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ABSTRACT

Early identification and intervention often leads to improved life outcomes for individuals with Autism Spectrum
Disorder (ASD). However, traditional diagnostic methods are time-consuming, frequently delaying treatment.
This study examines the application of machine learning (ML) techniques to 10-question Quantitative Checklist
for Autism in Toddlers (QCHAT-10) datasets, aiming to evaluate the predictive value of questionnaire features
and overall accuracy metrics across different cultures. We trained models using three distinct datasets from
three different countries: Poland, New Zealand, and Saudi Arabia. The New Zealand and Saudi Arabian-
trained models were both tested on the Polish dataset, which consisted of diagnostic class labels derived from
clinical diagnostic processes. The Decision Tree, Random Forest, and XGBoost models were evaluated, with
XGBoost consistently performing best. Feature importance rankings revealed little consistency across models;
however, Recursive Feature Elimination (RFE) to select the models with the four most predictive features
retained three common features. Both models performed similarly on the Polish test dataset with clinical
diagnostic labels, with the New Zealand models with all 13 features achieving an AUROC of 0.94 + 0.06, and
the Saudi Model having an AUROC of 93% = 6. This compared favorably to the cross-validation analysis of a
Polish-trained model, which had an AUROC of 94% = 5, suggesting that answers to the QCHAT-10 can be
predictive of an official autism diagnosis, even across cultures. The New Zealand model with four features had
an AUROC of 85% + 13, and the Saudi model had a similar result of 87% + 11. These results were somewhat
lower than the Polish cross-validation AUROC of 91% + 5. Adjusting probability thresholds improved
sensitivity in some models, which is crucial for screening tools. However, this threshold adjustment often
resulted in low levels of specificity during the final testing phase. Our findings suggest that these screening
tools may generalize well across cultures; however, more research is needed regarding differences in feature
importance for different populations.
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Introduction

Autism Spectrum Disorder is a complex condition characterized by varied developmental impacts that
can lead to social, communication, and behavioral challenges. The global prevalence of autism is
approximately 1 in 100 children '. However, this is likely a dramatic underestimate due to the increases in
autism diagnoses in the United States, where prevalence is currently 1 in 36 2. Despite being a lifelong
condition, early intervention—starting as young as 2 or 3 years—can significantly enhance long-term life

outcomes and increase access to resources and services 3.
NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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However, the process of diagnosing autism is notoriously time-consuming, relying heavily on detailed
examinations of a child's developmental history and behaviors *°. This time-intensive process often delays the
initiation of crucial early treatments. Recognizing this, the United States Preventive Services Task Force
advocated for universal autism screening among young children in 2016, leading to the integration of various
developmental screening tools such as the Ages and Stages Questionnaires (ASQ) and the Modified Checklist
for Autism in Toddlers (M-CHAT) into routine pediatric visits . Despite these tools, the implementation of
routine screening still faces significant hurdles due to time constraints and the disruption of workflow in
healthcare settings, which can delay diagnosis ’. Additionally, most research into autism diagnosis and
treatment has been conducted in westernized, English-speaking countries with extensive availability of
treatment resources . The validity of existing tools for screening children in various cultures merits exploration.

To address these challenges, there is growing interest in applying Machine Learning (ML) technologies
to expedite the administration and scoring of clinical questionnaires. ML algorithms can not only automate
these processes but also enhance them by identifying the most predictive indicators of autism °. This approach
holds the potential to streamline diagnostic screenings. Additionally, ML allows for incorporating additional data
modalities like video assessments, which could screen at-risk children outside traditional healthcare settings
and fast-track them for further diagnostic evaluation "'®'*. ML can also be utilized to compare the performance
of different questionnaire tools on populations of children from different cultural and ethnic backgrounds.

Examining the cross-cultural application of these tools is essential to ensure their robustness, reliability,
and broad applicability across diverse populations. By evaluating models across different cultural and
demographic contexts, we can better understand their effectiveness and identify any limitations that may arise
when applied to varied populations. This cross-cultural examination is vital for developing truly universal
screening tools that can provide reliable results irrespective of geographic or cultural differences. Despite the
extensive literature on the use of machine learning in analyzing tabular questionnaire datasets such as the
Quantitative Checklist for Autism in Toddlers (Q-CHAT) and Q-CHAT-10, there appears to be a gap in existing
studies regarding the testing of these models on independently collected datasets post-training and validation,
especially datasets collected from different cultural and ethnic settings.

To address this, we trained models separately using two distinct datasets: the New Zealand Q-CHAT-
10 dataset from Thabtah et al. '® and a separate QCHAT-10 dataset of Saudi Arabian toddlers obtained from
Kaggle '®. We used stratified k-fold cross-validation to choose the best-performing model with all features, then
explored feature importance and employed recursive feature elimination. Next, each model was validated on
one of the other two datasets to improve sensitivity, an important metric for a screening tool. A final evaluation
was performed by testing the Polish QCHAT dataset 7 on both the original and adjusted-cutoff model, and
comparing this result with the cross-validation results of a model trained on the Polish dataset. The end goal of
this approach was to provide a comprehensive understanding of the trained models’ effectiveness, their
operational robustness across different demographic and cultural contexts, and the consistency of feature
importance across models and datasets.

