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1. Introduction

The past decade of research on the interdependence of human, ani-
mal, and environmental health has highlighted the importance of 
investigating and interpreting the spread of pathogens at the ecosystem 
level, in a “One Health” framework (Destoumieux-Garzón et al., 2018). 
The connection between environmental status and human health ap-
pears even stronger in the wake of the recent SARS-CoV2 pandemic, 
which likely emerged from human interactions with the environment 
and unsafe food handling (De Sadeleer and Godfroid, 2020). In this 
context, antibiotic resistance has become a serious problem in clinical 
settings (French, 2005), with the development of new multidrug resis-
tance in several groups of pathogens representing a public health threat 
(Tanwar et al., 2014). According to the most recent Center for Disease 
Control (CDC) report, more than 2.8 million antibiotic-resistant in-
fections occur every year CDC 2019, 2023), with trends projected to 
increase for the next decade.

Some clinical resistance genes have also been found to originate from 
environmental strains (Wright, 2010). The myriad interactions between 
pathogens and environmental bacterial communities favors the acqui-
sition of new resistance (Amal昀椀tano et al., 2015). Ecosystems that come 
into contact with contamination vectors (for example sewage runoffs) 
may become reservoirs for the spreading and the evolution of new 
emerging drug resistant pathogens (Harris et al., 2012; Wang et al., 
2021) that subsequently make their way back to the general population 
(Kraemer et al., 2019). Ingestion or contact with water contaminated by 
bacteria, viruses or protozoa can lead to several infections (Leclerc et al., 
2002). In this way, new outbreaks of emerging opportunistic pathogens 
may occur, like those reported in Central Europe where the emerging 
pathogenic genus Arcobacter has been shown to be one of the main 
causes of enteric disease (Pérez-CataluÞna et al., 2017; Prouzet-Mauléon 
et al., 2006). Together with emerging strains, the main 
healthcare-associated pathogens are represented by Acinetobacter bau-
mannii and Pseudomonas aeruginosa (Motbainor et al., 2020), which 
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cause a broad spectrum of infections from skin and wounds (Fleming 
et al., 2017; Kim et al., 2015), and in rare cases necrotizing fasciitis 
(Charnot-Katsikas et al., 2009; Reisman et al., 2012). Pseudomonas aer-
uginosa alone is responsible for 10–20% of nosocomial infections in 
intensive care units (Nicastri et al., 2003), and a high prevalence of these 
infections are caused by drug resistant phenotypes (Gill et al., 2016).

The capacity of several groups of pathogens to persist in different 
kinds of environments and spread through them remains a worldwide 
concern (Exner et al., 2005). Often, the discovery of environmental 
pathogens is associated with water bodies like alpine rivers and lakes (Di 
Cesare et al., 2017; Eckert et al., 2018), urban rivers (Cui et al., 2019) 
and coastal regions where fecal bacteria can diffuse out from areas of 
major concentrations of human land-based activities (Manini et al., 
2022; Walters et al., 2011; Wang et al., 2017). Intense adverse weather 
events, likely to increase in frequency and intensity due to the current 
climate crisis (Ebi et al., 2021), are also correlated with increased 
pathogens and microbial resistance genes in the environment (Di Cesare 
et al., 2017; Manini et al., 2022). Intensive agriculture also contributes 
to water quality impairment due to animal feeding operation or land 
applied manure (Rosen et al., 2000). Berg et al. (2005) showed that the 
soil can host a huge number of well known and emerging pathogens 
which cover a broad spectrum of clinical syndromes, underscoring the 
need to understand more about the colonization and transmission stra-
tegies of the opportunistic human pathogens through the rhizosphere. 
Recent studies focused their attention on potential reservoirs like hos-
pital sewage where pathogens can acquire antibiotic resistance (Zhang 
et al., 2013). In the same way, the release of sewage sludge as soil fer-
tilizer containing antibiotics, antibiotic-resistant bacteria, and antibiotic 
resistance genes increase the environmental pool of antibiotic resistance 
genes and consequently favor the horizontal gene transfer of resistance 
among environmental microorganisms, constituting a signi昀椀cant reser-
voir of potential antibiotic-resistant pathogens (Bondarczuk et al., 2016; 
Calero-Cáceres et al., 2014).

Besides soils, recreational water can be an important source of dis-
ease caused by pathogenic organisms, (Purnell et al., 2020). Water 
quality monitoring and management are the main approaches to reduce 
the potential infection risk, but the high variety of potential pathogenic 
organisms complicates the quanti昀椀cation and detection procedures. The 
most common indicator of recreational water contamination are fecal 
bacteria like E. coli or Enterococci, which can be tracked with conven-
tional or alternative methods (Manini et al., 2022; Rodrigues and Cunha, 
2017). However, the ef昀椀cacy of water treatment to reduce the infection 
rate by pathogens is not always clear; according to the US Center for 
Disease Control, 41% of outbreaks related to recreational water that had 
been treated to decrease pathogens were associated with hot tubs/spas 
and can be caused by pathogens from the genera Cryptosporidium, 
Legionella and Pseudomonas. On the other hand, outbreaks related to 
untreated recreational waters like those of lakes, rivers or oceans are 
mostly caused by enteric pathogens when fecally contaminated water is 
ingested. Sources of contamination can be stormwater runoff, sewage 
treatment plant discharge, and animal or waste associated with boating 
(Graciaa et al., 2018; Hlavsa et al., 2018).

In this context, water monitoring strategies are of primary impor-
tance to protect the public from infection risks due to pathogens 
harbored in recreational environments. The World Health Organization 
(WHO) has established speci昀椀c guidelines for the monitoring of water 
quality (World Health Organization, 2003), which have been adopted 
with speci昀椀c legislations by numerous countries. Water types monitored 
worldwide include drinking water and treated (often chlorinated) or 
untreated recreational waters. According to the WHO, the levels of 
bacteria like E. coli, P. aeruginosa and Legionella spp. in public pools 
should be less than 1 colony forming unit (CFU) per 100 mL of water 
(World Health Organization, 2006).

