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Abstract

We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme
of Lindell and improving his scheme in several ways.

ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the
signing function. Lindell’s scheme uses Paillier encryption to encrypt one party’s key share
and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero
knowledge proofs over the Paillier group during the signing process. However, the scheme
pushes that complexity into key generation. Moreover, avoiding ZK proofs about Paillier
ciphertexts during signing comes with a steep price — namely, the scheme requires a “global
abort” when a malformed ciphertext is detected, after which an entirely new key must be
generated.

We overcome all of these issues with a proactive Refresh procedure. Since the Paillier
decryption key is part of the secret that must be proactively refreshed, our first improvement is
to radically accelerate key generation by replacing one of Lindell’s ZK proofs — which requires 80
Paillier ciphertexts for statistical security 274° — with a much faster “weak” proof that requires
only 2 Paillier ciphertexts, and which proves a weaker statement about a Paillier ciphertext that
we show is sufficient in the context of our scheme. Secondly, our more efficient key generation
procedure also makes frequent proactive Refreshes practical. Finally, we show that adding
noise to one party’s key share suffices to avoid the need to reset the public verification key when
certain bad behavior is detected. Instead, we prove that our Refresh procedure, performed after
each detection, suffices for addressing the attack, allowing the system to continue functioning
without disruption to applications that rely on the verification key.

Our scheme is also very efficient, competitive with the best constructions that do not provide
proactive security, and state-of-the-art among the few results that do. Our optimizations to
ECDSA key generation speed up runtime and improve bandwidth over Lindell’s key generation
by factors of 7 and 13, respectively. Our Key Generation protocol requires 20% less bandwidth
than existing constructions, completes in only 3 protocol messages, and executes much faster
than all but OT-based key generation. For ECDSA signing, our extra Refresh protocol does
add a 10X latency and 5X bandwidth overhead compared to Lindell. However, this still fits in
150 ms runtime and about 5.4 KB of messages when run in our AWS cluster benchmark.
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1 Introduction

1.1 ECDSA

Cryptographic signatures enable us to digitally “sign” messages, authenticating that the key owner
created the message and that the message was not altered in any way. Our digital infrastruc-
ture is built on these signatures, enabling TLS-protected sessions over the internet, digital user
authentication, bank transaction authorization, digital contract agreements, and more recently,
blockchain transactions. The Elliptic Curve Digital Signature Algorithm (ECDSA) is among the
most commonly used signature schemes, as it provides strong security, fast performance, and ef-
ficient key/signature sizes. For instance, an ECDSA signature over the elliptic curve secp256rl
(P-256) requires only 64 bytes with sub-millisecond signing/verification operations. ECDSA is
widely deployed and also the underlying signature scheme used in Bitcoin and Ethereum.

1.2 Threshold Signatures

In classical cryptography, a signer holds and protects their single signing key. The threshold cryp-
tography paradigm, on the other hand, allows this signing key to be split between two or more (“n”)
parties as key shares, such that a threshold (“¢”) number of parties are required to collaborate to
sign a message. This t-out-of-n threshold signature scheme enforces that a quorum of “t” key-share
holders must participate. In particular, this has applications to code signing, blockchain operation
authorization, and so on. Threshold ECDSA has gained popularity over the past decade for its use
in authorizing Bitcoin and Ethereum transactions amongst two or more entities. In one scenario, a
cryptocurrency owner may distribute their key to two or more devices as key shares, ensuring that
a malicious adversary would have to recover all key shares before depleting funds.

Threshold signatures can be viewed as a particular application of secure multiparty computation,
where the parties compute the signing algorithm without revealing their shares of the signing key.
However, applying a generic solution for secure computation to the ECDSA signing algorithm would
be slow. Instead, prior work has designed custom protocols for threshold ECDSA.

ECDSA Signatures

Input: Message M, secret key d, hash function H,
Input: Elliptic curve E with generator G and order ¢
Compute: m = H(M)

Sample: k + [q]

Compute: R=k x G

Set: r as the z-coordinate of R mod ¢

Compute: s = k= (m + rd) mod ¢

Signature: (r,s)

Figure 1: Single party, standardized ECDSA Signature Generation.

Figure 1 illustrates the ECDSA signing algorithm. ECDSA is not “threshold-friendly” as it
requires a non-linear modular multiplication with secret values k,z and a non-linear modular in-
version k~! mod ¢, where k is a randomly chosen signing nonce, x is the master signing key, and
q is the order of the elliptic curve group. Generally, one common approach in the literature is to



apply homomorphic multiplication while also requiring expensive zero-knowledge proofs to achieve
malicious security.

1.3 Lindell’s Threshold ECDSA Breakthrough

In 2017, Lindell [33] made a breakthrough with the first truly efficient 2-out-of-2 (“two-party”)
threshold ECDSA signature. This work featured two-party ECDSA signing in 37 ms, even with
communication overhead. Lindell claims to be about two orders of magnitude faster than the
best prior work, by Gennaro et al. [23]. The main idea employed by Lindell is to use Paillier
homomorphic encryption, which supports homomorphic addition of ciphertexts and multiplication
by a known constant, but to avoid (as much as possible) expensive zero knowledge proofs in the
signing procedure.

We present a simplification here, to convey Lindell’s main idea. The two parties randomly
sample an additive sharing of the secret signing key: x1, 29 < [g]. The public key is then determined
as X = X; + X for X; = (21 X G) and X3 = (22 x G). Additionally, party P; samples a Paillier
key N, encrypts C < Ency(z1), and sends this to Po. When it is time to sign message m = H(M),
the parties sample k1, ko < [g], compute (k1 x (k2 x G)) = (14, ), and derive r = r, mod ¢, as in
standard ECDSA protocol. P, then computes a “partial signature”, homomorphically:

Ency (ky *(m +122)) @ (C © ky ')
= Ency(ky H(m + rx2) 4 ky tra)
= Ency(ky L (m 4 rz)).

P, then decrypts and completes the signature by multiplying by ki ! and reducing modulo ¢.

Lindell’s scheme uses a ZK proof in key generation to establish that the same z; is inside X3
and C. This makes key generation slow, but this is a one-time procedure. Signing, on the other
hand, uses ZK proofs over the elliptic curve group, but none at all for the (much more expensive)
Paillier group! P, uses P;’s encryption of x7; homomorphically to compute an encrypted partial
signature, and sends it without proof! To counteract a malicious P, P; globally aborts if P’s
partial signature does not result in a valid completed signature (requiring a fresh key generation).
With this trick, signing in Lindell’s threshold ECDSA scheme is very fast.

1.4 Shortcomings of Lindell’s Threshold ECDSA

Lindell’s threshold ECDSA has some shortcomings — namely: 1) the expensive key generation
procedure, 2) the severe countermeasure to an invalid partial signature from P, (aborting and
requiring a fresh key generation), and 3) the lack of proactive security. Let us look at each of these
shortcomings in more detail.

1.4.1 Expensive Key Generation

In Lindell’s scheme, key generation includes ZK proofs about the Paillier modulus, and that C
correctly encrypts P;’s key share. The proof about the Paillier modulus is surprisingly lightweight:
Lindell shows that he only needs to prove that ged(N, ¢(N)) = 1, whereas other schemes typically
require stronger properties, such as N being the product of strong primes. However, the proof
that C correctly encrypts P;’s key share is expensive. This proof requires 27 Paillier encryptions



for statistical security 27 7. As a consequence, key generation requires 880 milliseconds on modern
AWS clusters, which is nearly 65X longer than signing. This range proof also dominates the total
bandwidth of keygen, accounting for about 55 KB of the total estimated 62 KB (89%).

Why is Lindell’s consistency proof so expensive? Lindell’s proof has two parts: 1) A proof that
the values inside X; and C are the same modulo ¢, and 2) A range proof that the value encrypted by
Cisin {1,...,q}. One of Lindell’s innovations over prior work is the first part of this proof, which
is quite fast and elegant, though it requires one more round than we would like. Unfortunately, the
range proof, which comes from prior work, is much more expensive. A simple Schnorr-style proof,
with just a couple of Paillier ciphertexts, does not seem to be sufficient, because the elliptic curve
and Paillier groups have entirely different orders; indeed ¢ and N are co-prime. Instead, the range
proof uses bit-wise techniques and amplification; this is where the 27 Paillier ciphertexts come from.

1.4.2 Global Abort and Fresh Key Generation

Lindell makes signing very fast by observing that neither P; nor P, needs to generate any ZK proofs
over the Paillier group. Instead, P, handles its ZK proofs over the Paillier group in key generation,
while in signing P sends its encrypted partial signature without a ZK proof, and P; decrypts and
“verifies” it by confirming that it completes to a verifiable ECDSA signature. If verification fails,
P, globally aborts. After the global abort, if the parties wish to continue signing messages, they
must first perform key generation again, replacing the public verification key, and (presumably)
updating the PKI to reflect the change. This is a severe countermeasure. However, it is needed
because otherwise there is a selective-failure attack, where P, can potentially recover P;’s key share
by observing whether or not P; outputs a valid signature. This attack is analogous to well-known
chosen ciphertext attacks, such as Bleichenbacher’s attack [4], where an adversary can recover the
secret key by observing decryption error messages.

1.4.3 Lack of Proactive Security

Threshold security strengthens a user’s key protection by splitting the key into two key shares
hosted on different devices, eliminating a single point of failure. Proactive security goes beyond
this, allowing the parties to re-randomize their shares (while leaving the public verification key
untouched), so that even if an adversary corrupts both parties, the system remains secure as long
as the adversary does not corrupt both at the same time. Looking at the simplification of Lindell’s
scheme above (where sharing is additive versus Lindell’s multiplicative), it may appear that making
it proactively secure is trivial: Is it not simply a matter of performing a secure coin flip to agree on
a uniform 7 < [¢g], and then storing 27 + 7 mod ¢ and zo — r mod ¢? A malicious third-party that
recovers one key share would lose their progress after the key shares have changed.

Unfortunately, it is not so simple. P;’s secret includes the factorization of V. So, a proactive
refresh must also change the Paillier modulus. Here, the first shortcoming of Lindell’s scheme —
the expensive key generation procedure — rears its head again. Lindell’s expensive zero knowledge
proof for the correctness of the new ciphertext C' would now have to be executed at every key
refresh. In some applications, this is prohibitively expensive. For example, imagine a user that
signs so infrequently that a refresh is needed before each signature; on a mobile device, spending
nearly a full second for every sign-and-refresh operation is simply too much for an end-user. It is
not immediately clear how to make Lindell’s scheme both proactively secure and practical.



Table 1: Comparison of malicious security two-party ECDSA key generation schemes over curve
secp256rl and the 112-bit NIST security level. Latency was captured on AWS EC2 c5.2xlarge
Servers.

Work Security La[gi;l]cy Bar[ll(ivg]dth #Messages gzs:;l;ai
Castagnos et al. 2020 [10] Hash Proof 359 5.8 4 240
Doerner et al. 2018 [17] oT 54.2 41 5 2780
Lindell 2017 [33] Paillier-EC 880 62 6 210
This Work Paillier-EC-Refresh 136 4.6 3 2-80

1.5 Contributions

Building on Lindell’s threshold ECDSA, we design a new threshold ECDSA that solves all three
shortcomings simultaneously with a practical proactive refresh procedure. We provide more details
below.

A Lighter Consistency Proof. As mentioned above, the expensive part of Lindell’s construction
lies in the consistency proof in key generation that 3x1, p such that zy € {1,...,¢}, X1 =21 -G
and C' = Ency(x1; p). This range proof uses amplification, and basically consists of 7 Schnorr-like
range proofs.

We replace this with a single Schnorr-like range proof, consisting of only two Paillier ciphertexts!
Our proof does not prove consistency as defined above. Instead, it proves something weaker —
namely, as described in Section 3, it proves that X; encodes x; and C' encrypts &1, such that
there exists small § where the value [§(Z1 — x1)]n is both “small” and divisible by g. Notice that,
when ¢ = 1, this closely corresponds with what is proven in Lindell’s strong proof, while our weak
proof allows other values of 4. So, we allow P; to cheat to a certain extent. Indeed, if we did
not further modify the scheme, P; could obtain x5 mod § for various values of §, and eventually
extract xo. However, we show that the weak proof of consistency is sufficient for security when P;
applies additional perturbations to its encrypted partial signature to protect against a malicious
P;. Naturally, our use of the weak consistency proof complicates our security analysis.

Performance-wise, our new approach allows us to improve the runtime of Lindell’s Key Gen-
eration by a factor of 7X, and his bandwidth by 13X. (Our comparison to other, more recent
constructions follows later, and is more mixed. We compare to Lindell here as our techniques are
otherwise very similar, so the comparison provides some measure of the impact of our contribution.)
No Global Abort. While pursuing proactive security, one might hope to address the second
insufficiency of Lindell’s construction: the global abort. As mentioned above, by using a bad partial
signature, P, can learn something damaging about the signing key. However, since this misbehavior
is detectable, one might hope that P; could simply call for a refresh operation in place of a global
abort. During refresh, new entropy is introduced into the key share, and with it, possibly, the
chance to begin again, without resetting the verification key and impacting the PKI. However, this
is not as easy as it sounds, as P, may remain corrupt through the refresh procedure, and will see
the randomness used to re-randomize x;.

Nonetheless, we show how to make this work. Instead of encrypting z; € [g] as in Lindell’s
scheme, P; instead encrypts a perturbation of x; — namely, x; + tq¢ where ¢ is small but has
sufficient min-entropy. When P; detects that P, has sent a bad partial signature, P; changes its
Paillier modulus and encrypts a new value z; + t'q, for a fresh ¢’. The added noise has no impact



Table 2: Comparison of malicious security two-party ECDSA signing schemes over secp256rl and
the 112-bit NIST security level. Latency was captured on AWS EC2 c5.2xlarge servers. A v
indicates that a key refresh is included.

