S™S
Õ

S ”=ÿ

(≠1)|S|+1|„ : Sig(„, Â, v) = SÕ| (Reorder)

=
ÿ

SÕœIS(Â)
|„ : Sig(„, Â, v) = SÕ|

ÿ

S™S
Õ

S ”=ÿ

(≠1)|S|+1 (Factor out)

=
ÿ

SÕœIS(Â)
|„ : Sig(„, Â, v) = SÕ| (Claim 24)

= OrbitHomH,Â(v) (Claim 21) J

The next lemma relates the Longest Induced Path Connecting Orbits (LIPCO) defined
in Definition 3 with the LICL of all the graphs HS , for all S œ IS(Â) and all orbits Â of H.

I Lemma 25. For every graph H, LIPCO(H) Æ 5 i� ’Â œ �(H), ’S œ IS(Â),
LICL(HS) Æ 5.

Proof. First, we show that if LIPCO(H) > 5 then ÷Â œ �(H), ÷S œ IS(Â), LICL(HS) > 5.
Consider the longest induced path in H with endpoints in the same orbit Â œ �(H), let h, hÕ

be the two endpoints of the path. We have two cases:
h = hÕ: In this case the induced path is actually just an induced cycle of length 6 or more
in H including the vertex h. For any Â and for any S ™ Â with |S| = 1 we have that
HS = H, and hence LICL(HS) > 5.
h ”= hÕ: In the other case we have that h, hÕ are distinct vertices. Consider the set
S = {h, hÕ}, we have that S œ IS(Â) as both h, hÕ œ Â and there is no edge connecting
them (otherwise we would have a longer induced cycle). We form HS by combining h
and hÕ into a single vertex, the induced path that we had in H becomes then an induced
cycle of length at least 6, which implies LICL(HS) > 5.

Now, we prove that if ÷Â œ �(H), ÷S œ IS(Â), LICL(HS) > 5 then LIPCO(H) > 5.
Let S be the set such that LICL(HS) > 5. Again, we have two cases:

|S| = 1: We have that HS = H and hence LICL(H) > 5, any vertex in that induced
cycle induces a path of the same length with such vertex in both ends, which implies
LIPCO(H) > 5.
|S| > 1: Let hS be the vertex in HS obtained by merging the vertices of S in H. Consider
the longest induced cycle in HS , if that cycle does not contain hS then that same cycle
exists in H and LICL(H) > 5, which implies LIPCO(H) > 5. Otherwise, we can
obtain H by splitting hS back into separate vertices, there will be two distinct vertices
h, hÕ œ S that are in the two ends of an induced path of the same length in H, thus
LIPCO(H) > 5. J

6 Wrapping it up

In this section we complete the proof of the main theorem for the upper bound. We also
give Algorithm 1, which summarizes the entire process.

I Theorem 26. There is an algorithm that, given a bounded degeneracy graph G and pattern
H with LIPCO(H) Æ 5, computes OrbitHomH(G) in time O(n log n).

Proof. Because we have that LIPCO(H) Æ 5, using Lemma 25 we get that ’Â œ �(H), ’S œ
IS(Â), LICL(HS) Æ 5. This means, using Theorem 14, that ’Â œ �(H), ’S œ IS(Â) we
can compute VertexHomHS (G) in time f(k)O(n log n).

ISAAC 2024

54:14 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

Using Lemma 19 we can compute OrbitHomH(G) from the individual counts of
VertexHomHS (G) (as shown in Algorithm 1), we have at most 2k sets S, hence the total
time complexity necessary to compute OrbitHomH(G) is O(n log n). J

Algorithm 1 Homomorphism Orbit Counts OrbitHomH(G).

1: for each Â œ �(H) do
2: for S œ IS(Â) do
3: Compute VertexHomHS ,hS (G)
4: end for
5: OrbitHomH,Â(G) =

q
SœIS(Â)(≠1)|S|+1VertexHomHS ,hS (v)

6: end for
7: Return OrbitHomH(G)

7 Lower Bound for computing Homomorphism Orbit Counts

In this section we prove the lower bound of Theorem 5. It will be given by the following
theorem:

I Theorem 27. Let H be a pattern graph on k vertices with LIPCO(H) > 5. Assuming
the Triangle Detection Conjecture, there exists an absolute constant “ > 0 such that for any
function f : N ◊ N æ N, there is no (expected) f(Ÿ, k)O(m1+“) algorithm for the OrbitHom
problem, where m and Ÿ are the number of edges and the degeneracy of the input graph,
respectively.

