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1. Introduction

The past decade of research on the interdependence of human, ani-
mal, and environmental health has highlighted the importance of
investigating and interpreting the spread of pathogens at the ecosystem
level, in a “One Health” framework (Destoumieux-Garzon et al., 2018).
The connection between environmental status and human health ap-
pears even stronger in the wake of the recent SARS-CoV2 pandemic,
which likely emerged from human interactions with the environment
and unsafe food handling (De Sadeleer and Godfroid, 2020). In this
context, antibiotic resistance has become a serious problem in clinical
settings (French, 2005), with the development of new multidrug resis-
tance in several groups of pathogens representing a public health threat
(Tanwar et al., 2014). According to the most recent Center for Disease
Control (CDC) report, more than 2.8 million antibiotic-resistant in-
fections occur every year CDC 2019, 2023), with trends projected to
increase for the next decade.

Some clinical resistance genes have also been found to originate from
environmental strains (Wright, 2010). The myriad interactions between
pathogens and environmental bacterial communities favors the acqui-
sition of new resistance (Amalfitano et al., 2015). Ecosystems that come
into contact with contamination vectors (for example sewage runoffs)
may become reservoirs for the spreading and the evolution of new
emerging drug resistant pathogens (Harris et al., 2012; Wang et al.,
2021) that subsequently make their way back to the general population
(Kraemer et al., 2019). Ingestion or contact with water contaminated by
bacteria, viruses or protozoa can lead to several infections (Leclerc et al.,
2002). In this way, new outbreaks of emerging opportunistic pathogens
may occur, like those reported in Central Europe where the emerging
pathogenic genus Arcobacter has been shown to be one of the main
causes of enteric disease (Pérez-Cataluna et al., 2017; Prouzet-Mauléon
et al, 2006). Together with emerging strains, the main
healthcare-associated pathogens are represented by Acinetobacter bau-
mannii and Pseudomonas aeruginosa (Motbainor et al., 2020), which
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cause a broad spectrum of infections from skin and wounds (Fleming
et al., 2017; Kim et al., 2015), and in rare cases necrotizing fasciitis
(Charnot-Katsikas et al., 2009; Reisman et al., 2012). Pseudomonas aer-
uginosa alone is responsible for 10-20% of nosocomial infections in
intensive care units (Nicastri et al., 2003), and a high prevalence of these
infections are caused by drug resistant phenotypes (Gill et al., 2016).

The capacity of several groups of pathogens to persist in different
kinds of environments and spread through them remains a worldwide
concern (Exner et al., 2005). Often, the discovery of environmental
pathogens is associated with water bodies like alpine rivers and lakes (Di
Cesare et al., 2017; Eckert et al., 2018), urban rivers (Cui et al., 2019)
and coastal regions where fecal bacteria can diffuse out from areas of
major concentrations of human land-based activities (Manini et al.,
2022; Walters et al., 2011; Wang et al., 2017). Intense adverse weather
events, likely to increase in frequency and intensity due to the current
climate crisis (Ebi et al., 2021), are also correlated with increased
pathogens and microbial resistance genes in the environment (Di Cesare
et al., 2017; Manini et al., 2022). Intensive agriculture also contributes
to water quality impairment due to animal feeding operation or land
applied manure (Rosen et al., 2000). Berg et al. (2005) showed that the
soil can host a huge number of well known and emerging pathogens
which cover a broad spectrum of clinical syndromes, underscoring the
need to understand more about the colonization and transmission stra-
tegies of the opportunistic human pathogens through the rhizosphere.
Recent studies focused their attention on potential reservoirs like hos-
pital sewage where pathogens can acquire antibiotic resistance (Zhang
et al., 2013). In the same way, the release of sewage sludge as soil fer-
tilizer containing antibiotics, antibiotic-resistant bacteria, and antibiotic
resistance genes increase the environmental pool of antibiotic resistance
genes and consequently favor the horizontal gene transfer of resistance
among environmental microorganisms, constituting a significant reser-
voir of potential antibiotic-resistant pathogens (Bondarczuk et al., 2016;
Calero-Caceres et al., 2014).

Besides soils, recreational water can be an important source of dis-
ease caused by pathogenic organisms, (Purnell et al., 2020). Water
quality monitoring and management are the main approaches to reduce
the potential infection risk, but the high variety of potential pathogenic
organisms complicates the quantification and detection procedures. The
most common indicator of recreational water contamination are fecal
bacteria like E. coli or Enterococci, which can be tracked with conven-
tional or alternative methods (Manini et al., 2022; Rodrigues and Cunha,
2017). However, the efficacy of water treatment to reduce the infection
rate by pathogens is not always clear; according to the US Center for
Disease Control, 41% of outbreaks related to recreational water that had
been treated to decrease pathogens were associated with hot tubs/spas
and can be caused by pathogens from the genera Cryptosporidium,
Legionella and Pseudomonas. On the other hand, outbreaks related to
untreated recreational waters like those of lakes, rivers or oceans are
mostly caused by enteric pathogens when fecally contaminated water is
ingested. Sources of contamination can be stormwater runoff, sewage
treatment plant discharge, and animal or waste associated with boating
(Graciaa et al., 2018; Hlavsa et al., 2018).

In this context, water monitoring strategies are of primary impor-
tance to protect the public from infection risks due to pathogens
harbored in recreational environments. The World Health Organization
(WHO) has established specific guidelines for the monitoring of water
quality (World Health Organization, 2003), which have been adopted
with specific legislations by numerous countries. Water types monitored
worldwide include drinking water and treated (often chlorinated) or
untreated recreational waters. According to the WHO, the levels of
bacteria like E. coli, P. aeruginosa and Legionella spp. in public pools
should be less than 1 colony forming unit (CFU) per 100 mL of water
(World Health Organization, 2006).