Related Work

Several recent studies have used ML with existing questionnaires to construct autism screening tools.
Erhan and Thanh, for example, trained separate machine learning algorithms on three different AQ-10
datasets in the UCI Machine Learning Repository grouped by age: AQ-10-Child (from 4 to 11 years old), AQ-
10-Adolescence (12 to 17 years old), and AQ-10-Adults (18 years or older). Using a 90% train / 10% test split
with 100 trials of randomly selected test data, they achieved 100% accuracy with Random Forest (RF) and
Support Vector Machine (SVM) algorithms on all three models, with KNN models performing more poorly °.

Kupper et al utilized recursive feature selection to identify the five most predictive features of the Autism
Diagnostic Observation Schedule (ADOS) for adults and adolescents. They trained an SVM model on the top
five best-performing features and achieved comparable performance to an 11-feature, 12-feature, and 31-
feature model, with the same AUROC of 87% 8. Similarly, Washington et al achieved an AUROC of 92%
distinguishing autistic from non-autistic survey respondents using a single question derived from the Social
Responsiveness Scale (SRS), and found consistency between the top three most predictive features and Duda
et al.’s top six features distinguishing autism from ADHD *°.

Using a mobile web portal, Tariq et al tested whether a reduced set of features based on autism
screening questionnaires could successfully be extracted by blinded non-expert raters watching 3-minute
home videos of US-based children with and without autism. Their top-performing Logistic Regression (LR)
classifier scored 88.9% accuracy, 94.5% sensitivity, and 77.4% specificity based on the nonexperts’ feature
ratings ''. A subsequent study applied this technique to videos of Bangladeshi children, achieving accuracy
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and sensitivity values of 76%), showing the potential for cross-cultural applications of ML tools and potential
utility in developing countries where clinical resources are scarce '°. in 2021, Washington et al explored the
effect of privacy-preserving methods such as face boxes and pitch alterations on model performance using the
same set of reduced features, concluding that sensitivity was preserved (96.0%), while specificity (80.0%) and
accuracy (88.0%) were maintained at acceptable levels '*. Another study used feature replacement methods to
compensate for variations in video quality, concluding that algorithmic-driven replacement questions and
personalized feature imputation methods could increase ML model performance 2.

In 2017, Dr. Fadi Fayez Thabtah, a lecturer at the Manukau Institute of Technology in New Zealand,
published datasets collected using a mobile application called AutismTests, which screened for autism using
the Q-CHAT-10 for toddlers and age-appropriate versions of the AQ-10 for children, teens, and adults .
Numerous researchers have subsequently made use of these datasets. Vakadkar et al., for example,
combined all age groups from the New Zealand datasets and then tested LR, NB, SVM, KNN, and RF
classifiers on the datasets using an 80/20 split for training vs validation. Logistic Regression proved to be the
best-performing classifier, with an accuracy of 97% and F1 score of 98% 2'.

Another study similarly combined all age groups from the New Zealand datasets, then separated male
and female data, training separate machine learning models for each gender. Random OverSampling (ROS)
techniques were used to compensate for imbalanced autistic vs. control examples in the separated datasets,
and SHapley Additive exPlanations was utilized to compare significant features in the male vs female datasets.
The most predictive features were similar between genders, although not identical. Extreme Gradient Boosting
(XGB), Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), K-Nearest Neighbor (KNN), Gradient
Boost (GB), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and Logistic Regression (LR)
models were all tested on the datasets. MLP performed best overall on both male and female data, achieving
an AUROC of 98% on the female dataset and 97% on the male dataset with 10-fold cross-validation 2.

Tartarisco et al. utilized a dataset consisting of young Italian children who were administered the full-
length Q-CHAT with 25 questions. They tested RF, NB, SVM, KNN, and LR algorithms on the dataset, with
SVM performing the best. SVM recursive feature elimination was used with fivefold cross-validation to reduce
the number of features used for screening, repeating until the highest classification accuracy was obtained.
The final AUROC obtained was 95%, utilizing 14 questions from the Q-CHAT %,

In 2022, Thabtah and colleagues conducted a study on their previously collected dataset, combining all
age groups together. They explored the use of a Self-Organizing Map (SOM) to independently derive class
labels for these combined datasets by clustering examples using features related to communication, repetitive
traits, and social traits. These clusters were then compared with existing class labels, which were refined to
eliminate inconsistencies. The refined label dataset and dataset with original class labels were each used to
train classification systems for autism diagnosis. Naive Bayes and Random Forest Algorithms were tested, with
the Random Forest outperforming the Naive Bayes in all scenarios. Additionally, performance on the SOM-
refined dataset was significantly higher, achieving accuracy/precision/sensitivity scores of 96%/96%/97 %,
respectively, compared to 92%/91%/94% for the dataset with original labels, utilizing tenfold cross-validation to
evaluate each model’s performance .

More recently, Rahman and Subashini utilized deep neural networks (DNNs) on QCHAT data. They
trained two separate classifiers, one on Polish Toddlers’ Q-CHAT data and the New Zealand Q-CHAT-10
datasets, achieving high sensitivity, specificity, and AUC scores of 100%/99%/100% for QCHAT-10 and
93%/83%/97% for QCHAT, respectively 2°.

