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Abstract—Numerous works study black-box attacks on im-
age classifiers, where adversaries generate adversarial examples
against unknown target models without having access to their
internal information. However, these works make different as-
sumptions about the adversary’s knowledge, and current liter-
ature lacks cohesive organization centered around the threat
model. To systematize knowledge in this area, we propose a
taxonomy over the threat space spanning the axes of feedback
granularity, the access of interactive queries, and the quality
and quantity of the auxiliary data available to the attacker. Our
new taxonomy provides three key insights. 1) Despite extensive
literature, numerous under-explored threat spaces exist, which
cannot be trivially solved by adapting techniques from well-
explored settings. We demonstrate this by establishing a new
state-of-the-art in the less-studied setting of access to top-k
confidence scores by adapting techniques from well-explored
settings of accessing the complete confidence vector but show how
it still falls short of the more restrictive setting that only obtains
the prediction label, highlighting the need for more research.
2) Identifying the threat models for different attacks uncovers
stronger baselines that challenge prior state-of-the-art claims.
We demonstrate this by enhancing an initially weaker baseline
(under interactive query access) via surrogate models, effectively
overturning claims in the respective paper. 3) Our taxonomy
reveals interactions between attacker knowledge that connect
well to related areas, such as model inversion and extraction
attacks. We discuss how advances in other areas can enable
stronger black-box attacks. Finally, we emphasize the need for a
more realistic assessment of attack success by factoring in local
attack runtime. This approach reveals the potential for certain
attacks to achieve notably higher success rates. We also highlight
the need to evaluate attacks in diverse and harder settings and
underscore the need for better selection criteria when picking
the best candidate adversarial examples.

I. INTRODUCTION

Machine learning models, including models using deep

learning, are well known to be vulnerable to specially-crafted

inputs, known as adversarial examples (AEs), that are de-

signed to induce incorrect predictions. Most early studies of

adversarial examples focused on white-box settings where the

adversary has full access to the target model [1, 2]. Black-box

settings consider scenarios where the adversary has limited

access to the target model. Such settings are a more practical

threat to many deployed systems [3–5] where the model is

not revealed directly. In these attacks, known as black-box or
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API-only attacks, the adversary can interact with the target

model using API queries but does not have direct access

to the model’s parameters and may have varying degrees

of knowledge about the model architecture, training data,

and training process. Previous surveys of such attacks [6, 7]

categorize representative attacks based on their adopted meth-

ods but overlook differences in assumptions about the adver-

sary’s knowledge and capabilities. These assumptions can vary

wildly, depending on the resources available for the attacker

and the kind of access to the model the API provides. Different

assumpations have a significant impact on what attacks are

possible in practice. Furthermore, attack evaluations typically

rely solely on attack success rates (and query cost for in-

teractive attacks), ignoring how attack success varies across

different examples and tasks. This disconnect makes it hard

to map out the threat space, leading to improper evaluation of

attacks and limiting our understanding of the actual threats.

Contributions. We started by surveying black-box attacks on

image classifiers published in major security (Usenix Security,

IEEE S&P, CCS, NDSS), machine-learning (ICML, NeurIPS,

ICLR, KDD, AAAI, IJCAI) and computer vision (CVPR,

ICCV, ECCV) venues. In particular, we identified relevant

papers published in the aforementioned top-tier conferences

by searching with keywords “transfer”, “attack”, “black-box”,

and “query” from the year 2014 (the year of the first paper [1]

on generating adversarial examples on deep neural networks)

to 2023. In addition to these works, we conducted a thorough

search of papers referenced within them and of relevant works

citing these identified papers, covering both peer-reviewed

papers and preprints online with the best effort. This leaves us

with 164 attacks, of which 102 are published in major security

and machine learning conferences. With the surveyed attacks,

we propose a new taxonomy for existing black-box attacks,

organized around assumptions on their threat models. Our

taxonomy spans four dimensions (Section IV): 1) interactive

queries to the target model allowed, 2) information provided

by the target model’s API, 3) quality of the initial auxiliary

data available to the adversary, and 4) quantity of the initial

auxiliary data available to the adversary. These dimensions

are chosen based on the underlying components that en-

able successful black-box attacks in practice—the feedback
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available for the attackers to adjust the strategy (whether

interactive queries are permitted, and the granularity of the

feedback provided if any) and the resources attackers can

leverage (quantity and quality of data initially available for

the attacker, as well as the availability of pretrained models

online, independent from the auxiliary data) We categorize the

existing literature using our proposed taxonomy (Section V),

focusing on image classifiers as the most widely studied

domain. Our observations result in three key findings:

1) Most prior works are concentrated in specific regions

of the taxonomy, with several important and practically

relevant settings that have not been well explored. Much

of this knowledge gap is also likely a technical gap,

and we demonstrate this with preliminary experiments

on devising stronger baselines in one of the under-

explored settings. Despite establishing state-of-the-art at-

tack success, many methods fall short of attacks from

more restrictive but well-explored settings, reinforcing

the importance of investing research into these under-

explored areas (Section VI-A).

2) Some works propose new attacks and compare them

to existing baseline attacks under threat models more

restrictive than their own, which can underestimate the

potency of baselines given enough knowledge. We empir-

ically demonstrate how claims of methods outperforming

previous ones can often be invalidated when prior attacks

are adapted to and compared under the same threat model

(Section VI-B).

3) A closer look at the threat space reveals the scope for

utilizing available resources in different and potentially

better ways. In particular, attackers with access to some

initial auxiliary data and pre-trained models may leverage

advances in model extraction [8, 9] and model inversion

attacks [10, 11] to enable stronger attacks. We discuss

the possible usage of this interaction and motivate future

research along this direction (Section VI-C).

Transfer attack evaluations in the literature focus on the

number of local optimization iterations as a normalizing factor

when comparing attacks. While well intended, such measures

are misaligned with practical adversaries’ goals: picking an

attack that maximizes success within some given time frame.

Our evaluation of transfer attacks 1) shows how normalizing

for time allows some attacks to run for more iterations and

achieve higher success rates; 2) motivates future research to

work on better metrics to select better local candidates of

adversarial examples, and to evaluate attacks in diverse and

harder attack settings. We clarify that adversaries may conduct

training [12, 13] with prediction-time attacks. While such

adversaries can be extremely potent, our current taxonomy

focuses on prediction-time attacks and thus does not capture

dynamically changing, possibly poisoned, target models [14].

To support comprehensive evaluations of attacks and de-

fenses, we provide a modular codebase at https://github.com/

iamgroot42/blackboxsok

II. BACKGROUND

We first introduce background on adversarial examples

(Section II-A), and then review related works (Section II-B).

A. Introduction of Adversarial Examples

In image classification tasks, given a model/classifier f that

takes input x (with ground truth label c(x)) and generates

a prediction f(x), the goal of adversary is to achieve some

attack goals by adding an (imperceptible) bounded perturba-

tion δ onto x. Depending on the attack goals, there can be

untargeted and targeted attack goals. Untargeted attacks aim

to induce a predicted class on the perturbed input x+δ that is

different from c(x), namely, f(x + δ) ̸= c(x). Note that we

define the attack goal of misclassification with respect to the

ground-truth label c(x) of input x, which is consistent with

implicit assumptions made in the surveyed black-box attacks

(i.e., the evaluations consider misclassifying correctly labeled

samples and assume c(x) = c(x + δ)). However, there can

be other definitions of untargeted attacks that are more related

to the definition of the adversarial risk of a model f , such

as causing misclassification with respect to f(x) or c(x+ δ)
(if different from c(x)). Diochnos et al. [15] provide a more

detailed comparison between these definitions, but they are

the same for the setting considered in this paper. Targeted

attacks ensure the perturbed sample x + δ is misclassified

into a particular label ŷ that is in the interest of the adversary,

namely, f(x + δ) = ŷ. The bounded perturbation is δ is

constrained by some perturbation budget ϵ to avoid raising

suspicion, although some works also consider minimizing the

perturbation magnitude [16, 17]. The most common constraint

is to limit the ℓp norm of the perturbation δ, namely ∥δ∥p f ϵ.
The white-box attacks have access to all the internal infor-

mation of the target model and therefore, can optimize the

perturbation δ with respect to (w.r.t) some loss function (e.g.

maximize cross-entropy w.r.t c(x) in untargeted and maximize

the loss w.r.t ŷ in targeted settings) to generate the adversarial

examples using gradient descent [2]. In contrast, black-box

attacks do not have access to the model’s internal information

and, therefore, either rely on transfer attacks if some local sur-

rogates are available (Section III-A) or black-box optimization

if interactive access is permitted (Section IV-A).