Hot springs constitute terrestrial hydrothermal systems that origin 
from geothermally-heated groundwater which arises from deep Earth’s 
crust as a consequence of tectonic and magmatic processes (Kresic, 

2010). These hydrothermal systems are globally distributed and there 
are evidences for the important role that hot springs played in human 
society since Greek and Roman times, when these were not only used for 
recreational and social purposes but were also considered sacred sites 
with powerful healing properties (Des Marais and Walter, 2019; Erfurt, 
2021; Lamoreaux, 2005; van Tubergen and van der Linden, 2002). 
Currently, the recreational use of hot springs supports a growing sector 
of tourism worldwide with an estimated industry worth in excess of 40 
billion US dollars (Global Wellness Economy Monitor, 2023). Unre-
strained commercial tourism, however, can lead to an irresponsible use 
of natural resources (Erfurt, 2021; Mavridou et al., 2018). Land 
over-exploitation for large-scale resort developments, wrong disposal of 
waste water and septic systems can bring to deterioration of ground-
water aquifers, including hydrothermal reservoirs (Erfurt, 2021; Jack 
et al., 2013; Page et al., 2014). Given the hundreds of millions of people 
that use recreational, naturally-occurring hot springs, and spas annually, 
it does not come as a surprise that hot springs might be connected with 
infections (Mavridou et al., 2018). Several cases have been reported in 
the last decades, frequently linked to bacteria belonging to genus Ba-
cillus (Pandey et al., 2015), Legionella (James et al., 2022; Ji et al., 2014) 
Pseudomonas (Mukherjee et al., 2012; Rahel et al., 2021), and free-living 
protozoa (Fabros et al., 2021). The presence of P. aeruginosa as a cause of 
folliculitis linked to recreational water was described for the 昀椀rst time in 
1975 (McCausland and Cox, 1975). Since then, several cases of infection 
related to P. aeruginosa and recreational water usage have been reported 
(Tate et al., 2003). Infections caused by the free-living amoebae, Nae-
gleria fowleri, have made news due to deadly cases of meningoenceph-
alitis linked to hot spring use (Abrahams-Sandí et al., 2015; Vugia et al., 
2019). Despite growing reports of infection cases linked with the rec-
reational use of hot springs, information relative to the diversity and 
distribution of potential pathogens in naturally-occurring hot springs 
are limited (Ghilamicael et al., 2018; Jardine et al., 2017; Mavridou 
et al., 2018).

Here, we investigated the distribution of potential pathogens and 
antimicrobial resistance genes in several Costa Rican hot springs, 
comparing the ones used for recreational purposes in resorts and spas 
with natural-occurring hot springs located in more remote areas. Culture 
independent analyses based on 16S rRNA amplicons and shotgun met-
agenomic sequencing were used to: i) detect the springs with higher 
abundance of putative pathogenic bacteria; and ii) study the presence of 
antimicrobial resistance genes. In addition, a group of recreational hot 
springs were investigated through culture dependent analyses to isolate 
putative pathogens and test their antibiotic susceptibility. Our results 
show the presence of diverse potential pathogens linked with the rec-
reational hot springs as well as the occurrence of multidrug-resistant 
pathogens. Omics analyses and pure cultures isolated from the springs 
suggest that hot springs represent a major environmental reservoir of 
potential multidrug-resistant pathogens and emphasize that additional 
management measures need to be introduced to increase public safety.

2. Methods

2.1. Sampling approach

During two sampling campaigns in 2017 (CR17) and 2019 (CR19), a 
total of 22 individual hot springs were sampled spanning the volcanic 
areas of Costa Rica (Table 1). Two types of pools were sampled: natu-
rally occurring hot springs (n = 15), hot springs which had been 
developed for recreational use (n = 6) located within spas and resorts, 
and one boiling mud pond located within a resort (Fig. 1). Several of the 
natural hot springs had a detectable amount of anthropization, pre-
sumably due to occasional bathing of the local populations or due to use 
for washing, cleaning, and other household activities. However, the 
number of people accessing the natural systems was presumably limited 
compared to recreational springs. In 2017, hot spring hydrothermal 
昀氀uids and sediments (Table 1) were collected following the protocols 
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previously described (Barry et al., 2019; Fullerton et al., 2021; Rogers 
et al., 2022) and using the rationale described in detail in Giovannelli 
et al. (2022). Brie昀氀y, at each sampling site, hot spring hydrothermal 
昀氀uids (0.5–1L) were 昀椀ltered from the spring inlet through Sterivex 0.22 
μm 昀椀lter cartridges (MilliporeSigma) and 15 mL falcon tubes were 昀椀lled 
with sur昀椀cial sediments. Both 昀椀lters and sediment-昀椀lled tubes were 
instantaneously frozen onsite at 196 çC in a cryogenic dry shipper 
(Termo Fisher Scientifc, Arctic Express 20) for transport back to the 
home laboratory. Samples for cell counts were 昀椀xed in 3% formaldehyde 
(Hayat, 2012) and kept at 4 çC. In 2019, hydrothermal 昀氀uids from four 
recreational hot springs already sampled in 2017 (Table 1) were 
collected in sterile 50 mL falcon tubes storing a part of samples directly 
at 4 çC for isolation purposes (see Table 2).

2.2. Colony forming units

Hot spring hydrothermal 昀氀uids for colony forming unit (CFU) anal-
ysis were kept at 4 çC until processing. Brie昀氀y, 7–10 mL per sample were 
昀椀ltered on a 47 mm diameter 0.22 μm 昀椀lter using a sterile 昀椀ltering 
apparatus. In order to restrict the growth of non-target bacteria, the 
昀椀lter was placed on top of a de昀椀ned agar plate, either using selective 
media such as Leeds Acinetobacter Medium (Jawad et al., 1994; 
McConnell et al., 2011) and Pseudomonas Selective Agar CN media 
(Goto and Enomoto, 1970; Weiser et al., 2014). For each condition, two 
replicate samples were incubated overnight at 37 çC in accordance with 
standardized protocols (APHA, 2017). CFUs were manually counted on a 
colony counter and normalized to the 昀氀uid volume 昀椀ltered (2020).

2.3. Genomic DNA extraction and sequencing

Genomic DNA was extracted from Sterivex 昀椀lters and from sediment 
following a modi昀椀ed protocol from (Giovannelli et al., 2016). Genomic 
DNA was visualized on 1.2% w/v agarose gel and quanti昀椀ed using a 
Nanodrop spectrophotometer. In 2018, extracted DNA was subjected to 
both amplicon sequencing and shotgun metagenome sequencing. 
Amplicon sequencing was carried out after amplifying the 
bacteria-speci昀椀c V4-V5 region of the 16S rRNA gene using primers 518F 
(AATTGGANTCAACGCCGG) and 926R (CCGYCAATTYMTTTRAGTTT) 
(Parada et al., 2016). Amplicon and shotgun metagenome sequencing 
was performed as part of the Census of Deep Life initiative with the Deep 
Carbon Observatory and performed at the Marine Biological Laboratory 

sequencing facility (https://www.mbl.edu/) on an Illumina MiSeq 
platform for samples from 2017. In both cases, the Illumina Nextera Flex 
kit for MiSeq + NextSeq, which requires a very small amount of starting 
material (1 ng) was used. Obtained shotgun metagenomes varied from 
25 to 150 million base pairs. Amplicon sequencing data is available from 
the NCBI SRA archive with accession numbers PRJNA579365, while the 
shotgun metagenomes are deposited in PRJNA627197.