To prove this Theorem we will show how to express the Homomorphism Orbit Counts for
some orbit Â as a linear combination of Homomorphism counts of non-isomorphic graphs HS

for all S in IS(Â). Because LIPCO(H) > 5 we will have that the LICL of at least one of
these graphs is also greater than 5. We will then show that the hardness of computing Orbit
counts in the original graph is the same than the hardness of computing the Homomorphisms
counts. Finally we use a previous hardness result from [8] to complete the proof.

First, we introduce the following definition:

I Definition 28. Given a pattern graph H and an input graph G, for the orbit Â of H,
we define Agg(H, G, Â) as the sum over every vertex v œ V (G) of homomorphisms that are
mapping some vertex in Â to v, that is:

Agg(H, G, Â) =
ÿ

vœV (G)
OrbitHomH,Â(v)

Note that if we can compute OrbitHomH,Â(v) for every vertex v in G then we can also
compute Agg(H, G, Â) in additional linear time. Now, we state the following lemma:

I Lemma 29. For every pattern graph H and every orbit Â œ �(H), there is some number
l = l(H) such that the following holds. For every graph G there are some graphs G1, ..., Gl,
computable in time O(|V (G)| + |E(G)|), such that |V (Gi)| = O(|V |) and |E(Gi)| = O(|E|)
for all i = 1, ..., l, and such that knowing Agg(H, G1, Â), ..., Agg(H, Gl, Â) allows one to
compute HomHS (G) for all S œ IS(Â), in time O(1). Furthermore, if G is O(1)-degenerate,
then so are G1, ..., Gl.

D. Paul-Pena and C. Seshadhri 54:15

First, we can relate the Homomorphism Vertex Counts of a vertex h œ V (H) to Homo-
morphism Counts from H to G, as given in the following claim:

B Claim 30. For all h œ V (H):
ÿ

vœV (G)
VertexHomH,h(v) = HomH(G)

Proof.
ÿ

vœV (G)
VertexHomH,h(v)

=
ÿ

vœV (G)
|{„ œ �(H, G) : „(h) = v}| (Def. of VertexHom)

= |{„ œ �(H, G) : „(h) œ V (G)}| (Sum over whole set)
= |�(H, G)| (’„ : „(u) œ V (G))
= HomH(G) (Def. of Hom) C

We now state the following Lemma from [6]:

I Lemma 31 (Lemma 4.2 from [6]). Let H1, ..., Hl be pairwise non-isomorphic graphs and
let c1, ..., cl be non-zero constants. For every graph G there are graphs G1, ..., Gl, computable
in time O(|V (G)| + |E(G)|), such that |V (Gi)| = O(|V (G)|) and |E(Gi)| = O(|E(G)|) for
every i = 1, ..., l, and such that knowing bj := c1 · HomH1(Gj) + ... + cl · HomHl(Gj) for every
j = 1, ..., l allows one to compute HomH1(G), ..., HomHl(G) in time O(1). Furthermore, if G
is O(1)-degenerate, then so are G1, ..., Gl.

We will apply the previous lemma in a similar way as it is used the proof of Lemma 4.1
in [6].

Proof of Lemma 29. Let H1, ..., Hl be an enumeration of all the graphs HS for all S œ
IS(Â), up to isomorphism. This means that H1, ..., Hl are pairwise non-isomorphic and
{H1, ..., Hl} = {HS : S œ IS(Â)}.

Let f(i) = (≠1)|S|+1|{S œ IS(Â) : HS is isomorphic to Hi}| be the number of sets
S œ IS(Â) such that HS is isomorphic to Hi, with the sign being (≠1)|S|+1. Note that
all such sets have equal |S| and that the value of f(i) is always non-zero. We will use hi

to denote the vertex of Hi that correspond to the vertices hS of the graphs HS that are
isomorphic to Hi. We can express Agg(H, G, Â) as follows:.

