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Abstract—The unprecedented amount of scientific data has
introduced heavy pressure on the current data storage and
transmission systems. Progressive compression has been proposed
to mitigate this problem, which offers data access with on-demand
precision. However, existing approaches only consider precision
control on primary data, leaving uncertainties on the quantities
of interest (Qols) derived from it. In this work, we present
a progressive data retrieval framework with guaranteed error
control on derivable Qols. Our contributions are three-fold. (1) We
carefully derive the theories to strictly control Qol errors during
progressive retrieval. Our theory is generic and can be applied
to any Qols that can be composited by the basis of derivable
Qols proved in the paper. (2) We design and develop a generic
progressive retrieval framework based on the proposed theories,
and optimize it by exploring feasible progressive representations.
(3) We evaluate our framework using five real-world datasets
with a diverse set of Qols. Experiments demonstrate that our
framework can faithfully respect any user-specified Qol error
bounds in the evaluated applications. This leads to over 2.02x
performance gain in data transfer tasks compared to transferring
the primary data while guaranteeing a Qol error that is less than
1E-5.

Index Terms—High-performance computing, data compression,
progressive retrieval, scientific data, error control

I. INTRODUCTION

The arrival of the first generation of exascale machines and
the continuous upgrading of experimental and observational
facilities have presented a huge strain on storage, I/O, and
networking due to unprecedented data volume and velocities.
Because of the limited spacing at high-end parallel file systems
(PFS), most of these data must be moved to lower-tier
storages, such as tapes, right after generation. Future analyses,
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which require retrieving data from a central repository and
moving across wide area networks, must consider the cost
of data retrieval and movement. Recently, lossy compression
methods [1]-[5] have been developed to tackle the I/O and
storage bottleneck as they demonstrate greater compressibility
than lossless compressors on floating-point scientific data. Since
most simulation and experimental devices inherently involve
uncertainty and variability, data can be reduced, provided the
loss of accuracy is under prescribed bounds.

The current leading error-controlled lossy scientific data
compressors, including MGARD [5]-[7], SZ [2], [8], [9], and
ZFP [4], to name a few, carry mathematically proved theories,
which guarantee that errors in the reconstructed data to stay
below user-prescribed error bounds. However, most of these
compressors only allow to prescribe a single error bound,
assuming a “one-size” accuracy will fit all subsequent data
explorations. In contrast, the reduced data may be used for
various downstream analyses that are either known or unknown
upon data generation. To ensure the fidelity of scientific
discovery, users have too often conservatively chosen error
bounds that cater to the most pessimistic use cases. Such over-
preservation during data compression, unfortunately, will lead
to great expense in data retrieval when faced with a diversity of
analyses and use-cases of varying requirements on data fidelity.

Data refactoring and progressive retrieval pose a potential
solution to combat the diverse requests on data fidelity at lower
data movement cost [10]-[16]. Notably, MGARD and ZFP have
separately developed the progressive reconstruction feature [15],
based on multi-level methods (for progressive resolution with
MGARD) and bit-plane encoding (for progressive precision
with both compressors). They allow data to be archived at
nearly full accuracy and retrieved on an as-needed basis, often at



reduced resolution and/or precision, for faster data transmission
and computations. The progressive reconstruction also allows
data to be incrementally recomposed to higher fidelity when
more data components become available.

Despite the potential advantages of progressive retrieval, the
gap between the errors in primary data and derived quantities
of interest (Qols) should not be overlooked [17]. Obeying the
error bounds for Qols is challenging as the relation between the
primary data and the Qol can be highly nonlinear [18]. Blindly
refining the approximation of the data during progressive
retrieval leads to under- or over-estimations, which may
not produce correct outcomes in the downstream analyses.
Motivated by the disconnection in error control objectives,
several works have recently started to explore the preservation
of Qols for a few specific analytic tasks [19]-[22] or region-
of-interest (Rol) during data compression [23]. Nevertheless,
directly applying existing Qol-preservation techniques used for
compression to progressive retrieval is non-trivial for several
reasons:

¢ Qol-preserving compressors that can handle a broad range
of analytic functions are required to prescribe point-wise
varied error bounds, whereas the compressors capable of
performing progressive retrieval are based on bitplane
encoding or multi-level techniques, featuring globally
uniform error bounds.

o The original values of Qols are a prerequisite for most Qol-
preserving compressors, which are usually computed prior
to data compression. Such ground truth values, however,
are unattainable with progressive retrieval unless data is
recomposed to full fidelity.

o These aforementioned difficulties can be further exac-
erbated when retrieval is targeted at preserving the
multivariate and composite Qols that involve multiple
data fields and analytic functions.

In this paper, we propose a generic framework to progres-
sively retrieve scientific data with strict error control on deriv-
able Qols. We define derivable Qols as downstream quantities
that can be explicitly composited by a set of basis functions,
including polynomials, square root, and radical functions,
along with their combinations through additive, multiplicative,
divisive operations, and other functional compositions (see
Definition 2 and 3). The combination of the above basis
function and operations will cover a broad range of physical
properties, such as kinetic energy, momentum, and magnitude
of velocity, that are commonly used in real-world scientific
applications. Since the derived errors in Qols vary across data
space, we target the L> bound as it measures the extreme case,
and the preservation of L°° error will automatically ensure
the satisfaction of the point-wise error bound. In addition,
we propose theories to estimate the errors of derivable Qols
based on the errors of primary data, as the ground truth of
Qol values cannot be obtained during progressive retrieval,
and use the proposed estimators to guide the process of data
refinement. We further explore and investigate the efficiency of
different progressive methods using our framework. The key

contributions are summarized as follows.

o We carefully derive the theory to enable Qol error
estimation on progressive representations, which can
incrementally refine the data approximation until the
estimated errors in Qols are derived from the recomposed
data to satisfy user-prescribed bounds. This theory can
be generalized to arbitrary error-controlled progressive
compressors and offers error control to a broad range of
derivable Qols provided that they can be composed by
the basis functions and operations covered in this paper.