Hot springs constitute terrestrial hydrothermal systems that origin
from geothermally-heated groundwater which arises from deep Earth’s
crust as a consequence of tectonic and magmatic processes (Kresic,
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2010). These hydrothermal systems are globally distributed and there
are evidences for the important role that hot springs played in human
society since Greek and Roman times, when these were not only used for
recreational and social purposes but were also considered sacred sites
with powerful healing properties (Des Marais and Walter, 2019; Erfurt,
2021; Lamoreaux, 2005; van Tubergen and van der Linden, 2002).
Currently, the recreational use of hot springs supports a growing sector
of tourism worldwide with an estimated industry worth in excess of 40
billion US dollars (Global Wellness Economy Monitor, 2023). Unre-
strained commercial tourism, however, can lead to an irresponsible use
of natural resources (Erfurt, 2021; Mavridou et al., 2018). Land
over-exploitation for large-scale resort developments, wrong disposal of
waste water and septic systems can bring to deterioration of ground-
water aquifers, including hydrothermal reservoirs (Erfurt, 2021; Jack
et al., 2013; Page et al., 2014). Given the hundreds of millions of people
that use recreational, naturally-occurring hot springs, and spas annually,
it does not come as a surprise that hot springs might be connected with
infections (Mavridou et al., 2018). Several cases have been reported in
the last decades, frequently linked to bacteria belonging to genus Ba-
cillus (Pandey et al., 2015), Legionella (James et al., 2022; Ji et al., 2014)
Pseudomonas (Mukherjee et al., 2012; Rahel et al., 2021), and free-living
protozoa (Fabros et al., 2021). The presence of P. aeruginosa as a cause of
folliculitis linked to recreational water was described for the first time in
1975 (McCausland and Cox, 1975). Since then, several cases of infection
related to P. aeruginosa and recreational water usage have been reported
(Tate et al., 2003). Infections caused by the free-living amoebae, Nae-
gleria fowleri, have made news due to deadly cases of meningoenceph-
alitis linked to hot spring use (Abrahams-Sandi et al., 2015; Vugia et al.,
2019). Despite growing reports of infection cases linked with the rec-
reational use of hot springs, information relative to the diversity and
distribution of potential pathogens in naturally-occurring hot springs
are limited (Ghilamicael et al., 2018; Jardine et al., 2017; Mavridou
et al., 2018).

Here, we investigated the distribution of potential pathogens and
antimicrobial resistance genes in several Costa Rican hot springs,
comparing the ones used for recreational purposes in resorts and spas
with natural-occurring hot springs located in more remote areas. Culture
independent analyses based on 16S rRNA amplicons and shotgun met-
agenomic sequencing were used to: i) detect the springs with higher
abundance of putative pathogenic bacteria; and ii) study the presence of
antimicrobial resistance genes. In addition, a group of recreational hot
springs were investigated through culture dependent analyses to isolate
putative pathogens and test their antibiotic susceptibility. Our results
show the presence of diverse potential pathogens linked with the rec-
reational hot springs as well as the occurrence of multidrug-resistant
pathogens. Omics analyses and pure cultures isolated from the springs
suggest that hot springs represent a major environmental reservoir of
potential multidrug-resistant pathogens and emphasize that additional
management measures need to be introduced to increase public safety.

2. Methods
2.1. Sampling approach

During two sampling campaigns in 2017 (CR17) and 2019 (CR19), a
total of 22 individual hot springs were sampled spanning the volcanic
areas of Costa Rica (Table 1). Two types of pools were sampled: natu-
rally occurring hot springs (n = 15), hot springs which had been
developed for recreational use (n = 6) located within spas and resorts,
and one boiling mud pond located within a resort (Fig. 1). Several of the
natural hot springs had a detectable amount of anthropization, pre-
sumably due to occasional bathing of the local populations or due to use
for washing, cleaning, and other household activities. However, the
number of people accessing the natural systems was presumably limited
compared to recreational springs. In 2017, hot spring hydrothermal
fluids and sediments (Table 1) were collected following the protocols
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Table 1
Location and main environmental features of the hot springs sampled.
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Hot spring Sampling year Sample type” Hot spring type Altitude (m) Temperature (°C) pH Salinity (g/L)
S1 2017 S Recreational/Natural 535 88.9 2.11 2.7
S2 201772019 F/S Recreational 437 59 6.16 3.3
S3 2017/2019 F/S Recreational 434 53.8 5.87 3.1
S4 2017/2019 F Recreational 557 42.7 6.19 29.3
S5 201772019 F/S Recreational 368 41.4 6.19 0
S6 2017 F/S Recreational 553 60 6.24 1.8
S7 2017 F Recreational 166 59.1 6.32 3.4
S8 2017 F/S Natural 184 72 6.31 3.2
S9 2017 F/S Natural NA 26.4 9.99 0.1
S10 2017 F Natural 122 27.9 9.75 0.1
S11 2017 F/S Natural 109 55.2 5.93 3
s12 2017 F/S Natural 765 87.9 1.82 3.3
S13 2017 F Natural 53 28.7 5.81 2
S14 2017 F/S Natural 298 48.7 8.53 2.2
S15 2017 F/S Natural 300 36.7 8.69 1.4
si6 2017 F/S Natural 429 229 5.6 0.1
S17 2017 F/S Natural 82 29.4 9.96 0.1
S18 2017 F/S Natural 36 35.9 9.83 1.8
S19 2017 F/S Natural 165 57 6.12 1.4
$20 2017 F Natural 173 31.8 9.25 0.1
S21 2017 F/S Natural 2209 55.8 4.51 2.98
S22 2017 F/S Natural 436 59.8 5 7.19

@ Sample type: ‘F’ indicate hot spring water fluids while ‘S’ indicate hot spring sediments.

previously described (Barry et al., 2019; Fullerton et al., 2021; Rogers
et al., 2022) and using the rationale described in detail in Giovannelli
et al. (2022). Briefly, at each sampling site, hot spring hydrothermal
fluids (0.5-1L) were filtered from the spring inlet through Sterivex 0.22
pm filter cartridges (MilliporeSigma) and 15 mL falcon tubes were filled
with surficial sediments. Both filters and sediment-filled tubes were
instantaneously frozen onsite at 196 °C in a cryogenic dry shipper
(Termo Fisher Scientifc, Arctic Express 20) for transport back to the
home laboratory. Samples for cell counts were fixed in 3% formaldehyde
(Hayat, 2012) and kept at 4 °C. In 2019, hydrothermal fluids from four
recreational hot springs already sampled in 2017 (Table 1) were
collected in sterile 50 mL falcon tubes storing a part of samples directly
at 4 °C for isolation purposes (see Table 2).

