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Abstract Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to 
integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and 
Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-
tethered signaling inputs, however, remains unclear. Previous experiments did not determine 
whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus 
directly modulate lipid kinase activity. To address this gap in our knowledge, we established an 
assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to 
the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule 
Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling 
PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find 
that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) 
peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ 
to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or 
pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply 
increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/
Rac1 (GTP) through a mechanism consistent with allosteric regulation.

eLife assessment
The manuscript describes the synergy among PI3Kβ activators, providing compelling results 
concerning the mechanism of their activation. The particular strengths of the work arise to a great 
extend from the reconstitution system better mimicking the natural environment of the plasma 
membrane than previous setups have. The study will be a landmark contribution to the signaling 
field.

Introduction
Critical for cellular organization, phosphatidylinositol phosphate (PIP) lipids regulate the localiza-
tion and activity of numerous proteins across intracellular membranes in eukaryotic cells (Di Paolo 
and De Camilli, 2006). The interconversion between various PIP lipid species through the phos-
phorylation and dephosphorylation of inositol head groups is regulated by lipid kinases and phos-
phatases (Balla, 2013; Burke, 2018). Serving a critical role in cell signaling, the class I family of 
PI3Ks catalyze the phosphorylation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to generate 
PI(3,4,5)P3. Although a low-abundance lipid (<0.05%) in the plasma membrane (Wenk et al., 2003; 
Nasuhoglu et al., 2002; Stephens et al., 1993), PI(3,4,5)P3 can increase 40-fold following receptor 
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activation (Stephens et al., 1991; Parent et al., 1998; Insall and Weiner, 2001). Although signal 
adaptation mechanisms typically restore PI(3,4,5)P3 to the basal level following receptor activation 
(Funamoto et al., 2002; Yip et al., 2008; Auger et al., 1989), misregulation of the PI3K signaling 
pathway can result in constitutively high levels of PI(3,4,5)P3 that are detrimental to cell health. Since 
PI(3,4,5)P3lipids serve an instructive role in driving actin-based membrane protrusions (Howard and 
Oresajo, 1985; Weiner, 2002; Graziano et al., 2017), sustained PI(3,4,5)P3 signaling is known to 
drive cancer cell metastasis (Hanker et al., 2013). Elevated PI(3,4,5)P3 levels also stimulates the AKT 
signaling pathway and Tec family kinases, which can drive cellular proliferation and tumorigenesis 
(Manning and Cantley, 2007; Fruman et al., 2017). While much work has been dedicated in deter-
mining the factors that participate in the PI3K signaling pathway, how these molecules collaborate 
to rapidly synthesize PI(3,4,5)P3 remains an important open question. To decipher how amplification 
of PI(3,4,5)P3 arises from the relay of signals between cell surface receptors, lipids, and peripheral 
membrane proteins, we must understand how membrane localization and activity of PI3Ks is regu-
lated by different signaling inputs. This will provide new insight concerning the molecular basis of 
asymmetric cell division, cell migration, and tissue organization, which are critical for understanding 
development and tumorigenesis.

In the absence of a stimulatory input, the class IA family of PI3Ks (PI3Kα, PI3Kβ, PI3Kδ) are thought 
to reside in the cytoplasm as auto-inhibited heterodimeric protein complexes composed of a catalytic 
(p110α, p110β, or p110δ) and regulatory subunit (p85α, p85β, p55γ, p50α, or p55α) (Burke, 2018; 
Vadas et al., 2011). The catalytic subunits of class IA PI3Ks contain an N-terminal adaptor binding 
domain (ABD), a Ras/Rho binding domain (RBD), a C2 domain (C2), and an adenosine triphosphate 
(ATP) binding pocket (Vadas et  al., 2011). The inter-SH2 (iSH2) domain of the regulatory subunit 
tightly associates with the ABD of the catalytic subunit (Yu et al., 1998), providing structural integ-
rity, while limiting dynamic conformational changes. The nSH2 and cSH2 domains of the regulatory 
subunit form additional inhibitory contacts that limit the conformational dynamics of the catalytic 
subunit (Zhang et al., 2011; Mandelker et al., 2009; Burke et al., 2011; Carpenter et al., 1993; Yu 
et al., 1998). A clearer understanding of how various proteins control PI3K localization and activity 
would help facilitate the development of drugs that perturb specific protein-protein binding inter-
faces critical for membrane targeting and lipid kinase activity.

Among the class IA PI3Ks, PI3Kβ is uniquely capable of interacting with Rho-family GTPases (Fritsch 
et al., 2013), Rab GTPases (Christoforidis et al., 1999; Heitz et al., 2019), heterotrimeric G-protein 
complexes (GβGγ) (Kurosu et al., 1997; Maier et al., 1999; Guillermet-Guibert et al., 2008), and 
phosphorylated receptor tyrosine kinases (RTKs) (Zhang et al., 2011; Carpenter et al., 1993). Like 
other class IA PI3Ks, interactions with RTK derived phosphotyrosine peptides release nSH2 and cSH2-
mediated inhibition of the catalytic subunit to stimulate PI3Kβ lipid kinase activity (Dbouk et al., 2012; 
Zhang et al., 2011). GβGγ and Rac1(GTP) in solution have also been shown to stimulate PI3Kβ lipid 
kinase activity (Dbouk et al., 2012; Fritsch et al., 2013; Maier et al., 1999). Similarly, activation of 
Rho-family GTPases (Fritsch et al., 2013) and G-protein coupled receptors (Houslay et al., 2016) in 
cells, stimulates PI3Kβ lipid kinase activity. However, it’s unclear how individual interactions with GβGγ 
or Rac1(GTP) can bypass autoinhibition of full-length PI3Kβ (p110β-p85α/β). Studies in neutrophils 
and in vitro biochemistry suggest that PI3Kβ is synergistically activated through coincidence detection 
of RTKs and GβGγ (Houslay et al., 2016; Dbouk et al., 2012). Similarly, Rac1(GTP) and GβGγ have 
been reported to synergistically activate PI3Kβ in cells (Erami et al., 2017). An enhanced membrane 
recruitment mechanism is the most prominent model used to explain synergistic activation of PI3Ks.

There is limited kinetic data examining how PI3Kβ is regulated by different membrane-tethered 
proteins. Previous biochemical studies of PI3Kβ have utilized solution-based assays to measure P(3,4,5)
P3 production. As a result, the mechanisms that determine how PI3Kβ prioritizes interactions with RTKs, 
small GTPases, or GβGγ remains unclear. In the case of synergistic PI3Kβ activation, it’s unclear which 
protein-protein interactions regulate membrane localization versus stimulate lipid kinase activity. No 
studies have simultaneously measured PI3Kβ membrane association and lipid kinase activity to deci-
pher potential mechanisms of allosteric regulation. Previous studies concerning the synergistic acti-
vation of PI3Ks are challenging to interpret because RTK-derived peptides are always presented in 
solution alongside membrane-anchored signaling inputs. However, all the common signaling inputs 
for PI3K activation (i.e. RTKs, GβGγ, Rac1/Cdc42) are membrane-associated proteins. Activation of 
class 1A PI3Ks has never been reconstituted using solely membrane-tethered activators conjugated 
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to membranes in a biologically relevant configuration. As a result, we currently lack a comprehensive 
description of PI3Kβ membrane recruitment and catalysis.