« We develop a generic progressive retrieval framework
capable of Qol error control during progressive retrieval
based on our theory. We further integrate three general
progressive methods into our framework and explore
their efficiency. To this end, we revise the decomposition
method in PMGARD [15] to enable stable and efficient
Qol error control.

o We perform a comprehensive evaluation using scientific
data from four real-world applications and one case
study with a computational fluid dynamics (CFD) code
from Generic Electric (GE). Specifically, we evaluate our
framework using different progressive representations and
a diverse set of Qols. Experimental results demonstrate
that the proposed method provides strict error control in
known Qols, and this yields over 2.02x performance in
data retrieval from remote storage systems via Globus.

The rest of the paper is organized as follows. In Section II,

we discuss the related works. In Section III, we formulate the
research problem and present an overview of the compression
framework. In Section IV, we introduce the theories to enable
Qol error control in progressive formats, which serves as the
foundation for the proposed work. In Section V, we describe
the implementation of the proposed framework along with
the optimizations. Section VI demonstrates the evaluation
results with real-world datasets and a case study with GE.
In Section VII, we conclude the research with a vision for
future work.

II. RELATED WORKS

In this section, we review the lossy compression and
progressive retrieval work derived from the former in the
context of scientific data defined on Cartesian grids. For works
on tree structure, adaptive meshes, and unstructured data, we
refer the readers to [10], [24]-[26].

Data compression is a direct way to mitigate the I/O and
storage pressure, which has been studied in the scientific
computing community for years. Traditional lossless compres-
sion techniques [27]-[29] achieve only a modest reduction
for floating-point scientific data [30], which falls far from the
desires of exascale computing. Conventional lossy compressors,
such as JPEG/JPEG2000 [11], [12], while ubiquitous in image
transmission, have rarely been used by scientific datasets as
they cannot bound errors incurred by compression. Therefore,
we limit our review to error-controlled scientific compressors.

The most widely reported error-controlled lossy compressors
fall into two broad categories: prediction-based and transform-



based. Prediction-based compressors such as ISABELA [1],
SZ [2], [8], [31]-[33], and QoZ [34] rely on varied predictors,
such as spline interpolation or polynomial fitting, to decorrelate
the data, whereas transform-based ones such as ZFP [4] and
TTHRESH [35] employ existing or customized transforms to
eliminate redundancy. Coefficients after decorrelation/transform
may be quantized into integers and then losslessly compressed
through entropy or embedded encoding approaches to reduce
the size. Notably, scientific lossy compressors carry mathe-
matical theories for quantization and encoding, which ensure
the maximal error between the original and reconstructed data
is less than a user-specified error bound. Recently, several
compressors even advanced the error control onto downstream
Qols that are derived from the reconstructed data [7], [18]-[22],
[36].

MGARD [5]-[7] derives a norm based on the finite element
analysis and wavelet theories, applying it to tighter the error
bounds such that the most pessimistic Qol cases can be satisfied.
Due to the complexity of mathematical derivation, MGARD’s
current Qol-control theory is only applicable to linear Qols,
which limits its use cases. A variation of SZ has also been
proposed in [21], which relies on a pre-evaluation of target
Qols and derivating point-wise compression error bounds
such that Qol values computed from the reconstructed data
will satisfy user-prescribed error bounds. The post-processing-
based Qol-preserved techniques [18], [36] iteratively update the
reduced approximation until the derived Qol errors stay below
prescribed bounds. Nevertheless, similar to the Qol preservation
work with SZ, the post-processing technique requires knowing
the original Qol values and is only applicable to univariate Qols.
Several additional compression methods have been developed
to reduce the data while preserving topological features such
as critical points [19], [20] and contour trees [22], but they do
not generalize to other Qols.

The most prominent downside of lossy compressors is
that the “one-size-fits-all” error prescription strategy is prone
to underestimating or wasting resources when faced with
diverse post-processing tasks. In contrast, progressive com-
pression and retrieval allow for dynamic adjustment of the
transmitted data size based on requested fidelity and support
incremental recomposition to obtain finer data representations
without starting from scratch. The progressive approaches can
be generally categorized into progression in resolution and
progression in precision. The most well-known approaches
in the former category include Fourier and discrete cosine
transform [37], wavelets pyramid [38], [39], multi-level decom-
position [6], and rank decomposition [35], [40], where data
representations in coarser resolution are obtained by retrieving
only a subset of coefficients. In comparison, progression in
precision is often achieved through encoding the bit planes
[4], [15], [39], or iteratively compressing the residues with
progressively decreased error bounds [16]. With bit-plane
encoding, the precision-based progressive retrieval will be
performed among all coefficients, starting from the most to
least significant bit. With progressively decreased error bounds,
the compression procedure will generate multiple snapshots

TABLE I: Notations

Symbol Description

Ne Number of data points.

Ny Number of variables.

Ng Number of target Qols.

Ng Number of progressive segments.

T Error tolerance on Qols.

x, x’ Single scalar values.

s Data fragments produced by progressive compression.

€ Error bound on the primary data.

I3 Real error in the primary data (upper bounded by ).

x,x € Vectors of x, z’, € in multivariate cases.
Ti, T, € The i-th element in x, X', €.

f Univariate Qol that applies to data on a single field.

g Multivariate Qol that applies to data on multiple fields.
A(f,z,e) | Upper bound of Qol error in f at x with error bound e.
A(g,x,€) | Upper bound of Qol error in g at @ with error bound €.

[] Operator of getting absolute value.

{-:} An array of the referred element.

with different precision for retrieval. Progression in precision
can provide more fine-grained retrieval compared to progression
in resolution. We also notice that some progressive techniques,
such as the PMGARD [15], support progression in both
categories. Specifically, PMGARD combines the orthogonal
decomposition method in MGARD with bitplane encoding to
provide guaranteed error control on primary data.