2.4. Strain isolation and testing

Small aliquots of hydrothermal 昀氀uids from recreational hot springs 
sampled in 2019 (Table 1) were inoculated in nutrient broth (BD, Difco) 
and incubated at 37 çC for several days. Afterward, dilutions to extinc-
tion were performed, following a further incubation at 37 çC. Small 
volumes of enrichment showing positive growth were transferred on a 
Nutrient -agar plate and incubated at 37 çC for 12–18 h. From them, 
singular bacterial colonies were systematically picked and streaked on 
Nutrient - agar plates in order to obtain isolated colonies. To identify 
Pseudomonas spp. strains, DNA was extracted and the 16S rRNA gene 
was ampli昀椀ed by PCR with universal primers 16S-8F (AGA GTT TGA 
TCC TGG CTC AG) and 16S-1517R (ACG GCT ACC TTG TTA CGA CTT). 
PCR products were sequenced with Bio-Fab Research, and identities 
were con昀椀rmed by blasting DNA sequences against the NCBI database. 
Sequences of the Pseudomonas spp. strains isolated and analyzed in this 
study are available through the European Nucleotide Archive (ENA) 
under project accession PRJEB61745. Small aliquots of hydrothermal 
昀氀uids from naturally occurring hot springs were tested directly on se-
lective media such as Leeds Acinetobacter Medium and Pseudomonas 
Selective Agar CN media and incubated at 37 çC.

2.5. Antimicrobial susceptibility testing

Antibiotic susceptibility testing was performed on all the Pseudo-
monas spp. identi昀椀ed strains, according to the European Committee and 
Antimicrobial Susceptibility Testing (EUCAST) Poole, 2011 and Clinical 
and Laboratory Standards Institute (CLSI, 2018) providing tables that 
list breakpoint guidelines to interpret antimicrobial resistance. Pseudo-
monas PAO1 was included in the analysis as a reference strain. Pure 
cultures were obtained on Mueller-Hinton agar plates after 12 h at 37 çC 
and individual colonies were used to prepare the suspension for inocu-
lation in liquid Mueller-Hinton media, two replicates for each sample. 

Table 1 
Location and main environmental features of the hot springs sampled.

Hot spring Sampling year Sample typea Hot spring type Altitude (m) Temperature (çC) pH Salinity (g/L)
S1 2017 S Recreational/Natural 535 88.9 2.11 2.7
S2 2017/2019 F/S Recreational 437 59 6.16 3.3
S3 2017/2019 F/S Recreational 434 53.8 5.87 3.1
S4 2017/2019 F Recreational 557 42.7 6.19 29.3
S5 2017/2019 F/S Recreational 368 41.4 6.19 0
S6 2017 F/S Recreational 553 60 6.24 1.8
S7 2017 F Recreational 166 59.1 6.32 3.4
S8 2017 F/S Natural 184 72 6.31 3.2
S9 2017 F/S Natural NA 26.4 9.99 0.1
S10 2017 F Natural 122 27.9 9.75 0.1
S11 2017 F/S Natural 109 55.2 5.93 3
S12 2017 F/S Natural 765 87.9 1.82 3.3
S13 2017 F Natural 53 28.7 5.81 2
S14 2017 F/S Natural 298 48.7 8.53 2.2
S15 2017 F/S Natural 300 36.7 8.69 1.4
S16 2017 F/S Natural 429 22.9 5.6 0.1
S17 2017 F/S Natural 82 29.4 9.96 0.1
S18 2017 F/S Natural 36 35.9 9.83 1.8
S19 2017 F/S Natural 165 57 6.12 1.4
S20 2017 F Natural 173 31.8 9.25 0.1
S21 2017 F/S Natural 2209 55.8 4.51 2.98
S22 2017 F/S Natural 436 59.8 5 7.19
a Sample type: ‘F’ indicate hot spring water 昀氀uids while ‘S’ indicate hot spring sediments.
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After an overnight incubation, an aliquot of the liquid culture was 
measured on the UV/VIS Spectrophotometer at the absorbance of 625 
nm, until reaching 0.5 McFarland turbidity standard. Then, the sus-
pension was inoculated on Mueller-Hinton agar plates and test disks 
were applied over the surface. The antibiotics were organized in two 
groups, speci昀椀c and generic, the 昀椀rst group refers to recommended 
antibiotics for antimicrobial susceptibility testing by EUCAST and CLSI 
instead the second group refers to generic antibiotics of common use. 
Meropenem (M, 10 μg), Cipro昀氀oxacin (Cp, 5 μg), Gentamicin (G, 10 μg), 
Cefepime (Cf, 30 μg) are part of the speci昀椀c group. Erythromycin (E, 30 
μg), Cefsulodin (C, 30 μg), Ampicillin (A, 10 μg), Kanamycin (K, 30 μg) 
are part of the generic group. After overnight incubation at 37 çC, the 
inhibition zone diameter was measured according to the EUCAST and 
CLSI BreakPoint Table (http://www.eucast.org/clinical_breakpoints/, 
https://clsi.org/). Finally, relative abundance of antibiotic resistance 
was calculated as the number of bacterial strains resistant per hot spring 

tested.

2.6. Bioinformatic and statistical approaches

Amplicon sequencing analysis was previously described in Fullerton 
et al. (2021). Brie昀氀y, obtained 16S rRNA reads were processed using 
MOTHUR (Schloss et al., 2009), following the Miseq standard operating 
procedure for the identi昀椀cation of Amplicon Sequencing Variants 
(ASVs). Taxonomy was assigned using the RDP naive Bayesian classi昀椀er 
against the Silva v132 release (Quast et al., 2013). All statistical ana-
lyses, data processing and plotting were carried out in the R statistical 
software (Core, 2021), using the phyloseq (McMurdie and Holmes, 
2013) and ggplot2 (Wickham, 2011) packages, as previously reported 
(Barosa et al., 2023; Cordone et al., 2022, 2023). Brie昀氀y, the obtained 
count table, taxonomy assignment and phylogenetic tree were combined 
together with the environmental variables into a phyloseq object. Low 

Table 2 
Results of the antibiogram on the isolated P. aeruginosa.

Hot 
spring

Sample EUCAST CLSI
Meropenem (M, 
10 μg)

Cipro昀氀oxacin 
(Cp, 5 μg)

Gentamicin (G, 
10 μg)

Cefepime (Cf, 
30 μg)

Meropenem (M, 
10 μg)

Cipro昀氀oxacin 
(Cp, 5 μg)

Gentamicin (G, 
10 μg)

Cefepime (Cf, 
30 μg)