B. Related Works

Surveys on Black-box Attacks. Two survey papers already

cover black-box attacks in the vision domain [6, 7]. These pa-

pers categorize representative attacks by methods, identifying

the best attacks and offering meta-analyses of their reported

results. However, they draw conclusions from experimental

results reported in prior works, which are spread across incom-

patible settings and threat models. In contrast to these works,

we provide the taxonomy based on the threat model, which

enables a better understanding of how attacks relate and how

they should be compared. This, in turn, allows us to evaluate

attacks in consistent test environments and draw meaningful

conclusions. The most relevant previous work is Zhao et al.’s



comprehensive evaluation of transfer attacks in the image

domain [18]. They focus on understanding the robustness of

different defenses against untargeted transfer attacks at a fixed

perturbation budget and compare the visual stealthiness of

different attacks with the same norm constraint. In contrast,

we focus on general black-box attacks and compare attacks

across various threat models.

Relevant SoKs. There are several previous SoK papers on

adversarial machine learning, focusing on different topics

ranging from categorizing attacks on audio recognition sys-

tems [19] to certified robustness for adversarial examples [20].

Papernot et al. provide a general systematization of adversarial

machine learning, but do not focus on black-box attacks [21].

Carlini et al. [22] provide a set of guidelines for proper

evaluation of adversarial robustness in white-box settings.

While some recommendations, such as proper threat model

categorization and running attacks until convergence, apply

to black-box attacks as well, we provide a concrete taxonomy

with detailed analyses and advocate for time-based comparison

of attacks. Our paper is the first to systematize knowledge of

black-box attacks based on their applicable threat models.

III. ATTACK METHODS

Most attacks use the same underlying principles and struc-

ture, but make advances in one or more aspects of the attack

process. In this section, we categorize attacks based on their

strategies, building on top of the categories provided in the

prior literature [7, 18]. These categories help better under-

stand similarities and connections between existing attacks

and identify scope for improvement and combinations of

advancements. This categorization is orthogonal to the threat-

model based taxonomy we introduce in Section IV.

A. Transfer attacks

Transfer attacks first generate adversarial examples for local

surrogate models with white-box access and then attempt to

transfer those local adversarial examples to the target model

[2, 23]. The success of a transfer attack depends on how similar

(at least with respect to the relevant decision boundaries) the

local models are to the target model and how effective the local

attack is at finding generalizable adversarial examples against

the local models. We mainly adopt the terminology used by

Zhao et al. [18] to describe existing attacks. However, we

added a category of Better Loss Functions, which customizes

the loss function for better transferability.

Gradient Stabilization. The idea behind the gradient sta-

bilization is to make the model less prone to overfitting

to the local model and improve the transferability to the

unknown target model, through utilizing the spatial [24–32]

and temporal correlation [30, 31, 33–40] among the gradients.

Input Augmentation. The main idea is to augment and

diversify inputs to increase the transferability of adversarial ex-

amples to different target models, and is similar to generating

more generalizable models through augmenting the training

data [18, 41]. Early works applied common and hand-crafted

input augmentations [32, 34, 37, 42–48]. Recent works have

focused on learning better input transformations with neural

networks [49] or finding the best input from existing ones

using neural networks [50, 51] or reinforcement learning [52].

Better Loss Functions. Recently, more research is focused on

leveraging intermediate model features [31, 53–67] instead of

the model outputs, with an intuition that intermediate feature

representations may be more generic and transferable [68, 69],

which can be further enhanced with interpretability techniques

to focus on relevant features [70, 71].

Surrogate Refinement. Different local surrogate models can

have different transferability to the target model, and the

most naivë approach to improve transferability is to adopt

an ensemble of models [72, 73]. Other techniques focus on

improving transferability of a single surrogate, such as mod-

ifying for or using better local architectures (e.g., using skip

connections) [74–76]; modifying the activations functions [77–

80]; modifying the training strategy (e.g., adopting adversarial

training, early stopping) [81–87]; identifying proper source

models with meta-learning [32, 88].

Generative Models. Unlike iterative attacks, existing works

also train generative models that, given an input, produce the

corresponding adversarial example. Existing works focus on

using better loss functions to train the generators [89–92] and

also using better generator architectures such as class-specific

[93] or class conditional ones [87].

B. Query-based attacks

Query-based attacks refine the candidate adversarial ex-

amples with interactive queries until the attacker’s objective

is achieved. Below, we introduce the common methodolo-

gies which are based on gradient-estimation or gradient-free

attacks. Gradient-free attacks can apply to much broader

settings, especially for non-differentiable models, whereas

gradient-estimation methods are illogical for such models.

While estimating a non-differential target model with certain

differentiable approximations is possible, this remains an

open question. For deep neural networks, gradient estimation

methods perform better on tasks that involve minimizing the

perturbation magnitude [94, 95], while gradient-free attacks

tend to work better under fixed perturbation budgets, especially

for the ℓ∞-norm [96, 97].

1) Gradient-estimation Attacks: These attacks work by esti-

mating the gradients of the unknown target model and updating

candidate adversarial examples accordingly. This technique

can be applied irrespective of the target models returning full

prediction scores [3, 16] or just the prediction class [98–100].

Complete Confidence Vector. In this setting, confidence

scores of all classes are available, and attacks start from the

original seed image and gradually search for better perturba-

tions with the estimated gradients. Ever since the first work

on estimating the gradient for every coordinate with finite-

difference method [16], subsequent works focused on finding

more efficient gradient estimation strategies, mostly by finding



a better random perturbation vector to estimate the gradient

efficiently for the finite-difference method [3, 4, 101–111].

Hard-Label. The hard-label attacks are more restrictive and

can only access the prediction label of the highest confident

class; hence, the attacks usually require a reference image that

satisfies the attacker’s objective (e.g., the reference image is

from the intended target class for misclassification) to generate

a likely-to-succeed perturbation and then focus on minimizing

the size of the perturbation (measured by ℓp-norm such as ℓ2)

with the estimated gradients. Since the first work [98], various

techniques are proposed to improve the gradient estimation

quality and boost attack performance [99, 100, 112–116].

2) Gradient-free Attacks: s the name suggests, gradient-free

attacks do not rely on estimating the target model gradients.

These attacks are diverse in terms of their methodologies.

Complete Confidence Vector. Gradient-free attacks with

complete confidence vector range from classical black-box

optimization techniques (e.g., genetic algorithms, evolution

strategies, Bayesian Optimization) [117–121] to efficient ran-

dom search strategies [96, 122–128]. The key is to find an

effective low-dimensional subspace to generate perturbations

and then map back to the original input space. The recent

efficient random search-based attacks [96, 124] are the current

state-of-the-art to generate norm-bounded perturbations.

Hard-Label. The first type of gradient-free methods are based

on random walk with various sampling distributions [129–

134] or directions based on the geometry of the decision

boundary [135]. Recently, more efficient attacks are proposed

using diverse techniques such as random search [97, 136, 137],

evolution strategies [138] or utilization of geometric properties

of the boundary [139]. For norm-constrained adversaries, espe-

cially in ℓ∞-norm, the random search-based methods achieve

the state-of-the-art performance [97, 136].

C. Hybrid Attacks

These attacks utilize surrogate models, like transfer at-

tacks, and submit queries to the target model. We name

these attacks “hybrid attacks” to distinguish them from pure

transfer or query-based attacks. There are mainly two types

of hybrid attacks. The first type leverages surrogate models

to enhance query-based attacks by providing better starting

points (i.e., warm starting) [140] or providing better sampling

space of perturbation [141–147] for the query-based attacks.

The second type improves available surrogate models with

labeled queries from the target model, including fine-tuning

the models [140, 143, 148, 149] or finding proper weights for

individual models in the model ensemble [150], so that the

transferability from these similar models can be significantly

improved in the later stage. The only exception from above

is that queries from the target model can also be combined

with local explanation techniques [151] to select the most

transferable single model from a set of classifiers [152].

IV. TAXONOMY THREAT MODEL

We propose a new attack taxonomy organized around the

threat model assumptions of an attack, using four separate

dimensions to categorize assumptions made by each attack.

Within each dimension, we describe different categories in

order of increasing knowledge available to the adversary

(Section IV-A - Section IV-D). We then discuss the existence

of pretrained models as a sub-axis Section IV-E and how it

may interact with the main axes of our dimension. We then

use our taxonomy to categorize attacks (Section V) and report

our insights with directions for future research (Section VI).

A. Query Access

Query access captures the adversary’s ability to query the

target model before sending its final adversarial input. We

group access levels into two characteristic settings:

(a) No Interactive Access: the adversary has absolutely no

opportunity to query the target model interactively. Likely

scenarios include situations where the adversary has only

one-way communication with the target model through

an indirect victim. For example, the adversary may want

to generate malware that bypasses the victim’s malware

classification system but without any way to query that

system directly. This is the most challenging attack setting

where the adversary has no opportunity to learn from

feedback from the target model.