2.2. Colony forming units

Hot spring hydrothermal fluids for colony forming unit (CFU) anal-
ysis were kept at 4 °C until processing. Briefly, 7-10 mL per sample were
filtered on a 47 mm diameter 0.22 pm filter using a sterile filtering
apparatus. In order to restrict the growth of non-target bacteria, the
filter was placed on top of a defined agar plate, either using selective
media such as Leeds Acinetobacter Medium (Jawad et al., 1994;
McConnell et al.,, 2011) and Pseudomonas Selective Agar CN media
(Goto and Enomoto, 1970; Weiser et al., 2014). For each condition, two
replicate samples were incubated overnight at 37 °C in accordance with
standardized protocols (APHA, 2017). CFUs were manually counted on a
colony counter and normalized to the fluid volume filtered (2020).

2.3. Genomic DNA extraction and sequencing

Genomic DNA was extracted from Sterivex filters and from sediment
following a modified protocol from (Giovannelli et al., 2016). Genomic
DNA was visualized on 1.2% w/v agarose gel and quantified using a
Nanodrop spectrophotometer. In 2018, extracted DNA was subjected to
both amplicon sequencing and shotgun metagenome sequencing.
Amplicon sequencing was carried out after amplifying the
bacteria-specific V4-V5 region of the 16S rRNA gene using primers 518F
(AATTGGANTCAACGCCGG) and 926R (CCGYCAATTYMTTTRAGTTT)
(Parada et al., 2016). Amplicon and shotgun metagenome sequencing
was performed as part of the Census of Deep Life initiative with the Deep
Carbon Observatory and performed at the Marine Biological Laboratory

sequencing facility (https://www.mbl.edu/) on an Illumina MiSeq
platform for samples from 2017. In both cases, the Illumina Nextera Flex
kit for MiSeq + NextSeq, which requires a very small amount of starting
material (1 ng) was used. Obtained shotgun metagenomes varied from
25 to 150 million base pairs. Amplicon sequencing data is available from
the NCBI SRA archive with accession numbers PRINA579365, while the
shotgun metagenomes are deposited in PRINA627197.

2.4. Strain isolation and testing

Small aliquots of hydrothermal fluids from recreational hot springs
sampled in 2019 (Table 1) were inoculated in nutrient broth (BD, Difco)
and incubated at 37 °C for several days. Afterward, dilutions to extinc-
tion were performed, following a further incubation at 37 °C. Small
volumes of enrichment showing positive growth were transferred on a
Nutrient -agar plate and incubated at 37 °C for 12-18 h. From them,
singular bacterial colonies were systematically picked and streaked on
Nutrient - agar plates in order to obtain isolated colonies. To identify
Pseudomonas spp. strains, DNA was extracted and the 16S rRNA gene
was amplified by PCR with universal primers 16S-8F (AGA GTT TGA
TCC TGG CTC AG) and 16S-1517R (ACG GCT ACC TTG TTA CGA CTT).
PCR products were sequenced with Bio-Fab Research, and identities
were confirmed by blasting DNA sequences against the NCBI database.
Sequences of the Pseudomonas spp. strains isolated and analyzed in this
study are available through the European Nucleotide Archive (ENA)
under project accession PRJEB61745. Small aliquots of hydrothermal
fluids from naturally occurring hot springs were tested directly on se-
lective media such as Leeds Acinetobacter Medium and Pseudomonas
Selective Agar CN media and incubated at 37 °C.

2.5. Antimicrobial susceptibility testing

Antibiotic susceptibility testing was performed on all the Pseudo-
monas spp. identified strains, according to the European Committee and
Antimicrobial Susceptibility Testing (EUCAST) Poole, 2011 and Clinical
and Laboratory Standards Institute (CLSI, 2018) providing tables that
list breakpoint guidelines to interpret antimicrobial resistance. Pseudo-
monas PAO1 was included in the analysis as a reference strain. Pure
cultures were obtained on Mueller-Hinton agar plates after 12 h at 37 °C
and individual colonies were used to prepare the suspension for inocu-
lation in liquid Mueller-Hinton media, two replicates for each sample.
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Table 2
Results of the antibiogram on the isolated P. aeruginosa.
Hot Sample  EUCAST CLSI
spring Meropenem (M, Ciprofloxacin Gentamicin (G, Cefepime (Cf, Meropenem (M, Ciprofloxacin Gentamicin (G, Cefepime (Cf,
10 png) (Cp, 5 pg) 10 pg) 30 pg) 10 pg) (Cp, 5 pg) 10 pg) 30 pg)

S5 36 I* S R S I S R S
S5 38 I S S S S S S S
S5 40 S S S S S S S S
S5 41 S S S R S S S S
S5 42 S S S S S S S S
S5 43 S S S S S S S S
S5 44 S S S S S S S S
S5 45 S S S R S S S S
S5 46 S S S R S S S S
S5 47 R R R S R S I S
S5 48 I R R R S S I S
S5 49 R R R R R S I I
S5 50 I R R R S S I S
S5 51 I R R R S S I S
S5 52 R R R R R S I S
S5 53 I S S R S S S S
S5 54 I S R R S S I S
S5 55 I R S S S S S S
S5 56 I R R R S S R S
S5 57 S S R R S S I S
S5 58 I S S R S S S S
S5 59 I S R R S S I S
S5 60 I R R R I S I S
S5 61 S S R R S S I S
S4 62 S S R S S S R S
S4 63 S S R R S S I S
S4 64 I S R S S S I S
S4 65 I S S S S S S S
S4 66 S S R S S S I S
S4 67 I S S S S S S S
S4 68 S R R S S S I S
S4 69 I S R R S S I S
S4 70 S S S S S S S S
S4 71 S S R S S S I S
S4 72 I S R S S S R S
S4 73 I R R R S S I S
S2 84 S S R S S S I S
S2 85 I R R S S S I S
S2 86 I S R S S S I S
S2 87 I R R R S S R S
S2 88 I R R S S S R S
S2 89 S R R S S S R S
S3 90 S R R S S S I S
S3 91 I R S S S S S S
S3 92 I R R R S I I S
S3 93 I R R R S S I S
S3 94 S R R R S S I S
S3 95 S R S R S S S S

