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ARTICLE INFO ABSTRACT

Editor: Claudia Romano The chemical and isotopic composition of gases emitted by subduction zone volcanoes can provide insights into

the origin of magmatic volatiles. In volcanic arcs, magmatic volatiles can be supplied from the mantle, the

Keywords: subducting slab, or the rocks of the arc crust. Determining the relative contributions of these distinct sources is
SUbd‘}CU(’“ zone important for understanding the transfer of volatiles between Earth’s interior and exterior reservoirs, which has
Volatiles implications for the physical and chemical evolution of both the mantle and the atmosphere. Each subduction
Volcanic gas . . . . is

Noble gas zone has a different recycling efficiency, controlled by the composition of the slab and the pressure-temperature

path it experiences upon subduction, and accordingly all volcanic arc emissions can be characterised by their
chemical and isotopic compositions. In this study, we analyse the composition of volcanic gases from Rabaul
caldera in the New Britain subduction zone, Papua New Guinea, and show that the emissions are substantially
influenced by slab recycling of carbon and nitrogen. We find helium emissions are dominated by a mantle
contribution, with little influence from the arc crust. Carbon isotopes point towards a mixture of mantle, car-
bonate and organic sediment-derived contributions, with the dominant input coming from carbonates. This may
be of sedimentary origin, seafloor calcareous muds, or altered basalts of the subducting oceanic crust. Nitrogen
isotopes also indicate a significant influence of sedimentary nitrogen and, potentially, a contribution from altered
ocean crust. Our study is the first comprehensive investigation of volatile sources in the New Britain subduction
zone and our results and interpretation are consistent with previous studies of element recycling based on New
Britain arc lavas.

Carbon isotopes
Nitrogen isotopes

1. Introduction cone, Tavurvur (Carn et al., 2016; Global Volcanism Program, 2013;

McCormick et al., 2012). Rabaul has been cited as among the highest

Rabaul is a restless caldera volcano in East New Britain province,
Papua New Guinea (PNG, Fig. 1). Since the last caldera forming eruption
(667-699 CE), there have been numerous eruptions, of diverse styles,
from multiple intra-caldera vents (Bernard and Bouvet de Maisonneuve,
2020; Fabbro et al., 2020; Heming, 1974; McKee et al., 2015; Patia et al.,
2017; Wood et al., 1995). The most recent eruptions (1994-2014) were
accompanied by substantial outgassing from the caldera’s most active
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emitters of volcanic gas into the atmosphere over the past two decades
and Tavurvur, where outgassing has been focussed, was ranked seventh
worldwide for both SO5 and CO, flux in 2005-2015 (Aiuppa et al., 2019;
Carn et al., 2017). Following the cessation of eruptive activity, unrest at
Rabaul has dwindled to significantly lower levels, in terms of the in-
tensity of seismicity, ground deformation, vigour of gas emissions, and
the temperature and overall abundance of hot springs and fumaroles

E-mail address: brendan.mccormickkilbride@manchester.ac.uk (B.T. McCormick Kilbride).

https://doi.org/10.1016/j.chemgeo.2024.122434

Received 1 March 2024; Received in revised form 26 September 2024; Accepted 30 September 2024

Available online 1 October 2024

0009-2541/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:brendan.mccormickkilbride@manchester.ac.uk
www.sciencedirect.com/science/journal/00092541
https://www.elsevier.com/locate/chemgeo
https://doi.org/10.1016/j.chemgeo.2024.122434

B.T. McCormick Kilbride et al.

New Britain arc

O West Bismarck arc

O Tabar-Lihir-Tanga-Feni group |_|

Active ’ -

Subduction zone W o
Inactive 5

&ransform fault
X

Extensional

K3

Chemical Geology 670 (2024) 122434

graben

* 2 km depth

O/k§dovar o
Manam. -~

Q

-, South Bismarck
< microplate

Garove
Long Island

Langil‘a”

WITU ISLANDS

Narage
Mundua TR,

NEW BRITAIN

Harbour
O (Talasea)

I .

Sulu Ra©;ge L

1 T T
Vitiaz-West Melanesian
trench;

" Grenis 40

New Britain
trench

Solomon Sea
plate

I
153 °E

Fig. 1. A. Map of New Britain, highlighting tectonic or geographic features mentioned in the text and selected volcanoes of the West Bismarck, New Britain, and
Tabar-Lihir-Tanga-Feni groups. Of the volcanoes shown, all except Tabar, Tanga and Narage have reported Holocene activity (Global Volcanism Program, 2013).
Map modified from (Holm et al., 2016; Macpherson et al., 1998). Inset shows location of PNG within Oceania. B. Google Earth image showing Rabaul caldera with

major features (urban areas, volcanic edifices, our sampling sites) highlighted.
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across the caldera. It remains unclear whether prodigious gas emissions
from Rabaul are an inherent characteristic of the volcanic system or a
transient feature, given the short history of instrumented monitoring.
The chemical and isotopic composition of gas emissions at Rabaul have
been little studied (Farley et al., 1995; Sano and Williams, 1996) and we
do not know whether, or to what extent, volatiles are supplied to the
volcanic system from (i) the nearby subducting Solomon Sea plate or (ii)
crustal rocks of the New Britain volcanic arc. Magmatic volatiles play a
key role in modulating eruption style and intensity at Rabaul and un-
derstanding their origin and abundance is critically important for hazard
assessment and risk mitigation (Bernard et al., 2022).

In this contribution, we present geochemical and isotopic data from
volcanic gases at Rabaul, collected from Tavurvur crater fumaroles and
nearby hot springs in 2016 and 2019. We report the composition of gases
in terms of the relative abundance of major (H20, CO», sulfur) and trace
(He, Ar, Ny) chemical species, as well as helium, carbon, nitrogen, argon,
krypton and xenon isotopes. These are valuable tracers for determining
the relative proportion of volatiles supplied from the mantle and the
crust (Barry et al., 2022; Hilton et al., 2002) as well as for assessing the
influence of recycled subducting slab phases (Fischer et al., 2002;
Halldorsson et al., 2013; Mitchell et al., 2010; Sano and Marty, 1995).
On the scale of individual volcanic systems, such information is valuable
for understanding magmatic volatile budgets and for interpreting the
chemistry of gas emissions. Considering a group of volcanoes, whether
within the same arc or in different arcs, we can learn about the variable
efficiency of volatile recycling during subduction (where recycling is
defined as return flux to the surface) according to differences in the
phases present on the slab and the pressure-temperature path experi-
enced by the slab as it sinks (Aiuppa et al., 2019; Hilton et al., 2002;
Plank and Manning, 2019). Taken globally, these insights into volatile
recycling efficiency during subduction contribute to our understanding
of the secular evolution of mantle and atmospheric composition, plate
tectonics, environmental change, and planetary habitability (Bekaert
et al., 2021; Hilton et al., 2002; Jambon, 1994).

Our understanding of magmatic volatile budgets at Rabaul and of
volatile recycling in the wider New Britain subduction zone is at an early
stage. In this study, we have characterised the isotopic and chemical
composition of fumaroles on the active cone of Tavurvur and hot springs
around Rabaul caldera for the first time. Many of our samples are
affected by air contamination, potentially due to shallow seawater
intrusion or air circulation in the hydrothermal system within the poorly
consolidated rocks of the volcanic edifice. Nonetheless, by combining a
range of complementary chemical and isotopic tracers, along with a
compilation of the available geochemical and isotopic data from whole
rock analyses, we have determined the provenance of volatiles at
Rabaul. We find a strong mantle influence, based on high *He/*He
values, and evidence from 8'°C for slab-derived carbonate and organic
sediment contributions. Evidence from &!°N suggests air, sedimentary
and minor mantle sources of nitrogen.