Cognoa, a health technology company that develops diagnostic and therapeutic solutions for children
with developmental and behavioral conditions, including autism, recently developed the first FDA-approved tool
for autism diagnosis, which it dubbed Canvas Dx. This tool leverages machine learning to facilitate early
diagnosis of autism and has been rigorously tested in several large-scale studies. Initial research involved
testing eight unique classification algorithms and selecting the most predictive questionnaire items from
common autism surveys. One study using the Autism Diagnostic Interview-Revised (ADI-R) identified that
seven of the 93 items were sufficient to classify autism with 99.9% accuracy %°. Further studies tested various
classifiers, finding that ten or less of the 29 items on the ADOS could classify autism with 97% or greater
accuracy 2%, The top-performing classifiers were validated on an independent dataset not previously used for
training or testing 2%,

After selecting the best-performing classifier, prospective validation studies were conducted between
2012 and 2017, incorporating evolving numbers and types of inputs 3%, The final validation study used three
inputs: a caregiver questionnaire, a video analyst questionnaire using smartphone-uploaded videos of the
child, and a healthcare provider questionnaire. With these inputs, the algorithm outperformed baseline
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screening tools by 35% for AUC and 69% for specificity at 90% sensitivity 3*. A prospective, multi-site clinical
validation study with the finalized Canvas Dx tool, which incorporated these three modalities, yielded a positive
predictive value (PPV) of 81%, a negative predictive value (NPV) of 98%, sensitivity of 98%, and specificity of
79% for cases where the tool provided a determinate result (68% of cases yielded no result) 3. Following this
study, Canvas Dx became the first authorized diagnostic system for autism.

An analysis of de-identified aggregate data from the first 124 Canvas Dx prescriptions yielded a NPV of
95.2% and PPV of 94.4%, with 60.5% of individuals prescribed receiving a determinate result. The median age
of children who received a positive diagnosis was 35.5 months, more than a year younger than the median age
of diagnosis in the United States at the time of the study . In 2023, an algorithmic threshold optimization
procedure was utilized to improve Canvas Dx’s ability to detect and rule out autism without altering its accuracy
or intended use . Through repeated train/test validation on a sample of 722 children with developmental delay
concerns—28% with autism, 22% neurotypical, and 50% with other developmental delays—the device
underwent 1000 repeats, using 70% of the sample for optimization and 30% for evaluation. The optimized
thresholds enabled Canvas Dx to produce a determinate output for 66.5% of children, achieving a positive
predictive value (PPV) of 87.5% and a negative predictive value (NPV) of 95.6%. This optimization significantly
improved the device’s capacity to accurately detect or rule out autism in a larger proportion of children. Given
the current waitlist crisis for autism treatment in the US, the increased coverage by this device is a promising
development.

Methods

Study Overview

Our central procedure consisted of training and hyperparameter optimization (except for threshold
selection) of two models, one trained on the Saudi dataset and another on the New Zealand dataset (Figure 1).
Next, we chose optimal prediction thresholds using the opposing dataset as a validation tool, and evaluated
both models on the Polish dataset. Finally the results of these evaluations were compared to cross-validation
on the Polish dataset.

Initially, we pre-processed the datasets to ensure consistency in feature encoding across all data
sources, focusing on responses to the QCHAT-10 questionnaire and key demographic variables. Stratified k-
fold cross-validation was employed during model training to maintain balanced representation of autistic and
non-autistic cases. We tested Decision Tree, Random Forest, and XGBoost models, optimizing
hyperparameters through randomized search to enhance model performance. Feature importance was
analyzed to identify the most predictive indicators, followed by recursive feature elimination to streamline the
models. Finally, we adjusted probability thresholds to maximize sensitivity while maintaining acceptable
specificity, ensuring the models’ efficacy as screening tools. The final evaluation involved testing the optimized
models on the Polish dataset to validate their generalizability and robustness in diverse demographic and
environmental contexts.

Figure 1. Pipeline for model training and testing. Three distinct datasets were cleaned and preprocessed. The
New Zealand and Saudi datasets were then used to train DT, RF, and XGB models, utilizing Randomized
Search and 5-fold cross-validation to determine optimal hyperparameters. The best model from each dataset
was refined further using recursive feature elimination. Subsequently, both the full-featured and refined models
were validated using the other dataset, and the threshold for positive prediction was adjusted to optimize
sensitivity while maintaining acceptable levels of balanced accuracy, specificity, and AUROC values. Finally,
both models were tested on the Polish dataset, and results were compared to cross-validation on the Polish
data.
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Model Inputs and Outputs

The inputs to the XGB model consist of responses to the ten questions of the QCHAT-10, augmented
with demographic data such as the child's gender, age in months, and familial history of autism or other
developmental disorders. The responses to these questions are binarized based on their indication of autistic
traits. For questions 1 through 9 (features A1-A9), a response of 'Sometimes,' 'Rarely,' or 'Never' is assigned a
value of 1, indicating a lack of certain developmentally appropriate behaviors. Conversely, for question 10, a
response of 'Always,' 'Usually,’ or 'Sometimes' is assigned a 1, reflecting a behavior more likely to occur in
Autistic children. Questions included on the QCHAT-10 are listed in Supplementary Table S1. On the QCHAT-
10, a cumulative score exceeding three points from these binary-coded responses suggests a positive
screening result for autism ¥,

The model's output is a binary indicator, determining whether the screening for autism is likely positive
or negative based on the inputs. Essentially, the machine learning model approximates a decision function that
maps a set of behavioral indicators and demographic characteristics to a likelihood of autism. This function
captures possible interactions among the questionnaire responses and other inputs. In this case, we train and
validate two models based on datasets whose labels are derived from the screening score (Saudi and New
Zealand datasets), and perform our final test and comparison using a dataset with labels derived from an
independent autism diagnosis (Polish dataset).

Datasets

We use three datasets sourced from three different countries (Supplementary Table S2):

New Zealand autism screening data for toddlers (QCHAT-10). This dataset includes 1054 entries
collected by Dr. Fadi Fayez Thabtah. It was collected via the ASDTests screening application, a mobile tool
allowing individuals to complete the Q-CHAT-10 and ASD-10 questionnaires 2°*%4°_ Class values are assigned
automatically based on the screening score, with scores of three or greater being classified as autistic.