Note: R=Resistant, S=Sensitive, I=Intermediate. EUCAST Zone diameter breakpoint: Meropenem S > 24, R < 18. Ciprofloxacin S > 26, R < 26. Gentamicin S > 15, R
< 15. Cefepime S > 21, R < 21. * The Meropenem intermediate value has been arbitrarily defined because it is absent in the EUCAST breakpoint table. CLSI Zone
diameter breakpoint: Meropenem S > 19,116-18, R < 15. Ciprofloxacin S > 21,116-20, R < 15. Gentamicin S > 15,113-14, R < 12. Cefepime S >18,115-17, R < 14.

After an overnight incubation, an aliquot of the liquid culture was
measured on the UV/VIS Spectrophotometer at the absorbance of 625
nm, until reaching 0.5 McFarland turbidity standard. Then, the sus-
pension was inoculated on Mueller-Hinton agar plates and test disks
were applied over the surface. The antibiotics were organized in two
groups, specific and generic, the first group refers to recommended
antibiotics for antimicrobial susceptibility testing by EUCAST and CLSI
instead the second group refers to generic antibiotics of common use.
Meropenem (M, 10 pg), Ciprofloxacin (Cp, 5 pg), Gentamicin (G, 10 pg),
Cefepime (Cf, 30 pg) are part of the specific group. Erythromycin (E, 30
ug), Cefsulodin (C, 30 pg), Ampicillin (A, 10 pg), Kanamycin (K, 30 pg)
are part of the generic group. After overnight incubation at 37 °C, the
inhibition zone diameter was measured according to the EUCAST and
CLSI BreakPoint Table (http://www.eucast.org/clinical _breakpoints/,
https://clsi.org/). Finally, relative abundance of antibiotic resistance
was calculated as the number of bacterial strains resistant per hot spring

tested.

2.6. Bioinformatic and statistical approaches

Amplicon sequencing analysis was previously described in Fullerton
et al. (2021). Briefly, obtained 16S rRNA reads were processed using
MOTHUR (Schloss et al., 2009), following the Miseq standard operating
procedure for the identification of Amplicon Sequencing Variants
(ASVs). Taxonomy was assigned using the RDP naive Bayesian classifier
against the Silva v132 release (Quast et al., 2013). All statistical ana-
lyses, data processing and plotting were carried out in the R statistical
software (Core, 2021), using the phyloseq (McMurdie and Holmes,
2013) and ggplot2 (Wickham, 2011) packages, as previously reported
(Barosa et al., 2023; Cordone et al., 2022, 2023). Briefly, the obtained
count table, taxonomy assignment and phylogenetic tree were combined
together with the environmental variables into a phyloseq object. Low
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Fig. 1. Temperature and pH of the sampled hot springs. Recreational hot springs placed within spa and resort are colored in blue while natural hot springs are in red.
Spa/resort hot springs not linked with recreational waters usage are indicated in green.

prevalence ASVs, mitochondria and chloroplast related sequences were
removed. In both fluids and sediments, common laboratory contami-
nants from DNA processing, feces, and skin (Sheik et al., 2018) were
largely absent (<0.04% in the entire dataset and less than 0.01% in any
individual library), and no ASV was shared by all samples. After QC and
filtering a total of 2,346,695 reads comprising 40,690 ASVs were ob-
tained. Normalization of the ASVs count was carried out using the me-
dian library size across the dataset. Genera from putative pathogenic
species were used for downstream analysis. A list of the putative path-
ogenic genera searched in the libraries is available as Supplementary
Table 1. Beta-diversity was investigated through the Weighted Jaccard
dissimilarity index implemented in the Vegan package (Oksanen et al.,
2018). The resultant matrix was displayed through a Non-metric
Multidimensional Scaling (NMDS) with the aim to understand any
relationship between the distribution of the putative pathogens and the
sampled hot springs. Vector fitting analysis (Vegan package) was used as
well to estimate any effect of the environmental parameters on the hot
spring putative pathogens. Shotgun metagenomic assembly, binning,
and annotation were previously described in Rogers et al. (2022),
Briefly, raw reads were quality checked and trimmed using Trimmo-
matic v 0.38 (Bolger et al., 2014) using default settings. De novo as-
sembly was carried out with metaSPAdes (Nurk et al., 2017) with
standard parameters and a minimum contig lenght of 1.5 kb. Assemblies
were used to build 404 metagenomic assembled genomes (known as
MAGS/bins) with >70% completeness and <5% contamination (Bowers
etal., 2017; Grettenberger and Hamilton, 2021) through the MetaWRAP
pipeline (Uritskiy et al., 2018) and checked using CheckM (Parks et al.,
2015). Further details on the obtained MAGs are available in Rogers
et al. (2022). Post QC raw reads were used to assess the taxonomic
composition with Kaiju (Menzel et al., 2016). A small group of assem-
bled contigs were searched against the Comprehensive Antibiotic
Resistance Database (CARD; Alcock et al., 2023) to identify antimicro-
bial resistance genes. From the BLAST, only the hits with almost 70% of
coverage and 70% of similarity were retained. Complete 16S rRNA
genes from the MAGs identified as Acinetobacter spp. and 16S rRNA
partial sequences with individual abundance above 0.1% from the
amplicon libraries were used for phylogenetic analyses. Representative
sequences of Acinetobacter spp. type strains were downloaded from
NCBL. Partial sequences of 16S rRNA from Pseudomonas spp. isolates and
16S rRNA partial sequences with individual abundance above 0.05%
from the amplicon libraries were used for phylogenetic analyses while
the representative sequences of Pseudomonas spp. type strains were
downloaded from NCBI. Both the trees were processed separately.
Alignment of the 16S rRNA sequences was carried out using MAFFT
(Katoh et al., 2019) while the trimming step was performed with ClipKit
(Steenwyk et al., 2020). Phylogenetic distances matrix were calculated
using the GRT model and the maximum-likelihood trees were

constructed with IQ-TREE (Minh et al., 2020). The branch support was
estimated using the approximate likelihood ratio test (aLRT) (Anisimova
and Gascuel, 2006). All the figures were finalized using the open-source
vector graphics editor Inkscape (https://inkscape.org/). A complete R
script containing all the steps to reproduce our analysis is available at
https://github.com/giovannellilab/Selci_et_al Hot_springs_pathogens

and released as a permanent version using Zenodo under the DOL https
://D0I1:10.5281/zenodo.8274180.