To decipher the mechanisms controlling PI3Kβ membrane binding and activation, we established 
a biochemical reconstitution using supported lipid bilayers (SLBs). We used single molecule Total 
Internal Reflection Fluorescence (TIRF) microscopy to quantify the relationship between PI3Kβ local-
ization, lipid kinase activity, and the density of various membrane-tethered signaling inputs. This 
approach allowed us to measure the dwell time, binding frequency, and diffusion coefficients of single 
fluorescently labeled PI3Kβ in the presence of RTK-derived peptides, Rac1(GTP), and GβGγ. Simul-
taneous measurements of PI3Kβ membrane recruitment and lipid kinase activity allowed us to define 
the relationship between PI3Kβ localization and PI(3,4,5)P3 production in the presence of different 
regulators. Overall, we found that membrane docking of PI3Kβ first requires interactions with RTK-
derived tyrosine phosphorylated (pY) peptides, while PI3Kβ localization is insensitive to membranes 
that contain either Rac1(GTP) or GβGγ alone. Following engagement with a pY peptide, PI3Kβ can 
associate with either GβGγ or Rac1(GTP). In the case of synergistic PI3Kβ localization mediated by pY/
GβGγ, it’s essential for the nSH2 domain to move away from the GβGγ binding site. Although both 
the PI3Kβ-pY-Rac1(GTP) and PI3Kβ-pY-GβGγ complexes display a ~2-fold increase in membrane local-
ization, the corresponding increase in catalytic efficiency is much greater. Overall, our results indicate 
that synergistic activation of PI3Kβ depends on allosteric modulation of lipid kinase activity.

Results
PI3Kβ prioritizes interactions with pY peptides over Rac1(GTP) and 
GβGγ
Previous biochemical analysis of p110β-p85α, referred to as PI3Kβ, established that receptor tyrosine 
kinases (Zhang et al., 2011), Rho-type GTPases (Fritsch et al., 2013), and heterotrimeric G-protein 
GβGγ (Dbouk et al., 2012) are capable of binding and stimulating lipid kinase activity. To decipher 
how PI3Kβ prioritizes interactions between these three membrane-tethered proteins we established 
a method to directly visualize PI3Kβ localization on supported lipid bilayers (SLBs) using Total Internal 
Reflection Fluorescence (TIRF) Microscopy (Figure 1A). For this assay, we covalently attached either 
a doubly tyrosine phosphorylated platelet-derived growth factor (PDGF) peptide (pY) peptide or 
recombinantly purified Rac1 to supported membranes using cysteine reactive maleimide lipids. We 
confirmed membrane conjugation of the pY peptide and Rac1 by visualizing the localization of fluores-
cently labeled nSH2-Cy5 or Cy3-p67/phox (Rac1(GTP) sensor), respectively (Figure 1B). Nucleotide 
exchange of membrane conjugated Rac1(GDP) was achieved by the addition of a guanine nucleo-
tide exchange factor, P-Rex1 (phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 
protein) diluted in GTP containing buffer (Figure 1C). As previously described (Rathinaswamy et al., 
2021; Rathinaswamy et al., 2023), AF488-SNAP dye-labeled farnesyl GβGγ was directly visualized 
following passive absorption into supported membranes (Figure 1D and Figure 1—figure supple-
ment 1). We confirmed that membrane-bound GβGγ was functional by visualizing robust membrane 
recruitment of Dy647-PI3Kγ by TIRF-M (Figure 1E). Overall, this assay functions as a mimetic to the 
cellular plasma membrane and allowed us to examine how different membrane-tethered signaling 
inputs regulate PI3Kβ membrane localization in vitro.

We visualized both single molecule binding events and bulk membrane localization of Dy647-
PI3Kβ by TIRF microscopy to determine which inputs can autonomously recruit autoinhibited Dy647-
PI3Kβ from solution to a supported membrane (Figure  1F). Comparing membrane localization of 
Dy647-PI3Kβ in the presence of pY, Rac1(GTP), or GβGγ revealed that only the tyrosine phosphory-
lated peptide (pY) could robustly localize Dy647-PI3Kβ to supported membranes (Figure 1F–G). This 
prioritization of interactions was consistently observed across a variety of membrane lipid composi-
tions (Figure 1—figure supplement 2). Increasing the anionic lipid charge of supported membranes 
through the addition of 20% phosphatidylserine (PS), did not significantly change the frequency of 
Dy647-PI3Kβ membrane interactions in the presence of either Rac1(GTP) or GβGγ alone (Figure 1—
figure supplement 2). Although we could detect some transient Dy647-PI3Kβ membrane binding 
events in the presence of GβGγ alone, the binding frequency was reduced 2000-fold compared to 
our measurements on pY membranes (Figure  1—figure supplement 2). Localization of wild-type 
Dy647-PI3Kβ phenocopied the GβGγ binding mutant, Dy647-PI3Kβ (K532D, K533D), indicating that 
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Figure 1. Phosphoinositide 3-kinase beta (PI3Kβ) prioritizes membrane interactions with receptor tyrosine kinase (RTK)-derived phosphorylated (pY) 
peptides over Rac1(GTP) and G-protein complexes (GβGγ). (A) Cartoon schematic showing membrane-tethered signaling inputs (i.e. pY, Rac1(GTP), 
and GβGγ) attached to a supported lipid bilayer and visualized by TIRF-M. Heterodimeric Dy647-PI3Kβ (p110β-p85α) in solution can dynamically 
associate with membrane-bound proteins. (B) Cartoon schematic showing method for visualizing membrane-tethered signaling inputs. (C) Kinetics of 
Rac1 nucleotide exchange measured in the presence of 20 nM Rac1(GTP) sensor (Cy3-p67/phox) and 50 nM P-Rex1 (DH-PH domain). (D) Visualization 
of membrane conjugated RTK derived pY peptide (~6000 /µm2), Rac1(GTP) (~4000 /µm2), and GβGγ (~4800 /µm2) by TIRF-M. Representative TIRF-M 
images showing the membrane localization of 20 nM nSH2-Cy3 in the absence and presence of membranes conjugated with a solution concentration of 

Figure 1 continued on next page
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the low-frequency binding events we observed are mostly mediated by lipid interactions rather than 
direct binding to GβGγ (Figure 1—figure supplement 2). The addition of 20% PS lipids did, however, 
cause a subtle increase in the number of Dy647-PI3Kβ membrane binding observed when 20 µM pY 
peptide was added in solution (Figure 1—figure supplement 2). Our observations are consistent 
with previous reports involving the membrane binding dynamics of AF555-PI3Kα measured in the 
presence of solution pY peptide (Ziemba et al., 2016; Buckles et al., 2017). Given the large param-
eter space, we did not perform an exhaustive characterization of Dy647-PI3Kβ membrane binding 
across many membrane compositions. In this study, a simplified membrane composition was used to 
minimize non-specific membrane localization of fluorescently labeled PI3Kβ. This allowed us to more 
clearly define the strength of individual and combinations of protein-protein interactions that regulate 
PI3Kβ localization and kinase activity.