Agg(H, G, Â) =
ÿ

vœV (G)
OrbitHomH,Â(v) (Def. 28)

=
ÿ

vœV (G)

ÿ

SœIS(Â)
(≠1)|S|+1VertexHomHS ,hS (v) (Lemma 19)

=
ÿ

vœV (G)

lÿ

i=1
f(i)VertexHomHi,hi(v) (Def. of f(i))

=
lÿ

i=1
f(i)

ÿ

vœV (G)
VertexHomHi,hi(v) (Reorder)

=
lÿ

i=1
f(i)HomHi(G) (Claim 30)

Hence, we have that Agg(H, G, Â) is a linear combination of homomorphism counts of
H1, ..., Hl. We can then use Lemma 31 to complete the proof. J

ISAAC 2024

54:16 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

Before we prove Theorem 27, we need to state the following theorem from [8], which gives
a hardness result on Homomorphism Counting:

I Theorem 32 (Theorem 5.1 from [8]). Let H be a pattern graph on k vertices with LICL Ø 6.
Assuming the Triangle Detection Conjecture, there exists an absolute constant “ such that
for any function f : N ◊ N æ N, there is no (expected) f(Ÿ, k)O(m1+“) algorithm for the
HomH problem, where m and Ÿ are the number of edges and the degeneracy of the input
graph, respectively.

We now have all the tools required to proof Theorem 27:

Proof of Theorem 27. We prove by contradiction. Given a graph G and a pattern H with
LIPCO(H) > 5, suppose there exists an algorithm that allows us to compute OrbitHomH(G)
in time f(Ÿ, k)O(m), by Lemma 29 we have the existence of some graphs G1, ..., Gl. We can
compute OrbitHomH(Gi) for all of these graphs in time f(Ÿ, k)O(m) and then aggregate the
results into Agg(H, Gi, Â) for all Gi and all Â œ �(H). Using Lemma 29, that implies that
we can compute HomHS (G) for all S œ IS(Â) for all Â œ �(H) in time f(Ÿ, k)O(m).

However, if LIPCO(H) > 5 then, by Lemma 25, we have that there exists a S ™ Â for
some Â œ �(H) such that LICL(HS) > 5. From Theorem 32 we know that in that case
there is no algorithm that computes HomHS (G) in time f(Ÿ, k)O(m1+“) for some constant
“ > 0. This is a contradiction, and hence no algorithm can compute OrbitHomH(G) in
f(Ÿ, k)O(m) time. J

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science, 2014. doi:10.1109/FOCS.2014.53.

2 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Du�eld. E�cient graphlet
counting for large networks. In Proceedings, SIAM International Conference on Data Mining
(ICDM), 2015. doi:10.1109/ICDM.2015.141.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

4 A. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016. doi:10.1126/science.aad9029.

5 Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. In International Colloquium on Automata,
Languages and Programming, 2020. doi:10.4230/LIPIcs.ICALP.2020.11.

6 Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting
subgraphs in degenerate graphs. Journal of the ACM (JACM), 69(3), 2022. doi:10.1145/

3520240.
7 Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting,

graph degeneracy, and the chasm at size six. In Proc. 11th Conference on Innovations in
Theoretical Computer Science. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.38.

8 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2315–2332,
2021. doi:10.1137/1.9781611976465.138.

9 Suman K Bera and C Seshadhri. How the degeneracy helps for triangle counting in graph
streams. In Principles of Database Systems, pages 457–467, 2020. doi:10.1145/3375395.

3387665.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/ICDM.2015.141
https://doi.org/10.1007/BF02523189
https://doi.org/10.1126/science.aad9029
https://doi.org/10.4230/LIPIcs.ICALP.2020.11
https://doi.org/10.1145/3520240
https://doi.org/10.1145/3520240
https://doi.org/10.4230/LIPIcs.ITCS.2020.38
https://doi.org/10.1137/1.9781611976465.138
https://doi.org/10.1145/3375395.3387665
https://doi.org/10.1145/3375395.3387665

D. Paul-Pena and C. Seshadhri 54:17

10 Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips.
Tolerating the community detection resolution limit with edge weighting. Phys. Rev. E,
83:056119, 2011. doi:10.1103/PhysRevE.83.056119.

11 Umberto Bertele and Francesco Brioschi. On non-serial dynamic programming. J. Comb.
Theory, Ser. A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

12 J.A. Bondy and U.S.R Murty. Graph Theory, volume 244. Springer, 2008. doi:10.1007/

978-1-84628-970-5.
13 Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.

Counting graph homomorphisms. In Topics in discrete mathematics, pages 315–371. Springer,
2006. doi:10.1007/3-540-33700-8_18.

14 Marco Bressan. Faster subgraph counting in sparse graphs. In 14th International Symposium
on Parameterized and Exact Computation (IPEC 2019). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.6.

15 Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica,
83:2578–2605, 2021. doi:10.1007/s00453-021-00811-0.

16 Marco Bressan, Leslie Ann Goldberg, Kitty Meeks, and Marc Roth. Counting subgraphs in
somewhere dense graphs. In 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), pages 27:1–27:14, 2023. doi:10.4230/LIPIcs.ITCS.2023.27.