Despite the potential to fulfill data requests of arbitrary pre-
cision, none of the existing progressive compression techniques
provide error control on downstream Qols. In this work, we
bridge the gap by developing a generic framework to determine
the proper amount of data to retrieve in progressive formats
to meet user-specified Qol tolerances, which is expected to
significantly reduce the retrieval size and thus improve data
movement performance. To the best of our knowledge, this is
the first attempt to tackle Qol preservation during progressive
retrieval.

III. OVERVIEW

We formulate our research problem in this section, followed
by an overview of the proposed framework. The notations used
in the paper are summarized in Table I.

A. Problem formulation

Our progressive retrieval framework is designed to extract
only the “necessary” amount of progressive fragments and
guarantee that the user-prescribed error tolerance in Qols
derived from the reconstructed data is met. The capability
of estimating the errors in Qols is crucial for the trustability
of the reconstructed data, and it can accelerate the process of
reading data from low-tier storage or remote central repository
by minimizing the data volume. Below, we define the requested
functionalities in progressive compressors and the derivable
Qols targeted in this paper.

Definition 1: An error-controlled progressive compres-
sion method shall be able to (1) refactor the original data
{x},--- 2, } into progressive fragments {sy,--- ,s,,} for
archiving, where n. is the number of original data points and
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Fig. 1: Workflow of the proposed Qol-preserving framework with three key modules. We assume that data is refactored
and stored in storage systems when generated, and our framework is able to progressively retrieve data from storage while
guaranteeing user-specified Qol error bounds. This is extremely useful when data movement becomes the performance bottleneck,
which is the case when data is located in secondary or remote storage systems.

ng is the number of progressive segments; (2) reconstruct data
{1, - ,xp,} from {s1,- -, s;} such that max; |z} —z;| < €,
where ¢; is the prescribed error bound when recomposing data
using the first j segments.

Definition 2: A univariate Qol is a univariate function f :
R — R that maps a scalar value to a quantity. The derivable
univariate Qols include a family of Qols that can be formulated
by the set of basis functions defined in Table II.

Definition 3: A multivariate Qol is a multivariate function
g : R™ — R that maps a vector to a quantity. The derivable
multivariate Qols include a family of Qols that can be
composited using the derivable univariate Qols and operations
of derivable multivariate Qols defined in Table II.

TABLE II: Bases of Derivable Qols

Name Category Formula Example in GE
Polynomials univariate flz) =5 az* (1) (5), (6)
Square root univariate | f(z) = /= (1), 3), (6)

Radical univariate flz)=1/(x +¢c) (6)

Addition multivariate | g(x1, - ,xn) = 2. @i )
Multiplication | multivariate | g(z1, - ,&n) = lz; (5), (6)

Division multivariate | g(x1,22) = z1 /22 (2), (4
Composition both (f10 f2)(z) = f1(f2(x)) (1) - (6)

Despite the fact that there are only seven families of
Qols listed above, their compositions cover a broad range
of functions commonly used in scientific studies. Below, we
showcase how to break down the user-requested Qols into the
basis of derivable Qols using the non-proprietary data generated
by a Computational Fluid Dynamics (CFD) code from GE. The
CFD simulation produces velocity V;, V,, V,, pressure P, and
density D on a set of unstructured meshes. We linearize the
data into a one-dimensional array, choosing six Qols used in
the posthoc analyses with the detailed equations listed below,

as they will be used in our experimental evaluation later on:

‘/total - \/ Vm2 + Vy2 + VZZ’ (1)
P
T=-—" 2
DR’ 2
C=+v*Rx+T, 3
‘/total
Mach = 4
ac c 4
PT =P(1+ % « Mach + Mach)™, )
T | T.+S
=) e ©)

Here, R = 287.1, v = 1.4, mi = 3.5, u, = 1.716e — 5, T,, =
273.15, and S = 110.4 are different constant values, and the
input and intermediate variables are bolded. Using PT defined
in Equation (5) as an example, the formula can be decomposed
into the multiplication of P and (1 + % x Mach Mach)””,
where the latter is a composition of the square root function
and a polynomial of Mach.

B. Design overview

We illustrate the workflow of the proposed Qol-preserving
progressive data retrieval framework in Fig. 1. Our key
contribution lies in the retrieval procedure, which iteratively
refines the reduced approximation till the estimate errors in
Qols drop below user-prescribed bounds. Specifically, we
develop (1) a Qol error estimator that provides an upper
bound of the errors in Qol given the reconstructed data and
its L* error bounds, and (2) a primary data (PD) error
assigner which estimates and prescribes the bounds used for
the next round of data retrieval. The progressive compression
procedure can be performed using the existing error-controlled
progressive compression frameworks [4], [15], [16], where data
is refactored and compressed into multi-precision fragments.



The overall data retrieval pipeline can be summarized as
follows. Firstly, an analytic task requests a set of Qols and
the desired error tolerance. This request is processed by the
PD error-bound assigner (module 1), which gauges the error
bounds on each primary data field used by the first round
of retrieval. Such error bounds will be sent to a progressive
retriever (module 2), which extracts progressive segments
from the most to the least significant until the errors in the
errors in the reconstructed data reach below the requested
bounds. Data will be incrementally recomposed using the newly
arrived progressive segments and then fed into the Qol error
estimator, along with the error bounds used during retrieval,
to estimate the upper bounds of Qol errors under the current
data representations (module 3). If the estimated Qol errors
are less than the requested tolerances, the data is provisioned
for the analyses; otherwise, the current data representations,
along with the derived Qol errors, will be forwarded to the PD
error bound assigner to estimate the error bounds used in the
next round of data retrieval. The pipeline repeats these steps
till the targeted Qol error bounds are reached, or a full-fidelity
data representation is retrieved. Due to their progressive nature,
only incremental portions of the data need to be retrieved in
the later requests, which promises high efficiency in managing
the data movement from storage systems to applications.

C. Quality assessment

We leverage the widely used rate-distortion curves [15], [41],
[42] to evaluate the efficiency of our approach. The X-axis in
the curve is bitrate, which represents the average number of bits
in the compressed format. It is analogous to the compression
ratio in single-snapshot compression, and can be computed

by the retrieved data size divided by the number of elements.