3. Results

3.1. Abundance and distribution of putative pathogenic sequences in
Costa Rica hot springs

Putative pathogens were identified in nearly all sites that yielded
amplifiable DNA (n = 13 sites) with the exception of S1, S12, S17, and
S18. Sequences associated with known putative pathogens constitute the
6% of the whole ASVs identified (Fig. 2A). Among them, the number of
ASVs related to known pathogenic taxa accounted for more groups in
fluid samples compared to the sediments (Kruskal test, p value < 0.001;
Supplementary Fig. 1). In hot spring hydrothermal fluids (Fig. 2A),
putative pathogens were represented, on average, by ASVs assigned to
the genus Acinetobacter (52.8%) followed by Flavobacterium (9.5%) and
Pseudomonas (5.6%). Less abundant sequences were related to the
genera Bacillus (5.5%), Halomonas (3.9%), Treponema (3.2%), Rose-
omonas (3.1%), and Comamonas (3.0%). They were followed by genera
like Legionella (2.3%), Deinococcus (1.8%), Staphylococcus and Entero-
coccus (1.6%), while Leptospira, Stenotrophomonas, and Coxiella had an
abundance of 1.0%. Sampled fluids of recreational hot springs were
characterized by higher concentrations of putative pathogens when
compared to natural hot springs located in more remote locations
(Kruskal test, p value < 0.05).

Acinetobacter was the main represented genus with a relative abun-
dance of 94.3% in S3, 91.5% in S5, 88.2% in S6, 83.2% in S2, and 71.1%
in S7. The genus Pseudomonas was second in abundance with 12% in S2
and S7, while in S3 was around 5%. These were followed by S5 and S6
fluids with a lower abundance of Pseudomonas (0.3% and 1.7%,
respectively) but a higher abundance of Comamonas (~8% for both). In
natural hot springs not associated with spas and recreational centers, on
the other hand, Acinetobacter was found with a high relative abundance
only in S13 (86.7%), probably due to the presence of a farm next to the
spring. Other natural hot springs like S10, S11, and S16 showed an
average abundance of 51%, while for sites like S8, S9, S15, and S19 the
abundance of Acinetobacter was 4.25% on average. Pseudomonas was
present in natural hot springs with an abundance of 8.73% and 8.33%
for S8 and S9, while for S11, S16, S10, and S19 the abundance had an
average of 6.1%. The remaining springs (S13 and S15) were under 1%.
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Fig. 2. (A) Barplot showing the absolute (above) and relative abundance (below) of putative pathogens in the 16S rRNA libraries of hot spring fluid samples
(Supplementary Table 2). Recreational and natural hot springs are indicated by the red and the blue bars, respectively. (B) Non-metric multidimensional scaling
(NMDS, stress 0.16) plot of the 16S rRNA gene amplicon microbial diversity based on the weighted Jaccard dissimilarity index. The colors ‘red” and ‘blue’ indicate the
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abundance of the putative pathogens listed in Supplementary Table 2.

The beta-diversity of the hot springs microbial community was
investigated through an Non-metric Multidimensional Scaling (NMDS)
analysis based on the weighted Jaccard dissimilarity index (Fig. 2B). The
sample type (hot spring fluids, F; hot spring sediment, S) showed a
statistical separation (Adonis, p value < 0.05) as well as the hot spring
type where the microbial community of the recreational hot springs
differed from the natural ones (Adonis, p value < 0.01). Distribution of
fluid samples from recreational hot springs indicated a similarity in
terms of community composition, showing the highest abundance of
putative pathogens, as previously mentioned. Vector fitting analysis was
used to understand the role of environmental parameters in explaining

the distribution of the samples within the ordination. Microbial com-
munities from hot springs at higher temperature and salinity distributed
on the top-left side of the ordination while hot springs with a more
alkaline pH distributed on the top-right side. This suggested a potential
effect of the tested parameters on the distribution of the samples,
pushing the communities adapted at more extreme conditions toward
the borders of the ordination and leaving the ones able to thrive at more
moderate conditions suitable for mesophilic pathogenic bacteria growth
closer to the center of the ordination.

The presence of putative pathogens was also confirmed using
shotgun metagenomic data. Reads classified as Acinetobacter were



M. Selci et al.

mainly present in recreational hot springs metagenomes, especially in S4
(50%), S3 (23.5%), S6 (2.2%), and S7 (0.65% of the total classified
reads) while they were in low abundance or absent in natural hot
springs, with abundances of 1.64% in S16. Reads assigned to Comamonas
were found only in S6 (0.5%) while Pseudomonas was identified in all the
investigated recreational hot springs with a relative abundance of 5% in
S3,1.42% in S6, 1.14% in S4, and 0.74% in S2, while it was not found in
the natural springs (Supplementary Fig. 2). The viability of the putative
pathogens identified through sequencing and the colony forming units
(CFU) were tested on Pseudomonas Selective Agar CN media (PCN agar)
and Leeds Acinetobacter Medium (LCM). Putative pathogen isolations
on PCN agar showed bacterial growth for all the isolates from the rec-
reational hot springs tested (S2, S3, S4, and S5), while LCM did not show
any growth of bacterial colonies for the same spring samples. Hot spring
hydrothermal fluids from naturally occurring hot springs were tested on
both selective media (PCN and LCM) without getting any colony. CFUs
found on PCN agar for the spring S5 showed the highest number of
colonies, with a bacterial load equal to 27 CFU/mL (Fig. 3A), while no
CFUs were obtained on LCM.