2. Geological context
2.1. Tectonic setting

Rabaul is located on the Gazelle Peninsula of New Britain in a
complex tectonic setting between the converging Pacific and Australian
plates (Holm et al., 2016; Woodhead et al., 1998). The island is built of
Eocene-Oligocene volcanic rocks and intrusives, with overlying Miocene
limestones and younger volcanics. Modern convergence is accommo-
dated by microplate rotation and subduction of the Solomon Sea plate
beneath the Bismarck Sea (Fig. 1). The convergence rate at the New
Britain trench is ~9-13 cm yr’1 (Holm et al., 2016; Tregoning et al.,
2000, 1998; Woodhead et al., 1998). New Britain’s Paleogene volcanic
and igneous rocks are related to an earlier period of subduction, when
the Pacific plate was subducted along the now inactive Vitiaz-West
Melanesian trench to the northeast of modern New Ireland (Fig. 1).
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Subduction along this margin ended around 26-20 Ma, possibly caused
by the docking of the Ontong-Java plateau with the trench. The pause
between these two phases of arc magmatism permitted the development
of platform carbonates, in the Gazelle Peninsula represented by the
Yalam Formation (Lindley, 2006; Madsen and Lindley, 1994).

The New Britain subduction zone is typical of intra-oceanic conver-
gent margins (Leat and Larter, 2003). The Solomon Sea slab dips ~70°
northwards beneath the Gazelle Peninsula, steepening to subvertical
towards its western end at 149° E (Gong et al., 2023; Zhang et al., 2023).
Rabaul is ~148 km above the slab (Syracuse and Abers, 2006). The
subducting crust age is 24-44 Ma based on heat flow measurements
(Joshima and Honza, 1986) and 28-34 Ma based on magnetic lineations
(Joshima et al., 1986). There are no ocean drill cores of the Solomon Sea,
but samples of seafloor sediments and basalts obtained by dredges and
freefall grabs from the R.V. Natsushima in 1983-4 may represent the
subducting slab lithologies. The sediments are hemipelagic lower
bathyal deposits comprising claystones and tuffaceous calcareous muds
(Crook, 1986). The volcanic samples are variably altered ferrobasalts,
both quench-textured lavas and devitrified hyaloclastites (Davies and
Price, 1986). The major and trace element chemistry and Sr-Nd-Pb
isotopic composition of these rocks was reported by Woodhead et al.
(1998). Sediments sampled from the upper New Britain trench wall
comprise a complex suite of limestones, glauconite-bearing sediments,
and arenites and rudites derived from both volcanic rocks and carbon-
ates (Crook, 1986). At the western end of the trench, there is a 2.5 km-
thick accretionary prism which is absent at the eastern end, closest to
Rabaul (Honza et al., 1989). It remains unclear whether the uneven
distribution of sediment in the New Britain trench is a consequence of
lateral sediment transport caused by oblique plate convergence, greater
debris infill at the western end due to proximity to the Western Bismarck
arc and Australian continent collision zone, efficient subduction of
sediment at the eastern end of the trench, or an eastward increase in
tectonic erosion of the forearc crust (Bernstein-Taylor et al., 1992;
Galewsky and Silver, 1997; Honza et al., 1989; Malatesta et al., 2013).

2.2. Eruptive history of Rabaul

Volcanism on the Gazelle Peninsula dates from the Lower to Middle
Pleistocene and is distributed across four major centres, the Varzin
Depression, the Vanakunau Basin, the submarine Tavui caldera and
Rabaul, the youngest and most active (Hohl et al., 2022; McKee, 2015;
Nairn et al., 1995). The oldest dated deposits at Rabaul (~0.5 Ma) are
associated with three basaltic stratovolcanoes, Tovanumbatir, Kombiu
and Turangunan, adjacent to the modern caldera (McKee and Duncan,
2016). Since 0.125 Ma, nine ignimbrite-forming eruptions have
occurred, most recently the Rabaul Pyroclastics event in 667-699 CE,
which deposited an 11 km?® ignimbrite and formed a 6 x 8 km caldera
(McKee et al., 2015; Nairn et al., 1995). Historical eruptions have
occurred at multiple vents within the caldera (Tavurvur, Vulcan,
Rabalanakaia, Sulfur Creek, Palangiagia), including events in 1878,
1937 and 1994 where Vulcan and Tavurvur erupted simultaneously. The
post-caldera eruptions have exhibited lava flows, violent Strombolian
behaviour, and Vulcanian to sub-Plinian blasts, with the diversity in
eruption dynamics attributed to variations in magma ascent rate
(Bernard and Bouvet de Maisonneuve, 2020). Caldera-forming eruptions
are of dacitic composition while post-caldera eruption products range
from basaltic andesite to trachydacite (58-64 wt% SiOy) (Bernard and
Bouvet de Maisonneuve, 2020; Fabbro et al., 2020; Nairn et al., 1995).
Intermediate magmas at Rabaul apparently result from the mingling and
mixing of recharging basalts and resident dacites (Bouvet de Mai-
sonneuve et al., 2015; Patia et al., 2017). There has been no eruption at
Rabaul since August 2014.

2.3. Previous work on magma and volatile sources at Rabaul

The mantle wedge beneath New Britain, of Indian MORB affinity
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based on whole-rock Pb isotopes, is exceptionally depleted in high field
strength elements (HFSE), a consequence of prior melting in the back
arc, i.e., Manus Basin (Woodhead et al., 1998). Post-Miocene New
Britain volcanics are enriched in fluid mobile elements (e.g., Ba/La, Sr/
Nd), resulting from slab fluids infiltrating the mantle wedge (DePaolo
and Johnson, 1979; Johnson, 1979). Based on Sr-Nd-Pb isotopes, high
Sr/Nd and low Th/Yb ratios, Woodhead et al. (1998) described New
Britain volcanics as an end-member suite among global arcs, bearing a
strong influence of hydrous fluids derived from altered basaltic crust
with relatively minor influence of recycled sediments. This interpreta-
tion was previously advanced on the basis of lava B/Be ratios (Morris
etal., 1990). New Britain arc volcanoes lie over a remarkably wide range
in depth to the slab, from ~100 km at the volcanic front to ~600 km at
the Witu Islands (Johnson, 1979; Woodhead and Johnson, 1993).
Tracers of slab fluid in the erupted lavas (e.g., Ba/La, Sr/Nd,
2°6Pb/204Pb, Eu anomaly) diminish from south to north across the arc,
suggesting a decrease in fluid influence with increasing depth to slab.
This trend is convolved with increasing HFSE concentration, reflecting a
decrease in partial melting, also correlated with depth to slab (DePaolo
and Johnson, 1979; Woodhead et al., 1998; Woodhead and Johnson,
1993). Rabaul is not included in the data presented by Woodhead et al.
(1998), though the authors note that limited Sr—PDb isotopic analyses of
1994 Vulcan and Tavurvur andesites are notably more radiogenic than
other New Britain rocks (Johnson et al., 1995) and that this may be a
consequence of ‘paleo-enrichment’ of the mantle wedge, related to the
earlier subduction of the Pacific plate (see section 2.1). More recent
work (Hohl et al., 2022), argues for the influence of both slab-derived
fluids and slab sediment-derived melts on the mantle beneath Rabaul,
based on trace element and Sr-Nd-Hf isotope analyses of ‘inner caldera’
(post-1400 B.P. eruptions of Tavurvur, Vulcan, Rabalanakaia, Sulfur
Creek) and outer caldera (undated rocks from neighbouring mafic
stratovolcanoes, e.g., Kombiu) deposits. Titanium isotope heterogene-
ities in basaltic rocks from New Britain arc volcanoes, though not
Rabaul, have been suggested to reflect the influence of hydrous slab
partial melts on arc magma generation (Klaver et al., 2024).