PI3Kβ cooperatively engages a single membrane-tethered pY peptide
Previous biochemical analysis of PI3Kβ utilized pY peptides in solution to study the regulation of lipid 
kinase activity (Zhang et al., 2011; Dbouk et al., 2012). Using membrane-tethered pY peptide, we 
quantitatively mapped the relationship between the pY membrane surface density and the membrane 
binding behavior of Dy647-PI3Kβ (Figure 2A). To calculate the membrane surface density of conjugated 
pY, we incorporated a defined concentration of Alexa488-pY (Figure 2A–B). We measured the rela-
tionship between the total solution concentration of pY peptide used for the membrane conjugation 
step and the corresponding final membrane surface density (pY per µm2). Over a range of pY peptide 
solution concentrations (0–10 µM) used for maleimide coupling, we observed a linear increase in the 
membrane conjugation efficiency based on the incorporation of fluorescent Alexa488-pY (Figure 2C, 
left hand y-axis). Bulk membrane localization of a nSH2-Cy3 sensor showed a corresponding linear 
increase in fluorescence as a function of pY peptide membrane density (Figure 2D). By quantifying 
the average number of Alexa488-pY molecules per unit area on supported membranes, we calculated 
the absolute density of pY per µm2 (Figure 2C, right hand y-axis).

To determine how the membrane binding behavior of PI3Kβ is modulated by the membrane surface 
density of pY, we measured the bulk membrane absorption kinetics of Dy647-PI3Kβ. When Dy647-
PI3Kβ was flowed over membranes containing a surface density between 250 and 3000 pY/µm2, we 
observed rapid equilibration kinetics consistent with a simple biomolecular interaction (Figure 2E). 

10 µM pY peptide. Representative images showing the membrane localization of 20 nM Cy3-p67/phox Rac1(GTP) sensor before (GDP) and after (GTP) 
the addition of the guanine nucleotide exchange factor, P-Rex1. Equilibrium localization of 50 nM (low) or 200 nM (high) farnesyl GβGγ-SNAP-AF488. 
(E) Representative TIRF-M images showing the equilibrium membrane localization of 10 nM Dy647-PI3Kγ measured in the absence and presence of 
membranes equilibrated with 200 nM farnesyl GβGγ. (F) Representative TIRF-M images showing the equilibrium membrane localization of 5 pM and 
10 nM Dy647-PI3Kβ measured in the presence of membranes containing either pY, Rac1(GTP), or GβGγ. The inset image (+GβGγ) shows low-frequency 
single molecule binding events detected in the presence of 10 nM Dy647-PI3Kβ. Note that the contrast of the inset image was scaled differently to show 
the rare Dy647-PI3Kβ membrane binding events. (G) Bulk membrane absorption kinetics for 10 nM Dy647-PI3Kβ measured on membranes containing 
eitherpY, Rac1(GTP), or GβGγ. Membrane composition: 96% DOPC, 2% PI(4,5)P2, 2% MCC-PE.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Related to Figure 1C.

Source data 2. Related to .Figure 1G.

Figure supplement 1. Characterization of Alexa488-SNAP-GβGγ localization on supported lipid bilayers.

Figure supplement 1—source data 1. Related to Figure 1—figure supplement 1B.

Figure supplement 1—source data 2. Related to Figure 1—figure supplement 1C.

Figure supplement 2. Characterization of Dy647-PI3Kβ membrane association with individual signaling inputs.

Figure supplement 2—source data 1. Related to Figure 1—figure supplement 2A.

Figure supplement 2—source data 2. Related to .Figure 1—figure supplement 2B.

Figure supplement 2—source data 3. Related to Figure 1—figure supplement 2C.

Figure supplement 2—source data 4. Related to .Figure 1—figure supplement 2D.

Figure supplement 2—source data 5. Related to .Figure 1—figure supplement 2E.

Figure supplement 2—source data 6. Related to .Figure 1—figure supplement 2F.

Figure 1 continued
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Figure 2. Density-dependent membrane binding behavior of Dy647-PI3Kβ measured in the presence of receptor tyrosine kinase (RTK)-derived 
phosphorylated (pY) peptides. (A) Cartoon schematic showing conjugation of pY peptides (+/- Alexa488 label) using thiol-reactive maleimide lipids 
(MCC-PE). (B) Representative image showing the single molecule localization of Alexa488-pY. Particle detection (purple circles) was used to quantify the 
number of pY peptides per µm2. (C) Relationship between the total pY solution concentration (x-axis) used for covalent conjugation, the bulk membrane 
intensity of covalently attached Alexa488-pY (left y-axis), and the final surface density of pY peptides per µm2 (right y-axis). (D) Relationship between 
the total pY solution conjugation concentration and bulk membrane intensity of measured in the presence of 50 nM nSH2-Cy3. (E–G) Membrane 
localization dynamics of Dy647-PI3Kβ measured on supported lipid bilayers (SLBs) containing a range of pY surface densities (250–15,000 pY/µm2, based 
on Figure 1C). (E) Bulk membrane localization of 10 nM Dy647-PI3Kβ as a function of pY density. (F) Single molecule dwell time distributions measured 
in the presence of 5 pM Dy647-PI3Kβ. Data plotted as log10(1–CDF) (cumulative distribution frequency). (G) Step size distributions showing Dy647-PI3Kβ 
single molecule displacements from >500 particles (>10,000 steps) per pY surface density. (H–J) Membrane localization dynamics of Dy647-PI3Kβ nSH2* 
(R358A) and cSH2* (R649A) mutants measured on SLBs containing ~15,000 pY/µm2 (10 µM conjugation concentration). (H) Bulk membrane absorption 
kinetics of 10 nM Dy647-PI3Kβ (WT, nSH2*, and cSH2*). (I) Single molecule dwell time distributions measured in the presence of 5 pM Dy647-PI3Kβ (WT, 
nSH2*, and cSH2*). Data plotted as log10(1–CDF) (cumulative distribution frequency). (J) Step size distributions showing single molecule displacements 

Figure 2 continued on next page
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Similar membrane binding kinetics have been reported for the Btk-PI(3,4,5)P3 (Chung et al., 2019) 
and PI3Kγ-GβGγ (Rathinaswamy et al., 2021) complexes. When the membrane surface density was 
greater than 6500 pY/µm2, we observed slower equilibration kinetics consistent with a fraction of 
Dy647-PI3Kβ complexes exhibiting longer dwell times. Single particle tracking of Dy647-PI3Kβ on 
membranes containing varying densities of pY peptide revealed that the dwell time was relatively 
insensitive to the pY peptide density (Figure 2F and Table 1). However, we could be underestimating 
the actual dwell time of Dy647-PI3Kβ due to membrane hopping (Yasui et al., 2014). In the presence 
of a high pY surface density, Dy647-PI3Kβ could dissociate from pY and then immediately rebind to 
another pY instead of diffusing away into the solution phase. Quantification of single particle displace-
ment (or step size) of pY-tethered Dy647-PI3Kβ complexes revealed nearly identical diffusivity across 
a range of pY membrane densities (Figure 2G and Table 1). Together, these results suggest that 
Dy647-PI3Kβ most frequently engages a single dually phosphorylated peptide over a broad range of 
pY densities in our bilayer assay.