Latency | Bandwidth .o

Work [ms] (KB #Msgs | Proactive?
DKLS2018 [17] 3.0 170 2 X
Lin2017 [33] 14.0 0.9 4 X
113 5.3 8 X
CCLST [10, 11] 75 108 3 7
. 16.1 1.1 3 X
This Work Tid =1 3 7

on the signature, since it is a multiple of ¢ (the order of the ECDSA group). However, we show
that the noise suffices to ensure that an adversary obtains negligible information about x; even if
its corruption of P, continues across refreshes and it repeatedly sends bad partial signatures, as
long as new noise is added between each attempt detected by P;. This allows us to continue using
the same public verification key even if P, sends bad messages.

We base simulation security on an assumption we call “Paillier-EC-Refresh”, which is closely

related to Lindell’s Paillier-EC assumption. Both of these assumptions are stronger than the ordi-
nary notions of security of ECDSA and Paillier. The stronger assumption is needed for simulation
security to allow the simulator, as Py, to detect bad partial signatures from P, using a very limited
decryption oracle. Nonetheless, both assumptions seem plausible. Additionally, we provide evidence
for the Paillier-EC-Refresh assumption by showing it holds in a generic model for the elliptic curve
and Paillier groups. This evidence includes a highly non-trivial characterization of what is revealed
about x; given access to a sequence of limited oracles, each of which leaks some information about
a perturbation of z; by a different multiple of q.
Proactive Security. With our faster (weak) consistency proof, it becomes much faster to generate
a Paillier modulus, P;’s encrypted share under the new modulus, and a weak consistency proof for
it. In fact, it becomes practical to do all of this not just in a “one-time” Key Generation procedure,
but instead inside a more-frequent Key Refresh procedure, potentially even after every signature.

1.6 Other Related Work

Threshold cryptography was initially investigated in the early 1980s through the early 2000s [14,
15, 24, 40, 39, 5, 12, 35] as a method for n users to share a common key, but restricting any
use of this key to any subset of ¢ parties. Then, with the rising popularity of Bitcoin in the mid
2010s, a resurgence of threshold research emerged, this time focusing on ECDSA. There is no
best-case solution for efficient threshold ECDSA: the latest and greatest research results feature
trade-offs between signature generation latency, setup time, bandwidth, and underlying security
models/assumptions.

The focus of this work is on the highly optimized, proactive-secure, two-party setting. In the
two-party setting, there is no honest majority, which is a specific pain point for some scheme
constructions. The very first proven secure protocol threshold signing was proposed by Gennaro
et al. in 1996 [24], which used DSA in an honest majority setting. Then in 2001, MacKenzie
and Reiter [35] modified the threshold DSA to operate without the honest majority and thus also



allow the two-party setting. Fifteen years later in 2016, Gennaro et al. [23] revisited the threshold
DSA/ECDSA signatures to secure Bitcoin wallets, with particular optimizations to the two-party
case and thresholds in an honest majority setting.

In 2017, Lindell [33] released his 37 ms two-party ECDSA signing scheme based on various
Paillier homomorphic encryption optimizations, shattering previous threshold signing performance
metrics by over two orders of magnitude. Shortly after Lindell’s work, Doerner et al. [17] published a
new oblivious transfer (OT) multiplication technique to achieve two-party ECDSA signatures in less
than 10 ms of computation time, but at the expense of almost 200 KB of bandwidth. Most recently
in 2019, Castagnos et al. [9] generalized Lindell’s scheme to use a hash proof system, effectively
tweaking the security model and reducing the two-party key generation and signing bandwidth, at
the expense of a 5X increase to sign latency. In follow-up work, Castagnos et al. [10] further reduce
the bandwidth requirements by relying on new hardness assumptions that allow them to reduce the
number of proof repetitions. Interestingly, reducing the proof repetitions is precisely the approach
that we take in our own work, though the techniques are otherwise quite different. Finally, in their
most recent work, the authors add proactive security (as well as some other properties) [11]. These
three lines of work, by Lindell et al., Castagnos et al., and Doerner et al., represent the pinnacle of
speed, efficiency, and security tradeoffs for two-party ECDSA. There are several other recent works
that investigate the general t-out-of-n case for threshold ECDSA [23, 22, 34, 17, 8, 13, 21, 3, 16],
but these are generally comparatively slower in the two-party setting.

Of the three optimized two-party ECDSA schemes in the literature, each original work did not
feature proactive security. Only Castagnos et al. [9] released a proactive version of their construction
in [11], augmenting their original scheme with proactive security, adaptive security, and identifiable
aborts. Otherwise, the only other recent proactive security scheme in the literature is Canetti et
al. [8], which features a general threshold ECDSA construction with proactive security, identifiable
aborts, and UC-security. Neither work provides performance numbers, and they do not appear to
by highly efficient, so we do not provide a performance comparison.

Typically, proactive security is an afterthought, despite its implications on the long-term security
of key shares, especially for blockchain applications. The concept of a proactive refresh to thwart
a dynamic adversary from corrupting each party one-by-one was first proposed by Ostrovsky and
Yung [36] in 1991. The primary idea is that each key share holder will refresh their secret key
shares without changing the public key in certain intervals called epochs. Now, an attacker cannot
break the scheme unless he corrupts all parties within the epoch. This original work sparked new
proactive security works that created, secured, and applied a refresh process to specific threshold
schemes, including general threshold construction [29, 28, 2, 6], RSA [18, 19, 38, 20, 1, 30], and
ECDSA [8, 32, 11].

1.7 Performance Highlights

In the following paragraphs, we compare the performance of our scheme with other recent optimized
two-party ECDSA signing schemes. We benchmarked these schemes on an AWS EC2 c5.2xlarge
server in loopback mode (i.e. simulating the computations of both parties with no network delay).
This AWS server was running Ubuntu 22.04.2 LTS on an Intel Xeon Platinum 8275CL CPU running
at 3.0 GHz. These are single-thread benchmarks. We implemented our proposed proactive ECDSA
scheme as a proof of concept in Rust 1.77 using the Rust wrapper for OpenSSL 3.0.2 for all
underlying arithmetic. All results are for elliptic curve secp256r1.

In Tables 1 and 2, we provide a comparison of key generation and sign protocols, respectively.



Doerner et al.’s* work was run from their public Git repositories, which may include various opti-
mizations since their original paper release. Lindell’s work was benchmarked using the same Rust
framework as our scheme’s results, but public source code can additionally be found on Git." For
Castagnos et al. [10, 11] we used the BICYCL framework.* As Table 1 shows, our new Paillier-EC
key generation requires only 4.6 KB of bandwidth which is over 20% less than the other schemes.
Furthermore, our key generation only requires 1.5 round trips and 136 ms, which is almost 85% less
than Lindell’s Paillier-EC key generation.

For signature generation, our sign+refresh scheme requires about 144 ms and 5.4 KB total
bandwidth. In comparison to our sign performance, our scheme shows the additional overhead for
refresh (about 128 ms and 4.3 KB bandwidth). When compared to Lindell’s sign procedure, our
scheme’s sign modifications add about 2.1 ms (15%) and 0.2 KB (22%).

As Table 1 highlights, modern two-party ECDSA focuses on three different types of security
foundations: Paillier-EC, Hash Proof, and Oblivious Transfer. The security setting to achieve
malicious security creates a tradeoff between performance, bandwidth, number of messages, and
various security parameters. There is no clear winner, but each scheme suits a different use case.
For instance, the OT-based Doerner et al. [17] features extremely fast performance, but struggles
with the largest bandwidth for signing. Meanwhile, Castagnos et al. [10, 11] is a general threshold
scheme that features a strong balance of latency and bandwidth, but at the expense of many
signing messages. Lastly, our Paillier-EC-based scheme exemplifies good latency, low bandwidth,
and a small number of messages, but struggles at higher security levels.

1.8 Higher Security Levels

Of the three lines of work previously considered, Castagnos et al.’s scheme [9, 10, 11] scales best
with an increasing security level. Our ECDSA scheme was implemented over the elliptic curve
secp256r]l with a Paillier modulus of 2048 bits. According to NIST’s security level assignment,
a 256-bit curve corresponds to the 128-bit security level (roughly equivalent to AES with 128-bit
keys) while an RSA modulus of 2048 bits corresponds to the 112-bit security level.

Unfortunately, our scheme’s latency and bandwidth do not scale well with the NIST security
level as the size of the RSA/Paillier modulus does not scale well. The Paillier modulus N (com-
posed of the product of two large primes) requires a bitlength of 2048, 3072, 7680, and 15360 to
correspond to a NIST security level of 112, 128, 192, and 256 bits, respectively. These Paillier
moduli require a huge amount of time to find the primes as well as compute exponentiation modulo
N2. Furthermore, the Paillier ciphertexts also dominate the total bandwidth. As an example, at
the 192-bit security level, a 7680-bit Paillier modulus took a median of 10 seconds to find on our
cb.2xlarge platform. When combined with just our Paillier operations, we estimate that Keygen,
Sign, and Sign+Refresh executed in 11.3 seconds, 0.47 seconds, and 11.8 seconds, respectively. In
this scenario, the bandwidth tripled from our 112-bit security results to 15.8 KB, 2.76 KB, and 18.1
KB for Keygen, Sign, and Sign+Refresh, respectively.

*https://gitlab.com/neucrypt/mpecdsa
Thttps://github.com /unboundsecurity /blockchain-crypto-mpc
thttps://gite.lirmm.fr/crypto/bicycl
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2 Preliminaries

2.1 Notation

Let G be a generator of the elliptic curve group G of order ¢q. Let [N] be a set of N consecutive
integers — for example, the set {1,..., N}. Let [-]y denote reduction modulo N into [/N]. Decryption
for a Paillier modulus N will also be into [IN]. Let 7 be the statistical security parameter while x
is the computational security parameter.

2.2 Paillier Cryptosystem

The Paillier cryptosystem is a public-key encryption system that enables additive homomorphic
computations over its ciphertexts. Originally invented by Pascal Paillier in 1999 [37], the scheme is
protected by the decisional composite residuosity assumption, which states that given a composite
n and an integer z, it is hard to decide whether z is an n-residue modulo n?.

Here, we present its simplified implementation. Similar to RSA, two large prime numbers p and
q are randomly sampled. Let N = pg, g = N +1, A = ¢(N), p = ¢(N)~"! mod N. The public
encryption key is (NN, g) and the private decryption key is (A, p).

To encrypt a message m in the range 0 < m < N, select a random r € [N] with GCD(r, N) =1
and compute the ciphertext Enc(m;r) = C = g™ mod N2. This ciphertext can be decrypted

back to its plaintext message by computing m = % u mod N (note that the division by
N is simply computing the quotient).

The Paillier encryption system is incredibly useful for multiparty computations because of its ad-
ditive homomorphic nature. Notably, the product of two ciphertexts results in a new ciphertext rep-
resenting the sum of its plaintexts: C; @ Cy = Enc(mi)Enc(mz) mod N? = Enc(mi +mg mod N),
and a ciphertext raised to the power of a plaintext results in a new ciphertext representing the
product of its plaintexts: C; ® ma = Enc(m;)™2 mod N? = Enc(mims mod N). Within this
work, the most expensive operations include the generation of two random primes for a new Paillier
modulus, exponentiation modulo N?, and exponentiation modulo N. For our implemented scheme,
N is a 2048-bit modulus.

2.3 Active, Proactive Security.

Proactive security ensures unforgeability even when the adversary is able to recover individual
shares of the signing key. To ensure this property, the parties holding the shares of the signing key
must periodically engage in a key refresh procedure. Security is typically defined using a game-
based security definition, where the adversary is allowed to request shares of the secret key after
each refresh procedure, and then attempts to create a forgery. (Additionally, as in the standard
definition of unforgeability, the adversary can also request signatures on messages of its choosing.)
However, we are interested in a stronger security definition: we wish to claim unforgeability, even
if the adversary acts maliciously during key generation, signing, or key refresh. As such, we de-
part from the game-based security definition, and define security through the real/ideal paradigm
that is commonly used in secure computation protocols. This ensures security under sequential
composition.

We provide a description of our security modeling in Appendix B, and only include a few key
details here.



Admissible adversaries: Note that security is clearly impossible if we do not place any constraints
on the command sequence. In the real-world execution, given the sequence ((ssid7Corrupt,P1),
(KeyGen, G, G, q), (ssid, De-corrupt), (ssid, Corrupt,Pg)), the adversary A will recover both shares
of the secret key x = x1 + x2. D can trivially check these values against the reported public
key X. On the other hand, in the ideal-world, the simulator S is not given access to the state
of P; or P, but rather has to provide simulations of those states. A correct simulation would
imply finding the discrete log of X. Of course, this is the very purpose of the Refresh protocol: we
impose the constraint that immediately prior to the command (ssid, Corrupt, P;), we must have the
sub-sequence (ssid, De-corrupt), (ssid, Refresh). We note that even this would not suffice, unless we
assume that the adversary cannot observe the value of the coin flip used in refreshing the key shares.
We therefore assume that the protocol is executed over a private channel, and that the adversary
can only observe messages received by a party that is currently corrupt.

We note that our definition is very similar to the standard definition of secure computation
with an adaptive adversary. However, in addition to the constraint described above, we also only
allow corruptions to occur in-between protocol executions. (This is implicit in our description of
command sequences.) In contrast, a truly adaptive adversary can change the corrupted party in
the middle of a protocol. Clearly we would face the same issue just described if we allowed the
corruption to change in the middle of signing or refresh.