Studies of gas emissions from Rabaul and other PNG volcanoes have
largely focussed on determining SO, and COs flux, using drone-based
sensing (Galle et al., 2021; Liu et al., 2020; McCormick Kilbride et al.,
2023), ground-based remote sensing (Andres and Kasgnoc, 1998;
McGonigle et al., 2004) or satellite observations (Carn et al., 2017;
McCormick et al., 2012). These data show that PNG volcanoes (specif-
ically Rabaul, Manam and Bagana) are globally important sources of
both SO and CO5 (Aiuppa et al., 2019; Carn et al., 2017; Fischer et al.,
2019). Analyses of gas chemistry are more restricted. Soil CO, emissions
at Rabaul were sporadically monitored in the 1990s (Global Volcanism
Program, 1997a, 1997b, 1995). Otherwise, there are two measurements
of helium isotopes in hot spring gases (Farley et al., 1995) and two
measurements of helium and carbon isotopes in gas samples from
Tavurvur and Rabalanakaia (Sano and Williams, 1996). The helium
isotopes range from 5.7 to 8.6 R/Rp, where R is 3He/*He ratio in the
sample and Ry is the ratio in air, indicating a predominantly mantle-
derived helium with little crustal input. The carbon isotopes (5'3C)
range from —2.55 to —2.80 %o versus Pee Dee Belemnite, consistent with
mixing between carbonate and mantle-derived carbon. Recent global
compilations of arc outgassing have suggested that the high carbon
fluxes from PNG volcanoes are due to efficient recycling of subducted
carbon, though no distinction is made between the tectonically and
geochemically distinct West Bismarck, New Britain and Bougainville
arcs in these studies (Aiuppa et al., 2019, 2017; Plank and Manning,
2019). In contrast, other work has argued for remobilized crustal car-
bonate as the main source of volcanic CO5 in PNG (Mason et al., 2017).
Here, our aim is to discriminate between these scenarios, and moreover
to determine the influence of sediment recycling on Rabaul gas
emissions.
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3. Methods
3.1. Sampling methods

We sampled multiple sites of gas emissions at Rabaul across two field
expeditions, in September 2016 and May 2019. In 2016, we collected
gas samples from a fumarole at the base of Tavurvur crater, from hot
springs on the beach north of Tavurvur towards Sulfur Point, and from
hot springs at Rababa (Fig. 1b). During this fieldwork, we also collected
gases from fumaroles at the summit of Garbuna volcano, hot springs
near Silanga village close to the Sulu Range, and hot springs from
Pangalu village close to the Garua Harbour/Talasea volcanic field
(Fig. la). In 2019, we sampled fumaroles on the northeast rim of
Tavurvur and re-sampled Rababa hot springs (Fig. 1b). In 2024, during a
separate field campaign, we collected gases from bubbling submarine
hot springs (1-2 m water depth) offshore of Narage volcano, Witu
Islands (Fig. 1a).

We collected fumarolic gases at all sites by inserting a titanium tube
into the fumarole and connected this tube to our sampling line,
composed of a Giggenbach bottle and multiple copper tubes connected
in series using silicon tubing. The 2019 Giggenbach bottle was an
evacuated glass flask containing 5 M NaOH solution (Broadley et al.,
2020; Giggenbach, 1975; Giggenbach and Goguel, 1989). In 2016, the
Giggenbach bottle was evacuated, but did not contain any NaOH
solution.

We collected all hot spring samples by placing an inverted plastic
funnel over a persistent bubbling area, securely immersing the funnel in
the hot spring pool, and connecting it to the Giggenbach bottle and
copper tubes with silicon tubing (Barry et al., 2022). At all sites, we
allowed the line to be flushed with gas for at least 30 min prior to col-
lecting our samples. At the fumarole site and the bubbling springs we
also collected gas samples into Tedlar bags for carbon isotopic analyses.

We sampled gases from the Tavurvur crater floor fumaroles in 2019
by means of an uncrewed aerial system (UAS), comprised of a multi-
rotor DJI Phantom airframe equipped with a Tedlar gas bag sampling
apparatus (Galle et al., 2021; Liu et al., 2020). We determined that the
aircraft was in the plume by visual observations and triggered sample
capture by means of a set timer.

3.2. Analytical methods

Our samples have been analysed in multiple laboratories in several
institutions: the University of Oxford (UO), the University of Manchester
(UM, both UK), Woods Hole Oceanographic Institution (WHOI) and the
University of New Mexico (UNM, both USA).

3.2.1. Gas chemistry

We analysed headspace gases from the Giggenbach bottles using a
combination of gas chromatography and quadrupole mass spectrometry.
Dissolved gases from the Giggenbach bottles were analysed using wet
chemical techniques and ion chromatography. The analytical proced-
ures have been recently described (Ilanko et al., 2019; Lee et al., 2017).
In short, the gas chromatograph with a Discharge lonization Detector
and helium carrier gas was used to determine Ny, Ar + Og, CO2, CO, CH4
and Hj (analytical errors <2 %) and the quadrupole was used to quantify
Ar, Oy, He, and N; (analytical errors <1 %). The NaOH solution was
analysed for CO, by alkalinity titration. Sulfur species were analysed by
ion chromatography and alkaline iodine titration. Chlorine and fluorine
were analysed by ion chromatography. The water content of the samples
was determined by difference in weight of the sample bottles before and
after collection.

3.2.2. Helium isotopes

Our noble gas analyses followed similar procedures between labs,
whether at UO, UM or WHOI (Barry et al., 2022, 2016). At UO, the in-
struments were an SFT and an ARGUS, at UM a modified VG5400 with
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upgraded electronics, and at WHOI a Nu Noblesse. We connected copper
tubes to the respective extraction lines using an O-ring connection and
released small volumes (2-20 cm®) of gas sample into the clean-up lines.
We removed reactive gases using a chemical procedure, exposing the
sample to a heated titanium sponge, and then passed the gases through
hot and cold getters. We then passed a small aliquot of cleaned gas into a
cryogenic trap, which allowed separation of each noble gas. The noble
gases measured varied between labs and samples. At UO and WHOI
(during 2024 analyses), we measured all stable noble gas isotopes,
whereas at WHOI in 2019, we only measured He isotopes and “He/?°Ne.
We were unable to measure Ne isotopes at UM, hence the lack of
“He/?°Ne data for these samples. Given the *°Ar/3®Ar is very close to air,
we could assume an air 2°Ne/?2Ne and “He/?°Ne for most samples. We
estimate uncertainties of <5 % for helium isotopes and < 3 % for neon
and argon isotopes.

3.2.3. Carbon isotopes

We analysed the Tedlar bag samples (collected in 2019) and Gig-
genbach bottle samples (collected in 2016) for carbon isotopes using a
Delta-Ray Infrared Isotope analyser (Fischer and Lopez, 2016; Galle
et al., 2021; Liu et al., 2020). We set up the Delta Ray instrument at
Rabaul Hotel, in Rabaul Town (Fig. 1b). The CO,-free air carrier gas was
produced on-site by passing air, pressurized in a tank, through Sulfulime
absorbent. The calibration gas was pure CO; obtained from a company
in PNG. We did not know the §'3C value of the calibration gas at the time
of our analyses in Rabaul, so we collected a sample of this gas and
analysed it on the Delta Ray at the University of New Mexico after our
return and then retroactively corrected the values obtained during the
fieldwork.

3.2.4. Nitrogen isotopes

We performed nitrogen isotope measurements on gas splits from
copper tubes. In brief, our fumarole and hot spring gas samples were
purified on a specially designed N gas extraction vacuum line (Barry
et al., 2012) and analysed for nitrogen isotopes on the Nu Noblesse at
WHOI (Bekaert et al., 2024). We placed a third stainless steel clamp on

N,/100

100
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each tube approximately one-half inch from one of the original clamps
to subsample an aliquot of the gas in each tube. We connected copper
tubes to the extraction line with VCR fittings and pumped down to <1 x
1077 Torr. Once sufficient vacuum was achieved, we removed the
exterior clamp to inlet the aliquot of gas. We froze out condensable gases
(mainly CO5 and H30) on a cold finger using liquid nitrogen. The non-
condensable gases were expanded into the extraction line and diluted
until the sample pressure was low enough to be measured. We then
exposed the gas to a Pt furnace at 1000 °C and a CuO furnace that was
heated from 450 °C to 850 °C, held for 15 min to covert CO to CO5, and
step cooled back to 450 °C over 30 min. A second cold finger with liquid
nitrogen was used to freeze down the CO,. Once the CuO furnace had
cooled to its initial temperatures and CO conversion was complete, we
passed an aliquot of the gas into the mass spectrometer for analysis and
typically performed each analysis in triplicate. We ran line blanks prior
to the analysis (typically <1 %) to use for correction and an air standard
following the analysis; the size of the standard is calibrated to match the
size of the sample. We applied a linearity correction to match sample
signal sizes against air standards signal sizes (Bekaert et al., 2024).

4. Results

The gas compositions (Fig. 2) of our fumarole and hot spring gas
samples are reported in Table 1. The helium (Fig. 3) and carbon (Fig. 4)
isotopic composition and relative abundance ratios (Fig. 5) are reported
in Table 2, along with our estimates of mantle- and slab-derived in-
fluences (after Sano and Marty, 1995). In Table 4, we report the nitrogen
isotopic composition (Fig. 6) of our samples and independent estimates
of mantle- and slab-derived influences (after Sano et al., 2001).