The regulatory subunit of PI3Kβ (p85α) contains two SH2 domains that form inhibitory contacts 
with the catalytic domain (p110β) (Zhang et al., 2011). The SH2 domains of class 1A PI3Ks have a 
conserved peptide motif, FLVR, that mediates the interaction with tyrosine phosphorylated peptides 
(Bradshaw et al., 1999; Waksman et al., 1992; Rameh et al., 1995). Mutating the arginine to alanine 
(FLVA mutant) prevents the interaction with pY peptides for both PI3Kα and PI3Kβ (Yu et al., 1998; 
Dornan et al., 2020; Nolte et al., 1996; Zhang et al., 2011; Breeze et al., 1996). To determine how 

of >500 particles (>10,000 steps) in the presence of 5 pM Dy647-PI3Kβ (WT, nSH2*, and cSH2*). Membrane composition: 96% DOPC, 2% PI(4,5)P2, 2% 
MCC-PE.

The online version of this article includes the following source data for figure 2:

Source data 1. Related to .Figure 2C.

Source data 2. Related to .Figure 2D.

Source data 3. Related to .Figure 2E.

Source data 4. Related to .Figure 2F.

Source data 5. Related to .Figure 2G.

Source data 6. Related to .Figure 2H.

Source data 7. Related to .Figure 2I.

Source data 8. Related to .Figure 2J.

Figure 2 continued

Table 1. Diffusion coefficients of Dy647-PI3Kβ (WT and SH2 domain mutants) bound to membrane-tethered tyrosine phosphorylated 
peptides.

protein visualized pY/µm2 τ1±SD (s) τ 2±SD (s) α(τ)±SD
AVE
DT (s) D1 ±SD (µm2/sec) D2 ±SD (µm2/s) α(D)±SD MEDIAN step (µm)

PI3Kβ (WT) 250 0.58±0.28 1.78±0.58 0.60±0.37 1.00±0.09 0.39±0.07 1.45±0.09 0.29±0.08 0.37±0.02

PI3Kβ (WT) 573 0.39±0.06 1.37±0.14 0.27±0.02 1.12±0.09 0.28±0.06 1.15±0.14 0.22±0.04 0.35±0.01

PI3Kβ (WT) 1226 0.36±0.13 1.29±0.06 0.30±0.09 1.05±0.11 0.20±0.02 1.18±0.09 0.16±0.02 0.36±0.02

PI3Kβ (WT) 2935 0.44±0.11 1.53±0.38 0.47±0.25 1.00±0.07 0.28±0.09 1.09±0.12 0.26±0.09 0.33±0.01

PI3Kβ (WT) 6661 0.46±0.08 1.28±0.16 0.61±0.13 0.82±0.11 0.35±0.17 1.28±0.34 0.35±0.18 0.34±0.01

PI3Kβ (WT) 14944 0.55±0.11 1.44±0.56 0.54±0.22 0.91±0.09 0.45±0.15 1.40±0.54 0.48±0.06 0.33±0.05

PI3Kβ (WT) 14944 0.49±0.17 1.38±0.19 0.35±0.17 1.10±0.04 0.32±0.04 0.99±0.12 0.40±0.11 0.30±0.02

PI3Kβ (nSH2*) 14944 0.23±0.02 1.48±0.23 0.86±0.03 0.45±0.06 0.38±0.09 1.45±0.25 0.41±0.18 0.34±0.01

PI3Kβ (cSH2*) 14944 0.38±0.08 1.54±0.55 0.76±0.1 0.65±0.08 0.34±0.13 1.12±0.29 0.43±0.15 0.30±0.04

SD = standard deviation from 3-5 technical replicates. n = 331 – 1909 total particles for each technical replicate. steps = 4277 – 39378 total particle displacements measured for each 
technical replicate. Alpha (αt) equals the fraction of molecules with the characteristic dwell time, τ1 (DT = dwell time). The fraction of molecules with the characteristic dwell time, τ2, 
equals 1-αt. Alpha (αD) equals the fraction of molecules with the characteristic diffusion coefficient, D1. The fraction of molecules with diffusion coefficient, D2, equals 1-αD. Membrane 
composition: 96% DOPC, 2% PI(4,5)P2, 2% MCC-PE.

https://doi.org/10.7554/eLife.88991
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the membrane binding behavior of PI3Kβ is modulated by each SH2 domain, we individually mutated 
the FLVR amino acid sequence to FLVA. Compared to wild-type Dy647-PI3Kβ, the nSH2(R358A) and 
cSH2(R649A) mutants showed a 60% and 75% reduction in membrane localization at equilibrium, 
respectively (Figure 2H). Single molecule dwell time analysis also showed a significant reduction in 
membrane affinity for Dy647-PI3Kβ nSH2(R358A) and cSH2(R649A) compared to wild-type PI3Kβ 
(Figure 2I and Table 1). Single molecule diffusion (or mobility) of membrane-bound nSH2(R358A) 
and cSH2(R649A) mutants, however, were nearly identical to wild-type Dy647-PI3Kβ (Figure 2J and 
Table 1). Because the nSH2 and cSH2 mutants can only interact with a single phosphorylated tyrosine 
residue on the doubly phosphorylated pY peptide, this further supports a model in which the p85α 
regulatory subunit of PI3Kβ cooperatively engages one doubly phosphorylated pY peptide under our 
experimental conditions.

GβGγ-dependent enhancement in PI3Kβ localization requires the 
release of the nSH2
Having established that PI3Kβ engagement with a membrane-tethered pY peptide is the critical first 
step for robust membrane localization, we examined the secondary role that GβGγ serves in controlling 
membrane localization of PI3Kβ bound to pY. To measure synergistic membrane localization mediated 
by the combination of pY and GβGγ, we covalently linked pY peptides to the supported membrane at 
a surface density of ~5000 pY/µm2 and then allowed farnesyl GβGγ to equilibrate into the membrane 
to density of ~4700 GβGγ/µm2. We quantified the membrane surface density of GβGγ at equilibrium 
using a combination of AF488-SNAP-GβGγ and dilute AF555-SNAP-GβGγ (0.0025%), to visualize the 
bulk and single molecule densities, respectively (Figure 3A). Comparing the bulk membrane absorp-
tion of Dy647-PI3Kβ in the presence of pY alone, we observed a two-fold increase in membrane 
localization due to synergistic association with pY and GβGγ (Figure 3B–C). Single molecule imaging 
experiments also showed a 1.9-fold increase in the membrane dwell time of Dy647-PI3Kβ in the pres-
ence of both pY and GβGγ (Figure 3D). Consistent with Dy647-PI3Kβ forming a complex with pY and 
GβGγ, we observed a 22% reduction in the average single-particle displacement and a decrease in the 
diffusion coefficient due to ternary complex formation (Figure 3E).