(b) With Interactive Access: a more relaxed setting and

still has wide applications in practice. In this setting,

the attacker can interactively query the target model and

adjust subsequent queries by leveraging its history of

queries. However, the number of queries that can be

submitted might be constrained significantly in practical

cases,e.g., rate limits imposed by the target model API,

the financial cost involved in making queries, or simply

the attackers wanting to avoid raising suspicion. In other

situations, the attackers may still be able to query the

target model as often as they wish. The most concrete

example of unlimited black-box query access would be

one where the adversary has access to the model on their

hardware, but it is encrypted in a secure enclave (e.g.,

Intel SGX as the Trusted Execution Environment) that

protects its parameters [153, 154].

B. API Feedback

This dimension captures the granularity of information the

target model’s API returns for a given query. We break this

down into three distinct categories:

(a) Hard-Label: the only value returned by the API is the

predicted label for the given query input. For instance,

a face-recognition based utility may only provide a label

for match/mismatch.

(b) Top-K: the model API returns confidence scores for the

top-k (1 f k < N , for N classes) labels. This aligns

well with most real-world predictive APIs, which often

return confidence values for a few most likely classes to

minimize network overhead. This setting provides more



information than hard-label access even when k = 1,

since the confidence score for the predicted label is made

available. For example, Google’s Cloud Vision API1 uses

labels from their Knowledge Graph API2, which has tens

of thousands of labels, and returning classification scores

for all classes is unlikely to be helpful for benign users.

(c) Complete Confidence Vector: the API returns confi-

dence scores for all classes. This may correspond to the

enclave-based setting described above, or one where the

number of classes is low enough for an API to return all

related information.

Below, we describe auxiliary information available to attackers

for more efficient attacks. We define two axes of 1) the quality

of data and 2) the quantity of data.

C. Quality of Initial Auxiliary Data

This dimension captures the correctness of the adversary’s

priors on the target model’s training data. Higher quality

of auxiliary data indicates that the attackers can conduct

the attack without considering potential distributional gaps.

In this paper, we capture such distributional gaps using the

overlap between the feature or label space of two distributions

(corresponding to the target model’s data and auxiliary data).

Feature space overlap refers to same/similar samples in the

data feature (e.g., images of dogs in two distributions) regard-

less of the assigned labels (e.g., different labels for the same

image, depending on different tasks). We discuss overlap on

distributions, not on datasets, because distributions are more

fundamental than the (sampled) datasets.

(a) No Overlap: auxiliary data available to the adversary

does not overlap in the data features and the labels. This

setting is closest to real-world APIs, where knowledge

about the target model’s training data is obfuscated and

often proprietary (like GPT-4).

(b) Partial Overlap: auxiliary data available to the adversary

has partial overlaps (in the distributional sense) with the

private training data of the target model regarding data

features or labels. This setting best matches scenarios

where the training data of the target model includes some

publicly available datasets.

(c) Complete Overlap auxiliary data available to the attacker

is the same as the target model’s training data, or sampled

from the same underlying distribution (i.e., same label

space and feature space). For example, the target model

could be trained on a publicly available dataset, and this

information may be public.

Notably, removing the high overlap in data distributions can

significantly undermine the attack success [155]. The authors

propose a variant of PGD (masked PGD) to mitigate the

performance degradation due to distributional gap.

D. Quantity of Initial Auxiliary Data

Finally, we consider the quantity of auxiliary data (inde-

pendent of data quality) initially available to the adversary.

1https://cloud.google.com/vision/docs/labels
2https://developers.google.com/knowledge-graph/reference/rest/v1/

We explicitly mention the availability of initial auxiliary data

because the existence of some pretrained models may change

the amount of auxiliary data available for the adversary in

the end (Section IV-E). We consider two categories: the first

is when the amount of data is only a handful and hence

cannot be used to train models with decent performance for the

attacks, while the second entails situations with enough data

to train performant models. Note that the definition of useful

performance can vary depending on application scenarios, and

we use this hypothetical and abstract description here. In

practice, attackers may check whether the amount of available

data can be used for training more useful models from the

perspective of attack effectiveness (e.g., the threshold can be

set as the quantity sufficient to train a surrogate classifier that

is only X% off compared to the prediction accuracy of the

target model).

(a) Not Sufficient: the quantity of data available is insuffi-

cient to train models useful for attacks. Attackers in this

category may opt for leveraging other ways to utilize this

information (e.g., computing sample statistics [175] or

training shallow models [168]). This category also con-

tains the scenario of no auxiliary data (i.e., no samples).

Strictly speaking, the “quality” of the datasets does not

matter as there is no auxiliary data at all, and this category

falls ambiguously into any category of “Auxiliary Data

Quality”. However, for clarity in presentation, we move

attacks that do not require any auxiliary data into the

category corresponding to the quality of “No Overlap”,

to (best) denote that these attacks do not require any

knowledge from the auxiliary data.

(b) Sufficient: the quantity of data available is sufficient to

train decent models (e.g., generative models or classi-

fiers), that can in turn assist with attacks.

While attack strategies that require auxiliary data can techni-

cally be applied for any amount of data, implicit assumptions

in such attacks may dictate certain requirements on data quan-

tity for them to be effective. A discussion around the initial

“quantity” of data is thus still relevant. For example, methods

that require data to train well-performing surrogate models

would understandably suffer from significant performance

degradation when the amount of auxiliary data is limited, as

demonstrated in ablation studies [91]. However, the paper does

not explicitly report the point at which attack performance

drops to near-random. On the other hand, methods in “Not

Sufficient” categories might face a bottleneck when given

sufficient data, as the proposed approaches implicitly assume

limited data. Ablation studies on the impact of quantity of

auxiliary data can be helpful to the community but are cur-

rently lacking in the literature. We advocate for including such

studies in future works and discuss more in Section VI-B.

E. Existence of Pretrained Models

The literature has been historically building surrogate mod-

els directly from target models [172], and the availability of

pretrained models today is an artifact of orthogonal advances

in machine learning for building and releasing high-performing



Quality
Quantity No Interactive Access

With Interactive Access

Hard-Label Top-K Complete Confidence Vector
N

o
n

e Insufficient

Frequency Manipulation [156]
w/ Pretrained Surrogate∗:

Better Loss: [90–92, 155, 157–165]
Better Loss for AE Generator: [90, 91, 162]

Random walk: [129–135]
Gradient estimation:
[98–100, 112–116]

Other Gradient-free: [97, 136–139]
Classic Black-box Opt.: [108, 166]

NES [3]

Gradient Estimation: [3, 4, 16, 101–111]
Classic Black-box Opt.: [117–121]

Efficient Random Search:
[96, 117–119, 122–128]

Sufficient ∅ ∅ ∅ ∅

P
ar

ti
al Insufficient

w/ Pretrained Surrogate∗:

Better Loss: [92, 155, 158, 163]
∅ ∅

Boost Existing Methods w/ Trained Generator:
[167]

Sufficient ∅ ∅ ∅ ∅

C
o

m
p

le
te

Insufficient

Train Shallow Surrogate: [168, 169]
w/ Pretrained Surrogate∗:

(Basic) Gradient Sign: [2, 23]
Input Augmentation: [32, 34, 37, 42–52, 170]

Gradient Stabilization: [24–40]
Better Loss: [31, 53–67, 165]

Refine Surrogate: [32, 72–80, 84, 88]

Improve UAP w/ Feedback: [164]
Train Surrogate w/ Synthetic Data:

[171–174]
Boost Existing Methods w/ Unlabeled

Data [175]

∅

Boost Existing Methods:
Trained Generator: [167, 176–179],

Unlabeled Data [175]
w/ Pretrained Surrogate∗:

Save Queries with Surrogate:
[140–149, 151]

Refine Surrogate with Queries: [143, 150, 152]

Sufficient

Train Better (Deep) Surrogate:
[81–83, 85, 86]

Train AE Generator: [89, 91, 93, 180–182]
Input Transformation Network: [49, 50, 52]

Train Simple Auxiliary Classifier: [58, 59, 91]

Improved Gradient Estimation w/
Trained Generator: [94, 95]

∅ Train AE Generator: [87, 183–185]

TABLE I: Threat model taxonomy of black-box attacks. The first two columns correspond to the quality and quantity of the

auxiliary data available to the attacker initially. The remaining columns distinguish threat models based on the type of access

they have to the target model, and for adversaries who can submit queries to the target model, the information they receive from

the API in response. The symbol ∅ above corresponds to areas in the threat-space that, to the best of our knowledge, are not

considered by any attacks in the literature. The sub-category of w/ Pretrained Surrogate with “*” denotes that the corresponding

attacks do not require auxiliary data, but the quality of data used to train the surrogate determines the corresponding cell.

models, especially in the image domain. Such an assumption

may not hold across other domains, especially in security-

critical areas. We refer to such models as “pretrained” models.