We use relative Qol errors as our distortion metric for the
Y-axis, which is computed by the maximal absolute error of
Qol divided by its respective value range. An easy way to
compare multiple rate-distortion curves is to fix either the X
value or Y value: in the former case, one can compare the
errors of different approaches based on the same retrieved data
size; in the latter case, one can compare the size of retrieved
data under the same quality.

IV. THEORETICAL FOUNDATION

In this section, we introduce the theoretical foundation of the
proposed work. The data retrieval is designed to meet the error
bounds prescribed on Qols. Below, we describe how to estimate
the errors in Qol using the reconstructed data and its L°° error
bound during data retrieval. Having such error estimation is
critical as we need to iteratively update and examine the Qol
errors during data retrieval. Specifically, we derive the upper
error bounds for the bases of derivable Qols (shown in Table
II) and discuss their combinations in univariate, multivariate,
and composite cases.

The following subsections start with the definition of Qol
errors for each case, then theorems and proofs for different
types of Qol functions. Please refer to Table I for the notations
of the symbols used in our theorems and proofs. Notably,

throughout the derivations, we assume the original data 2’ and
the reconstructed data x to satisfy a L> error bound, as will
be detailed below.

A. Univariate Qols

Definition 4: Given a data value x and a L°° error bound
€ used during progressive retrieval, we define A(f,z,€) as
the supremum of Qol error under a univariate Qol f(x):
A(f,l', 6) = Sup|m’fa:|§e |f(.%‘/) - f(x)l

Here, we assume the original value is z’ will satisfy the
error bound constraint |z’ — z| < e, then we have |f(z*) —
F@)le < sz [F@) = f@)l. = A(f.z,€). Note
that A(f, x,€) only relies on the reconstructed data and the
error bound used during data retrieval. Below, we present the
theorems used for estimating A(f, x, €) given several univariate
Qol functions.

Theorem 1: [Polynomials] An upper bound of A(f,z,e€)

for function f(x) = 2™ can be written as A(f,z,¢) <
S Chlz|" e, where C! = (nfil'),l, is the combination
formula.

Poof If() — @] = |+ " — | =
S e = DL Gt <
Yy Cola e < 30, Crlal" e

|
Theorem 2: [Square Root] An upper bound for func-
tion f(x) = +/x can be written as A(f,z,e) <

e/(v/max(x — €,0) + /).

Proof: Since the negative x — € can be replaced by O,
V' = r +€ > /max(0,z — €). Then |f(z') — f(z)| =
VEFE— /3 = |6/ (Va +E+/a)| < ¢/ (y/max(z — ,0)+
V). u

Theorem 3: [Radical] An upper bound for radical function
f(x) =1/(x + ¢) can be written as A(f, z,¢) < ¢/{min(|z +
c—e|,|t+c+el)|z+c|}, when 2 +¢c#0 and € < |z + ¢|.

Proof: |f(a/) — f(a)| = |1/(x+E+¢) — 1/(a+0)| =
1€/ ((x+E&+c)(x+c))|. Since € < |x+c|, we have |[z+E+¢| >
min(|z + ¢ — €|, |z + ¢ + €|). Therefore, |f(2') — f(x)] <
¢/{min(|z + ¢ — €|, |z + c+€|)|z + c|}. [

Note that Theorem 3 does not apply to the case of € > |z+c|,
as it may lead to an infinitesimal value of |x + & + ¢/, causing
the errors in Qol unable to be bounded. Such a case can be
avoided by only choosing € < |z + ¢| during data retrieval.

B. Multivariate Qols

Definition 5: Given a vector ¢ = (z1,--- ,7,)7 and a L™
error bound vector € used during data retrieval, we define
A(g,x, €) as the supremum of Qol error under a multivariate
QoI g: A(g,®,€) = sup|p_g<c|9(z") — g(x)|, where =
indicates that the less and equal to relationship is applied
for every element in the input vector.

Assume &; = 2 —x; and z} € [z; —€;, x; +€;] following the
error bound constraints, then we have the following theorems.

Theorem 4: [Addition] An upper bound for weighted summa-
tion function g(x) = Y"1 | a;z; is A(g,x,€) < Y |aile.

Proof: |g(@’) — g(@)| = S0, aiil < S Jaille] <

Z?:l |ai\ei. ]



Theorem 5: [Multiplication] An upper bound for mul-
tiplication function g(x1,x2) = x1x2 can be written as
A(g,x,€) < |z1lex + |w2]er + €162

Proof- lg(") — g()| = |(z1 + &) (@ + &) — w105] =
2182 + @281 + §182] < [@|&2] + |22 |&1] + [§1€2] < |zalez +
|£L'2|€1 + €1€2. |

Theorem 6: [Division] An upper bound for division function
g(x1,22) = x1/x9 can be written as A(g,x,€) < (|x1|ea +
|z2]er)/{|x2| min (|ze — e2|, |z2 + €2])} When € < |z2].

Proof: |g(a’)—g(@)| = (1 + &)/ (@2 + &) — 21 /2] =
(@261 — 2162) /{(w2 + L) @2} < (|w2l|&1] + |21]|€2])/ (|22 +
Lllzz]) < (Jo1lez + [w2]er)/{[@z| min (Joz — €2, |22 + e2])}-

|

C. Composite Qols

This subsection applies the theories of addition, scalar
multiplication, and composition for the Qol functions presented
in the previous subsection to broaden the range of Qols that
can be preserved during retrieval. Specifically, we have the
following theorems for composite Qols.

Theorem 7: [Additive] A(f,z,¢) satisfies the additive
property A(fl + f2a €T, 6) < A(fl? Z, 6) + A(f?? z, 6)'

Proof: A(fy + f2,2,€) = [fi(z + &) + fa(z + &) —
fi(@) = f2(2)] < [filz+ &) = fi(@)|+ | fa(z+ &) = fo(2)] =
A(f1,z,€) + A(fo,,€). [ |

Theorem 8: [Multiplicative] A(f,z,€) satisfies the multi-
plicative property A(af,x,¢) = aA(f,x,¢) for any constant
a #0.