Additionally, as discussed earlier, if P; receives a bad ciphertext during the execution of (ssid,
Sign, m), then we require that the parties perform (ssid, Refresh) before attempting to sign again.

2.4 Zero Knowledge

We use two existing zero knowledge proofs from the literature. The first is a simple zero knowledge
proof of knowledge of a discrete logarithm. Proofs of knowledge are stronger than standard zero
knowledge proofs in that, in addition to guaranteeing soundness, completeness, and zero knowledge,
they also provide the additional guarantee that there exists a polynomial-time extraction algorithm
that can recover the witness after interacting with the prover. (Of course, a malicious verifier
should not be able to do this, but the extractor might re-wind the prover, or use some trapdoor
in the parameter setup.) The extraction property also provides the benefit that the proof can be
modeled using an ideal functionality, as the simulator can extract the witness and submit it to the
functionality. As Lindell did, we therefore ignore the implementation details for this zero knowledge
proof, and provide a very simple F functionality in its place (Figure 2). For more information
about secure computation with hybrid functionalities, see Appendix B.

The Zero-Knowledge Functionality FZ for Relation R

Upon receiving (prove, sid, x, w) from a party P;(for ¢ € 1,2): if (z,w) ¢ R or sid has been
previously used then ignore the message. Otherwise, send (proof, sid, ) to party Ps_;.

Figure 2: The Zero-Knowledge Functionality Fi for Relation R (copied verbatim from [33])

When P, constructs proofs of knowledge for discrete log, we need to commit to the proof prior
to sending it. P, only sends its proof after receiving and verifying the proof of P;; this ensures
independence of the two instances in their proof. Again, as Lindell did before us, we simplify this
into a single functionality that combines the commitment and the proof of knowledge (Figure 3).
This simplifies the presentation, removing the need to specify how commitments are implemented.
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The Committed NIZK Functionality FZ . for R

Functionality Fcom—zx works with parties P; and P> as follows:

e Upon receiving (com-prove, sid, z) from a party P;(for ¢ € 1,2): if (z,w) ¢ R or sid has been
previously used then ignore the message. Otherwise, store (sid, i, z) and send (proof-receipt,
SZd) to P3_;.

e Upon receiving (decom-proof, sid) from party P;: if (sid,i,x) has been stored then send
(decom-proof, sid,x) to party Ps—;.

Figure 3: The Committed NIZK Functionality F£ for R (copied verbatim from [33])

com—zk

2.5 Zero Knowledge Proof of GCD

Our protocols rely on zero knowledge proofs for several languages, which we present independently,
in order to simplify the presentation of the signature scheme itself.

During key generation and key refresh, the server samples a new Paillier modulus N. Although
this modulus is supposed to be the product of two large primes, as shown by Lindell [33], if the
server proves only that GCD((N), ¢(N)) = 1, this suffices for ensuring the expected homomorphic
properties of the Paillier encryption scheme. (Other complications arise from this relaxation, but
we address those below.)

Leep, is the set of positive integers N such that GCD(N, ¢(N)) = 1. The zero knowledge proof
that we use is from Goldberg et al. [26]. We present it in Appendix C for completeness.

3 Zero Knowledge Proof of Consistency

The next zero knowledge proof that we present is a proof of “loose consistency” between a discrete
log instance, and a Paillier plaintext. Although the proof has been presented elsewhere, here we
change the standard soundness claim in order to avoid full soundness amplification. We therefore
present the result in its own Section. Concretely, a tuple (C, X1,q, N) € Leq if there exist &7 €
[N],0, 21 € [q] such that the following hold:

o (= EncN(ﬁvl),

[ X1 =1 X G,

o [6(21 —m1)|N € [3¢22207+M)). ([0(21 — 1))y is “small”.)

o [[0(Z1 —z1)]n]q = 0. ([6(&1 — x1)]n is a multiple of ¢.)

In honest executions of key generation and key refresh, z; € [¢] and Z; is a small positive integer
satisfying #; = x1 mod ¢, so that the above conditions are trivially satisfied with § = 1. Suppose
we wished to prove this stronger claim of honest behavior and attempted to prove it as follows. The
prover samples a random value b < [¢?22("+%)] and sends Ency(b) and b x G to the verifier. The
verifier replies with a random challenge o, and, finally, the prover reveals z; = &0 + b, together
with the encryption randomness that results from computing Ency(Z10 + b) homomorphically.
The verifier checks that the two prover messages are consistent with the instance and o — that is,
(Ency(Z1) @ o) @ Ency () < Ency(z1), and X1 x 0+ (b x G) < (#1 X G). However, the prover can
cheat if there is a small factor d such that [§(Z; — z1)]n nontrivially satisfies the conditions above.
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For example, if the adversary is lucky and o is divisible by §, then we have that [ - o + b]y might
actually be small and congruent to [z1 - o + b];y modulo g, because [0(Z1 — 21)]n may be small and
congruent to 0 modulo ¢. (The prover can also make its attack less detectable by not requiring o
be divisible by 4, but instead congruent to a certain value modulo §, where that value depends on
a tweak the prover has made to b.) As in the proof presented previously that N € Lgcp, we could
amplify soundness through repetition. However, we wish to avoid that.

Instead, our main technical contribution is to recognize that we can relax the claim, as described
above. Rather than requiring equivalence of Z; and x; over the integers, we instead consider what
guarantees are provided when we forgo any amplification. We can show that there exist small
integers 0, k < N such that 6(Z; —x1) = kg+¢N. The fact that these values are small will facilitate
our main technical argument (Claim 7 in Section 7) that any leakage stemming from #; can be
statistically hidden by Ps, simply by adding sufficient noise pg to the plaintext, homomorphically.

Ileq

Inputs: Prover: ssid, N,C, X1,%1, p (where C = Ency (%15 p)).
Verifier: ssid, N, C, X1.

Prover: Sample: § < Z} ; b« [¢ - 22(7F%)].
Compute: v1 = Ency(b;9) ; 72 = b X G.
Compute: o = H(ssid, C, X1,71,72)-
Compute: z1 = (10 +b) ; 22 = (p°d mod N).
Send: ¢ = ml|y2l21(|22.

Verifier: Parse ¥ as v1, 72, 21, 22.

Verify: 71 € Zys ; 21 € [¢2220F%) 4 (¢ — )27 — g+ 1] ; 22 € Zj.
Verify: v2 #0; 72 € G.

Verity: GCD(C, N) = 1, GCD(y1, N) = 1.

Compute: o = H (ssid, C, X1,71,72)-

Verify: 71 @ C7 = Ency (215 22).

Verify: v2 + (X1 X o) = 21 x G.

Figure 4: Zero knowledge proof of loose-consistency between a discrete log instance and a Paillier
plaintext. We assume H is a random oracle with output in [¢] and apply the Fiat-Shamir transform.

Claim 1 (Soundness.). If GCD(N,¢(N)) = 1 and if it holds in Ileq that Pry.z, [Vrfy(C,0,¢) =
1] > % for ' < ¢, then there exists § < §’ such that:

a) [dy]n € [3¢222(7 )],

b) [dy]ny = 0 mod gq.

Proof. By assumption, at least & of the ¢ possible challenges lead to verification. It follows that
there exist two such challenges 01,09 such that [|o1 — o3|]y < ¢'. Let 6 = 01 — 09.

The fact that GCD(N, ¢(N)) = 1 implies that every value in ZY, is a valid Paillier ciphertext
with a well-defined encrypted value. Accordingly, from Ileq, let z; be the value encoded by X;,
and Z; be the value encrypted by C. Further, let b be value encoded by 2, and b be the value
encrypted by ;.

Let Zy,Z5 € [N] be the corresponding integer proof terms corresponding to these challenges,
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which must satisfy:

Zy = |#i01+bN
= [z01+ Y],
Zy = |#100+ DN
= [x102 + b4

When GCD(N,¢(N)) = 1, Paillier encryption supports the homomorphic properties “as ex-
pected” [31]. Subtracting, we have:

Zy—Zy = [210]N
[-Tlé]qv
which implies
Zo—27y = T10+4LN
= x10 + kq,

for integers k, £, and therefore
o0y = (&1 — x1)0 = kq — LN.

As a condition of verification, Z;, Zy € [2¢?22(7+")]. Because |Zo — Z;| € [2¢?227F%)] and z1,6 < q,
we have that |kq| = |Zy — Z1 — 16| < 3¢222(7+5) Since [0y]n = kq, the claim follows. O

Claim 2 (Zero Knowledge.). If GCD(N, ¢(N)) = 1, there exists a probabilistic, polynomial time
algorithm S that on input (ssid, N, C, X1) outputs a transcript view that is indistinguishable from
the view of the verifier when interacting with the real prover.

Proof. Note that when GCD(N, ¢(N)) = 1, homomorphic operations are “erased” by the encryption
randomness. S simulates ¢ as follows:

e Sample 0 < Zg, z1 < [¢> + ¢*27T2%(1 +27)], and 25 + Z}.

Compute C,, = Ency(z1; 22).

Set Y1 = cC79 Cz1

Set Y2 = (—0 X Xl) + (21 X G)

Set ¥ = 11|[yz2[[21]]22-

Program H(ssid,C, X1,71,72) = 0.

Note that the encrypted/encoded values are identical in the true execution and simulation with
b = z1 — 210. Regarding the encryption randomness, in both the true execution and simulation,
C has some randomness p, and z, is the randomness revealed in the proof. In the true execution,
~1 has randomness § which satisfies zo = p°d mod N. In the simulation, v; has randomness z5/p?,
which is identical. O
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4 Key Generation

Key Generation is essentially a Diffie-Hellman key exchange resulting in (21 +22) X G, accompanied
by a Paillier encryption of P;’s share of the secret key: Ency (z1). However, in order to prove security
of the scheme, we require several commitments, and zero knowledge proofs.

P, begins the protocol by sampling a random z2 < [g], computing Xo = x2 x G, and sending a
commitment to both Xs and its proof of knowledge of x5. This is modeled by a call to the ]—'i'?;_zk
functionality.

After receipt of the commitment, P; samples z1 + [¢] and computes x; x G. It samples a new
Paillier key N = PQ and creates a proof 7 that GCD(N, ¢(N)) = 1 (See Section 2.5). P; samples
a perturbation factor ¢ <— [2712%] to compute Z; = x; + tq. Finally, it samples C = Ency(#1), and
creates a proof of consistency for C and X;: ¥ < IIq.Prv(N, C, X1, 21). It sends (C, N, w, ¥).
After verifying the proofs sent by P;, P, decommits to X», and the proof of knowledge of x5 (again
through the cRc:?]sz functionality). At the end of the protocol, each party stores their key share,
xp, N and X and X; for use in signing and refresh. P additionally stores C' for use in signing, and
P, stores P, for signing.

Key Generation

Input: None.

P,: Sample z2 + [g], compute X2 = z2 X G and submit (ssid1, proof-commit, X2, z2) to Frou

com—zk*

Pr: Sample z1 + [g], compute X1 = z1 X G and submit (ssidz, Prove, X1, z1) to fiD'-.
Sample Paillier public key N = PQ and
T < HGCD.PI‘V(N, ¢(N))
Sample ¢ + [2772%], C' ¢+ Ency(z1 + tg), and
U« Ieq.Prv(N, C, X1, 21).
— Send (C, N, m, ¥).

Py: If Ilgep.Ver(N, m) = 0 or Ileq.Ver(C, X1, ¥) = 0, abort.

Otherwise, submit (ssid;, decom-proof) to Frot

com—zk*

Py: Receive (ssidq, decom-proof, X3), or else abort.

Store: Pi: (ml,Xl,XQ,X:X2—|—X1,N,P,Q).
Ps: (xg,Xl,XQ,X,C,N).

Figure 5: Message specification for two-party ECDSA key generation.

5 Signing

Recall that an ECDSA signature has the form (r, s), where r is derived by sampling a random nonce
k < [g], and taking the x-coordinate of k x G. s is then computed as s = k~!(m + rz) mod q.
Revealing the nonce k to either party would leak information about z, so we instead use k =
k1ks mod g, where party b samples ky.

P, begins by sampling ks < [q], computing Ks = ks x G, and committing to Ky and the proof
of knowledge of k2 (again through f;ﬁfzk). Py responds by sampling k1, computing k1 x G, and

proving knowledge of both k; and x;. As P; acts second, there is no need for a commitment to
these proofs, so it instead uses the simpler fZRkDL functionality.
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Signing Message Specification

Input: Pri: (z1, X, X1, X2, M, N, P, Q,ssid).
Ps: (IJQ,X,Xl,XQ,C,M,N,SSid).
If ssid has been used before, quit.

) R
commit, Xo,x2) to Foor_ ..

to .7-'ZRkDL.
P»: — Receive (Proof,ssid||3, K1) and (Proof, ssid||4, X1) from FiPt, or else abort.
— Compute K = (k2 X K1) = (12,7y) ; r =7z mod q ; m = H(M).

— Sample p < [¢] and p « [3¢%2%7T2%].

— Compute 1232_1 = [k5']q + pq, and C' = (Encn(p - q + (l;:;l(m +rz2)))) @ (CO rl~62_1).

— Submit (ssid||1, decom-proof) and (ssid||2, decom-proof) to -FcFiEr)rsz’ and send C’ to Pi.
Pi: — Receive (ssid||1, decom-proof, K>) and (ssid||2, decom-proof, X2), or else abort.

— Compute K = (k1 X K2) = (12,7y) ; r =7z mod q ; m = H(M).

— Sample £ « [¢22(7T)],

— Compute so = Dec(C’) ; s1 = [s0]q; S2 = S0 — 51 + £q; 53 = [kl_151]q.