Q-CHAT scores of Polish toddlers. This dataset features full-length Q-CHAT scores from 252 Polish
toddlers, including 135 diagnosed with autism and 118 who are normally developing . The University of
Warsaw compiled it in collaboration with the SYNAPSIS Foundation and other partner organizations. For this
dataset, the class label is based on a clinically-derived diagnosis of autism.
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ASD Screening Data for Toddlers in Saudi Arabia. This dataset was retrieved from Kaggle. The
dataset consists of 506 entries, with 341 classified as having autism and 165 without. Details about the
recruitment and rating process are not provided. The class label derivation of this dataset is unspecified, but
assumed to be assigned based on a screening score of three or greater.

Models

We selected machine learning models tailored to the dataset and research objectives, focusing on
Decision Tree models *' and their extensions, Random Forest “? and XGBoost (XGB) **. We started with a
Decision Tree due to its interpretable structure, which mirrors clinical decision-making processes similar to
those used in diagnosing autism in clinical settings. We also used ensemble methods like Random Forest and
XGB to address potential overfitting and enhance model robustness. These methods help manage overfitting
through multiple trees and regularization, excelling in handling non-linear relationships common in medical
data.

Additionally, these tree-based models are advantageous for determining feature importance, providing
insights into which diagnostic criteria are most predictive of autism. The progression from a Decision Tree to
more complex models was iterative, beginning with the Decision Tree to establish a baseline understanding
and progressively moving to more sophisticated models to improve accuracy and generalizability.

Feature Encoding and Pre-processing

The New Zealand dataset comprises 1054 examples with no missing values. It includes responses to
the QCHAT-10 questionnaire, the overall questionnaire score, and demographic information such as age in
months, gender, ethnicity, and family history of developmental disorder; it also records whether the child was
born with jaundice and who completed the test (self, family member, etc.). Although the New Zealand and
Saudi datasets share identical features based on QCHAT-10 data, the Polish dataset, derived from QCHAT-25
data, includes only gender, family history of developmental disorder, and age in months as common
demographic features; it also includes 25 questions, ten of which correspond to the QCHAT-10. It incorporates
additional features such as child ID, whether the child was preterm, birth weight in grams, mother’s education,
and whether the child had siblings with autism.

During pre-processing, the QCHAT or QCHAT-10 scores, which were utilized to determine class labels,
were omitted. The ten questions and three common demographic features were retained in all datasets, with
QCHAT questions aligned to their corresponding QCHAT-10 questions to ensure consistency. No explicit
transformations were applied, and the absence of missing data precluded the need for imputation techniques.
Additionally, augmentation methods like Gaussian noise were not employed. Given the utilization of decision
tree-based models, feature scaling was deemed unnecessary.

Model Evaluation

For the initial evaluation of all models, stratified k-fold cross-validation was employed with k=5 folds.
This method ensured that the data in each subset contained a balanced representation of both autism and
neurotypical participants. The model’'s performance was assessed by choosing the model with the highest
metrics on the maijority of accuracy, precision, sensitivity, specificity, and ROC-AUC values. Supplementary
Table S2 details the metrics for the best-performing models selected during the initial training phase for each
dataset. During the recursive feature elimination step for the New Zealand and Saudi-trained models, feature
elimination was halted at four features for both models.

Both models were validated with thresholds of 0.3 and 0.5 for positive predictions using the opposing
dataset as a validation set. Finally, each model was tested on the Polish dataset, and the resulting accuracy,
precision, sensitivity, specificity, and AUROC values were compared to the results of 5-fold cross-validation on
the Polish dataset.

Hyperparameter Optimization

Randomized search was utilized for hyperparameter optimization on all models. Nine models were
tested initially, including all possible combinations of Decision Tree, Random Forest, and XGBoost with the
New Zealand and Saudi datasets. Only XGBoost was tested for the Polish dataset, as this model performed
best on both of the other two datasets. A minimum of 500 model candidates were tested for each unique
dataset and model combination. The hyperparameter search space is detailed in Supplementary Table S3, and
optimal hyperparameters selected are in Supplementary Table S4.
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Results

Feature Importance

Supplementary Table S5 displays the feature importances for the top-performing models on each
dataset. Across all models, features related to the responses on the QCHAT-10 were generally more important
than demographic features. This may be because the class labels were generated based on the QCHAT-10
screening score rather than a confirmed diagnosis of autism. Despite the consistently high importance of
QCHAT-10 questions over demographics, the importance of individual questions varied widely between
datasets, with a few features ranking similarly among all three datasets.

For both the Saudi and New Zealand datasets, question 9 (“Does your child use simple gestures (e.g.,
wave goodbye)?”) was ranked highly, with a feature importance of 0.24 in the New Zealand model (ranked 1st)
and 0.19 in the Saudi model (ranked 2nd). Both New Zealand and Polish models ranked question 6 (“Does
your child follow where you're looking?”) in the top five features, scoring 0.10 for New Zealand and 0.21 for
Polish.