Parallel to our experiments using membrane-conjugated pY, we examined whether solution pY could 
promote Dy647-PI3Kβ localization to GβGγ-containing membranes. Based on the bulk membrane 
recruitment, solution pY did not strongly enhance membrane binding of Dy647-PI3Kβ on GβGγ-con-
taining membranes in the absence of phosphatidylserine (PS) lipids (Figure 3B). Single molecule dwell 
time analysis revealed few transient Dy647-PI3Kβ membrane interactions (inset Figure  3A) with a 
mean dwell time of 116 ms in the presence of GβGγ alone (Figure 3—figure supplement 1A). The 
presence of 10 µM solution pY modestly increased the mean dwell time of Dy647-PI3Kβ to 136 ms 
on GβGγ containing membranes (Figure 3—figure supplement 1B). When we measured the inter-
action between Dy647-PI3Kβ and GβGγ on a membrane containing 20% PS, however, we observed a 
significant enhancement in Dy647-PI3Kβ localization when solution pY was added (Figure 3—figure 
supplement 1C–1D). This confirms that SH2 domain-dependent inhibition of GβGγ binding can be 
relieved by solution pY, as previously reported (Dbouk et  al., 2012). However, a high density of 
anionic lipids (i.e. PS) was required to facilitate the interaction between pY and GβGγ. This suggests 
that the affinity between PI3Kβ and GβGγ is relatively weak, which is consistent with previous struc-
tural biochemistry studies (Dbouk et al., 2012).

For PI3Kβ to engage GβGγ, it is hypothesized that the nSH2 domain must move out of the way from 
sterically occluding the GβGγ binding site. This model is supported by previous hydrogen-deuterium 
exchange mass spectrometry (HDX-MS) experiments that could only detect interactions between 
GβGγ and PI3Kβ (p110β) when the nSH2 domain was either deleted or disengaged from the catalytic 
domain by a soluble RTK-derived pY peptide (Dbouk et al., 2012). We examined the putative inter-
face of GβGγ bound to the p110β catalytic domain using AlphaFold multimer (Jumper et al., 2021; 
Evans et al., 2022; Varadi et al., 2022) which defined hα1 in the helical domain as the binding site. 
This result was consistent with previous mutagenesis and HDX-MS analysis of GβGγ binding to p110β 
(Dbouk et al., 2012). Comparing our model to previous X-ray crystallographic data of SH2 binding 
to either p110α and p110β (Zhang et al., 2011; Mandelker et al., 2009) suggested that the nSH2 
domain sterically obstructs the GβGγ binding interface (Figure  3F and Figure  3—figure supple-
ment 2), with GβGγ activation only possible when the nSH2 dissociates from p110β interface. To 

https://doi.org/10.7554/eLife.88991
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Figure 3. Mechanism controlling synergistic Dy647-PI3Kβ membrane binding by phosphorylated (pY) and G-protein complexes (GβGγ). (A) Kinetic 
trace showing the membrane absorption of 200 nM AF488-SNAP-GβGγ containing 0.0025% AF555-SNAP-GβGγ measured by TIRF-M. Single molecule 
densities of AF555-SNAP-GβGγ were calculated for each frame in a field of view of 3000 µm2. (B) Representative TIRF-M images showing the equilibrium 
membrane localization of 5 pM and 10 nM Dy647-PI3Kβ on membranes containing either pY, GβGγ, pY/GβGγ, or pY(solution)/GβGγ. The inset image 
(+GβGγ and +pY/GβGγ) shows low-frequency single molecule binding events detected in the presence of 10 nM Dy647-PI3Kβ. Supported membranes 
were conjugated with 10 µM pY peptide (final surface density of ~15,000 pY/µm2) and equilibrated with 200 nM farnesyl-GβGγ before adding Dy647-
PI3Kβ. pY (solution)=10 µM. (C) Bulk membrane recruitment dynamics of 10 nM Dy647-PI3Kβ measured in the presence of either pY alone, pY/GβGγ, 
or pY (solution)/GβGγ. pY(solution)=10 µM. (D) Single molecule dwell time distributions measured in the presence of 5 pM Dy647-PI3Kβ on supported 
membranes containing pY alone (τ1=0.55 ± 0.11 s, τ2=1.44 ± 0.56 s, α=0.54, n=4698 particles, n=5 technical replicates) or pY/GβGγ (τ1=0.61 ± 0.13 s, 
τ2=3.09 ± 0.27 s, α=0.58, n=3421 particles, n=4 technical replicates). Alpha(α) represents the fraction of particles characterized by the time constant 
(τ1). (E) Step size distributions showing single molecule displacements measured in the presence of either pY alone (D1=0.34 ± 0.04 µm2/s, D2=1.02 
± 0.07 µm2/s, α=0.45) or pY/GβGγ (D1=0.23 ± 0.03 µm2/s, D2=0.88 ± 0.08 µm2/s,α=0.6); n=3-4 technical replicates from >3000 tracked particles with 
10,000-30,000 total displacements measured. Alpha(α) represents the fraction of particles characterized by the diffusion coefficient (D1). (F) Combined 
model of the putative nSH2 and GβGγ binding sites on p110β. The p110β-GβGγ binding site is based on an Alphafold multimer model supported by 
previous HDX-MS and mutagenesis experiments. The orientation of the nSH2 is based on previous X-ray crystallographic data on PI3Kα (p110α-p85α, 
niSH2, PDB:3HHM) aligned to the structure of PI3Kβ (p110β-p85α, icSH2, PDB:2Y3A). (G) Bulk membrane recruitment dynamics of 10 nM Dy647-PI3Kβ, 
WT and nSH2(R358A), measured on membranes containing either pY or pY/GβGγ. (H) Bulk membrane recruitment dynamics of 10 nM Dy647-PI3Kβ, WT 

Figure 3 continued on next page
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test this hypothesis, we measured the membrane binding dynamics of Dy647-PI3Kβ nSH2(R358A) on 
membranes containing pY and GβGγ. Comparing the bulk membrane recruitment of these constructs 
revealed that the inability of the Dy647-PI3Kβ nSH2 domain to bind to pY peptides made the kinase 
insensitive to synergistic membrane recruitment mediated by pY and GβGγ (Figure 3G). Similarly, the 
membrane association dynamics of Dy647-PI3Kβ nSH2(R358A), phenocopied a PI3Kβ (K532D, K533D) 
mutant that lacks the ability to engage GβGγ (Figure 3H).