17 Marco Bressan and Marc Roth. Exact and approximate pattern counting in degenerate
graphs: New algorithms, hardness results, and complexity dichotomies. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022.
doi:10.1109/FOCS52979.2021.00036.

18 Graham R Brightwell and Peter Winkler. Graph homomorphisms and phase transitions.
Journal of combinatorial theory, series B, 77(2):221–262, 1999. doi:10.1006/jctb.1999.1899.

19 Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proc. 9th Annual ACM Symposium on the Theory of Computing,
pages 77–90, 1977. doi:10.1145/800105.803397.

20 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing (SICOMP), 14(1):210–223, 1985. doi:10.1137/0214017.

21 Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29, 2009. doi:10.1109/MCSE.2009.120.

22 J. Coleman. Social capital in the creation of human capital. American Journal of Sociology,
94:S95–S120, 1988. doi:10.1086/228943.

23 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 210–223, 2017. doi:10.1145/3055399.3055502.

24 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoretical Computer Science, 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.

08.008.
25 Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions.

In Proc. 46th International Colloquium on Automata, Languages and Programming. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.113.

26 Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees.
Theoretical Computer Science, 281(1-2):291–309, 2002. doi:10.1016/S0304-3975(02)00017-8.

27 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.
Random Structures & Algorithms, 17(3-4):260–289, 2000. doi:10.1002/1098-2418(200010/

12)17:3/4\%3C260::AID-RSA5\%3E3.0.CO;2-W.
28 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing

letters, 51(4):207–211, 1994. doi:10.1016/0020-0190(94)90121-X.
29 G. Fagiolo. Clustering in complex directed networks. Phys. Rev. E, 2007. doi:10.1103/

PhysRevE.76.026107.

ISAAC 2024

https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/3-540-33700-8_18
https://doi.org/10.4230/LIPIcs.IPEC.2019.6
https://doi.org/10.1007/s00453-021-00811-0
https://doi.org/10.4230/LIPIcs.ITCS.2023.27
https://doi.org/10.1109/FOCS52979.2021.00036
https://doi.org/10.1006/jctb.1999.1899
https://doi.org/10.1145/800105.803397
https://doi.org/10.1137/0214017
https://doi.org/10.1109/MCSE.2009.120
https://doi.org/10.1086/228943
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.4230/LIPIcs.ICALP.2019.113
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1103/PhysRevE.76.026107

54:18 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

30 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing (SICOMP), 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

31 Lior Gishboliner, Yevgeny Levanzov, and Asaf Shapira. Counting subgraphs in degenerate
graphs, 2020. arXiv:2010.05998, doi:10.48550/arXiv.2010.05998.

32 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of sparse
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages
159–167. Springer, 2006. doi:10.1007/11917496_15.

33 Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186, 1976. doi:

10.1007/BF01917434.
34 P. Holland and S. Leinhardt. A method for detecting structure in sociometric data. American

Journal of Sociology, 76:492–513, 1970. doi:10.1016/B978-0-12-442450-0.50028-6.
35 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on

Computing, 7(4):413–423, 1978. doi:10.1137/0207033.
36 Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz, and Uri Alon.

Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E, 71(016127), January
2005. doi:10.1103/PhysRevE.71.016127.

37 Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts using
Turán’s theorem. In Proceedings, International World Wide Web Conference (WWW), pages
441–449, 2017. doi:10.1145/3038912.3052636.

38 Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proc. 24th Proceedings, International World Wide
Web Conference (WWW), pages 495–505. International World Wide Web Conferences Steering
Committee, 2015. doi:10.1145/2736277.2741101.

39 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3-4):321–328, 1967. doi:10.1007/BF02280291.

40 László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012. URL: http://www.ams.org/bookstore-getitem/item=COLL-60.

41 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983. doi:10.1145/2402.322385.

42 Derek O’Callaghan, Martin Harrigan, Joe Carthy, and Pádraig Cunningham. Identifying
discriminating network motifs in youtube spam, 2012. arXiv:1202.5216, doi:10.48550/

arXiv.1202.5216.
43 Mark Ortmann and Ulrik Brandes. E�cient orbit-aware triad and quad census in directed and

undirected graphs. Applied network science, 2(1), 2017. doi:10.1007/s41109-017-0027-2.
44 Noujan Pashanasangi and C Seshadhri. E�ciently counting vertex orbits of all 5-vertex

subgraphs, by evoke. In Proc. 13th International Conference on Web Search and Data Mining
(WSDM), pages 447–455, 2020. doi:10.1145/3336191.3371773.