4.1. Gas chemistry

Samples from the 2016 field expedition were collected without
NaOH solution in the Giggenbach bottles, so we could not measure H,0,
sulfur or halogen species in these gases. Samples collected in 2019 were
dominated by Hy0 (678 to 967 mmol/mol in Tavurvur fumaroles, 773

Rabaul (this study)
O Tavurvur fumaroles
> Rababa hot springs

W. Aleutians (Fischer et al., 2021)
@ Little Sitkin
A Kanaga
@ Tanaga
B Gareloi

Kuriles (Fischer et al., 1998)
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10He 10 04 0.2 0.1 0.05
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0025 001 Ar

Fig. 2. Ternary diagram showing relative molecular nitrogen, helium and argon (N,-He-Ar) compositions of fumarole and hot spring gas samples from this study, to
highlight magmatic versus air and ASW contributions (Giggenbach, 1980). Also shown are gas data from two other Pacific rim subduction zones (Fischer et al.,

2021, 1998).
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g = ol § S 3 =R Rp values (R = SHe/*He in sample, Ry = atmospheric “He/"He = 1.39‘ X
3 §° 107%). Fumarole gases collected from Tavurvur’s crater floor and rim
EE: S5 5 < @© =Y range from 0.92 to 2.70 Ra, while hot spring gases collected from
g g § § § g § g § § Rababa range from 5.62 to 6.47 R, and hot spring gases collected near
g 'go £ ss 3 sesss to Sulfur Point were 3.3 Ry. Fig. 3 also shows helium isotope measur.e-
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Fig. 3. (a) Helium isotopes measured in fumarole and hot spring gases from Rabaul (this study, Farley et al., 1995; Sano and Williams, 1996), and other volcanoes on
New Britain and neighbouring islands (Craig and Poreda, 1987; Farley et al., 1995); (b) the same data plotted versus “He/*°Ne along with calculated binary mixing
lines between air-saturated water (ASW) and crustal and mantle endmember compositions (Barry et al., 2021; Hilton et al., 2002; Kagoshima et al., 2015); (c) air-
corrected helium isotopes for our new Rabaul and New Britain samples.
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Fig. 4. Relationship between carbon concentration and §'>C for fumarole and hot spring gases at Rabaul. The typical §'3C range for reference endmembers are also
shown: limestone (subducted marine carbonate, 513C ~ 0 %o) and MORB (upper mantle material, 5!3C ~ —6.5 + 2.5). The black line indicates a mixing line projected

from ambient air through the composition of gases sampled from Tavurvur crater floor and rim fumaroles and Rababa hot springs.
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Fig. 5. Three component mixing diagram between CO,/*He and §'3C (CO,), after (Sano and Marty, 1995). We show new data from Rabaul (Table 2), comprising
caldera hot springs and Tavurvur crater fumaroles, previous measurements from Rabaul (Tavurvur and Rabalanakaia) made in 1996 (Sano and Williams, 1996) and
published data from two other intra-oceanic arc settings, Sangihe (Jaffe et al., 2004) and the Antilles (van Soest et al., 1998). Model end-members of mid-ocean ridge
basalt (MORB), marine limestone (including slab carbonate) and organic sediment are also shown (Sano and Marty, 1995; Sano and Williams, 1996). Black lines show

mixing among the end-members.

where R¢/R, is reported relative to air (= 1.39 x 1079).

Our samples from Tavurvur rim fumaroles and Rababa and Sulfur
Point hot springs show air-corrected He isotope (Rc/Rp) values ranging
from 5.7 to 6.9 R (Table 2, Fig. 3b). Tavurvur samples show greater air
contamination than the hot spring samples and thus the air-correction is
significantly larger. As a result, we suggest caution when interpreting
these data. Interestingly, air-corrected >He/*He (Rc/R,) values are quite
consistent (5.7, 6.0, 6.5 Rp) between the three Tavurvur crater rim
samples and these data agree well with air-corrected He isotope data
from the nearby Rababa hot springs). We consider the least air
contaminated sample of Rababa hot spring, air-corrected He isotope
(Rc/Ry) value of 6.7 Ry, as the most representative value of the Rabaul
magmatic system. These helium isotope values are below the canonical
range for upper mantle helium (8 + 1 Rp) and high above the range
associated with radiogenic (i.e., crustal) helium, 0.05 Ry (Andrews,
1985), suggesting that all samples are a mixture of mantle and radio-
genic sources, i.e., the data are bounded by binary mixing curves
defining mixtures of air and upper mantle helium, and air and radio-
genic helium (Fig. 3b). With regards to helium isotope values in volcanic
arcs globally, our Rabaul samples are consistent with the average high
temperature fumaroles in volcanic arcs globally of 6.8 Ry (Kagoshima
et al., 2015) and within the overall average range of gases emitted from
fumaroles and hot springs of arc volcanoes of 5.4 & 1.9 Ry (Hilton et al.,
2002) (Fig. 3b). The Silanga hot springs, near to the Sulu Range vol-
canoes, have arc-like He isotopes, 5.4 Ry (Fig. 3, Table 2). The Garua
Harbour (Talasea) hot springs and Garbuna fumaroles fall in the high-
temperature arc range, with 6.6-7.5 Ra. The submarine hot spring
samples from Narage volcano fall in the MORB range, with 8.3-8.5 Ra.

We measured the isotopic composition of heavy noble gases in a
subset of our samples, shown in Supplementary Fig. 1. Most cluster
around the composition of air and ASW, though there is evidence for

higher 8#Kr/2®Ar and '32Xe/3®Ar in all samples from Rababa hot springs.
4.3. Carbon isotopes

Gases emitted from a vent in the floor of Tavurvur crater, and
sampled by our UAS, range in CO, concentration from 432 to 555 ppm,
with §'3C varying from —6.48 + 0.17 to —8.95 + 0.03 %o, with respect
to the Pee Dee Belemnite (PDB) reference standard (Table 3, Fig. 4). We
measured higher CO, concentrations and more positive carbon isotope
compositions in fumarole gases collected on the crater rim (709 to 949
ppm CO2, —4.61 + 0.55 to —5.39 + 0.07 %o) and in Rababa hot spring
gases (2506 to 2646 ppm COy, —3.67 + 0.06 %o). Over the course of our
one-week campaign, there was no significant temporal variation in 5'>C
at each site. Clean air collected on a beach away from volcanic plume
influence had a CO; concentration of 430 ppm and 513C of —7.70 +
0.05. On a Keeling plot (Keeling, 1958), our data fall along a linear
regression and the extrapolated 5'3C value of the pure source CO is
estimated to be —2.6 + 0.62 %o (Fig. 4). There is no indication of
degassing induced fractionation of §'3C, which would be predicted to
result in higher 5!3C values in exsolved gases versus melts in both open
and closed system degassing models (Barry et al., 2014; Macpherson and
Mattey, 1994). Instead, variations in 8'°C appear to be primarily
controlled by mixing between air and a source endmember (Fig. 4).

4.4. COz/°He values

Our samples span a range in COo/°He over an order of magnitude
from ~2.5 x 10° t0 6.7 x 10° (Fig. 5). The minimum value is in the hot
spring gases collected near Sulfur Point and lies within the MORB range
of C02/3He, 1-6 x 10° (Marty et al., 2020). Our samples from both
Rababa hot springs and the Tavurvur crater rim fumarole are consistent



Table 2

Helium and carbon isotopes, relative abundance ratios, and estimates of mantle helium (Barry et al., 2013) and mantle (%M) and slab (limestone, %L, or sedimentary, %S) carbon (Sano and Marty, 1995) contributions
from fumarole and hot spring gases sampled at Rabaul. Different noble gas isotope ratios were measured between laboratories. The 2016 Oxford uncertainty on the *He/*He (Rc/Ra) was better than 3 %. The WHOI R¢/Rp
uncertainty was better than 3.1 % in 2019 and better than 1.8 % in 2024. The UM analyses did not include “He/?°Ne and therefore were not used in calculating Rc/R . Not all samples were analysed for §'3C (‘na’ signifies
not analysed). *Samples were splits from Giggenbach bottles, all others were copper tubes. Suffix “_dup” indicates duplicate analyses of the same copper tube or Giggenbach bottle split. ¥*Sampling temperatures varied
across four sampled hot springs during day of sampling.