If not, abort until the next Refresh.
Output: (r,s).

P,: Sample k2 < [q], compute K2 = k2 X G, and submit (ssid||1, proof-commit, K», k2) and (ssid||2, proof-

Py: Sample: ki < [q], compute K1 = k1 X G, and submit (Prove, ssid||3, K1, k1) and (Prove, ssid||4, X1, z1)

— Verify that s2 < 27%, sg is divisible by ¢, and that min(ss,q — s3) is a valid signature on M.

Figure 6: Two party protocol for threshold signing of a message M.

P, then computes a “partial signature”, homomorphically. If P, knew that C' = Ency(x1) (as it
should), it would simply compute

Ency (ky *(m +722)) @ (C © ky 'r) = Ency (ky *(m + ras) + ky 'ray)
= Ency(ky L (m 4 rz)).
The resulting “partial signature” would be sent to P;, who decrypts and multiplies by ki ! to
complete the signing process.
Recall, however, that Il does not ensure that C is (entirely) consistent with X;. Because P,
cannot trust that C' = Ency(x1), we require some additional noise in the plaintext. P, samples
random multiples of ¢, and uses one to “smudge” the value of k5 ! and the other to smudge the

~—1 ~—1
whole plaintext. Specifically, P> sends a ciphertext encrypting pq+ ko (m+rza)+ky rxp), where

p < [¢®-27], and l?;;l = ky '+ pq for random p < [g]. We will prove in Section 7 that, conditioned on
a verifying proof from Ileq, which would have been provided either during key generation, or doing
the previous refresh operation, these two random multiples of ¢ suffice for ensuring that nothing
about kg or x5 leaks to Py, even if C' encrypts &1 # z7.

After Py decrypts to recover so = Decy(C’), it completes the signing operation by multiplying
s = ki 'sy, and setting the signature to be the minimum of (s, ¢ — s). Finally, and importantly, P;
verifies the signature against the public key X. If the signature fails to verify, then P, must refuse
to perform additional signatures prior to a refresh operation. This is because a bad ciphertext
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generated by P» could leak a few bits of information about pg + 1 mod ¢q. Under the Paillier-EC-
Refresh assumption, we prove in Section 7 that a refresh, with a new pgq, suffices to ensure security
going forward, even without changing ;1 or the public key.

6 Key Refresh

The Refresh operation re-randomizes the secret key of the two parties, as well as the Paillier modulus
and ciphertext used to encrypt x1. The parties flip a random coin r < [¢] in order to re-randomize
their shares. We treat this as an ideal function call for simplicity, though it can be trivially realized
with a standard commit-and-reveal protocol. Once they’ve agreed on random r, P; updates x; by
subtracting r, while P, updates x5 by adding r; 21 = x1 — r, and &3 = x5 + r. This results in a
new, uniform secret sharing z, without any changes to the public key. They each update X; as
well, by subtracting r x G: X; = X; — (r x G).

Just as in Key Generation, P; then samples a new N = PQ, ® « Igcep.Prv(N,¢(N)), C +
Ency (1), and ¥ < Ileq.Prv(N, C, )?1, &1). Py verifies the proofs, and the protocol terminates.
Finally, P, samples new noise for protecting the Paillier plaintext, sampling ¢ < [27+2%], and
creating a new ciphertext C' < Ency (21 + tgq).

Key Refresh Message Specification

Input: Pi: (21, X1, X).
PQ: (xg,X1,X).
Ps: Send ssid to Feoin and receive r in response.
Compute &2 = 22 + r mod ¢ and X1 = X1 — (r X G).
Pi: e Send ssid to Fein and receive r in response.
e Compute 1 = 1 — r mod ¢ and )A(l =X —(rx@G).
e Sample Paillier public key N = PQ and
7 < Igep-Prv(V, ¢(N)).
e Sample t + [27”:"]7 C + Encn (21 + tg), and
U Tq.Prv(C, X))
e Send (C,N,m, ¥).
Py: If either Ilgcp or Ileq fail to verify, abort.
Store: N
Py stores (Z1,X1,X,C,N, P,Q).
P, stores (552,)?1,)(7 C,N).

Figure 7: Message specification for 2-party ECDSA Key Refresh.

7 Simulation-based Proof of Security

In this section, we will prove that our threshold signature scheme securely realizes the Frs func-
tionality described in Figure 8, assuming the Paillier-EC-Refresh assumption holds. As described
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in Section 2.3, we consider stand-alone security against a proactive, admissible adversary. We begin
by describing the new assumption.

KeyGen: Upon receiving input (ssid, KeyGen) from both parties,

Sign: Upon receiving input (ssid, M) from both parties,

F1s

e Sample x1,x2 < G.
e Set x =x1 +x2; X =g°.
e Store: (ssid, x).

e QOutput: X to both parties.

e Retrieve (ssid, z) from storage.

e Output (r, s) +ECDSA.Sign(z, M) to both parties.

7.1

Figure 8: Reactive functionality for threshold signatures

The Paillier-EC-Refresh Assumption

First, let us review Lindell’s Paillier-EC assumption [33].

Paillier-EC Assumption.

Consider the following experiment with an adversary A, denoted Expt 4(17):

5.

1. Generate a Paillier key pair (N, (P, Q)).

2. Choose random wq, wy < [¢] and compute Q = wy X G.

3.

4. Let b’ = A9 (N, C,Q), where O¢(C’, a, ) = 1 for ciphertext C’ and «, § if and only if

Choose a random bit b + {0, 1} and compute C' = Ency (wp).

Decy(ny(C') = a + - wy, mod g; otherwise, O¢ returns 0 and permanently aborts.

The output of the experiment is 1 if and only if ' = b.

The Paillier-EC assumption is that, for every PPT algorithm A, there is a negligible function u
such that Pr[Expt 4(1%) = 1] < £ + u(k).

Note that the oracle O¢ stops working after the first time it returns 0. When that happens, the
simulator must also abort. Therefore, the scheme itself aborts upon an incorrect partial signature
from Ps.

Compare Paillier-EC to Paillier-EC-Refresh, given below.

Paillier-EC-Refresh Assumption.

Let k be an integer representing the number of oracles. (We will later set this to 2 as a bound on
the number of queries an adversary can make.) Let I7, I5 be the intervals of consecutive integers,
such that |I;| is divisible by g, |I1]| > k-q-27T* for statistical and computational security parameters
7 and k, and (for all V; used in the system) I; and Iy are inside [N;] and 2|I1||I2| < N;q.
Consider the following experiment with an adversary A, denoted Expt 4(1%):

1.

Choose random wy, wy < Z4 and compute @ = wp - G.
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2. Give Adversary A the value Q.
3. Choose a random bit b < {0,1}.
4. For i € [k]:

(a) Generate Paillier key pair (N;, (P;, Q;)).
(b) Sample w; uniformly from I; subject to w; = w, mod q.

(¢) Compute C; = Ency, (w;).

5. Give Adversary A the public keys {N;} and ciphertexts {C;}.

6. Give Adversary A access to oracles O¢, for i € [k], where O¢, (C’, o, B) = 1iff [(Decy(ny(C') —
(a+ gl + B -w;))]n is in Iy and divisible by g, for perturbation factor ¢ chosen by the oracle
uniformly randomly from [k - ¢ - 2271%]. Otherwise, O¢, returns 0 and permanently aborts.

7. The output of the experiment is 1 if and only if A outputs b’ = b.
The Paillier-EC-Refresh assumption is that, for every PPT algorithm A, there is a negligible func-
tion 11 such that Pr[Expt 4(17) = 1] < £ + u(k).
We have characterized Paillier-EC-Refresh as specifying the number of oracles k£ up front, but &
can be arbitrary and indefinite, and oracles can be spun up dynamically.

7.2 Security Proof

Theorem 1. Under the Paillier-EC-Refresh assumption, for any admissible, mobile PPT adversary
A with auziliary input z, attacking the (Fox, Feom—zk; Feoin)-hybrid model protocol w, there exists an
ideal world adversary S such that Hyb, 4(1%,z) = Idealrg s(1%, 2).

Proof. We proceed to describe the simulator S that produces a simulated transcript for keygen,
and, subsequently, for some polynomial number of executions of sign and refresh. Throughout, the
adversary may change which of the two parties it chooses to corrupt, as long as the corruption
pattern is admissible (Section 2.3); the simulator will shift to produce the view of the appropriate
party, as described below. Upon a new corruption of party P, S also generates a simulated state
for that party, state,, and provides it to the adversary.

KeyGen (Malicious P;.)

e On input (KeyGen, G, g,q), S queries Frs and invokes A with the same input. S receives X
from Frs.

e S sends Proof-receipt, to A as the first message from Ps.

e S receives from A:
— (prove, X1,21) as A invokes Fit. If X; # (21 x G), S terminates the execution.

— (C,N,n,¥). If Ilgcp.Ver(N,m) = 0 or Ileq.Ver(C, X1,¥) = 0, S terminates the execu-
tion.

e S computes Xy = X + (—z1 x G), and sends (ssid, Decom-proof, X5) to P;.
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S sets 1 = x1, and N = N. Tt stores (X,icl,)zbﬁ,C) for future signature and refresh
simulations and instructs Fts to provide output to honest Ps.

KeyGen (Malicious Ps.)

Sign.

On input (KeyGen, G, g,q), S queries Frs and invokes A with the same input. S receives X
from ,7:1'5.

S receives (proof-commit, Xs, x9) as A invokes fiﬂhﬂk.
If X5 # (22 X G), S terminates the execution.
To simulate P;’s message,
— S computes X1 = X + (—z3 x G).
— &S honestly samples N = ]3@, and generates a simulated proof 7 < SGCD(N ).
— S samples #1 + [q], t + [2772%], and computes C Encyg (Z1 + tq).
— S samples U + Seq(N,C, X;) (Section 3).
S sends (5’,]\7,%,(17) to Py to simulate P;’s message, and sends (ssids, Proof, )~(1) to Py to
simulate the output of fiDL.

If S does not receive decom-proof, it aborts.

S sets &1 = z1, and X, = Xo. It stores (X,i“l,)?g,lg,@) for future signature and refresh
simulations and instructs Fts to provide output to honest P;.

(Malicious P;.)

If this is a new corruption, S samples random 531,]5,@, computes X, = i1 % G, X, =
X+ (—Z; xG) and N = PQ. (Recall, X was stored previously by S.) S uses these values to
simulate the state of the malicious P, sending state; = (X, 21, X2, N, P, Q) to A.

On input (ssid, Sign,m), S sends m to Fys, and invokes A with the same input. S receives
signature (r, s) from Frs.

S sends (ssid, Proof-receipt) to A as the output from Feom—zk-

S receives (ssid, prove, K1, k1) and (ssid, prove, X1, z1) as input to ]—'Z'T(DL. If K7 # (k1 x G),
Z1 # x1, or X1 # (21 X G), S aborts the execution.

Let y = 23 — 21 mod N denote the difference in the Paillier plaintext corresponding to C,
sent by A either during key generation or during the last key refresh, and the discrete log of
X1. (Note, &1 is unknown to S.)

— S samples ko < [q] and p « [3¢%2%712%], and homomorphically computes
C”" = ((k1s mod q) + kary + pg) mod N.

— & computes K = k x G from (r, s) exactly as is done during signature verification:
K = M It then sets Ko = %

S sends ((ssid, Decom-proof, )2'2), (ssid, Decom-proof, I~(2), 5") to A.
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e S continues to store (X ,531,)~(g7l\~7 ,C) for future signature and refresh simulations and in-
structs Frs to provide (r, s) to honest Ps.

Sign. (Malicious P»)

e If this is a new corruption, S samples random %1, T2 < [¢], and ]3, @ It computes N = ]Sé,
and samples C Encgy(#1). S computes Xy =iy x G, and X1 = X — (i3 x G). (Recall, X
was stored previously by S.) S uses these values to simulate the state of the malicious P,
sending state; = (X, Zo, X, N, 5) to A.

e On input (ssid, Sign,m), S sends m to Frs, and invokes A with the same input. S receives
signature (r, s) from Frs.

e S receives (ssid||1, proof-commit, X, z5) and (ssid||2, proof-commit, Ky, k2) as A invokes Fro: .
If Ko # (ko x G), o # 22, or X9 # (z2 x G), S aborts the simulation.

e S computes K = k X G from (1, s) exactly as is done during signature verification:
K = XXX G) g then sets K = i Tt sends (ssid|[3, Proof, K1), and (ssid||4, Proof, X )

to simulate the outputs of fiDL.

e S receives (ssid||1, decom-proof), (ssid||2, decom-proof) and C’ from A. It uses P, Q to compute
sy = Dec(C") ; s = k; 'so mod ¢ ; s = min(s,q — s).
S verifies that s is a valid signature on m. If not, it refuses additional sign commands until a
refresh is executed.

e S continues to store (X, Za, X 1, 15, @) for future signature and refresh simulations and instructs
Frs to provide (r, s) to honest P.

Refresh. (Malicious P;)

o If this is a new corruption, S samples random il,ﬁ,@, computes X, = (1 x G), X, =
X — (&1 x G) and N = PQ. (Recall, X was stored previously by S.) S uses these values to
simulate the state of the malicious Pj, sending state; = (X, %1, Xo, N, P, Q) to A. It stores

ila Pa Q
e On input (ssid, Refresh), S invokes A with the same input.

e S samples r + [¢] and sends it to A in simulation of the output of Feuin.
It updates &y = Z; — r, and X7 = (21 x G).

o Sreceives (C, N, m, ¥) from A. If IIgcp.Ver(N, ) = 0 or Ileq.Ver(C, X1, ¥) = 0, S terminates
the execution.

e S stores (X, 71, )?2, N ,C) for future signature and refresh simulations.
Refresh. (Malicious Ps)

e If this is a new corruption, S samples random Z1, %o, 1\7, and computes )N(l =X — (%2 x G).
(Recall, X was stored previously by S.) It then samples C' <— Enc (%), and uses these values
to simulate the state of the malicious P», sending state, = (X, Z2, X3, N, C) to A.