Assume a pretrained model trained on unknown proprietary

data that is highly similar to the target model’s data. An

adversary that uses such a model implicitly leverages this data

overlap through the publicly released model. To better capture

this implicit leverage of high data quality, we classify attacks

that only involve pretrained models into settings where the

quantity of initial auxiliary data is zero, and the quality of data

is determined by the quality of private data used to train the

model. For clarity, we add the existence of pretrained models

as a sub-axis on top of the four main axes mentioned above.

V. CLASSIFICATION OF ATTACKS ON THREAT MODEL

In this section, we categorize the black-box attacks based

on their presumed threat model. Table I presents our cate-

gorization of the surveyed attacks. The first main division is

between attacks where the adversary has no interactive access

to the target model, and ones where some level of interaction

is available. Within each of these, we consider threat models

based on the quality and quantity of data available to the

adversary. For the rest of this paper, we interchangeably use

‘transfer attacks’ with ‘non-interactive attacks’, and ‘query-

based attacks’ with ‘interactive attacks’.

A. No Interactive Access to Target Model

A significant fraction of attacks in the literature assume

an adversary with no ability to submit queries and obtain

responses from the target model. Without such access, the

adversary has limited options and must use local resources

to find good candidate examples.

1) Low Quality Data: No Overlap with Target: This threat

model assumes the least adversarial knowledge as the auxiliary

data available for the attacker has no overlap with the training

data for the target model, and the availability of the auxiliary

data is limited. Works in this threat model have only appeared

recently and to our knowledge, there is only one work that does

not consider additional information (e.g., pretrained models)

and obtains successful adversarial examples with frequency

manipulation [156]. A relaxation of this setting allows the

adversary access to pretrained model(s) where the training

set does not overlap with the target. As noted in Table I,

attacks in the literature that assume access to a pretrained

surrogate do not leverage any additional auxiliary data and

therefore, the quantity of auxiliary data is actually zero.

Despite having a distribution mismatch, surrogate model(s)

can capture some level of image semantics that can be valuable

for adversaries. Customized loss functions with respect to the

pretrained models are designed by the adversaries to generate

successful adversarial examples [90–92, 157–165]. We note

that some works [92, 155, 158, 163] relax their setting to allow

the auxiliary data to have partial overlap with the target in

the data points and/or the labels, and also the availability of

pretrained models (trained on data with partial overlap with

target). These attacks still design customized loss functions to

cope with distribution mismatch, and the (minor) difference to



the “no” overlap setting mainly lies in how to map the labels

of the local surrogate to the labels of the target. As expected,

attacks in partial-overlap settings achieve better results than

ones with no overlap. To the best of out knowledge, no work in

the literature assumes sufficient low-quality (no/partial overlap

with target) auxiliary data, while this situation is likely to

be common in practice. For example, when attacking some

unknown target model (e.g., medical image classifier [186]),

attackers may leverage the ImageNet dataset.

2) High Quality Data: Complete Overlap with Target:

The distribution of auxiliary data is highly similar (or even

the same) to the target training distribution. Under limited

availability of such data, shallow surrogates can be trained

to enable higher transferability [168, 169]. This assumption

may be further relaxed when adversaries have access to some

pretrained models trained on high-quality auxiliary data. Like

the case of low-quality auxiliary data, existing works that

use pretrained models do not utilize auxiliary data. This is

the most explored attack setting in the literature: methods

include gradient stabilization [24–40], input augmentation

[32, 34, 37, 42–52, 170], better loss designs [31, 53–67, 165]

and surrogate refinement [32, 72–75, 77–79, 81–88], as dis-

cussed in Section III-A. One example of a scenario with an

insufficient amount of high-quality auxiliary data is the case

of a face recognition target model. In this context, auxiliary

data might only consist of a few face images captured under

the same conditions (such as the same setting, background,

etc.) as the target model’s training data, but acquiring a large

amount of such high-quality data can be challenging.

When there are sufficient amount of high-quality auxil-

iary data available (attackers can also naturally obtain well-

performing surrogate models), the proposed methods can

be quite diverse: directly training better surrogate classi-

fiers to generate more transferable adversarial examples [81–

83, 85, 86], training auxiliary classifiers on top of the surrogate

classifiers [58, 59, 91], training generators to generate likely-

to-transfer adversarial examples [89, 91, 93, 180–182]. Besides

these methods, some attacks also focus on finding better

transformation methods with neural networks [49, 50, 52] so

that these inputs, when input to some surrogate classifiers, can

lead to improved transferability. Notably, many of these attacks

(e.g., training auxiliary classifiers and finding better input

transformations) are compatible with each other, indicating

that stronger attacks might be possible by composing these

attacks, which are not explored in the literature, and we

encourage researchers to investigate this possibility.

B. Hard-Label with Interactive Access

In this subsection, we consider attacks where the adversary

can actively query the target model, but only receives hard-

label responses. Within this category, we break down attacks

according to the auxiliary data available to the adversary,

following a structure similar to that of the previous subsection.

1) Low Quality Data: No Overlap with Target: Attacks

in this category are rather restricted in terms of the attacker

knowledge as existing attacks in the literature in fact did

not utilize any auxiliary data, leading to the category of the

quantity of auxiliary data being zero. The quality of data

should not be relevant in this case, but we still put it into the

setting of “no overlap with target” mainly for convenience in

categorization. Despite being a challenging setting, many hard-

label query-based attacks are proposed. The common methods

include estimating the gradients [98–100, 112–116], deploying

some classic black-box optimization techniques [108, 166],

leveraging random-walk strategy [129–135], or developing

other gradient-free random search based methods [97, 136–

139]. The categories that allow adversaries to leverage some

(sufficient or insufficient but not zero) amount of auxiliary data

are largely missing from the current literature.

C. High Quality Data: Complete Overlap with Target

Attacks in this category have access to auxiliary data

sampled from a distribution highly similar to/same as the target

distribution. When the amount of auxiliary data is insufficient,

the proposed methods include finding better (untargeted) uni-

versal adversarial perturbations that are agnostic to the victim

images [164], training surrogate models using synthetic dataset

[171–174] and boost existing hard-label attacks using limited

amounts of unlabeled dataset [175]. When sufficient auxiliary

data is available, this data can be used to train generators

to obtain better gradient estimates [94, 95]. Interestingly, the

number of works published under this category is still much

less compared to the more restrictive category above.

D. Top-K Confidence Vector with Interactive Access

Attacks in this category can interact with the target model

and get the top-k part of the confidence vector from the target

model. So far, there is only one work [3] that explicitly designs

an attack for this setting, although such a scenario is also

very common in practice. Driven by limited exploration in this

category, we conduct preliminary experiments in Section VI-A

to show that, currently under-explored areas may not be solved

by trivially adapting techniques from other well-explored areas

and motivate future investigation along this direction.

E. Complete Confidence Vector with Interactive Access

Attacks in this category will receive the complete predic-

tion confidence vector returned from the target model. The

remaining breakdowns are still similarly based on the quality

and quantity of the auxiliary data available.
1) Low Quality Data: No Overlap with Target: The strictest

setting is when the adversaries do not use any auxiliary data. In

this setting, many works propose generating highly successful

adversarial examples (e.g., finding many untargeted adversarial

examples in < 100 queries). Typical methods include gradient

estimation [3, 4, 16, 101–111], leveraging classical black-box

optimization techniques [117–121] or proposing some efficient

random search methods [96, 117–119, 122–128].

When the assumption is relaxed to allow limited number

of auxiliary data that overlaps with the target distribution

partially, a generator [167] on the perturbation distribution

can be trained to boost the performance of the state-of-the-

art Square Attack [96] that does not use any auxiliary data.



2) High Quality Data: Complete Overlap with Target:

Under limited availability of high-quality auxiliary data, exist-

ing works train generators to improve performance by better

capturing the low-dimensional latent space where the adversar-

ial examples reside [167, 176–179]. The availability of some

(auxiliary) unlabeled data also improves existing attacks that

(originally) do not rely on auxiliary data [175]. Like the low-

quality data case, a generator for the perturbation distribution

can still be trained on the limited high-quality auxiliary data

to boost performance of the Square Attack [167]. When

the assumption is further relaxed to allow some pretrained

models trained on data highly similar to the target’s training

data, the pretrained models can be used to boost query-based

attacks [140–149, 151] or queries from the target model can

be used to refine the surrogate model [143, 150, 152]. The

most relaxed setting is when there are sufficient high-quality

auxiliary data available. Existing works train generators on

(sufficient) high-quality data to generate adversarial examples

directly. In particular, a generator is first trained on some local

surrogate models (can be easily obtained by training on the

auxiliary data if not available beforehand) and later fine-tuned

with queries from the unknown target model [87, 183–185].

VI. INSIGHTS FROM TAXONOMY

Studying published attacks from the perspective of our

threat model taxonomy results in several insights about gaps

in the current research (Section VI-A), ways to improve evalu-

ation (Section VI-B), and opportunities to improve techniques

by incorporating ideas from related fields, such as model

extraction and inversion (Section VI-C).