Aside from these commonalities, the three models had few similarities in their top five most predictive
features. In the Saudi model, the top three features were almost equally predictive, with question 6 (“Does your
child follow where you’re looking?”) scoring 0.21, question 9 scoring 0.19, and question 2 scoring 0.18. The
next most predictive question had a score of only 0.07. The Polish model had a similar pattern, with question 3
(“Does your child point to indicate that s/he wants something (e.g., a toy that is out of reach)?”) scoring 0.22,
and question 4 (“Does your child point to share interest with you (e.g., pointing at an interesting sight)?”)
scoring 0.20, followed by a sharper dropoff for question 5 (scoring 0.14). For the New Zealand model, question
9 scored 0.24, with the next most predictive question being only half as impactful (question 7 with a score of
0.12) and question 1 (“Does your child look at you when you call his/her name?”) scoring 0.11.

Demographic features such as family history of PDD, age in months, and gender were less important.
Age in months ranked 12th of 13 features for New Zealand and 13th for both the Polish and Saudi-trained
models. Gender ranked 13th for New Zealand and 12th for the other two models. Family history of PDD ranked
11th for New Zealand, 7th in the Polish-trained model, and 10th in the Saudi model. Significantly, because the
class variables for the New Zealand and Saudi models were based on the survey responses to the QCHAT
questions, it is expected that the demographic variables are less predictive. However, gender, age, and family
history of PDD were similarly less predictive for the Polish model. Family history of PDD, the most predictive
demographic characteristic for the Polish model, was similarly predictive to the other models, with a feature
importance score of 0.03 (compared to 0.04 for the Saudi model and 0.02 for the New Zealand model).

Recursive Feature Elimination

Recursive Feature Elimination (RFE) was performed on the best-performing model for each dataset
(see Figure 2 for the New Zealand-trained model and Figure 3 for the Saudi-trained model). The models with
the best metrics were then compared to the models trained on all features, resulting in two models for each of
the New Zealand and Saudi datasets. Supplementary Table S6 summarizes the number of features and
performance metrics of each model. For the New Zealand model, all features except for question 5, question 6,
question 7, and question 9 were eliminated, while the Saudi model retained question 2, question 5, question 6,
and question 9.

Figure 2. Performance across feature counts for XGB model trained on New Zealand dataset.
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Figure 3. Performance across feature counts for XGB model trained on Saudi dataset.

Saudi-Trained Model Performance Across Feature Counts

—8— Sensitivity
Specificity
—8— Balanced_accuracy

1.00 +

0.95

0.90 A

Model Performance

0.85

0.80

Number of Features

Notably, both the New Zealand and Saudi models maintained metrics of 88% or higher after Recursive
Feature Elimination (RFE). The New Zealand model achieved a balanced accuracy of 89%, sensitivity of 91%,
specificity of 88%, and an AUROC of 95% with only four features. The Saudi model performed slightly better,
with corresponding values of 92%, 94%, 91%, and 98%.

Both models retained the following questions as features after RFE: question 2 (“How easy is it for you
to get eye contact with your child?”), question 5 (“Does your child pretend (e.g., care for dolls, talk on a toy
phone)?”), and question 6 (“Does your child follow where you're looking?”). This retention suggests these
features have cross-cultural significance. Additionally, question 6 was ranked as the 5th most important feature
for the New Zealand model (with 0.10 importance score) and the most important for the Saudi model (0.21
importance score), underscoring its relevance. Conversely, questions 2 and 5 did not consistently exhibit high
predictive value in feature importance rankings.

Threshold Adjustment to Maximize Sensitivity
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Maximizing sensitivity in a screening tool can have significant public health benefits. Early detection
and intervention for autistic children can lead to better health outcomes, including improved developmental
trajectories and access to appropriate support services. While optimizing for sensitivity may lead to lower
specificity, it can be an acceptable trade-off in these contexts. As a result of this goal, the probability threshold
for a positive prediction was adjusted with the goal of maximizing sensitivity while maintaining a specificity of
greater than 0.5. Models using all 13 features and 4-feature models obtained by RFE were both included in the
analysis. Results are displayed in Table 1.

Table 1. Validation of models on separate dataset with 0.5 and 0.3 positive prediction thresholds.

Train New Zealand Dataset Saudi Dataset
Dataset
Hyperparam | Saudi Dataset New Zealand Dataset
eter
Optimization
Dataset

4 Features All Features 4 Features All Features
Threshold 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3
Balanced 0.91 £0.01 0.84+£0.02 (1.00+£0.00 |1.00£0.00 [0.86+0.01 0.79£0.01 0.98+0.00 [0.97+£0.01
Accuracy
Sensitivity 0.91 £0.01 0.96 £ 0.01 1.00+£0.00 |1.00+£0.00 [0.90+%0.01 0.98+£0.00 [0.98+0.00 [1.00+0.00
Specificity 0.91 £0.01 0.71+£0.02 (1.00£0.00 |0.99+0.00 [0.83+0.01 0.59+0.02 [0.98+0.00 ]0.95%0.01
AUROC 0.96+0.03 [096+0.03 |1.00£0.00 [1.00£0.00 |0.95+0.04 |0.95+0.04 |1.00+£0.00 |1.00%0.00

The New Zealand models used the Saudi dataset for the threshold adjustment step, and vice versa. For
both the 4-feature and 13-feature models, the optimal threshold for a positive prediction was adjusted from 0.5
to 0.3 in order to enhance sensitivity values while maintaining reasonable precision and specificity.

The 4-feature New Zealand-trained model demonstrated slightly higher sensitivity when validated on
the Saudi dataset (96% * 1 with a cutoff of 0.3 vs. 91% + 3 with a cutoff of 0.5) but much lower specificity (91%
1 1 with a cutoff of 0.3 vs. 71% £ 2 with a cutoff of 0.5) compared to the 13-feature model; however, specificity
values were acceptable for a screening tool. The 13-feature model maintained perfect metrics at the 0.5
threshold, and near perfect metrics for the 0.3 threshold (100% for all metrics except specificity, which scored
99%).