S5 36 I* S R S I S R S
S5 38 I S S S S S S S
S5 40 S S S S S S S S
S5 41 S S S R S S S S
S5 42 S S S S S S S S
S5 43 S S S S S S S S
S5 44 S S S S S S S S
S5 45 S S S R S S S S
S5 46 S S S R S S S S
S5 47 R R R S R S I S
S5 48 I R R R S S I S
S5 49 R R R R R S I I
S5 50 I R R R S S I S
S5 51 I R R R S S I S
S5 52 R R R R R S I S
S5 53 I S S R S S S S
S5 54 I S R R S S I S
S5 55 I R S S S S S S
S5 56 I R R R S S R S
S5 57 S S R R S S I S
S5 58 I S S R S S S S
S5 59 I S R R S S I S
S5 60 I R R R I S I S
S5 61 S S R R S S I S
S4 62 S S R S S S R S
S4 63 S S R R S S I S
S4 64 I S R S S S I S
S4 65 I S S S S S S S
S4 66 S S R S S S I S
S4 67 I S S S S S S S
S4 68 S R R S S S I S
S4 69 I S R R S S I S
S4 70 S S S S S S S S
S4 71 S S R S S S I S
S4 72 I S R S S S R S
S4 73 I R R R S S I S
S2 84 S S R S S S I S
S2 85 I R R S S S I S
S2 86 I S R S S S I S
S2 87 I R R R S S R S
S2 88 I R R S S S R S
S2 89 S R R S S S R S
S3 90 S R R S S S I S
S3 91 I R S S S S S S
S3 92 I R R R S I I S
S3 93 I R R R S S I S
S3 94 S R R R S S I S
S3 95 S R S R S S S S

Note: R=Resistant, S=Sensitive, I=Intermediate. EUCAST Zone diameter breakpoint: Meropenem S g 24, R < 18. Cipro昀氀oxacin S g 26, R < 26. Gentamicin S g 15, R 
< 15. Cefepime S g 21, R < 21. * The Meropenem intermediate value has been arbitrarily de昀椀ned because it is absent in the EUCAST breakpoint table. CLSI Zone 
diameter breakpoint: Meropenem S g 19, I 16–18, R f 15. Cipro昀氀oxacin S g 21, I 16–20, R f 15. Gentamicin S g 15, I 13–14, R f 12. Cefepime S g 18, I 15–17, R f 14.
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prevalence ASVs, mitochondria and chloroplast related sequences were 
removed. In both 昀氀uids and sediments, common laboratory contami-
nants from DNA processing, feces, and skin (Sheik et al., 2018) were 
largely absent (<0.04% in the entire dataset and less than 0.01% in any 
individual library), and no ASV was shared by all samples. After QC and 
昀椀ltering a total of 2,346,695 reads comprising 40,690 ASVs were ob-
tained. Normalization of the ASVs count was carried out using the me-
dian library size across the dataset. Genera from putative pathogenic 
species were used for downstream analysis. A list of the putative path-
ogenic genera searched in the libraries is available as Supplementary 
Table 1. Beta-diversity was investigated through the Weighted Jaccard 
dissimilarity index implemented in the Vegan package (Oksanen et al., 
2018). The resultant matrix was displayed through a Non-metric 
Multidimensional Scaling (NMDS) with the aim to understand any 
relationship between the distribution of the putative pathogens and the 
sampled hot springs. Vector 昀椀tting analysis (Vegan package) was used as 
well to estimate any effect of the environmental parameters on the hot 
spring putative pathogens. Shotgun metagenomic assembly, binning, 
and annotation were previously described in Rogers et al. (2022), 
Brie昀氀y, raw reads were quality checked and trimmed using Trimmo-
matic v 0.38 (Bolger et al., 2014) using default settings. De novo as-
sembly was carried out with metaSPAdes (Nurk et al., 2017) with 
standard parameters and a minimum contig lenght of 1.5 kb. Assemblies 
were used to build 404 metagenomic assembled genomes (known as 
MAGS/bins) with g70% completeness and <5% contamination (Bowers 
et al., 2017; Grettenberger and Hamilton, 2021) through the MetaWRAP 
pipeline (Uritskiy et al., 2018) and checked using CheckM (Parks et al., 
2015). Further details on the obtained MAGs are available in Rogers 
et al. (2022). Post QC raw reads were used to assess the taxonomic 
composition with Kaiju (Menzel et al., 2016). A small group of assem-
bled contigs were searched against the Comprehensive Antibiotic 
Resistance Database (CARD; Alcock et al., 2023) to identify antimicro-
bial resistance genes. From the BLAST, only the hits with almost 70% of 
coverage and 70% of similarity were retained. Complete 16S rRNA 
genes from the MAGs identi昀椀ed as Acinetobacter spp. and 16S rRNA 
partial sequences with individual abundance above 0.1% from the 
amplicon libraries were used for phylogenetic analyses. Representative 
sequences of Acinetobacter spp. type strains were downloaded from 
NCBI. Partial sequences of 16S rRNA from Pseudomonas spp. isolates and 
16S rRNA partial sequences with individual abundance above 0.05% 
from the amplicon libraries were used for phylogenetic analyses while 
the representative sequences of Pseudomonas spp. type strains were 
downloaded from NCBI. Both the trees were processed separately. 
Alignment of the 16S rRNA sequences was carried out using MAFFT 
(Katoh et al., 2019) while the trimming step was performed with ClipKit 
(Steenwyk et al., 2020). Phylogenetic distances matrix were calculated 
using the GRT model and the maximum-likelihood trees were 

constructed with IQ-TREE (Minh et al., 2020). The branch support was 
estimated using the approximate likelihood ratio test (aLRT) (Anisimova 
and Gascuel, 2006). All the 昀椀gures were 昀椀nalized using the open-source 
vector graphics editor Inkscape (https://inkscape.org/). A complete R 
script containing all the steps to reproduce our analysis is available at 
https://github.com/giovannellilab/Selci_et_al_Hot_springs_pathogens
and released as a permanent version using Zenodo under the DOI: https 
://DOI:10.5281/zenodo.8274180.

3. Results

3.1. Abundance and distribution of putative pathogenic sequences in 
Costa Rica hot springs

Putative pathogens were identi昀椀ed in nearly all sites that yielded 
ampli昀椀able DNA (n = 13 sites) with the exception of S1, S12, S17, and 
S18. Sequences associated with known putative pathogens constitute the 
6% of the whole ASVs identi昀椀ed (Fig. 2A). Among them, the number of 
ASVs related to known pathogenic taxa accounted for more groups in 
昀氀uid samples compared to the sediments (Kruskal test, p value < 0.001; 
Supplementary Fig. 1). In hot spring hydrothermal 昀氀uids (Fig. 2A), 
putative pathogens were represented, on average, by ASVs assigned to 
the genus Acinetobacter (52.8%) followed by Flavobacterium (9.5%) and 
Pseudomonas (5.6%). Less abundant sequences were related to the 
genera Bacillus (5.5%), Halomonas (3.9%), Treponema (3.2%), Rose-
omonas (3.1%), and Comamonas (3.0%). They were followed by genera 
like Legionella (2.3%), Deinococcus (1.8%), Staphylococcus and Entero-
coccus (1.6%), while Leptospira, Stenotrophomonas, and Coxiella had an 
abundance of 1.0%. Sampled 昀氀uids of recreational hot springs were 
characterized by higher concentrations of putative pathogens when 
compared to natural hot springs located in more remote locations 
(Kruskal test, p value < 0.05).