Phylogenetic analyses focused on the two most abundant genera
identified in the 16S rRNA analysis, Acinetobacter and Pseudomonas.
DNA sequences from the CR17 campaign were used to extract complete
Acinetobacter spp. 16S rRNA genes (MAGs) and 16S rRNA gene partial
sequences (amplicon libraries). The phylogenetic tree of Acinetobacter
spp. (Fig. 4) revealed that almost all the 16S rRNA ASVs fall close to
Acinetobacter type strains known as human pathogens. In particular,
Acinetobacter sp. CR1 clusters with Acinetobacter nosocomialis
HQ180192, Acinetobacter seifertii FJ860878, and Acinetobacter pittii
HQ180184, while Acinetobacter sp. CR10 is positioned close to Acineto-
bacter baumannii X81660. Moreover, all the complete 16S rRNA genes
recovered from the MAGs and 104 ASVs fall within the Acinetobacter
junii X81664 cluster. The abundance of amplicon sequence variants
related to Acinetobacter spp. was also evaluated for hot spring type, with
more ASVs in recreational hot springs relative to natural ones (Kruskal
test, p value < 0.01). A Pseudomonas phylogenetic tree was constructed
with the same approach as described above (Fig. 5). Most of the 16S
rRNA ASVs are related to Pseudomonas type strains known in literature
as human pathogens, while all the isolated type strains fall in a cluster
related to Pseudomonas aeruginosa. The abundance of ASVs related to
Pseudomonas spp. was evaluated for hot spring type, with more ASVs in
recreational hot springs compared to natural ones (Kruskal test, p value
< 0.01).

3.2. Antibiotic resistance of the putative pathogens

Antibiotic resistance profiles were determined for P. aeruginosa

y

()

Fig. 3. (A) Colony forming units of Pseudomonas aeruginosa (as identified by
16S rRNA sequencing) from the hot spring waters on a plate of PCN agar se-
lective media. (B) Example of antimicrobial susceptibility test on Pseudomonas
spp. strains isolated from a recreational hot spring showing multidrug resis-
tance. The antibiotics shown include: A (Ampicillin, 10 pg), E (Erythromycin,
30 pg), C (Cefsulodin, 30 pg), and K (Kanamycin, 30 pg).
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strains (48) isolated from four different recreational springs. All 48
identified strains showed different antibiotic susceptibility to the two
groups of antibiotics tested, specific and generic, respectively (Table 2).
In accordance to EUCAST, the distribution of the antibiotic resistance
profiles obtained against Meropenem (M, 10 pg), Gentamicin (G, 10 ug),
Ciprofloxacin (Cp, 5 pg), and Cefepime (Cf, 30 pg) (specific group)
showed different patterns both in the fluids coming from the recrea-
tional hot spring and in comparison with PAO1 reference strain (Fig. 6).
More than 12% of the P. aeruginosa type strains identified in each study
site showed resistance against Gentamicin, Ciprofloxacin, and Cefepime
while only the strains isolated from S5 showed resistance against Mer-
openem. Multi-drug resistances (MDRs) were found in all the study sites
with a relative abundance higher than 30% in S5 and S3. PAO1 reference
strain showed resistance only against the Meropenem and Cefepime and
no MDR was detected. In accordance with CLSI, antibiotic resistance
profiles obtained against Meropenem, Gentamicin, Ciprofloxacin, and
Cefepime (specific group) showed a higher sensitivity of the
P. aeruginosa type strains identified (Supplementary Fig. 3). Only the
strains coming from S5 showed resistance against two antibiotics while
strains from S4 and S2 were resistant against Gentamicin. Strains iso-
lated from S3 were completely sensitive to the antibiotics tested while
PAOL reference strain showed resistance only against the Meropenem.

In all the investigated sites, 100% of the Pseudomonas sp. isolates
were resistant against Ampicillin (A, 10 pg) and Erythromycin (E, 30
pg), while a lower percentage were resistant against Cefsulodin (C, 30
pg) and Kanamycin (K, 30 pg) (Supplementary Fig. 4). Also for the
generic group of antibiotics, MDR were found in each study site, and S5
showed the highest relative abundance in MDR strains (62.5% of 24
total strains were MDR) while S3 showed the lowest (16.7% of 6 total
strains were MDR). PAO1 reference strain showed resistance only
against the Cefsulodin and Kanamycin, and no MDR were detected.

The occurrence of Antimicrobial Resistance Genes (ARGs) in natural
and recreational hot springs was investigated by blasting the assembled
DNA contigs against the Comprehensive Antibiotic Resistance Database
(CARD; Fig. 7). Natural hot springs fluids and sediments (S8, S13, S16,
and S18) were characterized by a low number of ARGs that primarily
belong to the group of mux and sme which codify for resistance against,
while almost all recreational hot springs displayed a major diversity of
ARGs (Fig. 7). The fluids of S3, S4, and S2 showed the higher number of
resistance genes which comprised the categories of OXA, ADC, and ade.
In S5 and S6 fluids, in contrast, only a nov gene and a ade gene were
found, respectively.

4. Discussion

Environmental reservoirs of antibiotic resistance represent a growing
concern for global public health as potential sources for human infection
(Barrett, 2012; Mills and Lee, 2019; Tello et al., 2012). Remote envi-
ronments as well as recreational waters have been identified as current
reservoirs of antibiotic resistance bacteria and genes (Eckert et al., 2018;
Knapp et al., 2012; Overbey et al., 2015; Segawa et al., 2013; Zhang
et al., 2022). The increased antimicrobial resistance of opportunistic
pathogens together with increased human population densities in areas
subject to habitat deterioration represent a global threat to public health
(Myers and Patz, 2009).