Proof: Alaf,x,€) = |af(z+§) —af(z)| = alf(z+£) -
f(@)] = aA(f,€). "

Theorem 9: [Composition] A(f,x, €) satisfies the composite
property A(f10 fa,z,€) = A(f1, fa(z), Af2, 2, €)).

Proof: Denote y = fo(x) and &’ = fo(z+E&)— fo(x), then
& e [falx)—A(fa2,x,€), fa(x)+A(f2, z, €)]. Correspondingly,
A(frof2,z,€) = [fi(f2(2+8)) = [i(f2(2))| = [f1(y+&) —
[l = A(f1, f2(2), A fa, 3, €)). u

Although the above proofs have been conducted on univariate
Qols, the same theorems apply to the additive, multiplicative,
and composite operations in multivariate Qols. Additionally,
we derive the error estimators for the composition of univariate
Qols and multivariate Qols and summarize them in the two
lemmas below. We omit the details of the proofs due to limited
space. The proofs are similar to the procedure in Theorem 9.

Lemma 1: Denote f o g as the composition of a univariate
function f and a multivariate function g such that f o g(x) =
f(g(x)). We have A(f o g,x,€) = A(f,g(z), Alg, z, €)).

Lemma 2: Denote g o {f1, -, fn} as an element-wise
composition of a multivariate function g and n univariate func-
tions {f1, -+, fn} such that go {f1, -, fu}(z1, - ,2p) =
g(fi(@1),- -+, fulzs)). We have A(go{fi,---, fu}, @, €) =
A(gv ﬂJ/, A(g, T, 6,)) where z’ = (fl(l'l)? ) fn(xn))T and
e = (A(fh Iy, 61)7 s ,A(fn, T, Gn))T.

These composite theorems and lemmas greatly extend our
flexibility, allowing for progressively retrieving and bounding
errors in a variety of Qols. For instance, multiplications of
multiple variables in the form of Ilx; can be preserved by

iteratively leveraging the multiplication theory (Theorem 5) and
composite property (Theorem 9). Errors in a general polynomial
in the form of Y a;x" can be upper bounded by applying the
additive (Theorem 7), multiplicative (Theorem 8) properties,
and the error estimation of power functions (Theorem 1).

D. Example derivation on GE case study

Here, we showcase how to estimate the Vo, in the GE case
study using the proposed methods. Let x1, 22, x3 denote V,,
Vy, V.. The Vigial, as denoted in Equation (1), can be formulated
as the composition of a univariate function fi(x) = /x with
the composition of a multivariate function g1(x1,x2,x3) =
21 + T2 + r3 and an univariate function f»(z) = 22, which
yields Viotar = f1(g91(f2(x1), f2(22), f2(x3))). We estimate
the upper bound of errors in fy, g1, and f; sequentially.
First, the upper bound of errors in fo(x;) (¢ = 1,2,3) can
be estimated using Theorem 1. This forms the error bound
vector €f2 = (A(fg, X1, 61), A(fg, X2, 62), A(fg, x3, 63))T.
Meanwhile, the value of fo(x;) can be computed to obtain
the new value vector xgo = (fa(x1), fo(x2), f2(x3)). After
that, ef2 and x g2 will be used to compute €59 = A(gy o
f2,xf2,€r2) using Theorem 4. At last, we will compute
zg1 = g1(f2(x1), f2(x2), f2(x3)) to derive the final Qol error
bound A(f1 0 g1 0 fa,241,€41) using Theorem 2.

While using Qols in GE as a demonstrative example, our
theories are extendable to other scientific applications due to
the following reasons. First, some common Qols in the paper
can be directly used by other applications (e.g., total velocity in
climatology and cosmology). Second, the set of basis Qols can
composite diverse and complex functions such as multivariate
polynomials and rational functions, which cover a broad range
of Qols, including molar concentration multiplications in
combustion. Third, our theory can extend to new operators with
derivable error control (e.g., isosurface [21]). This demonstrates
the genericity of the proposed Qol-preserving theory.

V. IMPLEMENTATION AND OPTIMIZATION

In this section, we present the implementation of the
Qol-preserving progressive retrieval framework, followed by
optimizations and explorations on efficiency.

A. Algorithm and implementation

Our pipeline consists of two stages: a data refactoring stage,
which transforms the original data into multi-precision segments
for storage, and a data retrieval stage, which fetches and
recomposes data till it reaches user-specified Qol tolerances.
We omit the discussion on progressive refactoring as it’s a direct
application of the existing techniques. Generally speaking, for
every data field, the refactoring stage produces a set of multi-
precision segments and the corresponding metadata.

The proposed Qol-preserved data retrieval pipeline is pre-
sented in Algorithm 2, assuming that the retrieval starts from
scratch. Lines 1-6 show the initialization of the progressive
data representation and error bounds used in the first round
of retrieval. The while loop starting from line 7 presents
the iterative procedure used for Qol-preserving data retrieval



Algorithm 1 GENERAL DATA REFACTOR

Algorithm 3 ASSIGN_EB

Input: number of variables n,, all variables {v; }
Output: refactored multi-precision segments {{sp};} and metadata {m;}

1: for j =1 — n, do
2: {sp}i,m; = refactor(v;)
3: end for

Algorithm 2 QOI-PRESERVED DATA RETRIEVAL

Input: refactored multi-precision segments {{sp};} and metadata {m;},
value range of original variables {range; }, requested Qol tolerances {7;}
Output: retrieved data