Acinetobacter was the main represented genus with a relative abun-
dance of 94.3% in S3, 91.5% in S5, 88.2% in S6, 83.2% in S2, and 71.1% 
in S7. The genus Pseudomonas was second in abundance with 12% in S2 
and S7, while in S3 was around 5%. These were followed by S5 and S6 
昀氀uids with a lower abundance of Pseudomonas (0.3% and 1.7%, 
respectively) but a higher abundance of Comamonas (~8% for both). In 
natural hot springs not associated with spas and recreational centers, on 
the other hand, Acinetobacter was found with a high relative abundance 
only in S13 (86.7%), probably due to the presence of a farm next to the 
spring. Other natural hot springs like S10, S11, and S16 showed an 
average abundance of 51%, while for sites like S8, S9, S15, and S19 the 
abundance of Acinetobacter was 4.25% on average. Pseudomonas was 
present in natural hot springs with an abundance of 8.73% and 8.33% 
for S8 and S9, while for S11, S16, S10, and S19 the abundance had an 
average of 6.1%. The remaining springs (S13 and S15) were under 1%.

Fig. 1. Temperature and pH of the sampled hot springs. Recreational hot springs placed within spa and resort are colored in blue while natural hot springs are in red. 
Spa/resort hot springs not linked with recreational waters usage are indicated in green.
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The beta-diversity of the hot springs microbial community was 
investigated through an Non-metric Multidimensional Scaling (NMDS) 
analysis based on the weighted Jaccard dissimilarity index (Fig. 2B). The 
sample type (hot spring 昀氀uids, F; hot spring sediment, S) showed a 
statistical separation (Adonis, p value < 0.05) as well as the hot spring 
type where the microbial community of the recreational hot springs 
differed from the natural ones (Adonis, p value < 0.01). Distribution of 
昀氀uid samples from recreational hot springs indicated a similarity in 
terms of community composition, showing the highest abundance of 
putative pathogens, as previously mentioned. Vector 昀椀tting analysis was 
used to understand the role of environmental parameters in explaining 

the distribution of the samples within the ordination. Microbial com-
munities from hot springs at higher temperature and salinity distributed 
on the top-left side of the ordination while hot springs with a more 
alkaline pH distributed on the top-right side. This suggested a potential 
effect of the tested parameters on the distribution of the samples, 
pushing the communities adapted at more extreme conditions toward 
the borders of the ordination and leaving the ones able to thrive at more 
moderate conditions suitable for mesophilic pathogenic bacteria growth 
closer to the center of the ordination.

The presence of putative pathogens was also con昀椀rmed using 
shotgun metagenomic data. Reads classi昀椀ed as Acinetobacter were 

Fig. 2. (A) Barplot showing the absolute (above) and relative abundance (below) of putative pathogens in the 16S rRNA libraries of hot spring 昀氀uid samples 
(Supplementary Table 2). Recreational and natural hot springs are indicated by the red and the blue bars, respectively. (B) Non-metric multidimensional scaling 
(NMDS, stress 0.16) plot of the 16S rRNA gene amplicon microbial diversity based on the weighted Jaccard dissimilarity index. The colors ‘red’ and ‘blue’ indicate the 
hot spring type (R = recreational, N = natural), the shapes ‘circle’ and ‘squares’ indicate the sample type (F = 昀氀uid, S = sediment), and the size indicate the relative 
abundance of the putative pathogens listed in Supplementary Table 2.
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mainly present in recreational hot springs metagenomes, especially in S4 
(50%), S3 (23.5%), S6 (2.2%), and S7 (0.65% of the total classi昀椀ed 
reads) while they were in low abundance or absent in natural hot 
springs, with abundances of 1.64% in S16. Reads assigned to Comamonas 
were found only in S6 (0.5%) while Pseudomonas was identi昀椀ed in all the 
investigated recreational hot springs with a relative abundance of 5% in 
S3, 1.42% in S6, 1.14% in S4, and 0.74% in S2, while it was not found in 
the natural springs (Supplementary Fig. 2). The viability of the putative 
pathogens identi昀椀ed through sequencing and the colony forming units 
(CFU) were tested on Pseudomonas Selective Agar CN media (PCN agar) 
and Leeds Acinetobacter Medium (LCM). Putative pathogen isolations 
on PCN agar showed bacterial growth for all the isolates from the rec-
reational hot springs tested (S2, S3, S4, and S5), while LCM did not show 
any growth of bacterial colonies for the same spring samples. Hot spring 
hydrothermal 昀氀uids from naturally occurring hot springs were tested on 
both selective media (PCN and LCM) without getting any colony. CFUs 
found on PCN agar for the spring S5 showed the highest number of 
colonies, with a bacterial load equal to 27 CFU/mL (Fig. 3A), while no 
CFUs were obtained on LCM.

Phylogenetic analyses focused on the two most abundant genera 
identi昀椀ed in the 16S rRNA analysis, Acinetobacter and Pseudomonas. 
DNA sequences from the CR17 campaign were used to extract complete 
Acinetobacter spp. 16S rRNA genes (MAGs) and 16S rRNA gene partial 
sequences (amplicon libraries). The phylogenetic tree of Acinetobacter 
spp. (Fig. 4) revealed that almost all the 16S rRNA ASVs fall close to 
Acinetobacter type strains known as human pathogens. In particular, 
Acinetobacter sp. CR1 clusters with Acinetobacter nosocomialis 
HQ180192, Acinetobacter seifertii FJ860878, and Acinetobacter pittii 
HQ180184, while Acinetobacter sp. CR10 is positioned close to Acineto-
bacter baumannii X81660. Moreover, all the complete 16S rRNA genes 
recovered from the MAGs and 104 ASVs fall within the Acinetobacter 
junii X81664 cluster. The abundance of amplicon sequence variants 
related to Acinetobacter spp. was also evaluated for hot spring type, with 
more ASVs in recreational hot springs relative to natural ones (Kruskal 
test, p value < 0.01). A Pseudomonas phylogenetic tree was constructed 
with the same approach as described above (Fig. 5). Most of the 16S 
rRNA ASVs are related to Pseudomonas type strains known in literature 
as human pathogens, while all the isolated type strains fall in a cluster 
related to Pseudomonas aeruginosa. The abundance of ASVs related to 
Pseudomonas spp. was evaluated for hot spring type, with more ASVs in 
recreational hot springs compared to natural ones (Kruskal test, p value 
< 0.01).