Rac1(GTP) and pY synergistically enhance PI3Kβ membrane localization
PI3Kβ is the only class IA PI3K shown to interact with Rho-family GTPases, Rac1, and Cdc42 (Fritsch 
et  al., 2013). Our membrane localization studies indicate, however, that Dy647-PI3Kβ does not 
strongly localize to membranes containing Rac1(GTP) alone (Figure  1C–D and Figure  1—figure 
supplement 2B). To determine whether membrane-anchored pY peptides can facilitate interac-
tions with Rac1(GTP), we visualized the localization of Dy647-PI3Kβ on membranes containing 
pY-Rac1(GDP) or pY-Rac1(GTP). Our experiments were designed to have the same pY surface density 
across conditions. By incorporating a small fraction of Cy3-Rac1 and Alexa488-pY into our Rac1-pY 
membrane coupling reaction we were able to visualize single membrane-anchored proteins and calcu-
late the membrane surface density of ~4000 Rac1/µm2 and ~5000 pY/µm2 (Figure 4A–B). Bulk local-
ization to membranes containing either pY-Rac1(GDP) or pY-Rac1(GTP), revealed that active Rac1 
could enhance Dy647-PI3Kβ localization 1.4-fold (Figure 4C–D). Similarly, single molecule analysis 
revealed a 1.5-fold increase in the mean dwell time of Dy647-PI3Kβ in the presence of pY-Rac1(GTP) 
(Figure 4E). The average displacement of Dy647-PI3Kβ per frame (i.e. 52 ms) also decreased by 28% 
in the presence of pY and Rac1(GTP) (Figure 4F), consistent with the formation of a membrane-bound 
PI3Kβ-pY-Rac1(GTP) ternary complex.

Rac1(GTP) and GβGγ stimulate PI3Kβ activity beyond enhancing 
membrane localization
Previous in vitro measurements of PI3Kβ activity have shown that solution pY stimulates lipid kinase 
activity (Zhang et al., 2011; Dbouk et al., 2012). Similar mechanisms of activation have been reported 
for other class IA kinases, including PI3Kα and PI3Kδ (Buckles et  al., 2017; Burke et  al., 2011; 
Dornan et al., 2017). Functioning in concert with pY peptides, GβGγ, or Rho-family GTPase syner-
gistically enhance PI3Kβ activity by a mechanism that remains unclear (Fritsch et al., 2013; Dbouk 
et al., 2012). Similarly, RTK-derived peptides and H-Ras (GTP) have been shown to synergistically 
activate PI3Kα (Buckles et al., 2017; Siempelkamp et al., 2017; Yang et al., 2012). In the case of 
PI3Kβ, previous experiments have not determined whether synergistic activation by multiple signaling 
inputs results from an increase in membrane affinity (KD) or direct modulation of lipid kinase activity 
(kcat) through an allosteric mechanism. To determine how the lipid kinase activity of the PI3Kβ-pY 
complex is synergistically modulated by either GβGγ or Rho-family GTPases, we used TIRF-M to 

and GβGγ binding mutant, measured on membranes containing either pY or pY/GβGγ. (A–H) Membrane composition: 96% DOPC, 2% PI(4,5)P2, 2% 
MCC-PE.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Related to Figure 3A.

Source data 2. Related to Figure 3C.

Source data 3. Related to Figure 3D.

Source data 4. Related to Figure 3E.

Source data 5. Related to Figure 3G.

Source data 6. Related to Figure 3H.

Figure supplement 1. Solution phosphorylated (pY) peptide slightly enhances Dy647-PI3Kβ binding to G-protein complexes (GβGγ) membranes.

Figure supplement 1—source data 1. Related to Fig.Figure 3—figure supplement 1A.

Figure supplement 1—source data 2. Related to Figure 3—figure supplement 1B.

Figure supplement 1—source data 3. Related to Figure 3—figure supplement 1D.

Figure supplement 2. Structural model for G-protein complexes (GβGγ) binding to the Phosphoinositide 3-kinase beta (PI3Kβ) catalytic subunit (p110β).

Figure 3 continued
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simultaneously visualize Dy647-PI3Kβ membrane localization and monitor PI(3,4,5)P3 production. To 
measure the kinetics of PI(3,4,5)P3 formation, we purified and fluorescently labeled the pleckstrin 
homology and Tec homology (PH-TH) domain derived from Bruton’s tyrosine kinase (Btk). We used 
a form of Btk containing a mutation that disrupts the peripheral PI(3,4,5)P3 lipid binding domain 
(Wang et al., 2015). This Btk mutant was previously shown to associate with a single PI(3,4,5)P3 head 
group and exhibits rapid membrane equilibration kinetics in vitro (Chung et al., 2019). Consistent 
with previous observations, Btk fused to SNAP-AF488 displayed high specificity and rapid membrane 
equilibration kinetics on SLBs containing PI(3,4,5)P3 (Figure 5A, B). Compared to the PI(3,4,5)P3 lipid 
sensor derived from the Cytohesin/Grp1 PH domain (He et al., 2008; Knight et al., 2010), the Btk 
lipid sensor exhibited a faster association rate constant (kON) and a more transient dwell time (1/kOFF) 
making it ideal for kinetic analysis of PI3Kβ lipid kinase activity (Figure 5—figure supplement 1). 
Using Btk-SNAP-AF488, we measured the production of PI(3,4,5)P3 lipids on SLBs by quantifying the 
time-dependent recruitment in the presence of PI3Kβ. The change in Btk-SNAP-AF488 membrane 

Figure 4. Membrane-anchored phosphorylated (pY) peptides synergistically enhance Dy647-PI3Kβ membrane binding in the presence of Rac1(GTP). (A) 
Cartoon schematic showing membrane conjugation of Cy3-Rac1 and AF488-pY on membranes containing unlabeled Rac1 and pY. (B) Representative 
TIRF-M images showing localization of Cy3-Rac1 (1:10,000 dilution) and AF488-pY (1:30,000 dilution) after membrane conjugation in the presence 
of 30 µM Rac1 and 10 µM pY. Membrane surface density equals ~4000 Rac1/µm2 and ~5000 pY/µm2.(C) Representative TIRF-M images showing the 
equilibrium membrane localization of 5 pM and 10 nM Dy647-PI3Kβ measured in the presence of membranes containing either pY/Rac1(GDP) or pY/
Rac1(GTP). (D ) Bulk membrane recruitment dynamics of 10 nM Dy647-PI3Kβ measured in the presence of pY/Rac1(GDP) or pY/Rac1(GTP). (E) Single 
molecule dwell time distributions measured in the presence of 5 pM Dy647-PI3Kβ on supported membranes containing pY/Rac1(GDP) or pY/Rac1(GTP). 
(F) Step size distributions showing single molecule displacements from >500 Dy647-PI3Kβ particles (>10,000 steps) in the presence of either pY/
Rac1(GDP) or pY/Rac1(GTP). Membrane composition: 96% DOPC, 2% PI(4,5)P2, 2% MCC-PE.

