

1 **Article title**

2 Genome sequence of *Nitrosopumilus adriaticus* CCS1 assembled from an ammonia-oxidizing enrichment  
3 culture

4 **Authors**

5 Muzi Li<sup>a\*</sup>, Patrick H. Thieringer<sup>a\*</sup>, Barbara Bayer<sup>b</sup>, Matthew Kellom<sup>c</sup>, Alyson E. Santoro<sup>a#</sup>

6 **Affiliations**

7 \* These authors contributed equally.

8 a. Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara,  
9 California, USA

10 b. Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental  
11 System Science, University of Vienna, Vienna, Austria

12 c. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley,  
13 California, USA

14 **Running title**

15 Genome of *Nitrosopumilus adriaticus* CCS1

16 **Corresponding author's email address**

17 Alyson E. Santoro, asantoro@ucsb.edu

18 **Abstract**

19 We report the metagenome-assembled genome of an ammonia-oxidizing archaeon that is closely  
20 related to *Nitrosopumilus adriaticus* NF5, but shows distinct genomic features compared to strain NF5.

21 **Announcement**

22 Ammonia-oxidizing archaea (AOA) catalyze the first step of nitrification at nearly all depths of the  
23 oceanic water column (1). *Nitrosopumilus adriaticus* CCS1 is an AOA enriched from shallow seawater  
24 along the Pacific Coast of North America.

25 *Nitrosopumilus sp.* CCS1 was enriched during the cultivation of *Ca. Nitrosopelagicus brevis* CN25 (2). *Ca.*  
26 *N. brevis* CN25 was cultivated in filter-sterilized (0.2 µm pore size) medium (2), made from surface  
27 seawater obtained at various locations around the southern California Current. Thus, the exact  
28 provenance of strain CCS1 is unknown. During a periodic observation of the CN25 enrichment using flow  
29 cytometry, we identified the presence of a second putative AOA population with a higher DNA content,  
30 which was eventually isolated by continued transfers in a HEPES-buffered artificial seawater medium (3)  
31 with additions of antibiotics (100 µg mL<sup>-1</sup> streptomycin and kanamycin). Though CCS1 has since been

32 isolated (3), at the time of sequencing, one heterotrophic contaminant remained in the CCS1  
33 enrichment culture. CCS1 was the only AOA remaining in the culture at the time of sequencing.

34 Cultures were grown in 50 or 200 mL of HEPES-buffered artificial seawater medium (3) in polycarbonate  
35 bottles containing 50-500  $\mu$ M NH<sub>4</sub>Cl without agitation in the dark at 20-25°C. Cultures were combined  
36 and vacuum filtered onto a single 0.22  $\mu$ m pore size polyethersulfone (Pall Supor) membrane filter. DNA  
37 was extracted using the DNEasy Blood & Tissue Kit (Qiagen) with a modified lysis protocol (4). The DNA  
38 library was prepared using the Nextera XT kit and sequenced on the Illumina MiSeq platform. Paired-end  
39 reads (6,179,225 x 2) were generated with an average read length of 198 bp, resulting in 2,447,233,357  
40 bases and a genome coverage of 1234x. All tools were used with their default parameters unless  
41 otherwise specified. Reads were assembled with SPAdes (v3.12.0) (5) (--careful -k 21,33,55,77,99,127).  
42 Scaffold binning was performed using MaxBin (v2.2.4) (6). The assembled genome was annotated via  
43 the Integrated Microbial Genomes (IMG) Annotation Pipeline (v5.2.1) (7).

44 The final genome has one scaffold with a total length of 1,782,213 bp and a GC content of 33.41% (Table  
45 1). Genome completeness and contamination, estimated by CheckM2 (v1.0.1) (8), are 99.95% and  
46 0.19%, respectively. OrthoFinder (v2.5.5) (9) was used to conduct a comparative genomic analysis  
47 against a representative set of ammonia-oxidizing archaea (2, 10). A concatenated alignment of single-  
48 copy genes in 758 orthogroups that are single-copy in at least 89.7% species was generated by  
49 OrthoFinder. The alignment was then fed into IQ-TREE (v2.3.0) (11) using the best-fit model LG+F+I+G4  
50 and 1000 bootstrap replicates to construct a phylogenetic tree, where strain CCS1 and *Nitrosopumilus*  
51 *adriaticus* NF5 (12) were grouped into the same clade (Figure 1). *N. adriaticus* NF5 and strain CCS1 share  
52 an average nucleotide identity (ANI) of 97.9% as determined by FastANI (v1.32) (13), thus we designate  
53 this organism a strain of *N. adriaticus*. Despite the high genomic similarity, these two strains were  
54 derived from distant and unconnected oceans (strain NF5: Adriatic Sea, strain CCS1: Pacific Ocean). Each  
55 strain exhibits unique genomic features, for instance, strain NF5 possesses multiple Cas1 family proteins  
56 that are not found in strain CCS1. Contrastingly, strain CCS1 harbors several FkbM family  
57 methyltransferases absent in strain NF5. Moreover, strain CCS1 encodes an additional putative NO-  
58 forming nitrite reductase (JGI gene ID 2932132417) with low similarity to those found in strain NF5.