Hot springs harbor a plethora of microorganisms that include not
only naturally-occurring microbes but also introduced opportunistic
pathogens. Previous studies reported the presence of several infective
microorganisms including free living protozoa (Abrahams-Sandi et al.,
2015; De Jonckheere, 2005; Montalbano Di Filippo et al., 2017) and
bacteria (Aburto-Medina et al., 2020; Ghilamicael et al., 2018;
Mukherjee et al., 2012; Rupasinghe et al., 2022; Sheehan et al., 2005;
Thorolfsdottir and Marteinsson, 2013) in hot springs and spas. Recrea-
tional use of hot springs and their association to infective agents have
been reported worldwide (Barben et al., 2005; Falkinham et al., 2015;
Lutz and Lee, 2011; Martins et al., 1995; Moore et al., 2002; Niewolak
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and Opieka, 2000). However, while their presence is well documented
(Rahel et al., 2021), information related to their origin, distribution and
antimicrobial resistance profiles are still limited (Ghilamicael et al.,
2018; Lutz and Lee, 2011).

In the last years, most of the microbiological large-scale in-
vestigations on the Costa Rican hot springs focused on the role of sub-
surface chemolithoautotrophic communities in affecting the carbon

cycling (Arce-Rodriguez et al., 2019; Barry et al., 2019; Crespo-Medina
et al., 2017; Fullerton et al., 2021; Rogers et al., 2022) with the addition
of a few studies on microbial mats community composition (Uribe-Lorio
et al., 2019; Brenes-Guillén et al., 2021; Finsinger et al., 2008) and
microbial heterotrophic pathways across the surficial geothermal sys-
tems (Paul et al., 2023). The only studies conducted on Costa Rican
waterborne pathogens were targeted on cases of amoebic
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meningoencephalitis from Naegleria fowleri infections found in hot
spring waters (Abrahams-Sandi et al., 2015; Barrantes et al., 2022) and
surveillance monitoring of drinking water aimed to alert the authorities
for potential disease outbreaks (Barrantes et al., 2022).

Here, we report for the first time, sequencing and isolation data from
22 Costa Rican hot springs divided into recreational hot springs (e.g.
resorts and spas) and natural hot springs from remote areas. Our results
from 16S rRNA amplicon sequencing showed recreational hot springs

waters (resorts and spas) with moderate-high temperature (40-60 °C) as
the principal reservoir for the distribution of opportunistic pathogens.
High temperatures are known to have a limiting effect on pathogenic
bacterial growth (Spinks et al., 2006) which is in line with the low
average abundance of potential pathogenic taxa we found within the
16S rRNA libraries. However, ASVs related to Acinetobacter and Pseu-
domonas were dominant in the recreational hot springs investigated,
suggesting the presence of moderate thermotolerant species for both
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genera, as observed in hot springs isolates from other studies (Kumar
et al., 2023, p.; Obeidat and Al-Shomali, 2023; Saini et al., 2023;
Obeidat and Al-Shomali, 2023; Saini et al., 2023). In addition, the
occurrence of Acinetobacter and Pseudomonas genera were recorded in
other hot springs from developing countries where anthropogenic
impact is more pronounced (Adjeroud et al., 2020; Moussard et al.,
2004; Najar et al., 2018; Rawat and Joshi, 2019; Wu et al., 2023).
Among the naturally occurring hot springs, only one site showed a high
abundance of sequences associated with Acinetobacter. The presence of a
livestock farming area next to the hot spring might have conditioned the
surrounding environment through sewage and farm effluents (Hill,
2003; Hooda et al., 2000; Pearce-Duvet, 2006), affecting eventually the
microbial community composition of the hot spring itself. Species
related to Acinetobacter were found only through sequence-based anal-
ysis and the phylogenetic investigations showed that most of them were
closely related to human pathogens like A. junii and A. baumannii, two
species well known in health care systems for their role in nosocomial
infections (Hung et al., 2009; Visca et al., 2011). In the past, the role of
Acinebocater spp. in geothermal settings has been associated with their
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capacity to use different organic carbon sources (Dixit et al., 2021) as
well as their ability to degrade hydrocarbons (Freitas et al., 2023).
Species related to Pseudomonas, instead, were found both in
sequence-based and laboratory culture analysis. In particular, phyloge-
netic evaluations of DNA sequences from 16S rRNA libraries showed a
similarity to species such as P. fluorescens and P. fulva related to human
infections (Liu et al., 2014; Scales et al., 2014) while all laboratory
isolates were closely associated to Pseudomonas aeruginosa strains that
are well known for the high rate of acute and chronic infections in
hospital settings (Crone et al., 2020; Huber et al., 2016; Obritsch et al.,
2005),. The persistence of P. aeruginosa species in thriving in controlled
settings like spas, hot springs, and swimming pools (Lutz and Lee, 2011;
Moore et al., 2002) has been linked to its capacity to form biofilms
(Hall-Stoodley and Stoodley, 2005) which can increase exponentially
their survival in different niches (Berg et al., 1990, 2005; Guida et al.,
2016; Mena and Gerba, 2009). The concentrations of P. aeruginosa col-
onies we found from recreational springs waters were orders of magni-
tude higher than the normal threshold accepted for natural spas (World
Health Organization, 2003). This is a result in line with findings from
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other contaminated environments exposed to anthropogenic pressure
(Crone et al., 2020; Deredjian et al., 2014; Jardine et al., 2017; Mena and
Gerba, 2009; Saini et al., 2023).

The ARGs detected from the investigated recreational hot springs
indicated a low distribution of genes related to drug efflux functions,
compared to the main occurrence of enzymatic degradation mechanisms
by p-lactamases associated to A. baumannii and P. aeruginosa related
genes (e.g., OXA, ADC, and PDC) which confer resistance to a broad
range of antibiotics like carbapenems and cephalosporins (Evans and
Amyes, 2014; Rao et al., 2020). Furthermore, these results were
consistent with the potential resistance found in multiple P. aeruginosa
type strains (see below), suggesting a correlation between the relative
proportion of resistant bacteria with the anthropogenic activities asso-
ciated to recreational hot springs, an observation already reported for
other environments (Amos et al., 2014; Das et al., 2023; Di Cesare et al.,
2015, 2017; Graham et al., 2011; Hatosy and Martiny, 2015; Luo et al.,
2010; Popowska et al., 2012; Pruden et al., 2012).