The online version of this article includes the following source data for figure 4:

Source data 1. Related to Figure 4D.

Source data 2. Related to Figure 4E.

Source data 3. Related to Figure 4F.

https://doi.org/10.7554/eLife.88991
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Figure 5. G-protein complexes (GβGγ) and Rac1(GTP) stimulate phosphoinositide 3-kinase beta (PI3Kβ) activity beyond enhancing localization on 
phosphorylated (pY) membranes. (A) Representative TIRF-M images showing localization of 20 nM Btk-SNAP-AF488 on supported lipid bilayers (SLBs) 
containing either 2% PI(4,5)P2 or 2% PI(3,4,5)P3, plus 98% DOPC. (B) Bulk membrane recruitment kinetics of 20 nM Btk-SNAP-AF488 on an SLB measured 
by TIRF-M. (C–D) Kinetics of PI(3,4,5)P3 production measured in the presence of 10 nM Dy647-PI3Kβ and 1 mM ATP on SLBs with membrane anchored 
pY, Rac1(GTP), or GβGγ alone. Reactions in (C) were performed in the absence of PS lipids, while membranes in (D) contained 20% DOPS. (E) Cartoon 
schematic illustrating method for measuring Dy647-PI3Kβ activity in the presence of either pY/Rac1(GDP) or pY/Rac1(GTP). Phase 1 of the reconstitution 
involves membrane equilibration of Dy647-PI3Kβ in the absence of ATP. During phase 2, 1 mM ATP was added to stimulate lipid kinase activity of Dy647-
PI3Kβ. (F) Dual color TIRF-M imaging showing 2 nM Dy647-PI3Kβ localization and catalysis measured in the presence of 20 nM Btk-SNAP-AF488. Dashed 
line represents the addition of 1 mM ATP to the reaction chamber. (G) Cartoon schematic showing experimental design for measuring synergistic 

Figure 5 continued on next page
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fluorescence could be converted to the absolute number of PI(3,4,5)P3 lipids produced per µm2 to 
determine the catalytic efficiency per membrane-bound Dy647-PI3Kβ.

While our binding experiments provide a mechanism for enhanced PI3Kβ membrane localiza-
tion in the presence of either pY-Rac1(GTP) or pY-GβGγ, these results did not reveal the mechanism 
controlling synergistic activation of lipid kinase activity. To probe if synergistic activation results from 
enhanced membrane localization or allosteric modulation of PI3Kβ, we first examined how well the pY 
peptide stimulates PI3Kβ lipid kinase activity on SLBs. In the absence of pY peptides, PI3Kβ did not 
catalyze the production of PI(3,4,5)P3 lipids, while the addition of 10 µM pY in solution resulted in a 
subtle increase in PI3Kβ lipid kinase activity (Figure 5—figure supplement 2A–2C). By contrast, cova-
lent conjugation of pY peptides to supported lipid bilayers increased the rate of PI(3,4,5)P3 production 
by 207-fold (Figure 5—figure supplement 2A–2C). The observed difference in kinetics was consis-
tent with robust membrane recruitment of Dy647-PI3Kβ requiring membrane-tethered pY peptides. 
Comparing the lipid kinase activity of PI3Kβ measured in the presence of individual signaling inputs 
– pY, Rac1(GTP), and GβGγ – revealed that pY alone provided the strongest stimulation (Figure 5C). 
This was largely due to the dramatic enhancement in membrane recruitment caused by membrane-
tethered pY peptides. Incorporation of 20% DOPS lipids in the SLBs raised the overall activity of PI3Kβ 
across all conditions but the general trend for signaling input preference was preserved (Figure 5D). 
Similar to previous observations (Dbouk et al., 2012), we found that GβGγ alone could subtly stimu-
late PI3Kβ lipid kinase activity, without strongly enhancing membrane PI3Kβ localization (Figure 1—
figure supplement 2). By contrast, the PI3Kβ (K532D, K533D) mutant that was unable to interact with 
GβGγ was insensitive to GβGγ-mediated activation (Figure 5D).

Next, we sought to test whether the combination of pY and Rac1(GTP) could synergistically stimu-
late PI3Kβ activity beyond the expected increase due to the enhanced membrane localization of the 
PI3Kβ-pY-Rac1(GTP) complex. To decipher the mechanism of synergistic activation, we performed 
two-phase experiments that accounted for both the total density of membrane bound Dy647-PI3Kβ 
and the corresponding kinetics of PI(3,4,5)P3 generation. In phase 1 of our experiments, Dy647-PI3Kβ 
was flowed over SLBs and allowed to equilibrate with either pY-Rac1(GDP) or pY-Rac1(GTP) in the 
absence of ATP (Figure 5E, F). This resulted in a 1.8-fold increase in Dy647-PI3Kβ localization medi-
ated by the combination of membrane-tethered Rac1(GTP) and pY, compared to pY membranes 

binding and activation of Dy647-PI3Kβ in the presence of pY and GβGγ. (H) Representative single molecule TIRF-M images showing the localization 
of 20 pM Dy647-PI3Kβ in (G). (I) Kinetics of PI(3,4,5)P3 production monitored in the presence of 20 nM Btk-SNAP-AF488 and 10-20 pM Dy647-PI3Kβ. 
Membrane contained either pY or pY/GβGγ. (B, C, F, H, I) Membrane composition: 96% DOPC, 2% PI(4,5)P2, 2% MCC-PE. (D) Membrane composition: 
76% DOPC, 20% DOPS, 2% PI(4,5)P2, 2% MCC-PE. All kinetic measurements of PI(3,4,5)P3 production were performed in the presence of 20 nM Btk-
SNAP-AF488.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Related to Figure 5B.

Source data 2. Related to Figure 5C.

Source data 3. Related to Figure 5D.

Source data 4. Related to Figure 5F.

Source data 5. Related to Figure 5I.

Figure supplement 1. Characterization of Bruton’s tyrosine kinase (Btk) and Grp1 membrane binding.

Figure supplement 1—source data 1. Related to Figure 5—figure supplement 1B.

Figure supplement 1—source data 2. Related to Figure 5—figure supplement 1C.

Figure supplement 1—source data 3. Related to Figure 5—figure supplement 1D.

Figure supplement 1—source data 4. Related to Figure 5—figure supplement 1E.

Figure supplement 1—source data 5. Related to Figure 5—figure supplement 1F.

Figure supplement 2. Reconstitution of Phosphoinositide 3-kinase beta (PI3Kβ) lipid kinase activity on supported membranes.

Figure supplement 2—source data 1. Related to .Figure 5—figure supplement 2B.

Figure supplement 2—source data 2. Related to Figure 5—figure supplement 2A.