3.2. Antibiotic resistance of the putative pathogens

Antibiotic resistance pro昀椀les were determined for P. aeruginosa 

strains (48) isolated from four different recreational springs. All 48 
identi昀椀ed strains showed different antibiotic susceptibility to the two 
groups of antibiotics tested, speci昀椀c and generic, respectively (Table 2). 
In accordance to EUCAST, the distribution of the antibiotic resistance 
pro昀椀les obtained against Meropenem (M, 10 μg), Gentamicin (G, 10 μg), 
Cipro昀氀oxacin (Cp, 5 μg), and Cefepime (Cf, 30 μg) (speci昀椀c group) 
showed different patterns both in the 昀氀uids coming from the recrea-
tional hot spring and in comparison with PAO1 reference strain (Fig. 6). 
More than 12% of the P. aeruginosa type strains identi昀椀ed in each study 
site showed resistance against Gentamicin, Cipro昀氀oxacin, and Cefepime 
while only the strains isolated from S5 showed resistance against Mer-
openem. Multi-drug resistances (MDRs) were found in all the study sites 
with a relative abundance higher than 30% in S5 and S3. PAO1 reference 
strain showed resistance only against the Meropenem and Cefepime and 
no MDR was detected. In accordance with CLSI, antibiotic resistance 
pro昀椀les obtained against Meropenem, Gentamicin, Cipro昀氀oxacin, and 
Cefepime (speci昀椀c group) showed a higher sensitivity of the 
P. aeruginosa type strains identi昀椀ed (Supplementary Fig. 3). Only the 
strains coming from S5 showed resistance against two antibiotics while 
strains from S4 and S2 were resistant against Gentamicin. Strains iso-
lated from S3 were completely sensitive to the antibiotics tested while 
PAO1 reference strain showed resistance only against the Meropenem.

In all the investigated sites, 100% of the Pseudomonas sp. isolates 
were resistant against Ampicillin (A, 10 μg) and Erythromycin (E, 30 
μg), while a lower percentage were resistant against Cefsulodin (C, 30 
μg) and Kanamycin (K, 30 μg) (Supplementary Fig. 4). Also for the 
generic group of antibiotics, MDR were found in each study site, and S5 
showed the highest relative abundance in MDR strains (62.5% of 24 
total strains were MDR) while S3 showed the lowest (16.7% of 6 total 
strains were MDR). PAO1 reference strain showed resistance only 
against the Cefsulodin and Kanamycin, and no MDR were detected.

The occurrence of Antimicrobial Resistance Genes (ARGs) in natural 
and recreational hot springs was investigated by blasting the assembled 
DNA contigs against the Comprehensive Antibiotic Resistance Database 
(CARD; Fig. 7). Natural hot springs 昀氀uids and sediments (S8, S13, S16, 
and S18) were characterized by a low number of ARGs that primarily 
belong to the group of mux and sme which codify for resistance against, 
while almost all recreational hot springs displayed a major diversity of 
ARGs (Fig. 7). The 昀氀uids of S3, S4, and S2 showed the higher number of 
resistance genes which comprised the categories of OXA, ADC, and ade. 
In S5 and S6 昀氀uids, in contrast, only a nov gene and a ade gene were 
found, respectively.

4. Discussion

Environmental reservoirs of antibiotic resistance represent a growing 
concern for global public health as potential sources for human infection 
(Barrett, 2012; Mills and Lee, 2019; Tello et al., 2012). Remote envi-
ronments as well as recreational waters have been identi昀椀ed as current 
reservoirs of antibiotic resistance bacteria and genes (Eckert et al., 2018; 
Knapp et al., 2012; Overbey et al., 2015; Segawa et al., 2013; Zhang 
et al., 2022). The increased antimicrobial resistance of opportunistic 
pathogens together with increased human population densities in areas 
subject to habitat deterioration represent a global threat to public health 
(Myers and Patz, 2009).

Hot springs harbor a plethora of microorganisms that include not 
only naturally-occurring microbes but also introduced opportunistic 
pathogens. Previous studies reported the presence of several infective 
microorganisms including free living protozoa (Abrahams-Sandí et al., 
2015; De Jonckheere, 2005; Montalbano Di Filippo et al., 2017) and 
bacteria (Aburto-Medina et al., 2020; Ghilamicael et al., 2018; 
Mukherjee et al., 2012; Rupasinghe et al., 2022; Sheehan et al., 2005; 
Thorolfsdottir and Marteinsson, 2013) in hot springs and spas. Recrea-
tional use of hot springs and their association to infective agents have 
been reported worldwide (Barben et al., 2005; Falkinham et al., 2015; 
Lutz and Lee, 2011; Martins et al., 1995; Moore et al., 2002; Niewolak 

Fig. 3. (A) Colony forming units of Pseudomonas aeruginosa (as identi昀椀ed by 
16S rRNA sequencing) from the hot spring waters on a plate of PCN agar se-
lective media. (B) Example of antimicrobial susceptibility test on Pseudomonas 
spp. strains isolated from a recreational hot spring showing multidrug resis-
tance. The antibiotics shown include: A (Ampicillin, 10 μg), E (Erythromycin, 
30 μg), C (Cefsulodin, 30 μg), and K (Kanamycin, 30 μg).
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and Opieka, 2000). However, while their presence is well documented 
(Rahel et al., 2021), information related to their origin, distribution and 
antimicrobial resistance pro昀椀les are still limited (Ghilamicael et al., 
2018; Lutz and Lee, 2011).

In the last years, most of the microbiological large-scale in-
vestigations on the Costa Rican hot springs focused on the role of sub-
surface chemolithoautotrophic communities in affecting the carbon 

cycling (Arce-Rodríguez et al., 2019; Barry et al., 2019; Crespo-Medina 
et al., 2017; Fullerton et al., 2021; Rogers et al., 2022) with the addition 
of a few studies on microbial mats community composition (Uribe-Lorío 
et al., 2019; Brenes-Guillén et al., 2021; Finsinger et al., 2008) and 
microbial heterotrophic pathways across the sur昀椀cial geothermal sys-
tems (Paul et al., 2023). The only studies conducted on Costa Rican 
waterborne pathogens were targeted on cases of amoebic 

Fig. 4. Neighbor-joining phylogenetic tree showing the relative position of the ASVs and the MAGs’ 16S rRNA genes related to the genus Acinetobacter relative to 
known Acinetobacter species. The reference sequences of known human pathogens are displayed in bold and 16s rRNA library sequences from this study are followed 
by CR#. The average relative 16S rRNA gene amplicon abundance in the 昀氀uid 16S rRNA libraries is reported for the natural (blue) and recreational (red) hot springs. 
The A. junii cluster also contains the sequences of A. gyllenbergii AJ293694, A. proteolyticus KT997475, Acinetobacter sp. X81659, A. modestus KT997474, A. viviani 
KT997477, A. courvalinii KT997472. Tree based on 1000 replicated bootstrap.
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meningoencephalitis from Naegleria fowleri infections found in hot 
spring waters (Abrahams-Sandí et al., 2015; Barrantes et al., 2022) and 
surveillance monitoring of drinking water aimed to alert the authorities 
for potential disease outbreaks (Barrantes et al., 2022).