Site Sample ID Lab T (°C) R/Ra Rc/Ra “He/*°Ne X-value 4OAr/30Ar 84Kr/%Ar 182xe/%Ar  5'3C CO,/°He % mantle He % M %L %S
(x107?) (x107?)

2016

Tavurvur floor fumarole Tav-2 A uo 140 1.0 0.31 1.0 309.7 1.99 0.72 na 2.27 x 108 9

Rababa hot spring RB-HS-1 uo 78 6.4 6.9 3.16 9.9 320.1 4.42 3.37 —4.5 8.04 x 10° 87 24.9 64.3 10.9

Hot spring near Sulfur Pt. RB-HS-2 uo 82 3.3 6.2 0.46 1.5 318.6 1.68 2.31 -9.2 2.47 x 10° 77 81.1 1.8 17.2

Garbuna crater fumarole Gar-F-343 uo 97 7.5 7.5 36.01 113.0 307.6 3.12 2.6 na 94

Garbuna crater fumarole Gar-F-344 uo 89 7.1 7.2 30.71 796.4 310.0 3.82 3.53 na 90

Silanga village hot spring Sil-HS-345 uo 76 5.3 5.4 20.03 62.9 314.3 3.51 2.35 na 67

Pangalu hot spring Pan-HS-1A Uuo 87 6.3 6.6 5.41 17.0 313.5 na na na 6.75 x 108 82

Pangalu hot spring Pan-HS-2 uo 100 2.3 6.7 3.51 11.0 312.3 3.18 2.03 -9.6 1.79 x 10° 84

2019

Tavurvur rim fumarole RB-19-1b* WHOI 97 1.9 5.7 0.40 1.3 na na na -54 114 x 10%° 71 175 674 150

Tavurvur rim fumarole RB-19-1b_dup* WHOI 97 2.2 6.5 0.41 1.3 na na na na 81

Tavurvur rim fumarole RB-19-1b UM 97 2.1 na 300.7 3.83 2.02 na

Tavurvur rim fumarole RB-19-1b_dup UM 97 2.3 na 299.4 2.29 1.15 na

Tavurvur rim fumarole RB-19-1b2 UM 98 0.9 na 298.9 2.00 1.00 na

Tavurvur rim fumarole RB-19-6a* WHOI 98 2.7 6.0 0.48 1.5 na na na —4.6 2.39 x 10'° 75 8.4 77.7 14.0

Rababa hot spring RB-19-3a* WHOI 75 5.8 6.3 3.23 10.1 na na na -3.7 6.71 x 10'° 79 3.0 85.3 11.7

Rababa hot spring RB-19-3a_dup* WHOI 75 6.1 6.7 2.78 8.7 na na na -3.7 84

Rababa hot spring RB-19-3al UM 75 5.6 na 306.3 5.36 3.06 na

Rababa hot spring RB-19-3a2 UM 75 6.5 na 303.7 4.84 4.63 na

Rababa hot spring RB-19-3a2_dup UM 75 6.5 na 303.9 5.69 3.48 na

2024

Narage hot spring P24_05-2 m-1x WHOI 80-125* 8.3 8.3 211.6 661.3 302.8 3.88 0.27 na

Narage hot spring P24 01-2 m-1x WHOI 80-125* 8.2 na 302.8 3.63 0.22 na

Narage hot spring P24_08-2 m-1x WHOI 80-125* 8.3 8.3 138.8 433.9 299.2 3.64 0.24 na

Narage hot spring P24 02-2 m-1x WHOI 80-125* 8.5 8.5 206.0 643.6 304.1 3.9 0.28 na
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Fig. 6. Ny/He vs. 515N, with mixing lines between air, sediment and mantle end members (Fischer et al., 2002; Marty and Zimmermann, 1999; Sano et al., 2001,
1998). The grey shaded field indicates the range in potential upper mantle N,/He values (Labidi, 2022; Bekaert et al., 2021, 2023). Labelled dashed lines represent
mixing (% sediment) between mantle and sediment. We also show data from other intra-oceanic arc settings, Izu-Bonin and the Northern Marianas (Mitchell et al.,

2010) and Sangihe (Clor et al., 2005).

with the addition of carbon from subducted or crustal limestones. Our
sample from Rababa collected in 2019 has higher CO,/3He than the
sample collected in 2016, 6.7 x 10'° compared to 8.0 x 10°. All our
samples lie in a region of COy/°He space bounded by mixing curves
between MORB, subducted organic sediment and marine limestone end-
members, suggesting that the carbon emitted in volcanic gases at Rabaul
is partly supplied by all three of these sources. There is no indication of
magma degassing processes, carbon sequestration and/or in water-gas
phase fractionation processes that could potentially fractionate
C02/3He (e.g., Barry et al.,, 2013; Barry et al., 2022), and thus we
conclude that three component mixing best explains these data.

4.5. Nitrogen isotopes

We report nitrogen isotope data in delta notation, where &§!°N is the
per mil (%o0) deviation of the measured 15N /14N from that of air, which
has 5!°N = 0 %o. Measured 8'°N (& 1-c errors) range from —0.75 + 0.50
to 1.99 + 0.80 %o in Tavurvur crater rim fumarole samples and from
0.16 + 0.18 to 4.56 + 0.63 %o in Rababa hot spring samples (Table 4,
Fig. 6). No/He ranged from 55,780 to 77,835 in Tavurvur crater gases
and from 9596 to 11,155 in Rababa hot spring gases. Our samples from
Tavurvur crater are likely to be air contaminated (see Section 5.3). The
positive enrichment in N isotopes observed in the Rababa hot springs
samples is comparable to that seen in volcanic gases in other circum-
Pacific arcs where nitrogen is supplied both from the mantle and from
sediments carried on the subducting slab (Clor et al., 2005; Fischer et al.,
2005, 2002; Mitchell et al., 2010).

5. Discussion
5.1. Atmospheric contamination

Before determining volatile provenance at Rabaul, we must first

10

evaluate sample integrity, specifically potential contamination by at-
mospheric components such as air or ASW. Key indicators of substantial
air contamination can include high No/He (43720-56,872), low He/Ar
(0.002) and high O2 (19.2-20.0 mol%), typified by our samples from
Tavurvur crater floor (Table 1). Atmospheric contamination may be
introduced during sample collection or, more likely, via air-saturated
steam circulating in the poorly consolidated Tavurvur cone. Tavurvur
rim fumarole samples, are less air contaminated, i.e., have O, of <0.002.
All our samples fall close to either air or ASW (No/Ar = 80 and 43
respectively) in a Np-He-Ar ternary diagram (Fig. 2), indicating that all
are subject to variable degrees of atmospheric contamination. This is
further suggested by a range in *°Ar/%®Ar of 298.9-320.1, only slightly
above the atmospheric value of 298.56 + 0.31, (Lee et al., 2006).
Rababa hot spring samples exhibit lower No/He (7267-9596) and higher
4Oar/30Ar (303.7-320.1) than Tavurvur crater rim samples (Table 1).

Helium isotopes (®He/*He) and “He/*°Ne (Table 2, Fig. 3) allow us a
further means of evaluating variable degrees of atmospheric contami-
nation. Tavurvur samples, both crater floor and rim, have low SHe/*He
(0.9-2.7) and “He/*°Ne (0.3-0.4), indicating a strong atmospheric in-
fluence. Conversely, Rababa hot spring samples have higher *He/*He
(5.6-6.5 Ry) and “He/*°Ne (2.78-3.23), indicating less contamination.
Helium isotopes can be corrected for air contamination using X-values as
described in Section 4.3, though the most air contaminated samples
cannot be reliably interpreted in terms of volatile sources.

Overall, on the basis of gas chemistry and He-Ne-Ar isotopes, we
judge our Tavurvur (and Sulfur Point) samples to be heavily overprinted
by atmospheric influence. This atmospheric contamination significantly
affects gas species that are abundant in air, i.e., primarily nitrogen and
therefore makes the determination of nitrogen sources in Tavurvur and
Sulfur Point gases challenging. Our Rababa hot spring gases indicate a
mixture of magmatic and atmospheric influence and can be used, with
care, to evaluate deep volatile inputs to the Rabaul volcanic-
hydrothermal system, as described below. Likewise, 5'3C values of our
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Table 3

Carbon isotopes and measured CO, concentration in fumarole and hot spring
gases collected in 2019. Crater floor fumaroles and clean air were sampled using
a Tedlar bag onboard our multirotor UAS and analysed by Delta Ray during the
fieldwork. The remaining samples were collected using Giggenbach bottles and
analysed by IRMS at UNM.

