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Abstract 18 

We report the metagenome-assembled genome of an ammonia-oxidizing archaeon that is closely 19 
related to Nitrosopumilus adriaticus NF5, but shows distinct genomic features compared to strain NF5. 20 

Announcement 21 

Ammonia-oxidizing archaea (AOA) catalyze the first step of nitrification at nearly all depths of the 22 
oceanic water column (1). Nitrosopumilus adriaticus CCS1 is an AOA enriched from shallow seawater 23 
along the Pacific Coast of North America. 24 

Nitrosopumilus sp. CCS1 was enriched during the cultivation of Ca. Nitrosopelagicus brevis CN25 (2). Ca. 25 
N. brevis CN25 was cultivated in filter-sterilized (0.2 µm pore size) medium (2), made from surface 26 
seawater obtained at various locations around the southern California Current. Thus, the exact 27 
provenance of strain CCS1 is unknown. During a periodic observation of the CN25 enrichment using flow 28 
cytometry, we identified the presence of a second putative AOA population with a higher DNA content, 29 
which was eventually isolated by continued transfers in a HEPES-buffered artificial seawater medium (3) 30 
with additions of antibiotics (100 µg mL-1 streptomycin and kanamycin). Though CCS1 has since been 31 
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isolated (3), at the time of sequencing, one heterotrophic contaminant remained in the CCS1 32 
enrichment culture. CCS1 was the only AOA remaining in the culture at the time of sequencing. 33 

Cultures were grown in 50 or 200 mL of HEPES-buffered artificial seawater medium (3) in polycarbonate 34 
bottles containing 50-500 µM NH4Cl without agitation in the dark at 20-25ºC. Cultures were combined 35 
and vacuum filtered onto a single 0.22 µm pore size polyethersulfone (Pall Supor) membrane filter. DNA 36 
was extracted using the DNEasy Blood & Tissue Kit (Qiagen) with a modified lysis protocol (4). The DNA 37 
library was prepared using the Nextera XT kit and sequenced on the Illumina MiSeq platform. Paired-end 38 
reads (6,179,225 x 2) were generated with an average read length of 198 bp, resulting in 2,447,233,357 39 
bases and a genome coverage of 1234x. All tools were used with their default parameters unless 40 
otherwise specified. Reads were assembled with SPAdes (v3.12.0) (5) (--careful -k 21,33,55,77,99,127). 41 
Scaffold binning was performed using MaxBin (v2.2.4) (6). The assembled genome was annotated via 42 
the Integrated Microbial Genomes (IMG) Annotation Pipeline (v5.2.1) (7). 43 

The final genome has one scaffold with a total length of 1,782,213 bp and a GC content of 33.41% (Table 44 
1). Genome completeness and contamination, estimated by CheckM2 (v1.0.1) (8), are 99.95% and 45 
0.19%, respectively. OrthoFinder (v2.5.5) (9) was used to conduct a comparative genomic analysis 46 
against a representative set of ammonia-oxidizing archaea (2, 10). A concatenated alignment of single-47 
copy genes in 758 orthogroups that are single-copy in at least 89.7% species was generated by 48 
OrthoFinder. The alignment was then fed into IQ-TREE (v2.3.0) (11) using the best-fit model LG+F+I+G4 49 
and 1000 bootstrap replicates to construct a phylogenetic tree, where strain CCS1 and Nitrosopumilus 50 
adriaticus NF5 (12) were grouped into the same clade (Figure 1). N. adriaticus NF5 and strain CCS1 share 51 
an average nucleotide identity (ANI) of 97.9% as determined by FastANI (v1.32) (13), thus we designate 52 
this organism a strain of N. adriaticus. Despite the high genomic similarity, these two strains were 53 
derived from distant and unconnected oceans (strain NF5: Adriatic Sea, strain CCS1: Pacific Ocean). Each 54 
strain exhibits unique genomic features, for instance, strain NF5 possesses multiple Cas1 family proteins 55 
that are not found in strain CCS1. Contrastingly, strain CCS1 harbors several FkbM family 56 
methyltransferases absent in strain NF5. Moreover, strain CCS1 encodes an additional putative NO-57 
forming nitrite reductase (JGI gene ID 2932132417) with low similarity to those found in strain NF5. 58 
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67 
Figure 1. A maximum-likelihood phylogenetic tree of representative ammonia-oxidizing archaea 68 
genomes visualized with iTOL (v6) (15). The UFBoot support values are underneath the branches. 69 

Data availability statement 70 

The sequencing data were deposited at NCBI SRA under accession number SRR29007723. The genome 71 
of strain CCS1 is available in GenBank under accession number CP167059 and available at IMG under 72 
taxon ID 2932130896. The alignment file used for phylogenetic construction is accessible on figshare at 73 
https://doi.org/10.6084/m9.figshare.26515999.v1.  74 
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