1: for i =1 — n, do

2: w; < {0,---,0} /*initial all the data fields as zero vector*/

3: end for

4: for j =1 — n, do

5: € - assign_eb(rangej, {7;}) /*assign the initial error bounds*/
6: end for

7: tolerance_met < false

8: while !tolerance_met do

9 for i = 1 — n, do

0

v; = progressive_construct(vi,{sp}i,ms,€;) /*con-
struct the i-th variable to the target precision e;*/
11: end for
12: tolerance_met <— true /*initialize flag as true®/
13: {7/} < 0 /*initialize max estimated QoI errors*/
14: for j =1 — ne do
15: for k =1— ng do
16: 7/ + estimate_error({v;}k, {€i}x) /*estimate Qol errors
under current representation based on Section IV*/
17: if 7/ > 75 then
18: tolerance_met <— false /*if the errors of at least one Qols are
not met, set flag to false for another iteration*/
19: if 7/ > 7/ then
20: Ty, <= T/, indy, < j [*record position of max error*/
21: end if
22: end if
23: end for
24:  end for
25: fork=1-— ng do
26: {€i} + reassign_eb(7},indy, Tk, {vi}, {€;}) /*compute the

new error bounds for variables based on data with max Qol errors*/
27: end for
28: end while
29: return {v;}

that the data representations are gradually refined and then
checked for Qol errors till all Qol tolerances are satisfied
or a full-fidelity data representation has been retrieved. The
progressive_construct function takes the newly re-
trieved multi-precision segments and recomposes the current
data representation to a more accurate approximation. Lines 13-
23 estimate the errors of Qols derived from the reconstructed
data using the theorems and lemmas discussed in Section IV,
and compare them against user-requested error tolerance. When
the requested tolerances are not met, we record the maximal
estimated errors as well as their corresponding locations in the
data space. Such information will be used for optimizing the
error bound assigned for the next round of data retrieval (lines
17 - 22).

Regarding the PD error bound used for data retrieval, the
initialization and iterative refinement stages adopt separate error
assignment algorithms. At the initialization (line 5) stage, we

Input: value range range, requested Qol tolerances {; }
Output: error bound of current variable

€ < 1 /*initilize eb to maximal possible relative bound*/
tfor j =1— ng do
if the j-th Qol involves this variable then
€ = min(eb, 7;)
end if
end for
return e * range

A e

Algorithm 4 REASSIGN_EB

Input: index k with largest Qol error, requested Qol tolerance 7, current
data {v;}, current error bounds {¢; }, reduction factor ¢ = 1.5
Output: new error bound of the current variables

I: 7/ « estimate_error({v;}k, {€}x) /*re-estimate Qol errors under
potentially updated error bounds; see Section IV for details*/

: while 7/ > 7 do

for v; involved in this Qol do

€ =¢€/c

end for

7/ + estimate_error({v;}k, {€i}x) /*re-estimate again*/
end while
: return {e;}

A

adopt the Algorithm 3: when a data field is utilized by multiple
Qols, its error bound will be determined by the minimal relative
tolerance among all the requested Qols involving this field. At
the iterative refinement (line 26) stage, we adopt a uniform
error-tightening strategy detailed in Algorithm 4, and prioritize
the evaluation of the data point that generates the largest Qol
errors in the previous evaluation. If the estimated Qol errors
exceed the tolerance, we reduce the error bounds of all the
variables involved in the computation for this Qol by a constant
factor ¢ (¢ = 1.5 in our implementation), iteratively retrieve the
data, then estimate the Qol errors under the new error bounds
and the reconstruction. Note that we execute the Qol error
estimation only on the data point with the largest Qol error at
the iterative refinement stage, which decreases the number of
required iterations in Algorithm 2.

We have also implemented a mask-based outlier management
method that filters out irregular points that potentially lead to
unbounded error estimation. Using the CFD simulation data
generated by GE as the example again, for nodes with values
of V, =V, =V, = 0, their decompressed values will be
tiny when the error bounds used for retrieval are small. These
close-to-zero values, however, could yield loose upper bounds
for Vigar (seeing Theorem 2) despite the small real errors.
Accoordingly, in this example, we will use a bit-map to record
the position of any data point with O total velocity, and only
refactor data points whose values are non-zero.

B. Exploration on the best-fit progressive representation

Despite the fact that the proposed Qol error-control theories
and pipeline can be generalized to any progressive compressors
that meet the Definition 1, the amount of data retrieved may
vary due to the different progressive refactoring and error
bounding theories adopted by each compressor. In this section,



we review and evaluate the pros and cons of three error-
controlled progressive compression algorithms.

Error-controlled compression with multiple snapshots:
This type of methods leverages existing error-controlled
compressors to compress data using a list of error bounds
{€;}, ranging from small to large. When an error bound €*
is requested during progressive retrieval, one can choose a
snapshot with a minimal ¢ such that ¢; < €*. Due to the
overlapping information among these snapshots, redundancies
may be high when multiple precisions are requested during
the progressive retrieval.

Error-controlled delta compression [16]: This type of
methods also reduces data into multiple snapshots of multi-
precision segments but eliminates the redundancy across the
snapshots by compressing the residues (errors between the
original and decompressed data) instead of the original data.
As a result, it can be more efficient than directly compressing
data into multiple snapshots with different error bounds but
requires retrieving all first ¢ snapshots (7 is the minimal integer
such that ¢; < €*) when the target error bound is €*.

Progressive compression with bitplane: This type of meth-
ods does not require to pre-set error bounds. Instead, it encodes
the data using bitplanes such that the data can be retrieved
and recomposed on demand. Similar to the error-controlled
delta compression, it may not be the most efficient when only
a single error bound is requested — directly compressing data
using the requested error bound usually generates the smallest
data footprints in such cases. PMGARD [15] is the leading
technique in this kind, but its performance suffers from loose
error control and thus may return more precision fragments
than needed.

Below, we evaluate the performance of these three kinds
of methods when a set of successively lower relative error
bounds (i.e., a series of requests {¢;} such that €;41 < €;)
are requested. For the first two categories of progressive
compressors, we use SZ3 as the underlying error-controlled
compressors as it provides the tightest L> error bound and thus
could yield larger compression ratios than compressors with
looser error bound [33], [43]. From now on, we refer to the
integration of progression with multiple-snapshot, progression
with delta compression, and SZ3 as PSZ3 and PSZ3_delta,
respectively. For progression with bitplane, we use PMGARD
as the underlying refactor. The evaluations have been conducted
using GE’s CFD simulation data and their six Qols (see
Table III for details on datasets).