The antibiotic resistance profiles, for the isolated P. aeruginosa type
strains, showed varying results when different standard references
(EUCAST vs. CLSI) were used. In accordance with the EUCAST guide-
lines, most of the P. aeruginosa strains displayed resistance against
almost all the tested antibiotics, with a particular resistance rate against
general antibiotics like Erythromycin (E, 30 pg), Cefsulodin (C, 30 pug),
Kanamycin (K, 30 pg), and Ampicillin (A, 10 pg), already known for
their mild efficacy against P. aeruginosa infections (Alam et al., 2019;
Balasoiu and Balasoiu, 2014; Khan et al., 2015). Resistance was found
also for more specific antibiotics like Ciprofloxacin (Cp, 5 pg), Cefepime
(Cf, 30 pg), Gentamicin, and Meropenem (M, 10 pg), linked with
P. aeruginosa’s capacity to acquire mutations on specific targets, as the
case of the DNA gyrase and the topoisomerase IV enzymes in fluo-
roquinolones resistance (Drlica and Zhao, 1997; Jacoby, 2005) or
through mechanisms for antibiotic cleavage, efflux, and reduced drug
uptake in -Lactams resistance (Pfeifer et al., 2010; Poole, 2004, 2011).
The detection of multidrug-resistant P. aeruginosa strains in over half of
the investigated sites could be explained by the presence of a selective
pressure able to escalate antibiotic resistance in the ecosystem (Bel Hadj
Ahmed et al., 2020; Bravakos et al., 2021; Li et al., 2017). This was
previously observed by Sharma et al. (2022) who investigated the
spread and co-evolution of resistomes from pathogenic to
non-pathogenic microorganisms in different Himalayan hot springs,
attributing the occurrence of metal, drug, and biocide resistomes in
these habitats to natural and anthropogenic activities. In this context,
metals generally used for microbial metabolisms (Giovannelli, 2023;
Hay Mele et al., 2023) as well as biocide contamination have been
demonstrated to involve environmental multidrug resistance acquisition
(Bengtsson-Palme et al., 2018; Catao et al., 2021; Farias et al., 2015; Lim
et al., 2015; Mishra et al., 2023; Najar et al., 2022, 2020; Thomas et al.,
2020), causing a hyperexpression of the drug efflux pumps in
Gram-negative bacteria (Amsalu et al., 2020; Khan et al., 2018; Piddock,
2006). When the CLSI guidelines were used instead of the EUCAST ones,
the number of P. aeruginosa strains resistant to the tested antibiotics
decreased (Supplementary Fig. 1). The only resistance found was against
gentamicin with the highest number of resistant isolates from the site S2,
followed by S4 and S5 isolates. The latter was the only site where a low
number P. aeruginosa type strains resistant to meropenem was found,
suggesting a strong response to the antibiotic exposure since the CLSI
has more stringent diameter breakpoints. The discrepancies between the
two antimicrobial susceptibility testing systems (Supplementary Fig. 3)
have been already observed, and the lack of agreement in the antibiotic
breakpoints interpretation have critical implications on surveillance
initiatives (Bork et al., 2017; Cusack et al., 2019; Hombach et al., 2013;
Machuca et al., 2016; Rodriguez-Bano et al., 2012; Rodriguez-Martinez
et al., 2011).

Overall our data suggest that hot springs represent an optimal
reservoir of antimicrobial resistant opportunistic pathogens. The low
abundance of putative pathogens and ARGs in natural occurring springs
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as well as the higher multidrug resistant pathogens observed only in the
recreational hot springs suggests that the presence of pathogens is linked
to anthropogenic activities. In this context, anthropogenic pressure
together with environmental factors might play a key role in leading the
differential occurrence of putative multidrug-resistant pathogens,
making recreational hot springs a suitable reservoir for pathogen pro-
liferation. The investigated recreational hot springs have a neutral pH
and temperatures ranging between 40 °C and 60 °C that makes them
more suitable for human bathing compared to naturally occurring hot
springs. These conditions however also fall in the physiological range of
common pathogens, supporting their higher abundances at recreational
sites. In addition, a combined effect of anthropogenic pressure and
natural events like the rainy season typical of the Central America re-
gions may affect the ARG dynamics, facilitating the contamination of the
soil and the consequent drainage to the hot spring fluids, contributing to
the spreading of antibiotic resistance genes, as was previously reported
for other pathogens (Di Cesare et al., 2017). However, the occurrence of
putative pathogens in recreational hot springs might be supported by the
lack of prevention strategies as well as insufficient management prac-
tices (Mavridou et al., 2018). The application of more stringent man-
agement protocols (Nichols, 2006), which include an in-depth
investigation of the hot springs underground plumbing system to pre-
vent potential contamination at the hydrothermal fluids source, more
frequent drainage and cleaning operations, better water quality man-
agement, and regular microbiological testing might mitigate the risk.
This is however a temporary solution to the rising threat of antimicrobial
resistance in the environment, which will require direct and decisive
legislative interventions to limit antibiotic use together with new in-
vestment in antimicrobial research (Majumder et al., 2020).

5. Conclusion

In conclusion, our study presents a combined sequence-based and
laboratory culture survey to investigate the potential occurrence of
putative pathogens and antibiotic resistance genes in several recrea-
tional and naturally occurring hot springs of Central America. The ob-
tained results indicate that recreational hot springs harbor significantly
higher abundances of multi drug resistant opportunistic pathogens,
suggesting anthropogenic activities as the main factor in favoring the
presence of putative pathogenic bacteria as well as the contamination
and spreading of antibiotic resistance genes. This, together with the
capacity of some opportunistic pathogens in persisting in high temper-
ature conditions, highlights the need for a better understanding of the
hot springs’ role as reservoirs of potential multi resistant pathogens in
the environment. Given the exponential rise in popularity of hot springs
as tourist attractions globally, more effective management guidelines
and prevention measures are necessary to ensure public safety and
preserve the cultural and health legacy of this millenia-old leisure
activity.
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