The Saudi model was validated on the Polish dataset. The 4-feature model saw sensitivity values
increase from 90% + 1 to 98% = 0, while specificity dropped sharply from 83% + 1 to 59% % 2. In this case, the
use of only four features combined with an adjusted threshold resulted in relatively low specificity values. The
13-feature model exhibited maintained much higher specificity (98% + 0 to 95% % 1) while increasing sensitivity
to perfect values (98% + 0 to 100% = 0).

Final Model Testing

After validation and threshold adjustment, all models were tested on the Polish dataset, which had not
been utilized for training or validation. The results are displayed in Table 2.

For the New Zealand model test on the Polish dataset, the 4-feature model displayed severe tradeoffs
between sensitivity and specificity for each threshold. For the 0.5 cutoff, sensitivity values were 79% = 3, lower
than desirable for a screening tool, while specificity values had a similar value of 80% + 3. Changing the
threshold to 0.3 resulted in high sensitivity values of 0.91 + 2, but with an unacceptably low specificity value of
0.50 + 3. The 13-feature model with a 0.5 positive prediction threshold had the same 79% + 3 sensitivity
values, but a higher sensitivity value of 91% % 2. Changing the threshold to 0.3 increased the sensitivity to 80%
+ 3, within the margin of error, while the sensitivity remained unchanged.

For the Saudi model tested on the New Zealand dataset, a better balance was achieved between
sensitivity and specificity. The sensitivity of the 4-feature model increased from 74% + 3 to 84% + 2 by
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adjusting the threshold from 0.5 to 0.3, while specificity decreased from 85% + 2 to 80% * 3. The 13-feature
model sensitivity increased from 77% % 3 to 81% * 2, while specificity decreased from 92% + 2 to 88% + 2. For
this model,the difference in sensitivity and specificity between the two models was within the margin of error.

Table 2. Held out test set results of New Zealand and Saudi models on Polish datasets.

Train Dataset New Zealand Dataset Saudi Dataset
Threshold Saudi Dataset New Zealand Dataset
Adjustment
Dataset
Held-Out Test Polish Dataset Polish Dataset
Dataset

4-Feature Model All Features Model 4-Feature Model All Features Model
Threshold 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3
Balanced 0.80+0.03 |0.70£0.03 |0.85+0.02 [0.85+0.02 |0.79+0.03 |0.82+£0.02 [0.85+0.02 |0.84 +£0.02
Accuracy
Sensitivity 0.79+0.03 |0.91+£0.02 |0.79+£0.03 [0.80+0.03 |0.74+0.03 |0.84+£0.02 |0.77+£0.03 |0.81+£0.02
Specificity 0.80+£0.03 |0.50+0.03 ]0.91+£0.02 [0.91+£0.02 |]0.85+0.02 |0.80+0.03 [0.92+0.02 |0.88+0.02
AUROC 0.85+0.13 |0.85+£0.13 |094+0.06 [{0.94+0.06 |0.87+0.11 |0.87+£0.11 [0.93+£0.06 |0.93+0.06

Comparison with Polish Model 5-Fold Cross-Validation

Lastly, we compared metrics obtained by testing the trained models on the Polish dataset (Table 2) with
metrics obtained using 5-fold cross-validation of the Polish dataset with an XGB model (Table 3). While overall
performance of the XGB Polish model was higher, certain models compared favorably. The Saudi-trained
model displayed a superior balance between sensitivity and specificity overall. The Saudi model with all
features and 0.3 threshold had a sensitivity, specificity, and AUROC of 81% + 2, 88% + 2, and 93% = 6,
respectively, compared to 87% + 6, 89% + 0.02, and 0.94% = 0.05, for the Polish model. Adjusting the cutoff
from 0.5 to 0.3 had no effect on the Polish model’s metrics, for either the 4-feature or 13-feature models, while
modest effects were observed for the Saudi model. The 4-feature Saudi model with 0.5 cutoff had sensitivity,
specificity, and AUROC values of 74% + 3, 85% + 2, and 87% + 11; adjusting the cutoff for positive prediction
to 0.3 resulted in an increase in sensitivity to 84% * 2 and decrease in specificity 80% = 2.

Conversely, specificity was severely impacted during threshold adjustment for the New Zealand 4-
feature model, dropping from 80% + 3 to 50% % 3, while sensitivity increased from 79% 0.85+ 310 91% + 2
and AUROC was maintained at 85% + 2. This was in contrast to the Polish model cross-validation, which
maintained sensitivity of 0.84 + 0.09 and specificity 89% * 5 with both the 0.3 and 0.5 cutoff threshold.

Table 3. Results of 5-fold cross-validation on XGB model with Polish dataset.

Dataset Polish Dataset Polish Dataset

4-Feature Model 4-Feature Model All Features Model All Features Model
Threshold 0.3 0.5 0.3 0.5
Balanced Accuracy |[0.87 +0.06 0.87 £ 0.06 0.88 +0.03 0.88 +0.03
Sensitivity 0.84 £ 0.09 0.84 £ 0.09 0.87 £ 0.06 0.87 £ 0.06
Specificity 0.90 £ 0.05 0.90 £ 0.05 0.89 £ 0.02 0.89 £ 0.02
AUROC 0.91 £0.05 0.91 £0.05 0.94 £ 0.05 0.94 £ 0.05
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Discussion

We contributed to the large and growing field of autism data science conducted on clinical instruments
4445 py exploring the generalizability of machine learning models trained on tabular datasets of QCHAT-10
questionnaires, as well as the consistency of feature importance between datasets and performance after
eliminating low-importance features. The performance of features varied, with QCHAT-10 questions generally
outperforming demographic information.