20



e S samples r + [g] and sends it to A in simulation of the output of Feoin.
It updates Ty = &9 + r, and Xo = (2 X G).

e To simulate P;’s message,
— & honestly samples N = ﬁ@, and T SGCD(N).
— 8 samples 71 « [g], t + [277%%], and C « Encg (&1 + tq).
— S samples U+ Seq(N, C, X;) (Section 3).
S sends (é,ﬁ,fr,\i) to Ps.

e S stores (X, Zo, X 1) for future signature and refresh simulations.

To prove Theorem 1, we have to prove that the two join distributions, Hyb, ,(1%,z) = (viewpys,
outnyb) and ldeal 7 s(1%, 2) = (VieWideal, OUtideal) are indistinguishable. We first look at the adver-
sarial views before considering the joint distribution.

Claim 3. If A is an admissible adversary, then viewpy = VieW|deal-

Proof. To simplify the presented argument that the simulated view is indistinguishable from a
hybrid-world view, we rewrite here, more concisely, the messages generated by S in the simulated
view of the adversary. We use KGp, Sigp, and Rfshy, to denote the view of party b in the corresponding
protocol.

KG; = (Proof receipt, (ssid, Decom—proof,)?g))

KG, = ( C N T, \IJ ), (ssida, Proof, )?1))

Sigy = (state, Proof-receipt, (55|d Decom-proof, X2) (ssid,Decom—proof,IN(Q),CN")
Sig, = (statey, (ssid||3, Proof, K1), (ssid||4, Proof, X)

Rfsh; = (statey, r)

Rfsh, = (statep, r, (&N,frﬁl))

Recall, state; = (X,ﬁcl,)?g,ﬁ,ﬁ,@), state, = (X, 552,;(1,]\7,5)7 and each is only included when
there is a new corruption. We make a few simple observations before proceedlng First, in the
(FRoL | Fu)-hybrid model, the simulation of Proof-receipt as output from F-o- K in KG; and

com—zk? com—z
Sigy is perfect Although S does not know Zs, the simulation of (ssid;, Decom-proof, Xg) as output
from fcom s in KGy is also perfect. This is because, after extracting z; from A, the value Xg =
X — (1 x G) is consistent with the (unknown) z5. The same argument holds for (ssid, proof, X1) in
KG,, X in state;, X; in statep, and (ssid||3, Proof, Kl) (ssid||4, Proof Xl) in Sig,. Finally, because
we have an admissible adversary, at the time of any new corruption of P, the only thing known
about state; is X. Therefore, the marginal distribution of the simulated state; is identical to that
of the real world state.
Putting these observations together, we now re-write the simulated variables, marking those with
the correct distributions in green, and the ones that we need to address in red. We will explain the
variables marked in red as we address them.

KG; = (Proof-receipt, (ssidy, Decom—prooﬂ)N(g))
KG, = (((N‘, N, 7, W), (ssidy, Proof, )N(l))
Sig1 = (stater, Proof-receipt, (ssid, Decom-proof, X,), (ssid, Decom-proof, K»), (N")
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Sigy = (state, (ssid||3, Proof, K1), (ssid||4, Proof, X)
Rfsh; = (state;,r)
Rfsh, = (states, r, (C, N, 7, V))

Hybrid H;: In this hybrid step, if P» is malicious during key generation, we replace C in key
generation, which encrypts a random Z; € [g], for C' that encrypts the discrete log of X;. (If Ps is
not malicious during key generation, we do nothing, and Hybrid H; is identical to the distribution
of views generated by S.)

Claim 4. If the distribution of views generated in Hybrid H; is distinguishable from that generated
by S in ldeal £ s, then there exists an adversary R that breaks the Paillier-EC-Refresh assumption.

Proof. R receives (first) challenge Ny, C}, X*, and plays the part of S, interacting with A. After R
receives (proof-commit, X5, 22) from A in the first message of key generation, it sets X = X* + (x5 X
G). Tt uses C7 and N7 to construct P;’s message in key generation, creating simulated proofs 7 and
U: (C, Ny, 7, ¥). In the ith refresh command prior to the first de-corrupt command, R queries
its challenger and receives N}, C¥. It updates X* = X* + (r x G), where r < [g] is the simulated
output of Feoin created by R. It simulates P;’s message using (N, Cf, 7, \T/) In any sign commands
prior to the next de-corrupt command, R verifies the correctness of C’ sent by P, by using the
current instance of the Paillier-EC-Refresh oracle: it extracts ko and zo from Py’s calls to fi?]h_zk,
sets o = k;lm mod q and 8 = k;lm‘g mod ¢, and submits query (C’, «, 8) to its oracle O¢,. . For
the remainder of the simulation, R behaves exactly as S; in particular, during subsequent refresh
operations where P is malicious, and during new corruptions of P, during signing and refresh, it
samples a new, random Z; and sets C' = Encg(#1). Just as S does, it uses its knowledge of the
simulated N = 15@ to decrypt C’ and verify validity of the plaintext during any signing executions.
If the challenge bit b in the Paillier-EC-Refresh game is 1, then R produces the same distribution
as §. Otherwise, it produces that of Hybrid H;. O

Hybrid Hgl): In this sequence of hybrid steps, we replace C, which encrypts a random #; € [g], for
C that encrypts the discrete log of X;. This is needed in every execution of refresh for which P; is
malicious, and upon every new corruption of P, during refresh or signing, when state; is simulated.
We proceed through these events in order of their occurrence, defining HS) as the distribution in
which the first ¢ — 1 instances of these events use C' = Encg(x;), and the remaining events use

C = Encg ().

Claim 5. If the distribution of views generated in Hybrid Hg) is distinguishable from that generated
in Hg_l), then there exists an adversary R that breaks the Paillier-EC-Refresh assumption.

Proof. R queries the challenger to receive challenge N7, Cf, X*, and plays the part of S, interacting
with 4. R simulates key generation by running the honest protocol. It stores X, z; for use in what
follows.

Until the ith event, when P, is malicious during refresh, and each time there is a new corruption
of Py, R uses its knowledge of x; (which might be updated during refresh procedures) to run
the protocol honestly. In particular, it constructs C' = Ency (1) honestly. Note that it still uses
simulated proofs 7 and 0.
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In the ith event, R uses its challenge to construct (CF, Ny, @)7 using simulated proofs 7 <+
Sccn(N*) and U« Seq(N7, CF, X*); this is done whether the ith event is an execution of refresh
with malicious Ps, or a new corruption of P, during refresh or sign. In the latter case, R uses X*
when simulating X in state,.

In the ith refresh command prior to the next de-corrupt command, R queries its challenger and
receives N, CF. It updates X* = X* + (r x G), where 7 < [q] is the simulated output of Feoin
created by R. It simulates P;’s message using (N}, C} ,ﬁ,\fl). In any sign commands prior to
the next de-corrupt command, R verifies the correctness of C’ sent by P by using the current
instance of the Paillier-EC-Refresh oracle: it extracts ks and zo from Py’s calls to g)'f;_zk, sets
a= k;lm mod ¢ and 8 = k:;lrxg mod ¢, and submits query (C’, «, 8) to its oracle Oc¢,, .

In the remaining events, R proceeds as S does (and as R did in Hybrid Hy). If the challenge bit b
in the Paillier-EC-Refresh game is 1, then R produces the same distribution as in Hybrid Hgil).
Otherwise, it produces that of Hybrid H(;). O

Hybrids Héi) and HS): In these steps we replace the simulated proofs, 7 and \fh first in key
generation, and then in the same sequence of events defining Hg): when P» is malicious during key

refresh, and upon a new corruption of P, during refresh or sign. More specifically, in H:(;)7 we use
an honestly generated m <— Ilgcp.Prv() in key generation, and in the first ¢ events in the above
sequence of events; we use 7 in the 7 4+ 1st event, and in every one after. For simplicity, we only

prove that Héi) is indistinguishable from Hgi_l). The proof for Hfli) is nearly identical.

Claim 6. If the distribution of views generated in Hybrid H :(),i) is distinguishable from that generated

in Hgi_l), then there exists an adversary R that breaks zero knowledge of Ilgcp.

Proof. R plays the role of P; honestly through key generation and the first ¢ events. In the ith
event, it receives a challenge instance N*, and a challenge proof, 7*. Additionally, we assume that
R is given auxiliary information containing the witness ¢(N).% It embeds 7 in the ith event, using
(C,N*, 7*, \TJ) For each signing operation prior to event i + 1, R uses auxiliary information ¢(N)
to decrypt C” and verify correctness of the plaintext, just as P; and S would do. If it fails to verify,
R refuses to perform additional signatures until another refresh occurs. (When making the same
claim for substituting ¥ for ¥ in Hff), note that ¢(N) is not needed, but otherwise the reduction
is identical.) O

After this set of changes, we note that state, = (X, 502,)?1,5,]\7 ) have the correct marginal dis-
tribution. As with state;, this holds because A is admissible, and, therefore, no prior information
about these uniform values is known.

Hybrid Hs: Here we replace C’ with C” when P; is malicious during signing. Recall that when
S creates the message containing C’ on behalf of P>, & does not know 5 or ks. Nevertheless, we
claim that this change in the distribution has small statistical distance.

Claim 7. Hybrid Hj is statistically indistinguishable from the last of Hybrids Hff).

Proof. The claim is a bit challenging to prove for the following reasons:

§Note that zero knowledge is expected to hold even when arbitrary auxiliary information is provided to the
distinguisher, including full knowledge of the witness itself.
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1. Recall, P; is NOT forced to prove that N is the product of two large primes. It is forced
to prove that GCD(N, ¢(N)) = 1, and as part of that proof it proves that GCD(N,«) = 1,
where « is the product of small primes up to some bound. But, otherwise, we allow P; to
take N to be a product of (possibly several) smallish primes above that bound.

2. If Py chooses N maliciously, or even if it doesn’t, it can encrypt a value of &; € [N] that
does NOT satisfy 1 = x7 mod ¢, and its ZK proof about the Paillier encryption of Z; may
nonetheless verify with non-negligible probability. We allow this. But we also show that, if
the probability is non-negligible, then Z; must have some well-defined relationship with x;.
Using that relationship, S is able to mimic Py’s distribution (without knowing z5).

In the simulation, S obtains a signature s = k= (m-+rz) mod ¢ from the challenger. Via extraction,
S obtains z; and k; as integers in [g]. Finally, S obtains an encryption of #; € [N] from Pj.
Recall y = &1 — x1. Using Paillier’s homomorphism, S obtains a Paillier encryption of y. S
generates ko and p from appropriate ranges and then produces a Paillier ciphertext that encrypts
§ = ((k1s mod q) + kory + pq) mod N. Because GCD(N,$(N)) = 1, the ciphertext does not leak
any information about the homomorphic evaluation beyond the plaintext, so it suffices to analyze
the content of the plaintexts.

Rewriting k = k1ks mod ¢ and x = x1 + 22 mod ¢, where k; and x; were both extracted from A’s
messages, we have:

§ = ((k3"(m +rz1 + 1) mod q) + kory + pq) mod N.

-1
In the true execution, ky < [q], p < [q], and ky = k; ' + pg. We have:

-1
m+ r(z1 +y) + r22) + pg) mod N

(

~ ~—1

ko (m+rzy +res) + ky ry+ pq) mod N
1

Qe

I
—~~ —~ T T~~~
R

~—1

2 (m+7rzy +re2) mod q) + ky ry+ pg) mod N
~—1

kyt(m +rzy 4 rag) mod q) + ky ry + pq) mod N

~—1
The second-to-last equivalence follows from the statistical equivalence of ks (m + rz1 + ras) + pg

~—1
and (ky (m+rxzy + rag) mod q) + pg over Z, as shown in Claim 8; as they are equivalent modulo
q and as pq translates by a random multiple of ¢ that is much larger in expected magnitude than

l;:;l(m + rx1 + rxe). The last equality holds because IE;I =k; ' mod q.

So, it remains to show the following distributions are statistically close:

((ky ' (m + 7y + rae) mod q) + kary + pg) mod N 0
é((14271(77? + ra1 + reg) mod ¢) + l%;lry + pg) mod N,

P ~—1
where the randomness is over ks, k; and p. Note that on the right hand side, k, = k;z_l + pq,

so there is a correlation between the first and second terms, while on the left hand side, ko was
sampled independently from k5 ! by the simulator.
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Yet, as we will show, the fact that IE; ! was generated as k; L4 pq for random p will “disrupt” this
correlation sufficiently that it allows the argument of a well-distributed simulation.

By the soundness guarantee (Claim 1), assuming P;’s ZK proof about its encryption of &; verifies
with non-negligible probably, there exists a small integer §, relatively prime to ¢, such that dy =
¢+ IN for some ¢ € [3¢?22("T%)], with ¢ = 0 mod ¢q. Since we want to use this fact about dy, it
is convenient to multiply the distributions we are comparing by § — in particular, we will prove
Equation 1 by proving the following equivalent statement:

(6(k3 Y (m + ray + ras) mod q) + dkory + dpg) mod SN )
é(é(k;l(m + rxy + ree) mod q) + 515;1@ + dpg) mod ON.