Sample ID Date Sampling Site CO, (ppm)  8'3C +/—

TAV-CRF_1401 14/05/ crater floor 467 —8.02 0.11
21

TAV-CRF_1402 14/05/ crater floor 489 -7.06 0.07
21

TAV-CRF_1403 14/05/ crater floor 432 —-8.38 0.96
21

TAV-CRF_1404 14/05/ crater floor 451 —8.54 0.58
21

TAV-CRF_1405 14/05/ crater floor 443 -7.34  0.09
21

TAV-CRF_1601 16/05/ crater floor 512 —7.60 0.16
21

TAV-CRF_1602 16/05/ crater floor 509 —7.86 0.09
21

TAV-CRF_1603 16/05/ crater floor 495 —-7.94 0.06
21

TAV-CRF_1604 16/05/ crater floor 454 —8.95 0.03
21

TAV-CRF_1605 16/05/ crater floor 555 —7.48 0.54
21

TAV-CRF_1606 16/05/ crater floor 509 —-6.48  0.17
21

TAV- 16/05/ crater rim 709 —4.61 0.55
CRR_1601 21

TAV- 16/05/ crater rim 949 -5.39 0.07
CRR_1601 21

RB-HS1_.1701 17/05/ Rababa hot spring 2646 -3.67 0.06
21

RB-HS1_.1702 17/05/ Rababa hot spring 2506 -3.67 0.03
21

RB-AIR_1701 17/05/ clean air 430 -7.70  0.05
21

gas samples from all localities extrapolate to values that are character-
istic of magmatic arc fumaroles and provide information on CO; sources
at Tavurvur.

5.2. Mantle versus crustal helium

We can use the air-corrected helium isotope composition of our
samples to estimate the fraction of helium derived from the mantle and
crust beneath Rabaul, assuming a binary mixture of the two end-
members (Barry et al., 2013):

%mantle helium = (Rc/Ra—>He/*Hecs:) / (*He/*Hemanie— *He/*Hecrys:)

Table 4
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where *He/*Hepante = 8 Ra (Graham, 2002) and *He/*Hecrysc = 0.05
Ra (Morrison and Pine, 1955).

Most of our Rabaul gases are characterised by 71 to 87 % mantle
helium (13 to 29 % crustal helium), with the exception of the highly air
contaminated sample from the Tavurvur crater floor, which has only 10
% mantle-derived helium (Table 2). The uncertainty on our R¢/Ra es-
timates is 1.8-3.1 % and this can be considered the consequent uncer-
tainty on our calculations of mantle versus crustal helium contributions.
The mean (+ standard deviation) of 79 + 5 % mantle helium for our
non-contaminated samples is greater than the value of 67 % mantle
helium in our sample from the Sulu Range hot springs at Silanga village,
and lower than the values of 82 and 84 % (Talasea) and 90 and 94 %
(Garbuna) in our other New Britain volcanic gas samples (Table 2).

Mixing between primordial (mantle) and radiogenic (crustal) helium
is typically controlled by crustal thickness (Barry et al., 2022; Hilton
et al., 2002; Lages et al., 2021; Mason et al., 2017). Seismic refraction
surveys suggest crustal thickness of ~32 km beneath Rabaul and the
Gazelle Peninsula and ~ 25 km under central New Britain and the
Williaumez Peninsula (Finlayson et al., 1972). Our data are consistent
with a small crustal influence beneath Rabaul and a lesser influence
(higher ®He/*He) in central New Britain where the crust is slightly
thinner, e.g., beneath the Talasea and Garbuna volcanic systems (Fig. 3).
The northward increase in 3He/4He, evident in our samples from Sulu,
Talasea, Garbuna and Narage, peaking at >8.0 Ra, may indicate the
encroaching influence of the Manus Basin plume, and is consistent with
elevated *He/*He reported in basaltic glasses from across the Manus
Basin (Macpherson et al., 1998). The high *He/*He of 8.6 Ry reported by
Sano and Williams (1996) for Tavurvur was measured in gases emitted
in an interval of relatively intense unrest, relative to our sampling pe-
riods, which may explain the stronger mantle/magmatic signature.

5.3. Sources of carbon

Figure 4 displays the 8'3C of fumarole and hot spring gases plotted
against the inverse of CO2 concentration in each sample. We also show
the carbon isotope composition of reference standards, (1) limestone,
that is, subducted marine carbonate (3'3C ~ 0 %o) and (2) MORB, rep-
resenting upper mantle material (8'>C ~ —6.5 + 2.5) (Sano and Marty,
1995). Most of our data falls on a mixing line between air and a range in
5!3C that is intermediate between limestone and MORB (linear corre-
lation coefficient of 0.86, y-intercept of —2.56 + 0.62). The range in CO»
and 5'3C exhibited by our samples indicates a variable degree of mixing
between ambient air and deep fumarolic hot spring gases. A sample of
pristine volcanic gas, that is, without any air contamination, would plot
at the far left of this mixing line, close to the y-intercept. Thus, we can
estimate the carbon isotopic composition of such a gas to be ~ — 2.6 +
0.62 %o. This is isotopically high with respect to the upper mantle

Nitrogen isotopes and estimated mantle (M), atmospheric (A) and sediment (A) percentage contributions from fumarole and hot spring gases sampled at Rabaul. Mc
and S¢ are percentage contributions of mantle versus sediment influence on air-corrected nitrogen isotope values, 5'°N.. Capital letter suffixes (A, B, C) in the sample ID
column refer to separate copper tube splits of our Giggenbach bottle samples. Where present, ‘dup’ refers to a duplicate. Each line in the table represents the mean and

standard deviation of a triplicate analysis of each copper tube split.

Site Sample ID Mean 8'°N N,/He % M % A %S % Mc % S¢ 515N,
2019

Tavurvur rim fumarole RB-19-1 A 1.02 £ 0.33 55,780 0.3 85.0 14.7 1.8 98.2 6.79
Tavurvur rim fumarole RB-19-1C 1.99 + 0.80 55,780 0.3 71.1 28.6 0.9 99.1 6.89
Tavurvur rim fumarole RB-19-1b C —0.75 + 0.50 55,780 0.3 -10.6 110.3 -2.6 102.6 7.31
Tavurvur rim fumarole RB-19-6a A 0.50 £+ 0.53 77,835 0.2 92.6 7.2 2.6 97.4 6.69
Rababa hot spring RB-19-3a B 0.16 + 0.18 9596 1.6 95.0 3.4 31.6 68.4 3.21
Rababa hot spring RB-19-3a B_dup 2.29 + 0.42 9596 1.6 64.5 33.9 4.4 95.6 6.47
Rababa hot spring RB-19-3a C 2.47 + 0.56 9596 1.6 62.1 36.3 4.1 95.9 6.51
2016

Rababa hot spring RABHS 1A 4.56 + 0.63 11,155 1.3 32.6 66.1 2.0 98.0 6.76
Rababa hot spring RABHS 1B 3.27 + 0.65 11,155 1.3 51.1 47.6 2.8 97.2 6.67
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reservoir and would be consistent with CO5 input from carbonate, either
on the subducting slab or in the crustal country rocks. It closely matches
the 8!3C values of —2.55 to —2.80 %o reported for Rabaul by Sano and
Williams (1996).

Figure 5 displays the relative abundance of helium and CO; in our
samples, together with their carbon isotope composition. Previous
studies have established that He-CO, characteristics can also be used to
determine relative mantle and subducted contributions (Halldorsson
et al., 2013; Hilton et al., 2002; Jaffe et al., 2004; Mitchell et al., 2010;
Sano and Marty, 1995; Sano and Williams, 1996; Snyder et al., 2001;
van Soest et al., 1998). The method assumes that there is no crustal input
of volatiles and that possible carbon reservoirs feeding volcanic out-
gassing are the mantle wedge (M), limestone (L) from subducted sedi-
ment or carbonate in the altered oceanic lithosphere, and sedimentary
organic carbon (S). These reservoirs have distinct C02/3He M= 2 x
10% L=1 x10'%,5 =1 x 10'®) and 5'3C (M = —5 %o, L. = 0 %o, S = —30
%o) as shown in Fig. 5. Using the following equations (Sano and Marty,
1995), we can calculate the mass fraction of each potential source of
carbon:

(3C/7C)g = fu(°C/17C),, +.(°C/C), +65(°C/C),

1/(2C/7He), = fu / (2C/He),, + L (2C/*He), + 15 (*2C/ He)..

fu+f+fs=1.

where subscripts M, L, and S correspond to the mantle, limestone and
sediment end members and subscript O is the measured or observed
sample.