A. Technical challenges in Underexplored Areas

As can be seen from Table I, many threat models are

unexplored (marked with ∅) or have only been considered

by a few works. Across the rows, there is little work in

settings where ample data is available but from sources that

have limited overlap with the target model’s data distribution.

However, this is perhaps the most relevant practical scenario—

for most classification tasks, adversaries are likely to be able

to acquire large amounts of somewhat similar data (e.g., from

the Internet, open image datasets), but unlikely to be able

to sample from the same distribution as the target model’s

(private) training distribution.

Across the columns, only one attack explicitly optimizes for

the availability of top-k prediction scores. This is surprising

since this is the most likely scenario for API attacks on

deployed classifiers. For example, ClarifAI’s models3 return

scores for at most 200 classes. For these unexplored or

under-explored settings, we suspect there is a technical gap

in addition to a knowledge gap, so the settings cannot be

addressed satisfactorily by adapting state-of-the-art methods

from well-explored areas [92, 155]. To support our argument,

we propose an attack for the top-k setting, specifically for the

setting with no auxiliary data or pretrained models is available,

3https://docs.clarifai.com/api-guide/predict/prediction-parameters/

the typical setting for query-based attacks (Section III-B). Our

adapted attack is based on the Square Attack [96] that is

originally designed for the setting that receives full confidence

vector of prediction and the adaptation idea is built on top of

the design of NES: top-k attack in Ilyas et al. [3] with non-

trivial modifications (details in Appendix A3).
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Fig. 1: Comparison of top-k attacks. Square: top-k is our

proposed adaption of the Square Attack for the top-k setting.

NES: top-k is the current state-of-the-art attack. SignFlip [136]

is a more restrictive hard-label attack.

Following the setup in the baseline NES: top-k [3], we

consider targeted attacks, set the query limit to 100,000 for

both attacks, and assume only the top-1 prediction confi-

dence is available. As shown in Figure 1, the Square: top-

k outperforms the NES: top-k attack significantly as the

number of queries increases. However, the Square: top-k is

mostly outperformed by the hard-label SignFlipAttack [136],

which ensures the targeted label yt is always in the top-1
prediction and then chooses to ignore the extra prediction

confidence. This comparison illustrates that there is substantial

room for improving attacks in the top-k setting, as attacks

designed for this setting are not performing nearly as well

as attacks with less information. Moreover, it is essential to

underscore the significance of considering baseline attacks

that operate with a subset of the available information in

the given context. One might improve further top-k attack

performance by harnessing the available confidence score for

hard-label attacks or adapting techniques from multi-label

learning [187]. However, this task is not straightforward, as

our preliminary experiments suggest. In general, research in

the underexplored areas, such as the ones we outline, faces two

unique challenges. First, well-explored methods that require

extra information do not directly extend to other threat models,

and their adaptation can be complex, with no reasonable

estimates on the performance drops—we demonstrate one such

case in our experiments in Figure 1. Second, well-explored

attacks from more restrictive settings (i.e., less information)

can be trivially extended to less restrictive settings, but the

room for improvement with additional information provided

by such less restrictive settings is unclear. For instance, the

state-of-the-art hard-label attack has a success rate of 20% at

10,000 query limit, while the full-score setting has near-perfect

attack success at the same number of queries. While one can



Attacks Square Attack ODS-RGF Hybrid-Square

Attack Success (%) 100 97.7 100

Average Queries 2,317 1,242 117

TABLE II: Comparing query-based attacks in a setting where

all attacks are given access to an ensemble of four surrogate

models. Experimental setup follows from Tashiro et al. [142].

Hybrid-Square is our proposed stronger baseline.

argue that hard-label attacks can be used in top-k setting and

yield 20% success rate, it is intuitively clear that additional

information via top-k should be usable to increase success

rates significantly. While our adaptation (Figure 1) achieves

a success rate of over 30%, there may still be room for

improvement. We thus encourage researchers to concentrate

on crafting and examining attacks designed for relevant threat

model scenarios, such as the ones we identify.

B. Stronger Baselines Under Same Threat Model

Works introducing black-box attacks often make various as-

sumptions about the knowledge of the adversary and often end

up comparing adversaries across different levels of knowledge

directly in terms of attack effectiveness. We advocate that with

the categorization of the threat space (as outlined in Table I),

attacks should be carefully compared within the same threat

space. Further, researchers should be mindful of the possibility

of combining additional information made available to the

adversary to design stronger baselines.

Here, we use a preliminary experiment on the category

of complete access to prediction vectors and an ensemble of

local surrogates to demonstrate that, when evaluated under the

same threat model, a strong baseline can exist (and be easily

found) to overturn the state-of-the-art claims in the paper.

Specifically, ODS-RGF [142] leverages diversified gradient

vectors from the local surrogate models as the perturbation

vector for the RGF attack [145]. This attack performs better

than the Square Attack [96] that does not require any pre-

trained surrogate models. Using a simple strategy of generating

candidate adversarial examples against the (assumed) local

surrogates, followed by running the Square Attack on the

remaining examples that fail to transfer from, can easily

establish a (much) stronger baseline. This idea is inspired by

Suya et al. [140], which appears before the ODS-RGF attack

[142]. Details of the transfer experiment (on generating local

adversarial examples) can be found in Appendix A1. Table II

compares ODS-RGF, Square Attack and our proposed Hybrid-

Square in terms of the attack success rate and the average

number of queries, using the same experimental setup as the

original apper [142]. The first two attacks are the proposed

and baselinesattacks in Tashiro et al. [142]. We observe that

both ODS-RGF and Hybrid-Square improve query efficiency

compared to the original Square Attack. However, the Hybrid-

Square attack significantly outperforms the proposed ODS-

RGF attack, demonstrating the importance of considering

simple adaptations of known attacks to new threat models.

At last, stronger baselines may emerge not only when

extra information is available but also when attacks utilize

auxiliary data, even in the absence of such extra information.

As mentioned in Section IV-D, it is worth noting that attacks

that operate with auxiliary data can theoretically be applied

in settings with varying data sizes. The key distinction lies in

the degree of effectiveness these attacks exhibit under different

data sizes. Therefore, we recommend that attack methods,

which implicitly assume the availability of “sufficient” or

“insufficient” auxiliary data, should also use methods from

the opposite category as baselines. Furthermore, researchers

should conduct ablation studies to examine how the attack

performance evolves, compared to the baselines, when transi-

tioning from “insufficient” to “sufficient” auxiliary data.

C. Interaction Among Attacker Knowledge

The most straightforward interaction of attacker knowledge

is adversaries can train many pretrained models given enough

auxiliary data. Therefore, attacks may treat the existence of

sufficient auxiliary data the same as the existence of both

the data and the pretrained models (obtained from the data).

Further, proper identification of threat models using our tax-

onomy uncovers connections to other related fields such as

model stealing (also known as model extraction) [8] and model

inversion [10]. Model stealing adversaries aim to steal a copy

of a remotely deployed machine learning model given Oracle

prediction access. In contrast, model inversion adversaries seek

to infer (parts of) the training distribution of the remote model.

These attacks can significantly boost the performance of black-

box attacks with interactive access to the target model by

providing better surrogate models (via model extraction) and

more representative training data (via model inversion). We do

not implement these ideas but discuss their potential in detail

below.

Model-Extraction Attacks. Simply identifying the target

model structure (or family of models) [9, 188] can improve

attack success, especially in settings where the auxiliary data

highly overlaps with the target model’s training data. The

extensive literature on attack transferability [33, 42, 58, 64] can

thus serve as a “handbook” for adversaries. Further, when we

look to utilize model extraction for better transferability of

adversarial examples, an adversary’s specific goal is to ensure

the extracted and victim models have a similar vulnerability

space, so that better surrogates can boost black-box attack

performance. This is an easier objective that the original model

extraction objective of having prediction consistency [189]

as it is believed that adversarial examples reside in a low

dimensional subspace [9] that is easier to capture than the

full input space.

When enough auxiliary data exists, state-of-the-art model

extraction attacks can be readily applied [9]. Limited auxiliary

data settings are more challenging. Several works on black-

box adversarial examples use surrogate training to enhance

transferability [171–173] or improve query efficiency [143].

Surrogate training is also common in model extraction [189].



However, these surrogate extraction methods fail for com-

plex image classification tasks. Recent advances in data-

free extraction attacks show promise for addressing complex

classification tasks and can be further enhanced with pretrained

models.