The two statistical claims are equivalent, because multiplying or dividing by J to go from one
statement to another is a bijection here. For convenience, let m’ = m + rx; + rzo. We have:

(6(ky *m’ mod q) + (5l~€;1ry + dpg) mod SN
((0ky *m’ mod 8¢q) + l;;lrc + l;;lrﬁN + 6pgq) mod N

kytm/ + l;;lrc mod §q) + /Nf;lrfN + dpgq) mod N

Qe

§
Sky tm/ + (l%;l mod d§)rc mod 6q) + I;;IMN + dpq) mod 6N

Qe

(
((
((
((Oky tm’ + (12:2_1 mod §)rc mod §q)+

(l%;lré mod §)N + dpg) mod 6N

In the third line, after observing that p - dq > /;:;17"(: (recall, p € [3¢?2372%] while I%;lrc €
[3¢*22(7t1)]) ) and (trivially) l%;lrc = [E;lrc]gq mod dg, it then follows from Claim 8 that E;lrc +
pdq % ﬁ:; lrc mod &g + pdgq. The claim of statistical closeness in the fourth line follows from the fact
that ¢ is divisible by ¢ (see Claim 1). The one-to-one correspondence in the fifth line follows from

the Chinese remainder theorem.
We also have:

§(kym/ mod q) 4 dkary + 6pq) mod SN

((6k5 m’ mod 8q) 4 kore + korlN + 6pg) mod SN

—
—

((6k3 'm’ + kore mod 8q) + korN + dpq) mod 6N
((6k3 'm’ + (ko mod 8)rc mod dq) + korfN + 6pg) mod 6N
((6k3*m’ + (ko mod 6)re mod dq)+

(ko€ mod )N + 6pg) mod 6N

Qe Qe

The final distributions in each derivation are statistically close to one another, because both ks mod
~—1 ~—1
§ and k, mod § are (very nearly) uniform and independent of k5 * (the value of k, modulo ¢). In

~—1
particular, ko = k5 L4+ bq, where g is relatively prime to 8, and p is statistically close to uniform
modulo 9. O

This conclude the proof of Claim 3 that viewpys, = VieWigeal. O
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To complete the proof of Theorem 1, we turn to the output of the executions. We demonstrate that
for any view in the support of either viewny, or viewdear, view causes termination of the simulation
if and only if view causes the honest party to abort without a signature. We make the argument
through case analysis:

Case 1: P; fails to submit a good instance and witness to ]—'Z'T(DL, or P, fails to submit a good

. . R
instance and witness to F.°-

cor k- This could occur during key generation or signing. In the
hybrid execution, the honest party will fail to receive proof-commit or Proof (respectively) and
will terminate the protocol. In the ideal simulation, S will detect the bad submission to the

functionality and will terminate the simulation.

Case 2: Py provides a proof 7 < Ilgcp.Prv(), or a proof ¥ < Il.q.Prv() that fails to verify. This
could occur during key generation or refresh. Both P, and S terminate the protocol.

Case 3: P, fails to decommit to their proof. This could happen in key generation or signing. Both
the honest player and S abort when this occurs.

Case 4: P, sends a badly formed C’ during signing. Here we rely on the correctness of the Paillier-
EC-Refresh oracle (Section 7.1). An honest P; computes so = Dec(C’), and aborts if and only if
ki sy mod ¢ is an invalid signature. S makes this determination through the oracle query. Since
the response of O is 1 if and only if Dec(C’) = ky ' (r(21 + ) + m) mod ¢, correctness of the
simulation follows.

O

Claim 8. Let k; and ky be two integers satisfying k; = ko mod ¢ and |k; — ko| < 2¢-¢. Let p be
sampled uniformly from [2¢+7] for statistical security parameter 7. Then, the distributions ki + p- ¢
and ks + p - ¢ are statistically indistinguishable.

Proof. Without loss of generality, we assume ko > k;. Let D; denote the distribution over the
integers that results from sampling p < [2°77] and outputting k; + p - ¢. Let Good denote the set
of integers that are in the support of both Dy and D5, and Bad the set of integers that are in the
support of only Ds. The statistical distance between D7 and D5 is

%Z‘Pr[w:m\w<—D1]—Pr[w=x|w<—D2H
TEZ

:% Z |Prlw = | w < Dy] — Prlw =z | w  Dy|

z€Good

1
+§ eZBd’Pr[w:ac|w<—D1]—Plr[u):35|w<—D2]|
xT a

:% Z |Prlw = | w < D] — Prlw =z | w + Dy

zr€Bad
<277

The first equality holds because Z\ (GoodUBad) has no support, by definition. The second equality

holds because, for each w € Good, Prlw + D;] = Pr[w + Ds]. This is true because the sample
randomness mapping k; to w € Good is injective, so each element in Good has equal probability
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weight under both distributions. Finally, the last inequality holds because Pr{w € Bad | w + D3] <
277, and Prw € Bad | w < D] = 0. O
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A The Paillier-EC-Refresh Assumption and Robustness to
CCA-like Attacks

Lindell’s threshold ECDSA scheme [33] uses a severe countermeasure to defend against an attack
by a malicious P;. Namely, if P> sends a partial signature (encrypted under P;’s Paillier key)
that leads to an invalid signature, the system aborts, a new signing key must be generated from
scratch, and the PKI must be updated with the new signing key. This motivates the question:
Can we prevent Py’s attack with a less severe countermeasure — say, just a Refresh instead of a
full KeyGen, or maybe even a procedure P; can perform on its own — while making virtually no
compromises on performance? Here, we show that we can.

First, let us understand the attack better. The basic problem is that, in Lindell’s threshold ECDSA
protocol, P, decrypts a ciphertext sent by P, and reacts to the result. This is similar to the classical
setting of chosen-ciphertext attacks, where there are well-known attacks that recover the secret key
just from decryption error messages. One way to defeat such attacks is to use an encryption scheme
with chosen ciphertext security, but Lindell’s scheme uses Paillier precisely for its homomorphic
properties. Another way to defeat such attacks is to require P; to use a zero-knowledge proof that its
ciphertext is correctly constructed, but Lindell’s scheme gets its performance precisely by avoiding
expensive zero knowledge proofs. Instead, Lindell proves that his scheme is secure under the Paillier-
EC assumption, a plausible assumption that permits very limited access to the decryption oracle.
Namely, the oracle will validate that a Paillier ciphertext encrypts some plaintext that satisfies a
congruence modulo ¢, but if validation fails the oracle will abort permanently. Unfortunately, this
means the scheme must start over as well.

Surprisingly, we show that, in our scheme, a lighter countermeasure is sufficient. Namely, instead of
encrypting its share z1 € [g] under its Paillier key N7, P; encrypts some value X; = x1+¢- f1 where
f1 has sufficient min-entropy. In other words, it never sends a direct encryption of x1 to Ps, but
instead always first perturbs 7 by a random multiple of g. Then, if P; detects a malicious partial
signature from P, P; changes its Paillier modulus to some Ny and encrypts a fresh Xo = x1+¢- fo
under N». Each time it detects an invalid partial signature, P, updates both its Paillier modulus and
the perturbation of z; that it encrypts. P, can be continuously corrupted, and this countermeasure
will still work to protect x1. During these updates, the value of x; can remain the same, but for
convenience our scheme folds this update into the proactive Refresh procedure.

Our assumption, Paillier-EC-Refresh, makes the expected changes to Lindell’s Paillier-EC. Namely,
we give the adversary access to several oracles in parallel, each one associated with a different value
X; = 1 mod g and a different Paillier modulus N;. Each oracle permits one invalid query before
aborting, and then a new oracle is spun up. Intuitively, the adversary cannot recover information
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about z1 because each oracle allows only a few bits about X; to be revealed before aborting, and
these bits are statistically independent of z;. Formally, we prove that the assumption is true in a
generic model for elliptic curves and Paillier encryption that allows linear functions to be computed
“in the exponent”.

We describe Lindell’s Paillier-EC assumption and our own Paillier-EC-Refresh Assumption in Sec-
tion 7.

A.1 Generic Model Evidence for the Assumption

We provide evidence supporting the Paillier-EC-Refresh assumption in a generic model where one
can apply linear functions in G and in the plaintext space of each Paillier modulus.

Definition 1 (Generic Model for Paillier and Elliptic Curves). The model provides “handles” for
elements, rather than elements themselves. For example, for G, first a random handle for the
element 1- P is published. Then, given ¢ previously published handles for a; - P, ..., a; - P, together
with ¢ scalars uy,...,u; € [q] expressing a linear combination, the model publishes a handle for
(aquy + -+ + apug) - P. The model stores handles together with their associated scalars. Two
queries that end up corresponding to the same element in G are handled with the same response.
Paillier ciphertexts are handled generically in a similar way, with complications due to encryption
randomness. For Paillier modulus V;, first a random handle for an encryption of 1 is published.
The model stores the handle, the value encrypted, and the encryption randomness. Then, given
t previously published handles, a t-linear combination modulo N;, and some randomness for re-
randomization, the model publishes a handle for the resulting ciphertext and stores its associated
information. If the resulting ciphertext has the same encrypted value and randomness as one
previously handled, the same handle is provided. The handles are distinct across different groups,
and for different elements of the same group.

We prove that the Paillier-EC-Refresh Assumption is true when the adversary interacts with the
above generic model and the oracles provided in the assumption.

Theorem 2. In the generic model for Paillier and elliptic curves, the Paillier-EC-Refresh as-
sumption holds. More precisely, suppose the adversary makes at most ng elliptic curve generic
model queries, npq generic model queries for any particular Paillier modulus, and at most neo
queries to any particular oracle in the Paillier-EC-Refresh Assumption. If |I;| > k- q-ne - 27 and
(n +kn%,, +kno) < q-27772, then the adversary’s advantage in the Paillier-EC-Refresh Problem
in the generic model is at most 277.

Proof. The challenger in the Paillier-EC-Refresh Assumption generates wg, wy,b. It gives the ad-
versary handles for 1- P and wg - P in G. It samples @; (for N;) uniformly and independently from
the interval I; subject to w; = wp, mod ¢, provides handles for encryptions of these values, and
stores the associated information (including encryption randomness). The adversary can access the
generic model, using the provided handles as starting points. The adversary can also access the
oracle Oy, associated with the value w; encrypted under N;: the adversary sends (h, «, 3), where
h is some handle it has obtained, and Oy, responds with 1 iff h corresponds to an encryption of
some value Y such that [Y — (a+¢l+ 5 -w;))]n is in Iy and divisible by ¢, for perturbation factor £
chosen by the oracle uniformly randomly from [k - ¢ - 2277*]. The challenger decommissions oracles
as appropriate.
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Let views denote the set of views that the adversary has from its generic model accesses and oracle
queries. We partition views into two subsets, viewsg,g and viewsgood- In viewsg,q, the adversary
makes a “bad query”. A bad query is one of the following:

e Bad oracle query: By Theorem 3 and Corollary 1, the solution set of each oracle query is an
arithmetic progression within I;. We call an oracle query bad if all terms in its arithmetic
progression have the same value modulo ¢, and that value is wg or ws.

e Bad G query: The adversary obtains handles for elements in G of the form «; + 8; - wq. If two
handles non-trivially collide, they reveal a relation for wg — namely, (a; — o)+ (8; — B;) - wo =
0 mod q. We say that a G query is bad if, by subtracting it from another G query, the resulting
linear equation is satisfied by wq or wy.

e Bad Paillier query: For each Paillier modulus separately, the adversary obtains handles for
ciphertexts in that Paillier group that are derived from given encryptions of 1 and w;. If two
handles non-trivially collide, then it may reveal a relation for w; and hence wy. We say that
a Paillier query is bad if, by subtracting it from another Paillier query, the resulting linear
equation is satisfied by some X in I; that equals wy or w; modulo q.

Now, the adversary’s advantage in distinguishing b is at most:

1
3 Z | Pr[b = OJview is V] — Pr[b = 1|view is V]| - Pr[view is V]

V Eviews

1
==Y |Pr]b=0|view is V] — Pr[b = 1|view is V]| - Pr[view is V]

V Eviewsgood

1
+§ Z | Pr[b = O|view is V] — Pr[b = l|view is V]| - Pr[view is V]

V Eviewsp,g

First, consider the case of a good view. In this case, the adversary makes no queries or generic
model accesses that relate directly to wg or wy. By Theorem 7, and a standard hybrid argument
across the k oracles in which we sequentially replace wg with w; in the construction of the oracles
(and with Corollary 1, which describes how to translate Paillier-EC-Refresh oracle queries to the
oracles of Theorem 7), the expression above with viewsgood is at most k;{;ﬂo

The part of the expression above with viewsg,q is upper bounded by % ZVEviewsBad Prlview is V]. Tt
remains to bound the probability of a bad view. Any bad view V has some first bad query. The
roadmap for the rest of the proof is: 1) Show that, just before the first bad query, the adversary
has negligible information about wy and w; — both wy and wy appear to have an almost uniform
distribution over [g], and 2) Conclude that, given its negligible information about wg and wy, the
chance of its next query being bad — of it essentially guessing wq or w; — is negligible.

First, consider the adversary’s view just before the first bad query. The adversary has made at
most ng accesses to the generic model for G, at most np,; accesses to each of the k Paillier generic
models, and at most np queries to each of the k oracles. However, none of the ("QG) pairs of handles
for G correspond to a bad query, so these queries merely reveal at most (7‘2@) values modulo ¢ that
are not in {wp,w; }. Similarly, the Paillier handles reveal at most k - (”’;‘”) more values modulo ¢
that are not in {wg, w1} (being generous to the adversary here). Finally, the adversary has made
at most k oracle queries that we call g-progression queries — queries whose solution set consists of
elements that all equal the same value modulo gq. There are at most k& such queries, at most 1 per
oracle, because the all of the responses to them were 0, for otherwise there would be a bad query
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among them. These at most k g-progression queries reveal k additional values modulo ¢ that are
not in {wp,ws }. Altogether, the generic model queries and the g-progression oracle queries “knock
out” at most nZ + k- n%_; + k values modulo g.