Here, we report for the 昀椀rst time, sequencing and isolation data from 
22 Costa Rican hot springs divided into recreational hot springs (e.g. 
resorts and spas) and natural hot springs from remote areas. Our results 
from 16S rRNA amplicon sequencing showed recreational hot springs 

waters (resorts and spas) with moderate-high temperature (40–60 çC) as 
the principal reservoir for the distribution of opportunistic pathogens. 
High temperatures are known to have a limiting effect on pathogenic 
bacterial growth (Spinks et al., 2006) which is in line with the low 
average abundance of potential pathogenic taxa we found within the 
16S rRNA libraries. However, ASVs related to Acinetobacter and Pseu-
domonas were dominant in the recreational hot springs investigated, 
suggesting the presence of moderate thermotolerant species for both 

Fig. 5. Neighbor-joining phylogenetic tree showing the relative position of the ASVs and the 16S rRNA genes of isolated type strains related to the genus Pseu-
domonas relative to known Pseudomonas species. The reference sequences of known human pathogens are displayed in bold while 16S rRNA library sequences from 
this study are followed by CR#. Average relative abundances in the 昀氀uid 16S rRNA libraries are reported for the natural (blue) and recreational (red) hot springs. 
Tree based on 1000 replicated bootstraps.
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genera, as observed in hot springs isolates from other studies (Kumar 
et al., 2023, p.; Obeidat and Al-Shomali, 2023; Saini et al., 2023; 
Obeidat and Al-Shomali, 2023; Saini et al., 2023). In addition, the 
occurrence of Acinetobacter and Pseudomonas genera were recorded in 
other hot springs from developing countries where anthropogenic 
impact is more pronounced (Adjeroud et al., 2020; Moussard et al., 
2004; Najar et al., 2018; Rawat and Joshi, 2019; Wu et al., 2023). 
Among the naturally occurring hot springs, only one site showed a high 
abundance of sequences associated with Acinetobacter. The presence of a 
livestock farming area next to the hot spring might have conditioned the 
surrounding environment through sewage and farm ef昀氀uents (Hill, 
2003; Hooda et al., 2000; Pearce-Duvet, 2006), affecting eventually the 
microbial community composition of the hot spring itself. Species 
related to Acinetobacter were found only through sequence-based anal-
ysis and the phylogenetic investigations showed that most of them were 
closely related to human pathogens like A. junii and A. baumannii, two 
species well known in health care systems for their role in nosocomial 
infections (Hung et al., 2009; Visca et al., 2011). In the past, the role of 
Acinebocater spp. in geothermal settings has been associated with their 

capacity to use different organic carbon sources (Dixit et al., 2021) as 
well as their ability to degrade hydrocarbons (Freitas et al., 2023). 
Species related to Pseudomonas, instead, were found both in 
sequence-based and laboratory culture analysis. In particular, phyloge-
netic evaluations of DNA sequences from 16S rRNA libraries showed a 
similarity to species such as P. 昀氀uorescens and P. fulva related to human 
infections (Liu et al., 2014; Scales et al., 2014) while all laboratory 
isolates were closely associated to Pseudomonas aeruginosa strains that 
are well known for the high rate of acute and chronic infections in 
hospital settings (Crone et al., 2020; Huber et al., 2016; Obritsch et al., 
2005),. The persistence of P. aeruginosa species in thriving in controlled 
settings like spas, hot springs, and swimming pools (Lutz and Lee, 2011; 
Moore et al., 2002) has been linked to its capacity to form bio昀椀lms 
(Hall-Stoodley and Stoodley, 2005) which can increase exponentially 
their survival in different niches (Berg et al., 1990, 2005; Guida et al., 
2016; Mena and Gerba, 2009). The concentrations of P. aeruginosa col-
onies we found from recreational springs waters were orders of magni-
tude higher than the normal threshold accepted for natural spas (World 
Health Organization, 2003). This is a result in line with 昀椀ndings from 

Fig. 6. Antibiogram for P.aeruginosa isolates according to EUCAST. Antibiotic resistance pro昀椀le was developed by testing P. aeruginosa against Meropenem (M, 10 
μg), Gentamicin (G, 10 μg), Cipro昀氀oxacin (Cp, 5 μg), and Cefepime (Cf, 30 μg). Strains of P. aeruginosa with more than two antibiotic resistances were indicated as 
MDR (Multi-Drugs Resistance).

Fig. 7. Absolute and relative abundances of Antimicrobial Resistance Genes (ARGs) found in Costa Rica (2017) sampled sites. Recreational and natural hot springs 
are indicated by the red and the blue bars, respectively.
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other contaminated environments exposed to anthropogenic pressure 
(Crone et al., 2020; Deredjian et al., 2014; Jardine et al., 2017; Mena and 
Gerba, 2009; Saini et al., 2023).

The ARGs detected from the investigated recreational hot springs 
indicated a low distribution of genes related to drug ef昀氀ux functions, 
compared to the main occurrence of enzymatic degradation mechanisms 
by β-lactamases associated to A. baumannii and P. aeruginosa related 
genes (e.g., OXA, ADC, and PDC) which confer resistance to a broad 
range of antibiotics like carbapenems and cephalosporins (Evans and 
Amyes, 2014; Rao et al., 2020). Furthermore, these results were 
consistent with the potential resistance found in multiple P. aeruginosa 
type strains (see below), suggesting a correlation between the relative 
proportion of resistant bacteria with the anthropogenic activities asso-
ciated to recreational hot springs, an observation already reported for 
other environments (Amos et al., 2014; Das et al., 2023; Di Cesare et al., 
2015, 2017; Graham et al., 2011; Hatosy and Martiny, 2015; Luo et al., 
2010; Popowska et al., 2012; Pruden et al., 2012).