Data-free model-extraction attacks [190–193] rely on a

generator to generate queries, which are then labeled by

the target model and used to update the generator and the

extracted model. These methods work well without any pre-

trained model—in particular, generators are randomly ini-

tialized and optimized with the estimated gradient from the

target model [190, 191]. With pretrained models, one may

first (pre-)train a generator with auxiliary models (using their

actual gradients) and then continue training the generator

with estimated gradients from the black-box model. Such

a generator is likely better than a randomly initialized one

and may enable extraction in fewer queries. The feasibility

of pretraining a generator and then fine-tuning for the target

model has already been demonstrated when directly generating

adversarial examples [87, 183–185]. Additionally, knowledge

from the surrogate models may still transfer to the target when

the training data of the two models have partial or no overlap

[167]. We note that the obtained generator can also be used

to augment the adversary’s data. When limited quantities of

data are available, this increased data can in turn enable other

model extraction methods that require more auxiliary data [9].

Model-Inversion Attacks. Model-inversion attacks aim to

recover representative and semantically meaningful training

data [194] of a given model. However, to generate adver-

sarial examples, the extracted data need not be semanti-

cally meaningful [87, 94]. Model inversion can help either

directly [87, 94, 95, 183–185] by providing more representative

data (which can be further diversified with data augmenta-

tions [195]), or indirectly by boosting the performance of

model extraction attacks via better query synthesis [195]. In

settings with sufficient auxiliary data, state-of-the-art model-

inversion attacks [196, 197] can be applied directly to recover

more representative data and improve the quality of the auxil-

iary data. For settings with limited auxiliary data, an adversary

may use a query-generator trained during a model-extraction

attack (where the generator is a common component in most

techniques, as described earlier) to generate more auxiliary

data. State-of-the-art black-box inversion attacks [197] can

then be utilized in the absence of a surrogate model.

Still motivated by the success of pretraining and fine-tuning

generators for adversarial example generation [87, 183–185],

we see opportunities for exploiting the presence of pretrained

auxiliary models in improving the effectiveness of model

inversion attacks against the unknown target, to eventually

improve performance of black-box attacks. Particularly, the

conditional generative model in Liu et al. [197] can first use

labels from auxiliary models, followed by fine-tuning with la-

bels from the target model to improve performance. Similarly,

white-box inversion attacks [196] may utilize the auxiliary

model for gradient computation and then use predictions from

the target model to estimate gradients using black-box gradient

estimation [3, 16] techniques for fine-tuning.

Combining Model-Stealing and Model-Inversion. Model

stealing and model inversion attacks can be combined

dynamically—for instance, by iteratively running model steal-

ing and inversion attacks to boost each other. One thing to note

is that these attacks’ query requirements can be quite high and

unrealistic for resource-constrained adversaries, even though

attackers only have to run these two attacks once and then

use the results to boost future black-box attacks. For example,

even state-of-the-art black-box model inversion attacks require

millions of queries (e.g., DiSGUIDE [192] use at least 4M

queries for models trained on CIFAR-10 [198]).

VII. RETHINKING BASELINE COMPARISONS

Most interactive and non-interactive attacks involve running

an optimization loop locally for some number of iterations to

find a candidate adversarial example. It is in the adversary’s

interest to run the attack for as many iterations as possible as

long as more iterations improve success rates. The number

of iterations is also used as a grounding factor in attack

comparisons, running attacks for the same number of iterations

for fair comparison [24, 33, 36, 38, 45, 170]. 4 We argue that

such measures, while well-meaning, are in fact not “fair” and

misaligned with what adversaries care about. Fixing the num-

ber of iterations limits some attacks, clipping their potential

for the sake of comparison. In most cases, the iteration-wise

cost of attacks is low, and an adversary that does not have

severe latency requirements would only care about maximizing

its success rate. When latency or compute costs matter, an

adversary would prefer the attack that yields the highest attack

success rate within the given time or resource constraints.

As pointed out by Apruzzese et al. [5] through a thorough

analysis of real-world adversarial scenarios, attackers prefer

cheap and effective methods that can be easily automated, and

the relevant cost metric is the total effort spent on the process

of completing an attack—a metric that is harder to count than

number of iterations, but is more direct.

Another issue with many evaluations is the lack of chal-

lenging settings for attack comparisons. Untargeted attacks are

much easier than targeted ones; attacking non-robust standard

models is easier than attacking adversarially-robust models.

Success rates can be very high in easy settings and thus fail

to provide useful insights about relative attack performance

that can transfer to harder settings. These harder settings are

in fact the ones where attacks matter most.

We advocate for evaluating black-box attacks with a re-

alistic consideration of actions that adversaries can take in

practice. Specifically, instead of fixating on a specific number

of iterations for non-interactive settings (Section VII-A) as

the primary metric for comparison, we argue that adversaries

should be able to use more iterations when beneficial and the

4Ablation studies report the impact of iteration numbers on ASR, but
only up to 30 iterations [42]. Studies on higher attack iterations (up to 1,000)
do not report iteration-wise results [155].
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Fig. 2: ASR (y-axis) for various targeted attacks on DenseNet201 models, varying across iterations (a) and time (b). All attacks

on the left are run for 100 iterations, while attacks on the right are run for 30 minutes per batch. ASR at each iteration is

computed using adversarial examples at that iteration. ASR at 40 iterations are marked with ⋆ for each attack.

only constraints such as total time should be motivated by the

evaluation scenario. Our analysis with this new lens uncovers

several interesting insights and suggestions for researchers. For

non-interactive transfer attacks, we discover how running at-

tacks for more iterations helps attack success (Section VII-A1),

and that simply stopping attacks when they succeed on lo-

cal models can hamper performance (Section VII-A2), and

observe much clearer trends in relative attack performance

trends when evaluated in hard settings such as targeted attacks

(Section VII-A3). In Appendix C, we also show how the ASR

of different interactive query-attacks can change when the

evaluation metric shifts from the number of queries to the local

runtime, and advocate using local runtime as an additional

metric on top of the commonly considered query costs for the

interactive black-box attacks.

A. Transfer Attacks

Attack success rate (ASR) has been the guiding metric for

evaluating different transfer attacks’ the effectiveness of differ-

ent transfer attacks. However, more effective transfer attacks

often require complicated computation processes and can lead

to local computation costs that are orders of magnitude higher

than baselines.

For convenience in comparison, we selected transfer attacks

that augment the baseline I-FGSM attack [23] with various

gradient and input manipulation techniques, including new

combinations (details in Appendix A2)—this leaves us with

20 attacks. Since these attacks are based on iterative local

optimizations, we can conveniently measure the impact of

different local time constraints on ASR against the target

models. Of these 20 attacks, we picked 11 that span a wide

range of local runtimes. Note that for each of the following

graphs, we re-evaluate the attack at each iteration using the

adversarial inputs generated at the end of that iteration, thus

giving us multiple attack success rates as iterations progress.
1) Time and iterations: It is conventional to evaluate attacks

for a fixed number of iterations: usually 10 for untargeted set-

tings. However, the lack of targeted attack evaluations means

there is no such standard for that setting, with MI-FGSM [33]

being one of the few attacks that evaluate targeted attacks,

using 40 iterations (which is what we set for targeted attacks).

However, the number is arbitrary and it is unclear whether

attacks have the potential to have improved performance. Prior

work [22] also recommends running attacks until convergence,

instead of a fixed number of iterations. To test this hypothesis,

we run attacks for 100 iterations, instead of the usual 40 for

targeted attacks, and analyze ASR trends (Figure 2-a). Most

attacks seem to benefit from increased iterations.

Given this potential for improved success beyond 40 iter-

ations, it is important to extend evaluations for valid com-

parisons. Execution time should be used if resource con-

straints like runtime exist, especially when the cost-per-

iteration varies. Motivated by these factors, we re-run all the

attacks but instead of running them for a fixed number of

iterations as in prior work, we run them for the same time

duration (30 minutes per batch)5.

Iteration-wise analysis (Figure 2-a) would suggest MIDI-

FGSM to be slightly worse off than SMI-FGSM, even when

compared under the setting of 100 iterations. However, looking

at the same results across time (Figure 2-b), this trend flips

once we observe that MIDI-FGSM is nearly 2x as fast and

can thus execute double the number of iterations in the same

amount of time. Similarly, MIDI-FGSM and Admix-FGSM do

not seem very far apart in their performance when looking at

the same number of iterations, but time-wise analysis shows

how the difference in their performance is much higher.

This analysis based on runtimes paints a clearer picture

that is better aligned with what an adversary would desire—

maximizing attack success within their available resources

(e.g., limit on the total execution time). As an example,

5We opt for measuring total runtime over algorithmic measures due to
the challenge in standardizing components’ runtimes across different hardware
configurations, acknowledging both methods have their merits and limitations.
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Fig. 3: Attack success rates (ASR) (y-axis, left) for target

and local models, along with loss (y-axis, right) while opti-

mizing the objective locally, varying across time (x-axis), for

targeted attacks on DenseNet201 (a) and untargeted attacks on

adversarially-robust Inception-v3adv (b), using SMIMI-FGSM

[24]. ASR at representative iterations (40 for targeted, 10 for

untargeted) are marked with a ⋆ for each of the metrics.

consider an adversary looking at results in the literature to

select an attack. Assuming computational constraints are not

an issue, the literature would suggest SMI-FGSM being a

good candidate instead of candidates like MIDI-FGSM, and

the adversary may pick SMI-FGSM to conduct the attack.

