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Abstract

Wastewater infrastructures are vital in urban cities, but aging sani-
tary sewer systems face issues like cracked pipes and damaged man-
holes, leading to infiltration and inflow problems. Climate change
contributes to more frequent heavy precipitation, potentially caus-
ing significant sewer overflows. These overflows can endanger pub-
lic health by carrying disease-causing microorganisms, pathogens,
chemicals, and pollutants. To improve the maintenance of wastew-
ater systems, which often face challenges of sparse sensor coverage
in the field, we develop a graph dataset and a spatio-temporal hy-
draulic model - HydroNet - tailored to urban wastewater systems.
The trained HydroNet is able to predict temporal water depth,
which can help identify potential infiltration, leading to an auto-
mated urban wastewater system with minimal time and labor costs.
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1 Introduction

Wastewater infrastructures are a fundamental part of the modern
city, but defects in the aging sanitary sewer system (e.g., cracked
pipes and damaged manholes) allow large volumes of precipitation
and groundwater to flow into the sewer system, known as the infil-
tration and inflow (I/I) problem. This can lead to sewer overflows
and have serious consequences for public health and the environ-
ment. The management of infiltration and inflow requires a large
amount of time and expensive costs of sensors, maintenance, oper-
ation, and engineering. There is a lack of efficient and cost-effective

*Advisor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1107-7/24/10

https://doi.org/10.1145/3678717.3695761

Wenlu Wang’
Texas A&M University-Corpus Christi
wenlu.wang@tamucc.edu

methods for modeling hydraulic systems. The nature of an urban
wastewater system, characterized by its temporal, spatial, and topo-
logical properties, can be represented as a graph with junctions
represented as nodes and conduits as edges. Graph Neural Networks
(GNN) are particularly well-suited for modeling graph relations
with node embeddings preserving node features and edges carrying
flow messages pass to each node. Mapping the urban wastewater
system into a spatial-temporal deep model enables temporal wa-
ter depth predictions, which can help with infiltration and inflow
anomaly detection by comparing the predictive and sensor values.

We create a graph dataset with a real-world wastewater network.
This dataset includes the water depth at each junction along with
various node characteristics such as invert elevation, rim elevation,
and freeboard, over a specified period. To test the quality of the
dataset, we evaluate the dataset with a set of deep learning and non-
deep learning-based models. To better customize a hydraulic model,
we propose a HydroNet that captures spatio-temporal dependencies
considering the static junction features.

2 An Urban Wastewater System Graph

An urban wastewater system can be naturally described as a graph;
nodes will describe junctions, manholes, lift stations, outfalls, and
storage facilities, and edges can be various conduits, including
gravity-driven mains, force mains, and trunk mains. Given the
context above, we formally design the wastewater system as G =
(V,E), which is an urban water system graph, V = {01, ...,on} is a
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Figure 1: The conceptual design of Graph Neural Networks
for water flow distribution. We propose a sewer system graph
G = (V,E), where node set V are the manholes, and edge set
E are a set of directed edges representing messages passing
in sewer mains. In this example, we show the two layers of
the propagation process of vertex v;. Assuming an anomaly
was found on vy, after training all the vertices, we are able to
predict the cascading impacts of v; following the downstream
passes.
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Figure 2: HydroNet Structure

set of vertices representing junctions, E is a set of edges representing
conduits. The adjacency matrix derived from G is denoted as A €
RN*N where N is the number of nodes (junctions). If v;, vj €V
and (v;,0;5) € E, then Ajj is one otherwise zero. Figure 1(b) shows
the conceptual design of an urban water system.

Training Data Generation The training data are generated using
PCSWMM, an advanced version of the Storm Water Management
Model 5 (SWMM5) developed by USEPA. The targeted system is
a university campus sanitary sewer network, serving a 0.65 kmz2
sewershed. It consists of 22 vitrified clay pipes (diameters 0.2-0.25
m) and 22 manholes (invert elevations -1.69 to 0.56 m). Sewershed
data are derived from 15-cm aerial imagery and 1-m LiDAR digital
elevation model. Inflow data is based on long-term observations
from residential and commercial areas. The model solves the St.
Venant flow equations to determine flow depths at 10-min intervals
over a 72-hour period.

3 Methodology

At each time step ¢, the graph G has a dynamic feature matrix
X(®) € RNXD and static junction feature matrix S € RN’ In our
setting, the dynamic feature matrix represents the water depth at
time step ¢ with D = 1, and the static feature matrix represents 12
junction features (D’ = 12) such as invert elevation, rim elevation,
freeboard, etc. The junction features influence the time-series water
depth at each junction.

In this paper, we evaluate our dataset on the time series predic-
tion task. Given a water system graph G and past T steps’ water
flow as feature matrices X (¢~ T ), the prediction task is to learn a
function f that predicts the next T’ steps’ water flow. The mapping
can be defined as

X(t+1:t+T’) — f(X<t_T:t);s, G) (l)

Where X (t=T:t) ¢ RNXDXT and X (t+1:24T7) ¢ RNxDxT’.

To address this prediction task, we propose the HydroNet model.
As shown in Figure 2, HydroNet consists of stacked spatio-temporal
layers taking both static and dynamic features. Unlike previous
models, HydroNet is customized for hydraulic problems, incorpo-
rating both static junction features and dynamic time series data.
HydroNet integrates temporal convolutions for time-dependent
patterns and a Graph Convolutional Network (GCN) for spatial
relationships. This architecture captures both the temporal nature
of water flow and the spatial structure of the sewer network. The
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training objective is to minimize the mean absolute error (MAE):
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where X;tﬂ) and Xﬁ.tﬂ-) are the predicted and actual water depths
for junction j at time ¢ + i, respectively.

4 Preliminary Results

We use historical data to predict future data. The Lookback length,
set at 12, involves using data from the preceding 12 time steps to
forecast the next 12 time steps. This establishes the temporal scope
for the output of our predictive model.

We compare HydroNet with the following models: (1) CNN: Con-
volutional Neural Network. (2) RNN: Recurrent Neural Network. (3)
GRU: Gated Recurrent Unit. (4) LSTM: Long Short-Term Memory.
(5) Transformer. (6) STGCN: Spatio-temporal graph convolutional
networks [2]. (7) ST-SSL: Spatio-Temporal Self-Supervised Learn-
ing [1]. The comparison is based on the following metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE).

The results (shown in Figure 3) emphasize HydroNet’s superior
predictive capabilities for sewer water levels. Consistently outper-
forming other models, HydroNet proves effective in complex time
series forecasting.
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Figure 3: Performance comparison of different methods

5 Conclusion

Our experiments demonstrate that HydroNet, specifically devel-
oped for urban wastewater, surpasses traditional models in our
dataset. HydroNet’s success validates the use of complex models
for precise predictions, which is essential for urban planning. This
improved accuracy could significantly enhance wastewater system
management and reduce overflow risks.
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