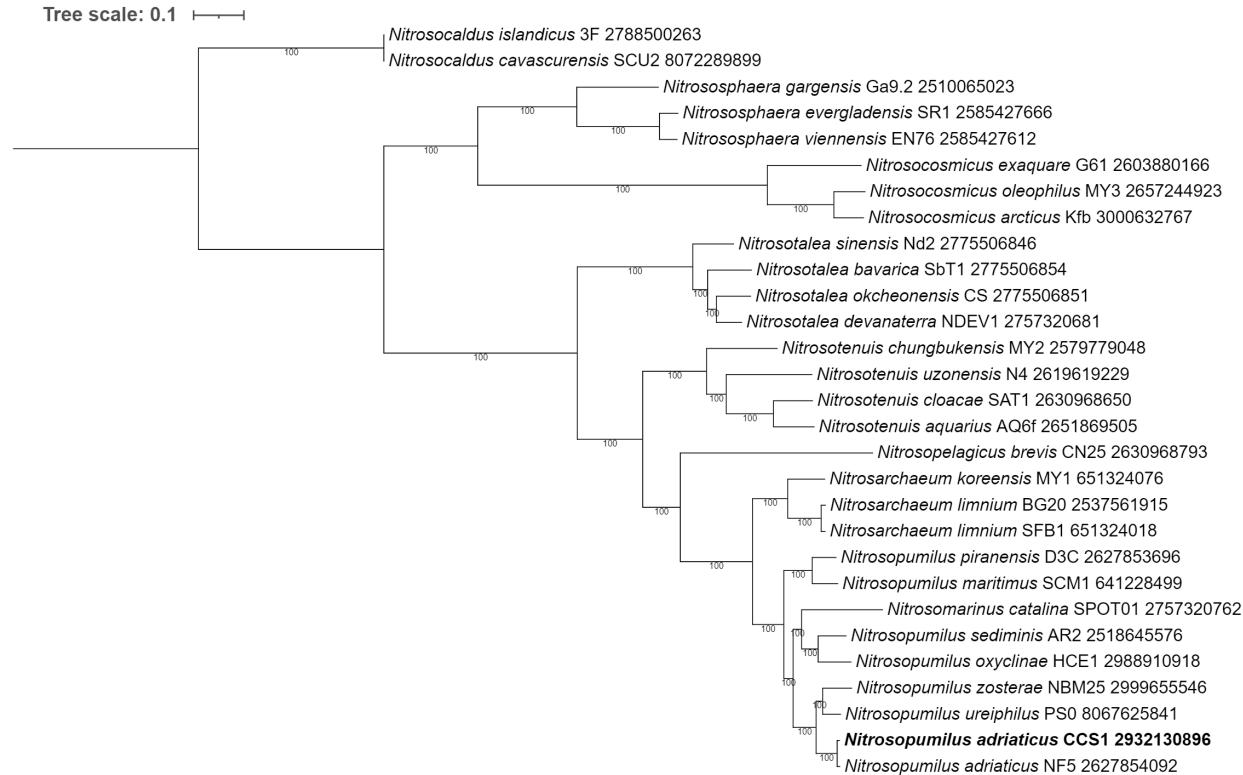
59

60

61

62

63


64

65

66

**Table 1** Genome statistics of *Nitrosopumilus adriaticus* CCS1

| Strain                                | IMG genome ID | Genome size (bp) | GC (%) | No. of scaffolds | No. of total genes | No. of protein coding genes | No. of rRNA operons | No. of tRNA operons | Completeness/Contamination (%) |
|---------------------------------------|---------------|------------------|--------|------------------|--------------------|-----------------------------|---------------------|---------------------|--------------------------------|
| <i>Nitrosopumilus adriaticus</i> CCS1 | 2932130896    | 1,782,213        | 33.41  | 1                | 2,240              | 2,192                       | 3                   | 43                  | 99.95/0.19                     |



67

68 **Figure 1.** A maximum-likelihood phylogenetic tree of representative ammonia-oxidizing archaea  
 69 genomes visualized with iTOL (v6) (15). The UFBoot support values are underneath the branches.