However, once we realize that these comparisons are based

on the number of attack iterations (an arbitrary metric) and

instead compare them based on the local runtime, it is clear

that MIDI-FGSM can generate better attack results (Figure 2).

These are the kind of cases we have in mind while advocating

for time-based comparisons. Our motive is not to encourage

researchers to add execution-time as an ”extra metric”, but

rather remember that these attacks are designed for adversaries

that would only want to maximize success rates given available

resources [5], and not care about running the attack for a fixed

number of attack iterations.

Recommendation: Run attacks for enough iterations

until attack success rates plateau. Execution cost such as

the local attack runtime should be used as the equalizing

factor when comparing black-box attack performance, not

the number of iterations.

2) Knowing When to Stop: As observed in Figure 2, simply

running attacks for more iterations often improves attack suc-

cess rates. For instance, attack success for MIDI-FGSM jumps

from < 20% to nearly 80% when run for sufficient iterations

which, interestingly, is still faster than running Admix-FGSM

for 40 iterations. Similarly, SMIMI-FGSM jumps from ∼75%
to ∼85%, once the attack runs for longer. However, success

rates do not always improve with more iterations. For instance,

while MIDI-FGSM in the targeted setting (Figure 2-b) sees

an improvement, it fluctuates between 70 and 80%. While

running attacks for more iterations helps in most cases, it

is not obvious when an adversary should stop their attack to

maximize ASR—the adversary cannot know the optimal num-

ber of iterations before executing their attack. One possible

workaround is keeping track of metrics for the local models

(which are used to compute gradients), and possibly running

more iterations as long as metrics such as local success rates

and loss do not stagnate.

Intuitively, an adversary has no reason to continue local

attack optimization once it successfully generates adversarial

examples for its local models. The only possible motiva-

tion lies in changing the model’s prediction probabilities—

increasing confidence for targeted attacks, and decreasing

confidence for untargeted attacks. Our analysis shows how the

rate of finding successful adversarial examples against local

models gets to 100% almost immediately, even when attack

success rates on the target models are low. An adversary that

only inspects local attack success rates would thus stop its

optimization prematurely, leading to sub-optimal ASR for the

target model.

For the targeted setting (Figure 3-a), we interestingly ob-

serve the local loss value to continue dropping (not by much;

note that the right y-axis is on log-scale for loss in targeted

attack), even though target ASR starts stagnating in the 500-

750s range. Looking at such a loss trajectory, it may be

tempting to conclude running the attack till the local loss

converges, should be a good heuristic for knowing when the

target ASR will be highest. However, inspecting the case of

an adversarially-robust target model (Figure 3-b) disabuses us

of this notion—ASR peaks at around ten iterations, while the

local loss keeps increasing and converging until the very end

of attack execution. It is not surprising that local loss continues

to converge, since this is what the attacks optimize for while

computing gradients, and this may not necessarily align well

enough with the target model.

The fact that ASR for the target model keeps increasing

significantly even after the attack succeeds for local models is

intriguing and a challenge unique to black-box attacks. While

this goes hand in hand with the suggestion to evaluate attacks

for longer iterations, it raises the question of knowing when

the attack running locally should be stopped to maximize ASR

for the target model.

Recommendation: Do not rely on attack success or

loss on local models as a metric to stop optimization.

Developing metrics that can help predict optimal target

ASR is a direction for future work.

3) Harder settings: Since almost all attacks against stan-

dard models with sufficient perturbation budget achieve nearly

100% attack success, there is limited room for improvement.

However, attacks in harder settings (Figure 4) can be much

less effective (e.g., < 60% ASR when perturbation budget

is halved to 8/255) and can demonstrate different trends in

relative performance. For example, against an adversarially

trained target model, the least and most performant attacks

differ by as much as ∼30% in their ASR (similar trends

hold for the targeted setting). Although attacks like SMIMI-

FGSM seem to perform well across all settings, this is indeed

a posterior observation that can only be verified for a new
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Fig. 4: ASR (y-axis) for various attacks: targeted attacks for Inception-v3 with perturbation budget 16/255 (ℓ∞) (a), untargeted

attacks for Inception-v3 with reduced perturbation budget 8/255 (b), and untargeted attacks for adversarially robust model

Inc-v3adv with perturbation budget 16/255 (c). ASR at each iteration is computed using adversarial examples at that iteration.

ASR at representative iterations (40 for targeted, 10 for untargeted) are marked with ⋆ for each attack.

attack when it is evaluated across diverse and hard settings

and, in fact, does not hold for other hard settings like IncRes-

v2ens target models (SMIMI-FGSM is out-performed by VMI-

FGSM and VNI-FGSM, Figure 5 in the Appendix).

Recommendation: When evaluating and comparing at-

tacks, researchers should include harder attack settings,

such as targeted attacks, low perturbation budgets, and

adversarially robust target models.

VIII. DISCUSSION

We highlight our key findings, discuss their implications,

and make recommendations for future research. We also

identify the limitations of this work.

Many Interesting Settings Underexplored. Categorizing at-

tacks from the literature uncovers how several threat models

have close to little or no research dedicated to those specific

settings (Section VI-A) despite these areas being some of the

most relevant to practical attacks—most model APIs return

top-k scores (not full confidence vector) and the availabil-

ity of abundant data from non-overlapping distributions is

possible via the Internet, yet both of these settings have

hardly any research. We also identify the utility of orthogonal

yet useful fields in ML security, such as model extraction

and model inversion, and how they can be utilized under

certain threat models to boost the performance of black-

box attacks (Section VI-C). Future research should focus on

developing specific attacks for these unexplored but important

and interesting settings.

Careful Evaluation Matters. Even within well-explored

threat spaces, researchers often compare proposed attacks with

baselines that require different (and often more restrictive)

assumptions over the adversary’s capabilities, and in settings

that are easy enough that all attacks work well. We show how

small tweaks to adapt existing methods to utilize the available

knowledge fully can strengthen the baselines and outperform

the proposed attacks (Section VI-B). Additionally, several

attacks focus on the untargeted setting where most attacks

already achieve near-perfect ASR, instead of harder settings

such as targeted attacks and adversarially robust target models,

where attack performance trends can change drastically. We

implore researchers to conduct evaluations in settings where

differences matter, and to either use state-of-the-art baselines

from the same threat space or to adapt baselines to utilize

assumed knowledge.

Evaluate Attacks under Well-motivated Constraints. When

constraints are imposed on attacks, they should be motivated

by realistic adversarial constraints and focus on attack cost.

Our experiments demonstrate how several proposed attacks

can benefit from more iterations, yet predicting the optimal

number of local attack iterations is non-trivial. We thus ad-

vocate for a shift in paradigm when reporting attack results

for adversarial attacks: using time as the equalizing metric

for comparing attacks instead of iterations to infer the attack

effectiveness better. We also hope our results motivate future

work to use a better selection method for choosing the best

candidate examples across iterations.

Limitations. Our analysis of evaluated attacks is focused on

image classifiers, which is not a security-critical application.

While there are claims that attacks from image classifiers can

be adapted to other domains like malware classifiers, there is

little evidence that the decisions about which attack to adapt

would be based on extensive evaluations in image space.
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APPENDIX

A. Experiments

1) Implementation Details: Below, we provide details around our experimental setup and evaluations.

Models. For the normal setting, we consider DenseNet201 [199], Inception-v3 [200], Resnet101 [201], and VGG19 [202] as

the target models. All of these normally-trained models were used from the Torchvision [203] library. Additionally, we also

consider two robust target models: Inc-v3adv [204] and IncRes-v2ens [204]. For all of our attacks, our local (surrogate) models

consist of an ensemble of: DenseNet-121 [199], Inception-v4 [200], ResNet-50 [201], and VGG-16 [202], which do not overlap

with the target models.

Data. We randomly sampled 100 images from the ImageNet [205] validation set. To avoid confusion between the two definitions

of untargeted attacks (flipping the model’s prediction, or making the prediction mismatch the ground-truth), we picked these

100 examples such that all target models have 100% classification accuracy on them.

Attacks. Unless explicitly specified otherwise, all attacks are generated under 16/255 ℓ∞ perturbation budget, and hyper-

parameters are adopted from the original papers for each of the attacks. The typical setting of step size ³ is set as ϵ/T , where

T is number of iterations, and is set as 40 for targeted attacks, and 10 for untargeted attacks.