The mean L:S:M ratio we observe in our Rabaul samples is 59:14:27,
though this is subject to large standard deviation (33:3:31) owing to our
sample from the hot springs near Sulfur Point plotting close to the
mantle range of 5'3C while our remaining samples plot close to the
mixing line between mantle and limestone (Fig. 5). The Sulfur Point hot
springs sample is difficult to interpret: it has low >He/*He and “He/2’Ne
consistent with substantial air contamination, yet higher He/Ar and N/
Ar than any of our other Rabaul samples. The mean (and standard de-
viation) L:S:M ratio of the four Rababa hot spring and Tavurvur crater
samples is 74:13:13 (10:2:10). This composition points to a dominance
of slab over mantle in supplying carbon to Rabaul and, as above, sug-
gests carbonates are the main carbon source, with a second, more
modest input from organic sediments. This is reasonable, if the sub-
ducting assemblage matches the calcareous mudstones and altered ba-
salts sampled by dredging of the Solomon sea floor (Crook, 1986; Davies
and Price, 1986). Our data from Rabaul is comparable with other intra-
oceanic arcs, e.g., Sangihe (Jaffe et al., 2004) and the Antilles (van Soest
et al., 1998), where carbon from slab carbonates and, to lesser extent,
organic sediments is mixed into the mantle source.

Sano and Marty (1995)’s approach assumes that only the mantle and
the slab supply carbon to volcanic emissions. Several studies have since
argued that emissions from many volcanic arcs are subject to substantial
additions of carbon via the interaction of rising magmas and crustal
carbonates (Barry et al., 2022; Deegan et al., 2010; Lages et al., 2021;
Mason et al., 2017; van Soest et al., 1998). Indeed, Mason et al. (2017)
identify PNG (not discriminating between New Britain, West Bismarck
and Bougainville) as one of a subset of arcs where outgassed carbon is
sourced dominantly from crustal limestone, along with Central America,
the Aegean, Indonesia, Italy and parts of the Andes. Our data suggest
otherwise, with high air-corrected helium isotopes (R¢/Ra) in the ma-
jority of gas samples pointing to only minimal crustal influence on
outgassing. A minor role for crustal carbon is certainly possible, given
widespread growth of carbonate platforms across the region during the
Miocene, but we note that these rocks are most prevalent in the western
part of the Gazelle Peninsula, separated from Rabaul by major north-
south trending fault systems, and may be unlikely as a result to
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influence the magmatic system (Lindley, 2006; Madsen and Lindley,
1994).

5.4. Sources of nitrogen

Similarly to helium and carbon, we can quantitatively resolve the
different contributions to Rabaul’s nitrogen output. Equations devel-
oped by (Sano et al., 1998, 2001) allow us to calculate how air (A),
upper mantle (M) and sediments (S) supply nitrogen to the volcanic
system using measured 5!°N and Ny/He values (Table 4, Fig. 6):

8""No = (8"Na x fa) + (8" Ny x fu) + (6" Ns x fs).
1/(N2/He)o = fA/(Nz/He)A+fM/(N2/He)M +f5/(N2/He)S

fa 4+ fs = 1.

where fa, fyy, and fs are the fractions of the measured N5 derived from
air, mantle and sediment respectively and 615NA/M ssand No/Hep /v s are
the respective values of the end members. End member 5'°N values are
0 %o for air, —5 + 2 %o for the upper mantle, and + 7 + 4 %o for sedi-
ments (Sano et al., 2001). End member N5/He values are 1.49 x 10° for
air, 150 for the upper mantle, and 1.05 x 10* for sediments respectively
(Fischer et al., 2002; Sano et al., 2001). We note that the No/He mantle
end-member value of 150 cited in Fischer et al. (2002) is based on a
global compilation of N-MORB glasses (Marty and Zimmermann, 1999)
and that estimates based on N2/3He (and 3He/*He) in basaltic glasses
and popping rocks yield lower values, ~35-122 (Bekaert et al., 2021,
2023; Javoy and Pineau, 1991; Labidi, 2022). The Ny/He value of the
upper mantle does not change our following discussion substantially,
given that all our samples plot far from the mantle end-member in N3/
He-5'°N mixing diagrams (e.g., Fig. 6).

Recent work on nitrogen isotopologues (Labidi et al., 2021) indicates
atmospheric contamination of fumarolic gases may be more extensive
than can be determined from 5'°N and gas chemistry (e.g., No/Ar, N/
He) alone. In addition, 51°N values may be biased towards lower values
due to kinetic isotope fractionation (Labidi et al., 2020, 2021; Labidi and
Young, 2022), perhaps as a result of diffusive transport fractionation
(Bekaert et al., 2023) or phase fractionation. Thus, in the absence of
ISN1SN data, we acknowledge that our estimates of atmospheric nitro-
gen contributions are likely to be minima. Our samples from Tavurvur
are probably subject to the most substantial air contamination, based on
air-like 3'°N (~0.75-1.99 %0) and Na/He in excess of 50,000. Our
samples from Rababa show a range in 5'°N of 0.16-4.56 %o and so may
provide more reliable insight into nitrogen sources. These isotopic
values suggest, a degree of atmospheric influence notwithstanding, that
both upper mantle and subducted organic sediments are supplying ni-
trogen to Rabaul’s magma source region. Four of our five Rababa sam-
ples appear to be subject to only limited air contamination and contain
substantial (34-66 %) sediment-derived nitrogen. Following Mitchell
et al. (2010), we calculate an air-corrected nitrogen isotope composi-
tion, 5'°N¢, that is:

8"Nc = (8" Ny x ) + (6Ns x (1 —fu) ).

where 8" Ny = —5 %o, 615Ns = +7 %o and fy; is the fraction of mantle
nitrogen derived above.

We can then calculate air-corrected contributions from sediment (S¢
= S/(S + M) and mantle (M¢ = 1 — S¢). For our four Rababa samples
(little air contamination), Sc ranges from 96 to 98 %, pointing to a
dominantly sedimentary over mantle origin for nitrogen at Rabaul. This
is typical of many subduction settings, with an average of 75 % of arc
nitrogen being of recycled sedimentary origin (Sano et al., 1998). There
are limited data from other intra-oceanic subduction zone volcanoes to
compare with Rabaul. In the Izu-Bonin-Marianas, nitrogen emissions at
most volcanoes are likewise mostly of sedimentary origin, with a minor
but resolvable contribution from AOC, with the exception of Agrigan
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where 5!°N values of —2.5 to —2.7 % indicate a little-modified upper
mantle source (Mitchell et al., 2010). In the Sangihe arc, there is a lower
sedimentary contribution to nitrogen emissions than the Sano et al.
(1998) global mean of 75 %, suggesting an overall stronger influence of
local upper mantle (Fig. 6). Along-arc variations in Ny/He and nitrogen
isotope composition have been interpreted as variations in sediment off-
scraping or subducted sediment composition (Clor et al., 2005).

In summary, our 5'°N data, along with the §'3C data described
above, indicate the influence of sediment on Rabaul volatiles. On the
basis of high *He/*He in these gases, we infer that the sediment is
sourced from the subducting slab and not the result of assimilation of
crustal volatiles. However, nitrogen isotope data should be treated with
caution due to the level of atmospheric contamination, evident in the
No/He (Fig. 6) and the fact that Ny/Ar values are broadly air-like
(Fig. 2).