Through Recursive Feature Elimination (RFE), nine features were removed from each model with only
a moderate impact on performance metrics. Both New Zealand and Saudi-trained datasets consistently
eliminated gender, family history of PDD, and age features while maintaining performance; likewise, the
importance of these features was consistently low (see Supplementary Table S5, Figure 2, and Figure 3).
Three out of the four features retained were the same between the two models (question 2 (“How easy is it for
you to get eye contact with your child?”), question 5 (“Does your child pretend (e.g., care for dolls, talk on a toy
phone)?”), and question 6 (“Does your child follow where you’re looking?”)

), suggesting that these features may be consistently significant, including across cultural boundaries.

Overall, the XGBoost models trained on the New Zealand and Saudi datasets displayed similar model
performance during k-fold cross-validation to Rahman and Subashini’s study # without using deep learning
models. Performance during cross-validation on the Polish dataset was significantly lower, likely due to the
derivation of class labels based on independent diagnosis rather than screening scores. Threshold adjustment
had no effect on the results of 5-fold cross-validation on the Polish dataset; however, it did increase sensitivity
favorably for testing of the Saudi-trained models on the Polish dataset while maintaining acceptable specificity
values. In the case of the 4-feature New Zealand model, specificity metrics dropped to unacceptably low
values (50%) after threshold adjustment. The 13-feature model, on the other hand, showed no significant
change in metrics after threshold adjustment, with a sensitivity value of 80%, specificity of 91%, and AUROC of
94%.

This study has several limitations. Firstly, while we used datasets from three distinct cultural
backgrounds, the datasets varied considerably in size, with the New Zealand dataset being significantly larger
than the Polish and Saudi datasets. This disparity likely influenced model performance, particularly for the
Polish dataset, which had the smallest sample size. Future studies should aim to include larger and more
balanced datasets to improve the reliability and accuracy of the findings. Secondly, the New Zealand and
Saudi models were trained and validated based on QCHAT-10 screening scores rather than confirmed clinical
diagnoses of autism. While screening scores are useful for identifying potential cases, they are not definitive.
Relying on these scores as ground truth may limit the models' ability to accurately distinguish between autistic
and neurotypical individuals. Thirdly, this study revealed some inconsistencies in the importance of individual
QCHAT-10 questions across different models and datasets, while also revealing some commonalities in
features retained during RFE. These results indicate possible features that retain high importance across
cultures, such as eye contact, following where a parent or caregiver is looking, and whether a child plays
pretend, while indicating a need for further study. Developing a universally applicable screening tool may
require identifying a core set of consistently predictive features across diverse populations. Adjusting
probability thresholds to maximize sensitivity universally resulted in lower specificity during testing, often
unnecessarily due to high sensitivity scores at test time even for models without threshold adjustments. Future
work should focus on optimizing these thresholds to balance sensitivity and specificity effectively.

Looking forward, this study underscores the potential for autism screening tools to generalize effectively
across diverse populations. Yet, inconsistent feature importance and reliance on questionnaire scores rather
than confirmed diagnoses - the major limitation of this study - necessitate further investigation. Future research
should explore discrepancies between classification labels derived from professional diagnoses versus
questionnaire scores and seek to identify consistent patterns in feature importance, potentially considering
factors such as gender, cultural background, ethnicity, and others.
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Supplementary Information

Table S1. List of questions included on the QCHAT-10.

Feature Question

A1 Does your child look at you when you call his/her name?

A2 How easy is it for you to get eye contact with your child?

A3 Does your child point to indicate that s/he wants something (e.g., a toy that is out of reach)?

A4 Does your child point to share interest with you (e.g., pointing at an interesting sight)?

A5 Does your child pretend (e.g., care for dolls, talk on a toy phone)?

A6 Does your child follow where you're looking?

A7 If you or someone else in the family is visibly upset, does your child show signs of wanting to
comfort them (e.g., stroking their hair, hugging them)?

A8 Would you describe your child's first words as (typical)?

A9 Does your child use simple gestures (e.g., wave goodbye)?

A10 Does your child stare at nothing with no apparent purpose?

Table S2. Summary of the characteristics of each dataset included in the study.

Dataset

Columns

Number of
examples

Gender Ratio
(M: F)

Age in
Months

% Class
Distribution
(ASD: NT)

New Zealand

Child ID; Age in months;
Gender; Ethnicity; Jaundice;
Family member with ASD; Who
completed the test; Class/ASD
Traits (Yes/No); Questions
related to ASD traits (A1 to
A10); Q-CHAT-10-Score (out of
10)

1054

70:30

12-36

69:31

Polish

Child ID; Age in months;
Gender; Class (ASD/Normal);
Pre-term; Birth-weight; Siblings
(Yes/No); Number of siblings;
Mothers education; Sibling with
ASD (Yes/No); Sum Q-CHAT
(out of 100); 25 Questions
related to ASD traits

252

62:38

18-24

54:46

Saudi Arabia

Child ID; Age in months;
Gender; Family member with

506
(481 after

31:69

12-36

67:33
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ASD; Who completed the test; duplicate
Class/ASD Traits (Yes/No); removal)
Questions related to ASD traits
(A1 to A10); Q-CHAT-10-Score
(out of 10); Region/Province

Table S3. Hyperparameter search space for initial model training.