Code/Experiments. We used a batch-size of 5 across all transfer attack experiments to make sure that all attacks (given their

varying GPU memory requirements) can fit on the GPU for any given batch. All of our experiments we performed on a 2 CPU,

8-core (2 threads/core) CPU, with 64GB RAM and an Nvidia GTX1080Ti server with 11GB memory, running on Ubuntu

Server 22.04. All of our attacks were implemented using PyTorch 1.12.1, running on Python 3.7.13. We exclusively run one

experiment at a time on the machine while, although time consuming, helps calculate accurate runtime estimates of attacks

without potential fluctuations or slowdowns because of other jobs possibly running on the same machine.

2) Attacks Evaluated in This Paper: Below, we provide brief details about the attacks used for evaluations in Section VII.

Non-interactive Transfer Attacks. Fast Gradient Sign Method (FGSM) [2] generates input perturbation by adding noise in

the direction of the sign of gradient of the loss with respect to the input image. I-FGSM (Iterative FGSM) [23] is an iterative

version of FGSM that applies the FGSM with smaller step size for multiple iterations and strengthens the effectiveness. I-

FGSM also becomes the building block of stronger attacks incorporate additional information. For input augmentation methods,

Admix-FGSM [170] augments the input of I-FGSM by adding a small patch from other images. ODS-FGSM [142] introduces

a sampling strategy for the generated adversarial examples to prioritize diversity in the target model’s outputs and improves

transferability. The rest of the described attacks enhance the performance of I-FGSM with gradient stabilization. MI-FGSM

(Momentum Iterative FGSM) [33] enhances I-FGSM by incorporating momentum in gradient calculation while NI-FGSM [34]

uses Nesterov accelerated gradient for I-FGSM to effectively look ahead and improve performance. VMI-FGSM [38] and VNI-

FGSM [38] respectively further stabilize the MI-FGSM and NI-FGSM method by incorporating variance of previous gradients.

SMI-FGSM [24] considers the (spatial) context gradient information from different regions of the image for stabilization while

SMIMI-FGSM from the same paper further augments it by adding temporal momentum. EMI-FGSM [36] considers the

average gradient of data points sampled in the gradient direction from previous iterations.

Query-based Interactive Attacks. Bayesian optimization with perturbation sampling from a low dimensional space is leveraged

to improve the query efficiency of black-box attacks in the low-query regime, for both the full-score (complete confidence

vector) [120] and the hard-label settings [166]. The bayesian optimization based attacks can be efficient in the low-query regime

as it judiciously chooses the next sample to query based on a proper modeling of the adversarial space distributed around the

victim image. However, this attack cannot scale to larger number of queries because the associated Gaussian process will need

to maintain a very large kernel matrix, and make the attack extremely slow to optimize and consume huge memory at high

number of queries. Some efficient random search based strategies are also proposed for the full-score [96] and hard-label [97]

attacks. Although these attacks are not particularly designed for the low-query regime, they are very efficient to run locally

and also shows competitive attack success rate in different query regimes (especially for very high number of queries).

3) top-k Adaptation Details: For untargeted attacks, full-score attacks can be applied directly to the top-k setting—most

of these attacks only require the prediction score of the ground-truth class, which is always available as the top-1 prediction

score except for inputs for which the attack is successful. The setting of targeted attacks is thus much more interesting since

the target class may not be included in the top-k scores. As an illustration of adapting an attack to this setting, we adapt the

Square Attack to the top-k targeted attack setting. We call this attack Square: top-k.

The top-k version of the NES attack (NES: top-k) modifies the original version that operates with complete prediction

vector by starting from a random image of the target class (instead of the original seed in the original version), and leverages

estimated gradients to gradually reduce the perturbation distance with respect to the original image while still maintaining the

class prediction. This way, the confidence score of the target class is guaranteed to be in the top-k predictions. We speculate



that this idea can also be used to adapt the state-of-the-art Square Attack [96] by starting the attack with a random image of

the target class and using corresponding perturbation generation methods to generate perturbed inputs that gradually get closer

to the original seed while the target class is still in the top-k predictions. However, using the same fixed threshold on the loss

function to decide when to start reducing the perturbation size, as done in NES: top-k, does not work for the Square Attack

and makes the attack even less ineffective. We solve this by designing a dynamic scheduler that reduces a relatively small

threshold (initially 1 in our experiments) by half if the attack is not successful in finding useful perturbations with reduced

size for 10 consecutive iterations, and make the attack successful in generating useful adversarial examples.

B. Transfer Attacks

We provide additional results of transfer attacks on other target models (not covered in the main paper) in Figure 5. The

overall findings still support the main claims made in Section VII.
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Fig. 5: ASR (y-axis) for various attacks varying across time: targeted attacks for VGG19 (a) and Resnet101 (b), and untargeted

attacks for IncRes-v2ens (c). ASR at each iteration is computed using adversarial examples at that iteration. ASR at representative

(40 for targeted, 10 for untargeted) are marked with ⋆ for each attack. Note that although SMIMI-FGSM seems to outperform

other attacks in most settings, it is outperformed by VMI-FGSM and VNI-FGSM for the case of IncRes-v2ens (c). ASR at each

iteration is computed using adversarial ex, further supporting our argument for evaluation under hard and diverse settings.

C. Query-based Attacks

Query-based attacks compare attacks by tracking ASR as queries are progressively submitted to the target model. Query

cost is an important factor, as each query may incur a financial cost [124] as well as a risk of detection [206]. However, for

resource constrained adversaries or situations where API costs are not a major issue (e.g., model hosted in secure enclave), the

local computational cost (runtime) may be a higher priority for attackers. Adversaries in such scenarios might prefer attacks

that are efficient to run locally and also require fewer queries.

In this section, we compare the bayesian optimization based attack for the hard-label setting (BayesOpt) [166] to the locally

efficient RayS attack [97]. We choose these two attacks because the first attack achieves state-of-the-art performance in the

low-query regime at the cost of high local runtime, while the latter achieves best performance in larger queries and is highly

efficient locally. We will use these two attacks to demonstrate how the effectiveness of the attacks can change when the focus

of the adversary shifts from the query cost to the local runtime cost. A secondary purpose is to check if BayesOpt attack is still

the best in the low-query regime, as the BayesOpt is not compared to RayS in the original paper, despite RayS being published

a year before BayesOpt at the same conference. We run untargeted attacks against Inception V3 model and set the query limit

to 1,000 for the BayesOpt attack [166] and 10,000 for the RayS attack [97], all consistent with the respective original papers

(we do not include targeted attacks since we could not get the BayesOpt attack to successfully generate adversarial examples

in the targeted setting within the query limit).

Figure 6-a shows that the BayesOpt attack still achieves better results in the low query regime, by showing that the ASR is

consistently higher than the RayS baseline. This confirms that the BayesOpt attack still achieves better performance in terms of

attack success for low numbers of queries. However, when we solely measure the local runtime as the metric (Figure 6-b), the

attacks proposed for the efficient attacks with sufficient queries achieve significantly higher attack success rate. Therefore, an

attacker with more focus on the local cost might opt for RayS over BayesOpt in practice. Some might argue that the runtime

of both attacks on a significant fraction of images are close to 0s. This is because these fraction of seeds are indeed very

easy to attack and simple addition of random noise (or adding noises for a few queries) can lead to successful untargeted
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Fig. 6: ASR (y-axis) for various query-based untargeted attacks under the hard-label (a, b) and full-score setting (c, d), for

Inceptionv3 target model, varying across queries (a, c) and time (b, d). ASR at each iteration is computed using adversarial

examples at that number of queries.

attacks. This can also be validated by the ASR (≈ 35%) of Square Attack [96] at 1 query, which adds a random noise without

receiving the feedback from the target model. Different adversaries under different settings can have different priorities, such

as avoiding discovery (minimizing number of queries), or wanting to be computationally efficient (minimizing local runtime).

This difference in priorities, along with the demonstrated difference in attack trends, is exactly why it is important to include

both kinds of metrics, instead of solely relying on the query based metric, in the future evaluation of query-based attacks.

We also repeated the same experiment in the setting of complete confidence vector, where we used the complete confidence

score version of the BayesOpt attack using their corresponding implementation [166], and compared to the state-of-the-art

locally efficient Square Attack [96]. We note that, there also exists another bayesian optimiation attack [120] that is reported

to have even higher attack success than the results we obtained by running the BayesOpt attack above. However, the provided

code by Ru et al. [120] runs extremely slowly (due to large number of CPU computations) and the attack was also not

successful. The authors were also not responsive to our inquiries on possible ways to replicate their results. Therefore, we opt

to use the results from the BayesOpt attack mentioned. The results are given in (Figure 6-c,d). We can see that, the locally

efficient Square Attack is more efficient than the BayesOpt attack using the both metrics on the number of queries and the

local runtime. This shows that, when accessing the complete confidence vector from the target, attacks explicitly proposed for

the low-query regime does not seem to be the best option when compared to a more recent baseline, and encourage future

research to pick the more competitive baselines for comparison.
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