We evaluated 4 data fields in Fig. 2. The trend of VelocityY
is similar to those of VelocityX and VelocityZ, and thus
omitted. We set ¢; = 107% for i = 1,2, ---10 for both PSZ3
and PSZ3_delta to create multiple snapshots (because this
setting has a reasonable trade-off between additional storage
cost and retrieval efficiency), and requested errors bounds on
primary data as {e,} = 0.1 %27 for i = 1,2, --20. The rate-
distortion curves can be interpreted as follows: for any data
point (x,y), its value represents the bitrate x (analogous to the
percentage of data retrieved) under the requested tolerance y.
As such, the closer a curve is to the left bottom (left indicates
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Fig. 2: Requested error and the resulting bitrate for different
error-controlled progressive compressors.

lower retrieve percentage and bottom indicates low error), the
better. Notably, PSZ3 has large bitrates under progressive
requests, which is expected due to the redundancy among
the multiple snapshots. Since PSZ3 and PSZ3_delta rely
on pre-set error bounds to produce multi-precision fragments,
their bitrate curves exhibit a stair-case pattern: the amount of
retrieved data remain constant across several adjacent error
bounds and then present a sudden drop as the retrieval moves
to the next snapshot. This leads to suboptimal results when
the desired error bound is slightly lower than one of the pre-
set error bounds. On the contrary, the trends of bitrate in
PMGARD are linear with respect to the requested error bounds.
Nevertheless, PMGARD constantly generates larger bitrates than
those of PSZ3-delta, as the error bounds implemented with
the former are looser than the latter.

For PMGARD, the gap between the requested bounds and
real errors is mainly caused by the decomposition algorithm,
in particular a L? projection, which maps low-level coefficient
nodes to high-level nodal nodes employed for data decorrelation.
This decomposition algorithm is derived from MGARD, which
is specifically designed to provide optimal error control in L?
norm, whereas can cause over-pessimistic estimation on L.
This is further validated by the experimental results shown
in Fig 3, which examines the difference among the requested
tolerance, estimated upper bound, and actual error measured
after progressive retrieval. It shows that while the estimated
errors are close to the requested tolerance, the actual errors
are far smaller, causing an over-retrieval problem.

We propose to reduce the gap by omitting the L? projection
in PMGARD’s decomposition algorithm. This could yield two
benefits. First, without the cross-level intervention, the L
norm can be accurately estimated through a summation of
the maximal error bounds across all levels. Second, because
L? projection is time-consuming, removing it can accelerate
the refactoring and reconstruction process. We call the new
progressive algorithm without L? projection PMGARD-HB as
it replaces the orthogonal basis in MGARD with a hierarchical
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variables to derive the rate of progress. In particular, we
present 4 multiplications involved in 2 reactions. For instance,
Zo,T1,%3,%4,25 Used in our evaluation represent species
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and HB represent PMGARD and PMGARD-HB, respectively.

basis from a mathematical point of perspective. As shown
in Fig. 3, PMGARD-HB yields much more accurate error
estimation than PMGARD, and this leads to constantly lower
bitrates in all requested error bounds. We further compare
PMGARD-HB with PSZ3 and PSZ3_delta in Fig. 2, where
one can observe the advantages in most bitrates.

VI. EVALUATION

We evaluate our methods in terms of error control, pro-
gressive retrieval efficiency, and performance using five
datasets from four real-world applications with respective Qols.
Specifically, we first validate the error control of the Qol-
preserving theory in Section IV, and then demonstrate the
efficiency of three progressive methods —PSzZ3, PSZ3-delta,
and PMGARD-HB— which are the representatives of three
mainstream error-controlled progressive approaches according
to the literature.

A. Experiment setup

We conduct all our experiments using the Morgan Compute
Cluster (MCC) [44] located at the University of Kentucky
with 100 Gbps InfiniBand HDR interconnect. Each compute
node in the system is equipped with 2 AMD EPYC ROME
7702P processors, each with 64 cores and 256 GB memory.
Our benchmark datasets are from multiple computational
science domains including CFD, cosmology [45], climate [46],
and combustion [47], and their specifications are listed in
Table III. Note that we use {__} in the dimensionality of
GE data because its second dimension may have variable
sizes. We use the first four datasets for sequential evaluation
and the last dataset for measuring data transfer performance
in a distributed memory environment. For Qols, we use
Equation (1) — (6) for the two GE datasets, and we test
total velocity (i.e., Viorqr in Equation (1), also referred to
as VTOT in the rest of the evaluation) for NYX and Hurricane
data to demonstrate the generalibility. For S3D data, the data
represent the molar concentration of 8 species associated with
21 reactions, and their multiplications generate the intermediate

B. Qol error control

We first show that our theory provides guaranteed error
control on the derivable Qols in the evaluated applications. We
use PMGARD-HB for demonstration purposes, and the same
functionality can be provided by PSZ3 and PSZ3-delta as
well. In particular, we present the max estimated Qol errors and
actual Qol errors of the proposed method under a progressive
set of requested Qol errors for GE data in Figs. 4. It is observed
that the actual Qol errors in our method are always smaller
than the estimated Qol errors, which are usually close but
strictly smaller than the requested Qol errors. This validates
our theory, which always provides an upper bound for the Qol
error estimations. Different trends are observed for different
variables as well. For instance, one can see a gap between the
max estimated errors and actual errors in total velocity when
the bitrate is low. This is because some decompressed data
become close to 0 when the error bound is high, in which case
the estimation of /z generally leads to a loose bound. This
situation becomes better when the error bound decreases to a
certain threshold, which implies the diminishment of near-zero
decompressed values. Furthermore, one can notice a larger
gap between the max estimated errors and actual errors in
PT than that in the other Qols, which is reasonable because
the estimation in PT is the most complex and involves more
relaxation. In addition, the trends in T and C are similar, which
is also as expected because their formulas are very similar.