Dataset Model Hyperparameter Search Space

Decision Tree criterion: gini, entropy

max depth: 10 to 50

min samples split: 2 to 10

min samples leaf: 1 to 4

max features: None, sqrt, log2

Random Forest n estimators: 100 to 400
criterion: gini, entropy

max depth: 10 to 70

min samples split: 2 to 10

min samples leaf: 1 to 4

max features: None, sqrt, log2
bootstrap: True, False

New Zealand

XGBoost n estimators: 100 to 400
max depth: 3 to 10
learning rate: 0.01 to 0.3
subsample: 0.5 to 1

col sample by tree: 0.5 to 1
gamma: 0 to 0.3

reg lambda: 1 to 3

reg alpha: 0 to 0.2

Decision Tree criterion: gini, entropy

max depth: 10 to 50

min samples split: 2 to 10

min samples leaf: 1 to 4

max features: None, sqrt, log2

Random Forest n estimators: 50 to 400
criterion: gini, entropy

max depth: None, 5 to 50

min samples split: 2 to 10
Saudi min samples leaf: 1 to 4

max features: None, sqrt, log2
bootstrap: True, False

XGBoost n estimators: 100 to 400
max depth: 3 to 10
learning rate: 0.01 to 0.3
subsample: 0.5 to 1

col sample by tree: 0.5 to 1
gamma: 0 to 0.3

reg lambda: 1 to 3

reg alpha: 0 to 0.2

XGBoost n estimators: 100 to 400
max depth: 1 to 10
learning rate: 0.01 to 0.3
subsample: 0.5 to 1

col sample by tree: 0.5 to 1
gamma: 0t0 0.5

reg lambda: 1to 5

reg alpha: 0 to 0.2

Polish

Table S4. Best model performance and hyperparameters on each dataset.

Dataset Model Model Hyperparameters Metrics
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max depth: 1

learning rate: 0.3
subsample: 1

col sample by tree: 1
gamma: 0.5

reg lambda: 2

reg alpha: 0

use label encoder: False
eval metric: logloss

New Zealand XGBoost n estimators: 300 ROC-AUC: 1.00 £+ 0.00
max depth: 10 Accuracy: 1.00 £ 0.00
learning rate: 0.3 Precision: 1.00 £ 0.00
subsample: 0.8 Sensitivity: 1.00 £ 0.01
col sample by tree: 0.5 Specificity: 1.00 £ 0.01
gamma: 0.3
reg lambda: 3
reg alpha: 0.1
use label encoder: False
eval metric: logloss

Saudi XGBoost n estimators: 300 ROC-AUC: 1.00 £ 0.00
max depth: 7 Accuracy: 1.00 £ 0.00
learning rate: 0.1 Precision: 1.00 £ 0.00
subsample: 0.5 Sensitivity: 1.00 £ 0.01
col sample by tree: 0.7 Specificity: 1.00 £ 0.00
gamma: 0
reg lambda: 3
reg alpha: 0.1
use label encoder: False
eval metric: logloss

Polish XGBoost (only model tested) n estimators: 400 ROC-AUC: 0.94 £ 0.05

Accuracy: 0.88 £ 0.03
Precision: 0.90 + 0.02
Sensitivity: 0.87 + 0.06
Specificity: 0.89 + 0.02

Table S5. Feature importances for top performing models (both XGBoost).

rn?\:gjl';gnce New Zealand XGB Model Saudi XGB Model Polish XGB Model
Ranking Feature Name Feature Feature Name Feature Feature Name Feature
Importance Importance Importance

1 A9_Score 0.24 AB6_Score 0.21 A3_Score 0.22

2 A7_Score 0.12 A9_Score 0.19 A4_Score 0.20

3 A1_Score 0.11 A2_Score 0.18 A5_Score 0.14

4 A5_Score 0.10 A8_Score 0.07 A1_Score 0.09

5 AB6_Score 0.10 A4_Score 0.06 A7_Score 0.09

6 A2_Score 0.08 A5_Score 0.06 A2_Score 0.09

7 A4_Score 0.08 A3_Score 0.05 A10_Score 0.05

8 A3_Score 0.05 A1_Score 0.04 family_pdd 0.03

9 A8_Score 0.04 A7_Score 0.04 AB6_Score 0.02

10 A10_Score 0.04 family_pdd 0.04 A9_Score 0.02

11 family_pdd 0.02 A10_Score 0.03 A8_Score 0.01

12 age_months 0.02 gender 0.02 gender 0.01

13 gender 0.01 age_months 0.01 age_months 0.01

Table S6. Results of RFE on XGB models trained on Saudi and New Zealand datasets.
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New Zealand Dataset

Saudi Dataset

Top Features All Features Top Features All Features
Num Features 4 13 4 13
Features Retained A5 _Score, A6_Score, All A2_Score, A5_Score, All

A7_Score, A9_Score AB6_Score, A9_Score
Balanced Accuracy 0.89 £ 0.03 1.00 £ 0.00 0.92 £ 0.01 0.99 £ 0.01
Sensitivity 0.91 £0.01 1.00 £ 0.01 0.94 £ 0.02 0.99 £ 0.01
Specificity 0.88 £ 0.05 1.00 £ 0.01 0.91 £ 0.04 0.99 £ 0.02
AUROC 0.95+0.02 1.00 £ 0.00 0.98 £ 0.01 1.00 £ 0.00
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