5.5. Volatile provenance at Rabaul

Our data allow, for the first time, an evaluation of the origins of
magmatic volatiles and therefore volcanic gases at Rabaul. Air-corrected
helium isotopes, ranging from 5.7 to 6.9 R, are indicative of mantle-
dominated helium and only minor crustal input. This is consistent
with the relatively thin crust beneath Rabaul and is characteristic of
most intra-oceanic arcs (Hilton et al., 2002). Gas chemistry, e.g., No/Ar
and Ny/He, is also typical of arc volcanoes in low levels of unrest,
indicating a mantle source overprinted by slab influence and a degree of
atmospheric contamination (Fischer, 2008).

Carbon isotopes, with 5!3C of pure magmatic CO; (i.e., a putative air-
free sample) estimated at ~ — 2.6 + 0.62 %o, suggest a mix of mantle,
carbonate and organic sediment influences, with carbonate the major
source (75 % in most samples). Based on our helium data, only minor
volatiles can be supplied from crustal rocks and hence we suggest a
limited role for decarbonation of the Miocene Yalam Formation lime-
stones in supplying carbon to Rabaul. Instead, we favour the subducting
slab as the source of both carbonate- and organic sediment-derived CO,.
The best estimates of the subducting assemblage are provided by sea-
floor dredging only, and we emphasise caution is required in stating that
these unequivocally represent the slab lithologies. The calcareous
mudrocks reported by Crook (1986) are plausible sources of both car-
bonate and sedimentary carbon, and the altered basalts described by
Davies and Price (1986) are likely to be carbonate-bearing. Aiuppa et al.
(2017) note that the Solomon Sea depth and age make it likely that the
seafloor has been above the carbonate compensation depth for its entire
history, which would support the idea of substantial carbonate flux into
the New Britain trench on the Solomon slab.

Overall, our data support the inference made by Aiuppa et al. (2017,
2019) and subsequently by Plank and Manning (2019) that New Britain,
and perhaps other arc segments in PNG, are margins where carbon
emissions are dominated by recycling of subducted carbon. Further
work is required to evaluate the relative importance of sedimentary
carbonate versus altered ocean crust or lithosphere. Thermodynamic
modelling of the New Britain subduction zone suggests that carbonate
dissolution and metamorphic decarbonation of both sediments and
altered basalts are necessary to explain the volcanic arc carbon flux
(Arzilli et al., 2023) though we emphasise that the carbon outgassing
flux presently estimated from the New Britain arc is predicted, not based
on measured gas emissions (Aiuppa et al., 2019), and in our view may be
biased high by the consideration only of Rabaul’s emissions prior to
2014 and moreover the merging of Manam (Western Bismarck), Ulawun
and Rabaul (New Britain) and Bagana (Bougainville) into the same arc
segment (“PNG”, see Aiuppa et al., 2017, 2019, and Plank and Manning,
2019). The thermal state of the New Britain subduction zone is neither
notably hot nor cold, with a slab thermal parameter, ¢, of 2510 lying
slightly below (i.e., warmer) than the median value, 2994, of the global
range (van Keken et al., 2011). Broadly speaking, this is likely to favour
efficient devolatilization around subarc depths, rather than the
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pervasive shallow dewatering of the hottest slabs or the retention of
volatiles beyond the arc associated with old and cold slabs (Arzilli et al.,
2023; Plank and Manning, 2019; van Keken and Wilson, 2023). The
modelling of van Keken et al. (2011) suggests substantial water flux
from the subducting Solomon slab at depths of both 100 km and 150 km
— the depth to slab below Rabaul is estimated at 148 km (Syracuse and
Abers, 2006) — however the water loss trajectory for New Britain as a
function of depth (see Fig. 6, van Keken et al., 2011) suggests the major
pulses of slab dewatering may occur relatively before (~80-120 km)
and after (~180 km). If slab partial melting is indeed important in the
New Britain subduction zone (Klaver et al., 2024), this may substantially
increase the efficiency of carbon recycling from the slab to the subarc
mantle wedge (Plank and Manning, 2019; Poli, 2015).

Nitrogen isotopes (615N) range from 0.16 to 4.56 %o in our least air-
contaminated (Rababa) samples, indicating the influence of a second
slab phase beyond carbonate, namely sediment derived nitrogen. This
fits with our carbon isotope data (i.e., highest CO5/3He in the Rababa
sample) and also the arguments advanced by Hohl et al. (2022) based on
the whole-rock geochemistry and isotope composition of Rabaul lavas.
Further evidence for some sediment involvement comes from our mea-
surements of elevated ®*Kr/3°Ar and 32Xe/3°Ar in the Rababa hot
springs samples, i.e., those where heavy noble gas signatures deviate
from atmospheric composition (Supplementary Fig. S1). Nitrogen iso-
topes in arc gases may be significantly influenced by altered ocean crust,
though given a lack of constraint on the variation of §'°N through the
Solomon slab crust we have not attempted to evaluate this possibility
quantitatively (c.f. Mitchell et al., 2010). The available nitrogen isotope
data for AOC points to positive enrichments over MORB (Busigny et al.,
2005, 2019; Li and Li, 2023) and it is possible that the positive 515N
values of our least air-contaminated samples may also result from
recycled AOC-derived nitrogen. Heterogeneity in the Ny/He content and
nitrogen isotope composition of both upper mantle and slab reservoirs
adds complexity to the interpretation of nitrogen source in arcs (Bekaert
et al., 2021; Clor et al., 2005; Fischer et al., 2005; Labidi, 2022; Mitchell
et al.,, 2010). Melting enhanced carbon flux from the slab may also
contribute to more efficient mobilisation of nitrogen.

In summary, Rabaul volcanic gases are sourced from the mantle
wedge with a substantial recycled slab overprint that supplies carbon
and nitrogen from carbonates, sediments, and altered ocean crust. We
anticipate that the relative proportions of slab-derived carbon versus
nitrogen may be rather different, owing to different behaviours under
slab metamorphism and variable derivation of each species from
different slab lithologies.

6. Conclusion

We have analysed the chemical and isotopic (He-C-N-Ne-Ar-Kr-Xe)
composition of fumarole and hot spring gases from Rabaul caldera,
known to be among the most threatening and historically active volcanic
systems in Papua New Guinea, but one where activity has declined
substantially over the last decade. Ours is the first systematic study of
gas composition to be undertaken at Rabaul and the first study to
explore volatile provenance at this volcano. Our gas samples are subject
to variable and in some cases overwhelming atmospheric contamina-
tion. Nonetheless, owing to our combination of helium (mantle versus
crust), carbon (mantle versus carbonate versus organic sediments) and
nitrogen (mantle versus sedimentary versus atmosphere) isotopic
tracers we have been able to estimate the balance of mantle, slab, and
crustal influence on Rabaul volatiles.

Rabaul gases are comparable to those of other volcanic arcs, being
enriched in carbon and nitrogen. Helium isotopes point to a strong
mantle rather than crustal influence, with air corrected He isotope
values ranging from 5.7 to 6.9 Ry and 71-87 + 3 % of helium in Rabaul
gases originating from the mantle. Carbon isotopes (5'3C estimated as
—2.6 + 0.62 %o for magmatic gases) indicate a combined mantle, car-
bonate, and organic sediment influence, with slab carbonate of either
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sedimentary or altered oceanic crustal origin providing most of the
carbon in Rabaul gases. Nitrogen isotopes (3'°N ~ 0.16-4.56 %o in our
least air-contaminated samples) also point to a sedimentary source or
potentially altered oceanic crust. We consider both carbonate and
sedimentary influences to originate from the nearby subducting Solo-
mon Sea slab, though minor contributions from arc crustal rocks are
plausible, especially of carbonate.

Many characteristics of the Rabaul volcanic system remain little
explored and our understanding of volatile provenance in the New
Britain arc is at a nascent stage. In this contribution, our focus is to
determine the reservoirs feeding outgassing from the Rabaul caldera
complex, and we conclude that the nearby subducting slab plays a sig-
nificant role in augmenting volatile supply from the upper mantle
reservoir beneath Rabaul. Future work should investigate whether the
high outgassing of the 1994-2014 eruptive interval is characteristic of
the long-term behaviour of Rabaul or not, and whether Rabaul magmas
are notably volatile-rich. There remain major unknowns in the wider
regional geological context, including an absence of core samples of the
subducting lithologies and the relative influence of both ongoing (New
Britain trench) and earlier (Vitiaz-Melanesian trench) sequences of
subduction recycling on the mantle wedge below the Bismarck Sea and
Manus Basin.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chemgeo0.2024.122434.
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