We also present the results of total velocity on NYX and
Hurricane data in Fig. 5, as well as four examples for molar
concentration multiplications on S3D data in Fig. 6. Similar
trends of Qol errors in total velocity are observed in the other
two datasets, which demonstrate the generality of our algorithm.
Also, our Qol error estimator demonstrates high accuracy
on S3D Qols. This is because these Qols only involve the
multiplications of two variables, which have predictable errors
in almost all cases.

C. Retrieval efficiency

We then compare the efficiency of the three progressive
approaches in terms of their retrieved data sizes. In particular,
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requested Qol errors of PMGARD-HB on NYX and Hurricane.

we compare their bitrates under one requested Qol error to
demonstrate generic cases; requesting progressive error bounds
leads to similar results for PSZ3-delta and PMGARD-HB
but may negatively impact PSz3. Similar to the setting in
Section V, we choose ¢; = 107 for i = 1,2,---18) (used 18
because some datasets such as S3D requires high precision)
as the pre-set error bounds for PSZ3 and PSZ3-delta.

a) Retrieved data size: We present the comparison of the
three progressive approaches on the GE-small and S3D datasets
in Fig. 7 and 8, respectively. The requested Qol errors are set to
7=0.1%2""fori = 0,1,---19, and we omit the total velocity
on NYX and Hurricane as they have similar trends to the total
velocity in the GE case. According to these figures, MGARD-HB
generally leads to the best bitrate among all the three methods,
and it has the most steady curve; PSZ3—-delta is comparable
to MGARD-HB in most cases, but it suffers from the sudden
increase of bitrate in certain ranges, which is probably caused
by the use of an additional multi-precision segment; PSZ3
is the least efficient in general due to the redundancy in the
representation. In addition, it has very wild behavior when there
is only a minor change on the request Qol error bound, which
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on GE-small data.

is probably caused by some extreme values (e.g., near-zero
value in total velocity). Nevertheless, it performs reasonably
well on S3D because of the high compressibility of the dataset
and the relatively easy-to-preserve Qols.

b) Refactoring and retrieval time: We present the refac-
toring and retrieval time of the three methods in Table IV. Ac-
cording to the table, PMGARD-HB has the least data refactoring
time because it only needs to perform a single decomposition
with bitplane encoding; in contrast, PSZ3 and PSZ3-delta
require the execution of the compression procedure on either
original data or the residues for 18 times (equal to the number
of pre-set error bounds). The retrieval time of the three methods
is in the same order, and their differences are mainly caused by
the complexity of the decompression/reconstruction algorithms
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Fig. 8: Retrieval efficiency of different progressive approaches

on S3D data.

TABLE IV: Refactor and retrieval time (seconds) of different

progressive approaches on GE-small data

Requested Qol error bound (VTOT)

Compressor Refactoring TET B2 T 163 T 164 | 163
PMGARD-HB 3.30 0.84 | 0.95 1.12 1.34 1.52
PSZ3 14.63 0.53 | 0.69 | 0.63 1.27 1.15
PSz3-delta 11.99 072 | 072 | 0.72 | 0.94 1.08

and the number of iterations used to determine the proper error
bound on primary data.

D. Remote data transfer performance

We showcase how the proposed method can potentially
improve the performance of data retrieval from remote sites
using the GE-large data with VTOT as the target Qol. The
refactored data is stored at MCC, and the data retrieval request
is initiated from the Anvil supercomputer [48] located at
Purdue University. The experiment is performed using 96 cores,
each of which will deal with one data block in the GE-large
data independently, and the data transfer is performed using
the renowned data service software Globus [49]. The data
refactoring time for PMGARD-HB, PSZ3, and PSZ3-delta
is 2.17 seconds, 5.18 seconds, and 4.67 seconds, respectively,
and the total data transfer time is depicted for remote retrieval
in Fig. 9. As a baseline, the transfer time of the original data
(3 variables, 4.67 GB in total) is roughly 11.7 seconds, as
indicated by the dashed line. For progressive approaches, the
data transfer time includes the retrieval time, which determines
the proper amount of data, and the transfer time, which is
the actual time for transmitting them. It is observed that all
the progressive approaches lead to less total data transfer
time when certain Qol errors can be tolerated. PMGARD—-HB
and PSZ3-delta exhibit similar performance as they have
similar sizes of reduced data in this case, but PMGARD—-HB
features a shorter data refactoring time as noted above. When
compared with the vanilla data transfer with the original data,
PMGARD-HB yields 2.02x data transfer performance if the
requested Qol error tolerance is 1E-5, because the size of the
transferred data is less than 27% of the original one.

Data Transfer Time

14
—== Original Data Transfer Time
12 PMGARD-HB Retrieval Time
————————————— PMGARD-HB Transfer Time
m PSZ3 Retrieval Time
10 PSZ3 Transfer Time
- HE PSZ3-delta Retrieval Time
w8 PSZ3-delta Transfer Time
g
= 6
4
2
0 || |
1.0E-1 1.0E-2 1.0E-3 1.0E-4 1.0E-5

Relative Qol Error Bound

Fig. 9: Data transfer time (from MCC to Anvil via Globus)
under different requested Qol error bounds with 96 cores
using GE-large data. The dashed line indicates the time for
transferring the original data.

VII. CONCLUSION

In this paper, we present a progressive data retrieval
framework that is able to provide Qol error control on demand.
We derive the theory to preserve a set of derivable Qols, and
leverage them to preserve six Qols in a computational fluid
dynamics simulation from a real-world application. Our theory
is generic, and can be easily extended to preserve a wide range
of Qols that can be composited by the provided derivable
Qols. We further integrate three representative progressive
methods into our framework and explore their efficiency in
Qol preservation on five datasets from scientific applications.
Experimental results demonstrate that the proposed framework
can provide guaranteed error control on the target Qols, which
will lead to 2.02x data transfer performance while ensuring a
Qol error of 1E-5. In the future, we will investigate how to
extend this framework to incorporate more Qols and progressive
methods. We will also research how to enable tighter error
controls with better efficiency.
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