Of the subset of ¢ —nZ —k-n%,; — k values remaining, Theorem 7 (with a hybrid argument over the
k oracles) states that all of these remaining values look statistically equally likely to be in {wq, w1},
up to an advantage of k - ¢ - np/2|I;|. This implies that the maximum likelihood pyq. of any of
these mod-q values being in {wg, w1y} is:

Pmaz = maxPr{u € {wg,w}]
u€lq]

2 .1—|—I<;-q-n@/|11|
q—ni—k-nkt,—k 1—k-q-no/lL|

<

The term multiplied on the right comes from the fact that, if the maximum advantage for guessing
between two choices is €, then probabilities are 1/2 + € and 1/2 — €, and the former is bigger by a
factor of (1 + 2¢)/(1 — 2e).

Having characterized the adversary’s view before its first bad query, we consider the bad query
itself, considering the 3 types of queries (oracle query, G query and Paillier query). A bad oracle
query is one in which the solution set is either entirely wy or w; modulo ¢q. By the union bound
over the adversary’s k - no oracle queries, the probability of this event is at most ppaz - k - no-

A bad G query is one in which the relation corresponding to a pair of colliding handles is satisfied
by wg or wy. By the union bound, the probability of a bad G query is at most pyqz (7’2“"") < Pmax -n?@.
The case of a bad Paillier query is similar.

Putting this together, we have:

1
3 Z Pr[view is V]

V Eviewspgag
1 14k g no/IL]
q-n%4—k-nit,—k 1—k-q-no/|lL|

< (ng +knpy + kno) -

Adding this together with the adversary’s advantage coming from viewsgyod, we have:

k.-q-
Advantage s qyersary < ﬁ
1 14+k-q-no/||

g—n%—k-n2,—k 1—k-q-no/lL|

+(ng + knpy; + kno) -

The first expression on the right hand side of the inequality is at most 277!, because we assumed
|I1| > k-q-no-27. The second expression is also at most 277!, because we assumed (n% +kn% , +

L9—T—2 ; q  1tk-gno /||
knp) < q-2 , and the ratio R R e Rl e SRS T

theorem follows. O

is less than 2 for our parameters. The

A.2 Solution Sets Are Arithmetic Progressions

Below, Theorem 3 states that, when I; and I are sets of consecutive integers inside [N] satisfying
certain conditions, the set {X € I : [a + bX]|ny € I3} is a (finite) arithmetic progression inside
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I,. Afterwards, we explain how this result applies to our generic model proof that the Paillier-EC-
Refresh Assumption holds.

This arithmetic progression result may seem rather esoteric, but it helps us prove strong statistical
uniformity results in Section A.3.

Theorem 3. Let [N] be a set of N consecutive integers — for example, {0,...,N — 1}. Let []n
denote reduction modulo N into [N]. Let Iy, Iy C [N] be two nonempty sets of consecutive integers
satisfying 2|11||I2] < N. For integers a,b, let Sep1r,. 1, = {X € I1 : [a +bX|n € I2}. Then, the
elements of Sap,1,,1, form a (finite) arithmetic progression.

We give two proofs of Theorem 3, one elementary, a second based on two-dimensional lattices.

Proof. (Elementary) Sap.1, 1, is trivially an arithmetic progression if it has fewer than 3 elements,
so assume the contrary. Let distinct s1, s2 € Syp.1,,1, be such that 6 = |s3 — s1| is minimized. Let
A be the longest arithmetic progression inside S, 4 1,.7, containing s; and s3. The progression A
has step size §. Our claim is that S, 1,7, = A. Let A’ C I; be the continuation of the arithmetic
progression A across all of I.

Some facts:

1. For any arithmetic progression B, {a + bX mod N : X € B} is an arithmetic progression
modulo N, though the set of integers {[a + bX ]|y : X € B} may not be due to wrapping
modulo N.

2. For consecutive elements in A like s; and so that differ by §, their corresponding values
[a 4+ bX]y differ by the same A = bd mod N, where |A| < |I2|. So, for small step size § in A,
the corresponding value of [a + bX]x makes a “small” step size A.

3. We have b = A + ¢N for some ¢ co-prime to ¢, for otherwise if there were a common divisor
d we would have b(d/d) = (A/d) + (¢/d)N with A/d an integer, which would imply that we
could have taken smaller steps 6/d in I; and induce smaller steps A/d in I5.

4. For arithmetic progression A, the set of integers {[a + bX]|ny : X € A} is an arithmetic
progression within I5. This is because {[a + bX]|ny : X € A} is an arithmetic progression
modulo N that stays within Iy C [N], with no wrapping because the step size |A| < |I2] is
too small to step over [N]\ Iz, as 2|z < N.

5. For elements in A" outside of A, the corresponding value of [a+bX]y is outside of I but “close”
to I, since continuing in the arithmetic progression A’ beyond A induces a + bX mod N to
take small steps of size |A| away from Iy without going far enough to wrap. Specifically,
since |A’| < |I1]/é + 1, and since A’ has at least two elements in S, 1, 1,, there are at
most |I1|/0 — 1 elements of A’ outside of A. So, for X € A, a + bX modulo N can be
at most |A| - (|I1]/d — 1) < |[I1||I2]/§ away from I5, which is not far enough to wrap, since
(11| + 1)|I2] < N. Therefore, Sqp1,,1, contains no elements in A’ \ A.

6. For elements X in I; \ A, we can express X as Xy + X1, where Xo € A" and X; € {-6 +
1,...,—1,1,6 —1}. Then, a+bX = (a+ bXy) + bX; mod N. As mentioned, a + bXy mod N
is either in Is or “close” to it. We claim that bX; mod N is so “large” that it is impossible
for a +bX mod N to be in I5. Recall that we have bd = A 4+ ¢N for some ¢ co-prime to §. So,
bX; = (X1/0)- (A4 ¢N), as an integer, where |(X1/9) - A| < |A] is “small” and (X; - £/6) - N
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equals | X -£/6] - N + ((X1 - £ mod §)/8) - N, where the former expression is a multiple of N
and the latter has the form (r/d)- N for r € {1,...,0 — 1} (using here the fact that X; and ¢
are co-prime to ¢). For small 6 and r € {1,...,5—1}, (r/d)- N is very distant from a multiple
of N. Pulling this together, bX; mod N has magnitude at least N/§ — |A|. Therefore, a + bX
is at least N/§ — |A| — |A] - (|I1]/0 — 1) — |I2| “away” from I, where this quantity is at least
N/6— [AIE]/6 = | = (1/8)- (N — |A[|11| = [1,]6) > (1/8) - (N — 2| 1] 1o]) > 0. Concluding,
Sa.b,1,,1, contains no elements outside of A’.

O

Proof. (Lattice-Based) Let L, = {X,Y € Z?> : Y = a + bX mod N}. This set is a translation of
the two-dimensional lattice L = {X,Y € Z% : Y = bX mod N}. Let R be the two-dimensional
“rectangle” I; x I. Let S = L, N R be their intersection. We claim that S is a (finite) progression
of equally spaced points on a 1-dimensional line. Since S 1,1, is the set of first coordinates of
points in S, the theorem follows from the claim.

The claim is trivially true if S has fewer than 3 points, so assume the contrary. Let (Xi,Y7),
(X2,Ys), (X3,Y3) be three arbitrary distinct points in S. Let (d1,A;) denote (X7 — X3,Y7 — Y3),
and (02, A) denote (Xo — X3,Y5 — Y3). We have:

b'(Sl = A1H10dN
b'(SQ = AQmOdN.

Therefore, b- 1 - Ay —b- s - Ay = 0mod N.

If ged(b, N) = 1, then 1 - Ay — do - A1 = 0 mod N. But we also have |d1 - Ag —d2 - A1| < N because
2| ||Is] < N. So, 61 - Ay — 02 - A = 0 over the integers. Hence, (X1,Y7), (X2,Y2), and (X3,Y3)
are collinear. Since these points were arbitrary, all solutions are collinear, lying on some line /. We
conclude that S = L, N RN ¢, where the right hand side is clearly a (finite) progression of equally
spaced points on a 1-dimensional line.

For the case d = ged(b, N) is nontrivial, let ¥ = b/d, N' = N/d, A} = A;/d, and A, = Ay/d.
Then, we have 01 - AL — - Al = 0 mod N’ and |01 - AL —d2-Aj| < N’ and hence 61 - AL, —d2- A =0
over the integers, so that we obtain the collinearity result again, and proceed as before. O

How is this result relevant to our generic model proof that the Paillier-EC-Refresh Assumption
holds?

Corollary 1. The solution sets of oracle queries in our generic model proof are arithmetic progres-
S50MS.

Proof. Recall that, in Paillier-EC-Refresh, the ciphertext C; encrypts a value w; = wy mod q. The
adversary is given an oracle O¢, such that O¢, (C’, o, ) = 1 iff [(Decsy, (C7) — (a+ql+B-w;))]n is in
I5 and divisible by ¢, for some perturbation factor ¢ chosen by the oracle. But, in the generic model,
(" is a handle for a ciphertext and Decg, (C”) is known as a linear expression o/ 4+ 3’ - w;. So, in fact
the oracle is testing whether [(o/ —a—gf)+(8'—3)-w;))]w is I and divisible by q. Let I}, = {z : zq €
I}. Then, the oracle is testing whether [(¢~! mod N)(a/ —a—qf)+ (¢! mod N)(B'—B)-@;))]n is
in I,. Now, Theorem 3 applies, using a = (¢~ mod N)(a/ — a — ¢f) and b = (¢! mod N)(5' — )
and the output interval I}, where |I}| equals |I|/q (rounded up or down). O

Suppose the adversary makes several oracle queries that get several positive responses. By Theorem
3, the solution set then corresponds to an intersection of (finite) arithmetic progressions. The
following theorem states that this intersection is itself a finite arithmetic progression.
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Theorem 4. The intersection of (finite) arithmetic progressions is a (finite) arithmetic progression.

Proof. Let {A;} be a set of (finite) integer arithmetic progressions over intervals {I;} — namely,
A;={ci+6;-k €1;:keZ} Unless the intersection is empty, they all have a common element c.
Set § to be the lowest common multiple of {d;}. Set I = N;I;, which is itself an interval. Then, the
intersection is A = N;A; ={c+d-kel:keZ} O

In Paillier-EC-Refresh, each oracle permits multiple positive responses and one negative response.
The solution set here is the difference of two arithmetic progressions.

Theorem 5. The intersection of (finite) arithmetic progressions with the complement of an arith-
metic progression is a difference of arithmetic progressions.

Proof. Denote the arithmetic progressions by Aj,..., A,,, where A,, is the one we take the com-
plement of. We are interested in (N7 A4;) \ 4Ay,.

Let B; denote ﬂ;zlAj. By Theorem 4, B; is an arithmetic progression. And the above set is
precisely B,,—1 — Bpn- ]

Remark 1. For set difference, we use the A\ B notation when it is not assumed that B C A. We
use the A — B exclusively when B is known to be a subset of A.

A.3 Statistical Results

An easy first result is that arithmetic progressions have good statistical uniformity properties mod-
ulo ¢, as long as their step size § is co-prime to q.

Theorem 6. Let A be an arithmetic progression with step size § that is co-prime to q. Then, for
each x € [q], A has either ||A]/q| or [|A]/q] elements congruent to x modulo q.

Proof. (Trivial.) O

As a corollary, when it also holds that ¢/|A| is negligible, A is statistically uniform modulo gq.
Now, suppose a computationally unbounded algorithm A interacts with an oracle Ox, X € I,
that on input any a,b, outputs 1 iff [aX + b]y € I3, and otherwise outputs 0 and aborts. In the
setting here, we will give A both more and less power than the adversary in the Paillier-EC-Refresh
assumption, as follows:

e We let the adversary know ug,u; such that X = wup mod ¢ for b € {0,1}.

o We give A access to Ox, except that we disallow a certain type of “bad oracle query”. Namely,
each oracle query corresponds to an arithmetic progression A, by Theorem 3. We say that a
query is a “g-progression query” for residue w if its associated progression A has entries all
congruent to u modulo q. We prohibit A from making a “bad oracle query”, defined as a
@-progression query on g Or Uj.

Theorem 7 says that A has negligible advantage in guessing b. Note that A could easily guess b if it
were allowed to make a bad oracle query. While the setting is different from the Paillier-EC-Refresh
assumption, Theorem 7 will be a component of our proof that the Paillier-EC-Refresh assumption
is true in a generic model.
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Theorem 7. Let N,q be integers, q prime. Let [-]n denote reduction modulo N into [N]. Let
I, I C [N] be two nonempty sets of consecutive integers satisfying 2|I1||I2] < N, with |I1| divisible
by q. Let no be a parameter, representing a mazximum permitted number of oracle queries. Consider
the following interaction with an oracle. The values ug,uy are sampled uniformly from [q], b is
sampled from {0,1}, and X is sampled uniformly randomly from I subject to X = wup mod q.
Having fized X, the oracle Ox, on input any a,b, outputs 1 iff [a + bX|n € Iy. Otherwise, Ox
outputs 0 and aborts permanently. Any algorithm A given access to ug,u1 and Ox — subject to the
restrictions that it can make at most no queries to Ox and that it cannot make bad oracle queries
(as defined above) — has advantage at most % in guessing b. For example, if |I1| > q-no 2771
for statistical security parameter T, A’s advantage is negligible.