45 Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: E�ciently counting all 5-vertex
subgraphs. In Proceedings, International World Wide Web Conference (WWW), pages 1431–
1440, 2017. doi:10.1145/3038912.3052597.

46 Natasa Przulj. Biological network comparison using graphlet degree distribution. Bioinform-
atics, 23(2):177–183, 2007. doi:10.1093/bioinformatics/btl301.

47 Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

48 Neil Robertson and Paul D. Seymour. Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

49 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

50 Rahmtin Rotabi, Krishna Kamath, Jon M. Kleinberg, and Aneesh Sharma. Detecting strong
ties using network motifs. In Proceedings, International World Wide Web Conference (WWW),
2017. doi:10.1145/3041021.3055139.

https://doi.org/10.1137/S0097539703427203
https://arxiv.org/abs/2010.05998
https://doi.org/10.48550/arXiv.2010.05998
https://doi.org/10.1007/11917496_15
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1016/B978-0-12-442450-0.50028-6
https://doi.org/10.1137/0207033
https://doi.org/10.1103/PhysRevE.71.016127
https://doi.org/10.1145/3038912.3052636
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1007/BF02280291
http://www.ams.org/bookstore-getitem/item=COLL-60
https://doi.org/10.1145/2402.322385
https://arxiv.org/abs/1202.5216
https://doi.org/10.48550/arXiv.1202.5216
https://doi.org/10.48550/arXiv.1202.5216
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/3041021.3055139

D. Paul-Pena and C. Seshadhri 54:19

51 Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal for
parameterized complexity theory. In Proc. 31st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2161–2180, 2020. doi:10.1137/1.9781611975994.133.

52 Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek. Finding the
hierarchy of dense subgraphs using nucleus decompositions. In Proceedings, International
World Wide Web Conference (WWW), pages 927–937, 2015. doi:10.1145/2736277.2741640.

53 C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The methods behind the
madness: WWW 2019 tutorial. In Proceedings, International World Wide Web Conference
(WWW), 2019. doi:10.1145/3308560.3320092.

54 Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. E�cient graphlet kernels for large graph comparison. In AISTATS, pages 488–495,
2009. URL: http://proceedings.mlr.press/v5/shervashidze09a.html.

55 K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world
graphs with applications. Knowledge and Information Systems, 54(3):677–710, 2018. doi:

10.1007/s10115-017-1077-6.
56 George Szekeres and Herbert S Wilf. An inequality for the chromatic number of a graph.

Journal of Combinatorial Theory, 4(1):1–3, 1968. doi:10.1016/S0021-9800(68)80081-X.
57 Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proceedings,

International World Wide Web Conference (WWW), pages 1122–1132, 2015. doi:10.1145/

2736277.2741098.
58 Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-

aware graph clustering. In Proceedings, International World Wide Web Conference (WWW),
pages 1451–1460, 2017. doi:10.1145/3038912.3052653.

59 Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In Proceedings, International
World Wide Web Conference (WWW), pages 1307–1318, 2013. doi:10.1145/2488388.2488502.

60 Hao Yin, Austin R. Benson, and Jure Leskovec. Higher-order clustering in networks. Phys.
Rev. E, 97:052306, 2018. doi:10.1103/PhysRevE.97.052306.

61 Hao Yin, Austin R. Benson, and Jure Leskovec. The local closure coe�cient: A new perspective
on network clustering. In ACM International Conference on Web Search and Data Mining
(WSDM), pages 303–311, 2019. doi:10.1145/3289600.3290991.

ISAAC 2024

https://doi.org/10.1137/1.9781611975994.133
https://doi.org/10.1145/2736277.2741640
https://doi.org/10.1145/3308560.3320092
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1007/s10115-017-1077-6
https://doi.org/10.1007/s10115-017-1077-6
https://doi.org/10.1016/S0021-9800(68)80081-X
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/2488388.2488502
https://doi.org/10.1103/PhysRevE.97.052306
https://doi.org/10.1145/3289600.3290991

	1 Introduction
	1.1 Main Result
	1.2 Main Ideas

	2 Related Work
	3 Preliminaries
	3.1 DAG-tree decompositions

	4 Obtaining Vertex-Centric Counts
	5 From Vertex-Centric to Orbit Counts
	6 Wrapping it up
	7 Lower Bound for computing Homomorphism Orbit Counts