The antibiotic resistance pro昀椀les, for the isolated P. aeruginosa type 
strains, showed varying results when different standard references 
(EUCAST vs. CLSI) were used. In accordance with the EUCAST guide-
lines, most of the P. aeruginosa strains displayed resistance against 
almost all the tested antibiotics, with a particular resistance rate against 
general antibiotics like Erythromycin (E, 30 μg), Cefsulodin (C, 30 μg), 
Kanamycin (K, 30 μg), and Ampicillin (A, 10 μg), already known for 
their mild ef昀椀cacy against P. aeruginosa infections (Alam et al., 2019; 
BÚalÚaşoiu and BÚalÚaşoiu, 2014; Khan et al., 2015). Resistance was found 
also for more speci昀椀c antibiotics like Cipro昀氀oxacin (Cp, 5 μg), Cefepime 
(Cf, 30 μg), Gentamicin, and Meropenem (M, 10 μg), linked with 
P. aeruginosa’s capacity to acquire mutations on speci昀椀c targets, as the 
case of the DNA gyrase and the topoisomerase IV enzymes in 昀氀uo-
roquinolones resistance (Drlica and Zhao, 1997; Jacoby, 2005) or 
through mechanisms for antibiotic cleavage, ef昀氀ux, and reduced drug 
uptake in -Lactams resistance (Pfeifer et al., 2010; Poole, 2004, 2011). 
The detection of multidrug-resistant P. aeruginosa strains in over half of 
the investigated sites could be explained by the presence of a selective 
pressure able to escalate antibiotic resistance in the ecosystem (Bel Hadj 
Ahmed et al., 2020; Bravakos et al., 2021; Li et al., 2017). This was 
previously observed by Sharma et al. (2022) who investigated the 
spread and co-evolution of resistomes from pathogenic to 
non-pathogenic microorganisms in different Himalayan hot springs, 
attributing the occurrence of metal, drug, and biocide resistomes in 
these habitats to natural and anthropogenic activities. In this context, 
metals generally used for microbial metabolisms (Giovannelli, 2023; 
Hay Mele et al., 2023) as well as biocide contamination have been 
demonstrated to involve environmental multidrug resistance acquisition 
(Bengtsson-Palme et al., 2018; Catao et al., 2021; Farias et al., 2015; Lim 
et al., 2015; Mishra et al., 2023; Najar et al., 2022, 2020; Thomas et al., 
2020), causing a hyperexpression of the drug ef昀氀ux pumps in 
Gram-negative bacteria (Amsalu et al., 2020; Khan et al., 2018; Piddock, 
2006). When the CLSI guidelines were used instead of the EUCAST ones, 
the number of P. aeruginosa strains resistant to the tested antibiotics 
decreased (Supplementary Fig. 1). The only resistance found was against 
gentamicin with the highest number of resistant isolates from the site S2, 
followed by S4 and S5 isolates. The latter was the only site where a low 
number P. aeruginosa type strains resistant to meropenem was found, 
suggesting a strong response to the antibiotic exposure since the CLSI 
has more stringent diameter breakpoints. The discrepancies between the 
two antimicrobial susceptibility testing systems (Supplementary Fig. 3) 
have been already observed, and the lack of agreement in the antibiotic 
breakpoints interpretation have critical implications on surveillance 
initiatives (Bork et al., 2017; Cusack et al., 2019; Hombach et al., 2013; 
Machuca et al., 2016; Rodríguez-BaÞno et al., 2012; Rodríguez-Martínez 
et al., 2011).

Overall our data suggest that hot springs represent an optimal 
reservoir of antimicrobial resistant opportunistic pathogens. The low 
abundance of putative pathogens and ARGs in natural occurring springs 

as well as the higher multidrug resistant pathogens observed only in the 
recreational hot springs suggests that the presence of pathogens is linked 
to anthropogenic activities. In this context, anthropogenic pressure 
together with environmental factors might play a key role in leading the 
differential occurrence of putative multidrug-resistant pathogens, 
making recreational hot springs a suitable reservoir for pathogen pro-
liferation. The investigated recreational hot springs have a neutral pH 
and temperatures ranging between 40 çC and 60 çC that makes them 
more suitable for human bathing compared to naturally occurring hot 
springs. These conditions however also fall in the physiological range of 
common pathogens, supporting their higher abundances at recreational 
sites. In addition, a combined effect of anthropogenic pressure and 
natural events like the rainy season typical of the Central America re-
gions may affect the ARG dynamics, facilitating the contamination of the 
soil and the consequent drainage to the hot spring 昀氀uids, contributing to 
the spreading of antibiotic resistance genes, as was previously reported 
for other pathogens (Di Cesare et al., 2017). However, the occurrence of 
putative pathogens in recreational hot springs might be supported by the 
lack of prevention strategies as well as insuf昀椀cient management prac-
tices (Mavridou et al., 2018). The application of more stringent man-
agement protocols (Nichols, 2006), which include an in-depth 
investigation of the hot springs underground plumbing system to pre-
vent potential contamination at the hydrothermal 昀氀uids source, more 
frequent drainage and cleaning operations, better water quality man-
agement, and regular microbiological testing might mitigate the risk. 
This is however a temporary solution to the rising threat of antimicrobial 
resistance in the environment, which will require direct and decisive 
legislative interventions to limit antibiotic use together with new in-
vestment in antimicrobial research (Majumder et al., 2020).

5. Conclusion

In conclusion, our study presents a combined sequence-based and 
laboratory culture survey to investigate the potential occurrence of 
putative pathogens and antibiotic resistance genes in several recrea-
tional and naturally occurring hot springs of Central America. The ob-
tained results indicate that recreational hot springs harbor signi昀椀cantly 
higher abundances of multi drug resistant opportunistic pathogens, 
suggesting anthropogenic activities as the main factor in favoring the 
presence of putative pathogenic bacteria as well as the contamination 
and spreading of antibiotic resistance genes. This, together with the 
capacity of some opportunistic pathogens in persisting in high temper-
ature conditions, highlights the need for a better understanding of the 
hot springs’ role as reservoirs of potential multi resistant pathogens in 
the environment. Given the exponential rise in popularity of hot springs 
as tourist attractions globally, more effective management guidelines 
and prevention measures are necessary to ensure public safety and 
preserve the cultural and health legacy of this millenia-old leisure 
activity.
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Guida, M., Di Onofrio, V., Gallè, F., Gesuele, R., Valeriani, F., Liguori, R., Romano 
Spica, V., Liguori, G., 2016. Pseudomonas aeruginosa in swimming pool water: 
evidences and Perspectives for a new control Strategy. Int J Environ Res Public 
Health 13, 919. https://doi.org/10.3390/ijerph13090919.

Hall-Stoodley, L., Stoodley, P., 2005. Bio昀椀lm formation and dispersal and the 
transmission of human pathogens. Trends Microbiol. 13, 7–10. https://doi.org/ 
10.1016/j.tim.2004.11.004.

Harris, S.J., Cormican, M., Cummins, E., 2012. Antimicrobial Residues and 
antimicrobial-resistant bacteria: impact on the microbial environment and risk to 
human health—a review. Hum. Ecol. Risk Assess. 18, 767–809. https://doi.org/ 
10.1080/10807039.2012.688702.

Hatosy, S.M., Martiny, A.C., 2015. The ocean as a global reservoir of antibiotic resistance 
genes. Appl. Environ. Microbiol. 81, 7593–7599.

Hay Mele, B., Monticelli, M., Leone, S., Bastoni, D., Barosa, B., Cascone, M., 
Migliaccio, F., Montemagno, F., Ricciardelli, A., Tonietti, L., 2023. Oxidoreductases 
and metal cofactors in the functioning of the earth. Essays Biochem. 67, 653–670.

Hayat, M.A., 2012. Fixation for Electron Microscopy. Elsevier (Eric). 
Hill, V.R., 2003. Prospects for pathogen Reductions in livestock Wastewaters: a review. 

Crit. Rev. Environ. Sci. Technol. 33, 187–235. https://doi.org/10.1080/ 
10643380390814532.

Hlavsa, M.C., Cikesh, B.L., Roberts, V.A., Kahler, A.M., Vigar, M., Hilborn, E.D., Wade, T. 
J., Roellig, D.M., Murphy, J.L., Xiao, L., 2018. Outbreaks associated with treated 
recreational water—United States, 2000–2014. MMWR Morb Mortal Wkly Rep 70 
(20), 733–738.

Hombach, M., Wolfensberger, A., Kuster, S.P., Böttger, E.C., 2013. In昀氀uence of clinical 
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