Proof. Fix ug,u; and fix the algorithm A4 and its randomness (but not b or X). A makes a fixed
first query @)1 and receives either 0 or 1 in response. If 0, the interaction is terminated. If 1, A
continues with its next fixed query Q2. And so on. A thereby follows a fixed chain of up to ne
oracle queries.

By Theorem 3, the set of values in I; consistent with a 1 response to query ); is an arithmetic
progression A;, while a 0 response is consistent with I; \ A;. Let B; = Oj»:lAj. If A’s m-th query is
the first 0 response from the oracle, then by Theorems 4 and 5, X is in B,,_1 — B;,. The B;_1 — B;
terms form a telescoping sum with By = I} and B; = ) for all i > np. Let Py, P; denote the
arithmetic progressions {X € I; : X = ug mod ¢} and {X € I; : X = u; mod ¢}, respectively. A
knows a priori that X is in Py U Py.

Now, letting views denote the set of views A may get from oracle Ox, we have that A’s advantage
in guessing b is at most:

1

5 > | Prb=Olview is V] — Pr[b = 1|view is V]| - Pr[view is V] (3)
V Eviews
1
= = > |Prlb=0Aview is V] = Pr[b =1 A view is V]| (4)
V €views
1
= = Z | Prlview is V|b = 0] Pr[b = 0] — Pr[view is V|b = 1] Pr[b = 1]]| (5)
2 V Eviews
1
= 2 > |Prlview is V[b = 0] — Prlview is Vb = 1]| (6)
V Eviews
1 |P()ﬂ(Bm,1—B )| |P1ﬂ(Bm,1—B )‘
= N Z ‘PO| = - ‘P1| = (7)
me[np]
= L > IPon (Bm—1 = Bm)| = [P1 0 (Bm—1 — Bm)|| (8)
40l o)
< = > 2 (9)
4l o)
q-no
= ) 10
30| (10)

The above inequality holds for all A and all its choices of randomness. Equation 7 relabels A’s
view depending on which query to Ox gets a 0 response. The probability that the m-th response
is the first 0 depends on the set B,,_1 — B,, of candidate X values and how that set intersects Py
or P;. Equation 8 comes from our requirement that |I;] is divisible by ¢ so that it hits all residues
perfectly evenly; if I; did not have this property, we would need to make a very small adjustment.
We now prove Equation 9.
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Let 0,,—1, &,, be the step sizes of the arithmetic progressions B,,_1, B,,. We claim that §,,_1 is
not divisible by g. Assume the contrary. Then, since B,,_; is the intersection of Ai,..., A1
and since the step size of the intersection of arithmetic progressions is the LCM of the individual
progressions, one of Ay,..., A,,_1 must have step size divisible by ¢q. But this is impossible, since
this would imply that one of A’s first m — 1 queries was a successful ¢g-progression query, and thus
a g-progression query for residue wy, which is prohibited. Contradiction.

If §,,—1 and d,,, are both co-prime to ¢, then by Theorem 6, each residue x modulo ¢ is represented
in By,—1 — By, at least ||Bm-1l/q] — [|Bm|/¢] times and at most [|By,—1|/q] — [|Bm|/q] times.
These quantities differ by at most 2, proving Equation 9 for this case.

If §,,,—1 is co-prime to g and &, is not, then B,,’s terms all have the same value (some ¢) modulo g.
Note that ¢ cannot be ug or uq, since this is a g-progression query. Subtracting B,,, from B,,_1 just
depresses ¢’s representation, and otherwise leaves B,,_1’s representation of the residues modulo ¢
unaffected. In B,,_1, each residue & modulo q is represented at least ||B;,—1|/¢| times and at most
[|Bm—1l|/q] times. These quantities differ by at most 1, proving Equation 9 for this case. O

A.4 Would a Weaker Refresh Be Sufficient?

To overcome a malicious P, who sends an invalid encrypted partial signature, P; refreshes both its
Paillier modulus and the value X = z; mod ¢ that it encrypts under its modulus to represent its
key share x1. Would a weaker refresh be sufficient to overcome P’s attack? Would it be sufficient
for P; to refresh X while re-using the same Paillier modulus, or to refresh its Paillier modulus but
re-use the same X7 Unfortunately not. Either weakening of Refresh has serious security issues.
Suppose that P; refreshes just X, while keeping the Paillier modulus N the same. Let X7, Xo, ...
be the refreshed values, encrypted as ¢, ca, ... under N. Upon each Refresh, the adversary is given
access to a fresh oracle O,,. All of these oracles interoperate in the sense that they use the same N:
a ciphertext derived from ¢; could be used to construct an input ciphertext for oracle O, for i # j.
Consequently, the adversary is effectively given a higher oracle budget for ¢;. It can query k oracles
with ciphertexts derived from ¢, and it is allowed k ‘0’ responses before the oracles abort. If k is
sufficiently large, the adversary will eventually obtain enough information about X; to recover it
completely.

Suppose that P; refreshes just the Paillier modulus, not the value X; = x; mod ¢ that is encrypted.
The problem is similar to above. Again, the adversary is given access to several oracles — albeit
tagged to different Paillier moduli — each of which can be used to gain information about X7, and
thereby x;.

Changing both the modulus and encrypted value ensures that no information about X; can be
used effectively after the first Refresh, barring some “spooky interaction” among different Paillier
moduli.

B Active, Proactive Security

We provide a refresher of the real/ideal security framework — the reader can find more details in
Goldreich’s book on secure computation [27] — and then discuss the issues that relate to proactive
security. Security is defined by comparing the protocol to an ideal execution of a threshold-ECDSA
functionality, Frs (Figure 8), which is secure by definition. In the case of threshold signatures,
the functionality is reactive, which means it might be queried repeatedly, providing new output in
response to each query. A distinguisher, D, is provided a transcript of messages that were either
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received by an adversary A while executing the signing protocols in the real execution, or they
were generated by a simulator S, who was given only black-box access to A, and access to Frs. In
addition, D is given the output of the honest party, 7. Formally, D must distinguish whether it is
given a sample from

Realr 4(1%, 7, z) = (viewr 4(1%,7,2),outr 2.(1%, 7))

or
ldeal £ s(17, 7, 2) = (viewrg s(17, 7, 2), out prg 1 (17, 7)),

where 7 is the real-world execution of the protocol, k is the computational security parameter, 7 is
the statistical security parameter, and z is some arbitrary auxiliary information. We provide some
of the details of the experiments defining these two joint distributions next.

Setup: D provides an arbitrary, identical sequence of commands to both the adversary and the hon-
est party, drawn from the set: {(KeyGen,G,G,q), (ssid,Sign,m), (ssid, Refresh), (ssid, Corrupt, P;),
(ssid, De-corrupt)}, with KeyGen, appearing exactly once, either as the first command in the se-
quence, or immediately after a single Corrupt command. (We will discuss some additional con-
straints on the command sequence later in this section.) The values of m that are to be signed
can be chosen arbitrarily as well. This sequence can be fixed adaptively, with D choosing the next
command after seeing the result of the previous one, but for simplicity we consider the simpler case.
D does not know whether he has provided the command sequence to S and H, acting in the ideal
world, or to A and H acting in the real execution. After the experiment concludes, D will output
a guess as to which was the case.

Ideal world execution: In the ideal-world execution, S is given black-box oracle access to A.
A may or may not follow the protocol honestly. For each command in the command sequence, S
queries Frs to learn A’s output: X during KeyGen and the ECDSA signature (r,s) on m during
signing. After interacting with A, S eventually outputs a transcript, and indicates to Frs whether
to provide output to H for this command. (This is known as security with abort.) It then proceeds
to the next command in the same manner. If D provides the command (ssid, Corrupt, P;), S provides
a simulated view of the stored state of P;, and continues simulating the view of P; until it arrives
at command (ssid, De-corrupt). At that point, it provides no output until the next command of the
form (ssid, Corrupt, P;).

Real world execution: In the real world execution of the protocols, D provides the sequence
of commands to the adversary A, and to honest party H. The two of them execute the protocols
corresponding to the commands, sending messages back and forth. At the end, A forwards its entire
view of those executions to D, and H forwards its outputs from the same executions. When the
command is (ssid, Corrupt, P;), A takes control of P;, gaining access to its stored state, and begins
behaving as it likes on behalf of P; in further protocol executions, until it arrives at command
(ssid, De-corrupt).

Security: We say that the threshold signatures scheme securely realizes Frs if D cannot distinguish
between the ideal-world execution and the real-world execution with better than negl(x) advantage.

Security of Refresh: We note that in the ideal-world, there are no key shares held by the two
parties, or even by the ideal functionality. Rather, Frs generates a standard ECDSA key, provides
the two parties with the public key, and stores the secret key for signing. Therefore, there is no
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input/output behavior for Refresh defined in Fys. Nevertheless, it is still important to prove that
a) refresh does not leak anything about the secret key, and b) that it performs its intended role of
re-randomizing the secret key. These properties are captured by a) requiring S to simulate the view
of the adversary during Refresh, and b) requiring S to simulate the state of party P, on command
(ssid, Corrupt, Py). In the latter case, S would fail if the execution of Refresh did not result in a
uniformly distributed key share.

Hybrid world execution: To simplify the presentations of the protocols and the proofs, we
modify the real-world execution, giving the parties access to two ideal functionalities related to
zero knowledge of discrete log: ZIT(DL, and Fi?;_zk, as well as Feoin, a functionality for producing
a random coin flip. By a classic result of Canetti [7], it suffices to prove that this hybrid-world
ezecution is indistinguishable from the ideal-world execution. In practice, these functionalities can
then later be replaced by any secure protocols that realize them, yielding a full description of a
true real-world execution. Canetti’s result says (generically) that if the hybrid-world protocol is
indistinguishable from the ideal-world execution, then it follows immediately that the resulting real-
world protocol is secure. In the ideal-world execution, there is only Frs, and no other functionalities.
It is the role of S to simulate the output of Fyx, Feom—zk and Feoin.

We note that realizing these ideal functionalities requires a zero knowledge proof of knowledge: the
simulator needs to be able to extract the witness in order to provide it to the functionality. Such
constructions for discrete log are well known. Two other zero knowledge proofs that we use in
our constructions, Ilgcp and Ileq, are not proofs of knowledge, and so we do not define ideal
functionalities for these. Instead we use them in-line, and make use of the simulators that are
known to exist. We define those proof below.

C Zero Knowledge Proof of GCD

Let o be some lower bound on the largest prime divisor of GCD(N, ¢(N)). Then the probability
that a random element in Z} has an Nth root is at most 1 (Lemma A.8, [26]). The protocol

proceeds with the verifier sending random challenge values, y1, ..., 4y, to the prover. The prover
demonstrates that each of these has an Nth root, by finding ¢, ...,t,, such that t¥ = y; mod N.
Taking m = @ suffices for soundness 277, once the verifier has determined that N has no factor

smaller than «. In practice, setting o &~ 10,000 and using 10 repetitions (in the non-interactive
setting) provides good efficiency, and suffices for computational security x = 128.

While Goldberg et al. [26] introduced the use of « for improved efficiency, they in turn cite Gennaro
et al. [25] for proofs of completeness, soundness and zero knowledge. We will use Sgcp to refer to
the simulator that they describe in Section 3.1, when demonstrating that the construction below is
zero knowledge.

R queries the challenger to receive challenge N7, C7, X*, and plays the part of S, interacting with
A. R simulates key generation by running the honest protocol. It stores X,x; for use in what
follows.

Until the 7th event, when P, is malicious during refresh, and each time there is a new corruption
of Py, R uses its knowledge of 7 (which might be updated during refresh procedures) to run
the protocol honestly. In particular, it constructs C' = Ency(z1) honestly. Note that it still uses
simulated proofs 7 and 0. N

In the ith event, R uses its challenge to construct (C7, Ny, 7, ¥), using simulated proofs 7 «+
Sccp(N*) and U Seq(N7, Cf, X*); this is done whether the ith event is an execution of refresh

41



Ieep

Inputs: Prover: N, ¢(N).
Verifier: N.

Prover: Compute: y1,...,ym = H(N).
Compute: d = N~! mod ¢(N).

Compute: Fori € {1,...,m}, t; = y¢ mod N.
Send: t1,...,tm.

Verifier: Verify: N is positive with sufficient bit length.
Compute: y1,...,ym = H(N).
For i € {1,...,m}, verify that GCD(y;, N) =1 ; y; =t mod N.

Figure 9: Non-interactive Zero Knowledge proof for the language Lgcp, due to Goldberg et al. [26].
We present the protocol in the random oracle model, using the Fiat-Shamir transform.

with malicious Ps, or a new corruption of P, during refresh or sign. In the latter case, R uses X*
when simulating X in state,.

In the ith refresh command prior to the next de-corrupt command, R queries its challenger and
receives N, CF. It updates X* = X* + (r x G), where 7 < [q] is the simulated output of Feoin
created by R. It simulates P;’s message using (N}, C} ,ﬁ,\fl). In any sign commands prior to
the next de-corrupt command, R verifies the correctness of C’ sent by P, by using the current
instance of the Paillier-EC-Refresh oracle: it extracts ks and zo from Py’s calls to i‘f;_zk, sets
a= k;lm mod ¢q and = k;lrxg mod ¢, and submits query (C’, o, 8) to its oracle O, .

In the remaining events, R proceeds as S does (and as R did in Hybrid Hy). If the challenge bit b
in the Paillier-EC-Refresh game is 1, then R produces the same distribution as in Hybrid Hgil).
Otherwise, it produces that of Hybrid H(;).
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