## 70 Data availability statement

71 The sequencing data were deposited at NCBI SRA under accession number [SRR29007723](#). The genome  
 72 of strain CCS1 is available in GenBank under accession number [CP167059](#) and available at IMG under  
 73 taxon ID [2932130896](#). The alignment file used for phylogenetic construction is accessible on figshare at  
 74 <https://doi.org/10.6084/m9.figshare.26515999.v1>.

## 75 Acknowledgments

76 We thank Kelsey McBeain and Nathan Youlton for their assistance with cultivation and DNA extraction.  
 77 The DNA library was prepared and sequenced at Biological Nanostructures Laboratory at the University  
 78 of California, Santa Barbara. Genome sequencing and analysis was supported by a Simons Foundation  
 79 Early Career Investigator in Marine Microbiology and Evolution Award (345889) and a Simons  
 80 Investigator in Aquatic Microbial Ecology Award (LI-SIAME-00001560) to AES. MK was supported by  
 81 Gordon and Betty Moore Foundation award MMI5541 to AES. BB was supported by the Austrian Science  
 82 Fund (FWF) Project J4426-B. The work conducted by the U.S. Department of Energy Joint Genome  
 83 Institute (<https://ror.org/04xm1d337>), a DOE Office of Science User Facility, is supported by the Office of  
 84 Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231. Use was  
 85 made of computational facilities purchased with funds from the National Science Foundation (CNS-  
 86 1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the  
 87 California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC;  
 88 NSF DMR 2308708) at UC Santa Barbara.

89 **References**

- 90 1. Santoro AE, Richter RA, Dupont CL. 2019. Planktonic Marine Archaea. *Annual Review of Marine*  
91 *Science* 11:131–158.
- 92 2. Santoro AE, Bayer B, Elling FJ, Pearson A. 2021. *Candidatus Nitrosopelagicus*, p. 1–13. *In* Bergey's  
93 *Manual of Systematics of Archaea and Bacteria*. John Wiley & Sons, Ltd.
- 94 3. Bayer B, McBeain K, Carlson CA, Santoro AE. 2023. Carbon content, carbon fixation yield and  
95 dissolved organic carbon release from diverse marine nitrifiers. *Limnology and Oceanography*  
96 68:84–96.
- 97 4. Santoro AE, Casciotti KL, Francis CA. 2010. Activity, abundance and diversity of nitrifying archaea  
98 and bacteria in the central California Current. *Environmental Microbiology* 12:1989–2006.
- 99 5. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes De Novo  
100 Assembler. *Current Protocols in Bioinformatics* 70:e102.
- 101 6. Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover  
102 genomes from multiple metagenomic datasets. *Bioinformatics* 32:605–607.
- 103 7. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E, Pillay M,  
104 Chen I-MA, Pati A, Nielsen T, Markowitz VM, Kyrpides NC. 2015. The standard operating procedure  
105 of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). *Stand in Genomic Sci* 10:86.
- 106 8. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. 2023. CheckM2: a rapid, scalable and accurate tool  
107 for assessing microbial genome quality using machine learning. *Nat Methods* 20:1203–1212.
- 108 9. Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics.  
109 *Genome Biol* 20:238.
- 110 10. Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, Liu H, Huang X, Zhang X,  
111 Nakagawa T, Mende DR, Bollmann A, Wang B, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R,  
112 Virginia Armbrust E, Winkler M-KH, DeLong EF, Li M, Lee P-H, Zhou J, Zhang C, Zhang T, Stahl DA,  
113 Ingalls AE. 2020. Alternative strategies of nutrient acquisition and energy conservation map to the  
114 biogeography of marine ammonia-oxidizing archaea. *The ISME Journal* 14:2595–2609.
- 115 11. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020.  
116 IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era.  
117 *Molecular Biology and Evolution* 37:1530–1534.
- 118 12. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JAL, Volland J-M, Srivastava A, Schleper  
119 C, Herndl GJ. 2016. Physiological and genomic characterization of two novel marine thaumarchaeal  
120 strains indicates niche differentiation. *The ISME Journal* 10:1051–1063.
- 121 13. Jain C, Rodriguez-R LM, Phillip AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis  
122 of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* 9:5114.