Figure supplement 2—source data 3. Related to Figure 5—figure supplement 2B.

Figure 5 continued
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alone. Following membrane equilibration of Dy647-PI3Kβ, phase 2 was initiated by adding a final 
concentration of 1 mM ATP to the reaction chamber to stimulate lipid kinase activity. We found that 
the addition of ATP did not alter the bulk localization of Dy647-PI3Kβ, though the kinase was in 
dynamic equilibrium between the solution and membrane. Conducting experiments in this manner 
allowed us to measure activation by inputs while removing uncertainty from differential Dy647-PI3Kβ 
association with various signaling inputs. After accounting for the 1.8-fold difference in Dy647-PI3Kβ 
membrane localization comparing pY-Rac1(GDP) and pY-Rac1(GTP) membranes, we calculated a 4.3-
fold increase in PI3Kβ activity that was dependent on Rac1(GTP).

Using the two-phase kinase assay described above, we next examined how pY and GβGγ syner-
gistically activate PI3Kβ (Figure 5G). In our pilot experiments, we immediately observed more robust 
activation of PI3Kβ in the presence of pY-GβGγ, compared to pY-Rac1(GTP). To accurately measure the 
rapid kinetics of PI(3,4,5)P3 generation on SLBs we had to use a 100-fold lower concentration of Dy647-
PI3Kβ. Under these conditions, single membrane-bound Dy647-PI3Kβ molecules could be spatially 
resolved, which allowed us to measure the catalytic efficiency per PI3Kβ (Figure 5H). Comparing the 
activity of Dy647-PI3Kβ on membranes with pY alone or pY-GβGγ, we observed a 22-fold increase in 
catalytic efficiency comparing the PI3Kβ-pY and PI3Kβ-pY-GβGγ complexes (Figure 5I). Synergistic 
activation was dependent on the direct interaction between PI3Kβ and GβGγ (Figure  5—figure 
supplement 2D). By varying the density of membrane-anchored GβGγ, we determined that maximum 
synergistic activation occurred when GβGγ was present at a density greater than 2400 molecules/
µm2 (Figure 5—figure supplement 2D). Similar levels of PI3Kβ activity were measured in the ATP 
spike experiments when 20% DOPS was incorporated in the supported membranes (Figure 5—figure 
supplement 2E). Based on the membrane-bound density of ~0.2 Dy647-PI3Kβ molecules per µm2, 
we calculate a kcat of 57 PI(3,4,5)P3 lipids/s•PI3Kβ on pY-GβGγ containing membranes. By contrast, the 
Dy647-PI3Kβ-pY complex had a kcat of 3 PI(3,4,5)P3 lipids/s•PI3Kβ.

Discussion
Prioritization of signaling inputs
The exact mechanisms that regulate how PI3Kβ prioritizes interactions with signaling input, such 
as pY, Rac1(GTP), and GβGγ remains unclear. To fill this gap in knowledge, we directly visualized 
the membrane association and dissociation dynamics of fluorescently labeled PI3Kβ on supported 
lipid bilayers using single molecule TIRF microscopy. This is the first study to reconstitute membrane 
localization and activation of a class 1A PI3K using multiple signaling inputs that are all membrane-
tethered in a physiologically relevant configurations. Previous experiments have relied exclusively 
on phosphotyrosine peptides (pY) presented in solution to activate PI3Kα, PI3Kβ, or PI3Kδ (Zhang 
et al., 2011; Dornan et al., 2017; Dbouk et al., 2012). However, pY peptides are derived from the 
cytoplasmic domains of transmembrane receptors, such as receptor tyrosine kinases (RTKs), which 
reside in the plasma membrane (Lemmon and Schlessinger, 2010). Although pY peptides in solution 
can disrupt the inhibitory contacts between the regulatory and catalytic subunits of class 1A PI3Ks 
(Zhang et al., 2011; Yu et al., 1998), they do not robustly localize PI3Ks to membranes when they 
exist in solution. When conjugated to SLBs, we find that pY peptides strongly localize PI3Kβ and 
relieve autoinhibition, while membranes containing either Rac1(GTP) or GβGγ alone are unable to 
robustly localize PI3Kβ. We observed this prioritization of signaling input interactions over a range 
of membrane compositions that contained physiologically relevant densities of anionic lipids, such 
as 20% PS and 2% PI(4,5)P2. Although a small fraction of PI3Kβ may transiently adopt a conformation 
that is compatible with direct Rac1(GTP) or GβGγ association in the absence of pY, these events are 
rare and do not represent the most probable pathway for controlling initial PI3Kβ membrane docking. 
Given the complexity of the cellular plasma membrane lipid composition (Lorent et al., 2020), our 
experimental system uses a relatively simple mixture of lipids that maximized membrane fluidity and 
minimized surface defects that could promote non-specific molecular interactions. By this approach, 
our study provides clarity concerning the strength of various protein-protein interactions that regulate 
PI3Kβ membrane localization and activity.

Based on our single molecule dwell time and diffusion analysis, Dy647-PI3Kβ can cooperatively 
bind to one doubly phosphorylated peptide derived from the PDGF receptor. Supporting this 
model, Dy647-PI3Kβ with a mutated nSH2 or cSH2 domain that eliminates pY binding, still displayed 
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membrane diffusivity indistinguishable from wild-type PI3Kβ. The diffusion coefficient of membrane-
bound pY-PI3Kβ complexes also did not significantly change over a broad range of pY membrane 
surface densities that span three orders of magnitude. Given that diffusivity of peripheral membrane 
binding proteins is strongly correlated with the valency of membrane interactions (Ziemba and 
Falke, 2013; Hansen et  al., 2022), we expected to observe a decrease in Dy647-PI3Kβ diffusion 
with increasing membrane surface densities of pY. Instead, our data suggests that the vast majority 
of PI3Kβ molecules engage a single pY peptide, rather than binding one tyrosine phosphorylated 
residue on two separate pY peptides. While no structural studies have shown how exactly the tandem 
SH2 domains of PI3K (p85α) simultaneously bind to adoubly phosphorylated pY peptide, the interac-
tions likely resemble the mechanism reported for ZAP-70 (Zeta-Chain-Associated Protein Kinase 70). 
The tandem SH2 domains of ZAP-70 can bind to a doubly phosphorylated chain derived from the 
TCR with only 11 amino acids spacing between the two tyrosine phosphorylation sites (Hatada et al., 
1995). In the case of our PDGFR-derived pY peptide that binds p85α, 10 amino acids separate the 
two tyrosine phosphorylated residues.

Following the engagement of a pY peptide, we find that PI3Kβ can then associate with membrane-
anchored Rac1(GTP) or GβGγ. We detected the formation of PI3Kβ-pY-Rac1(GTP) and PI3Kβ-pY-GβGγ 
complexes based on the following criteria: (1) increase in Dy647-PI3Kβ bulk membrane recruitment, 
(2) increase in single molecule dwell time, and (3) a decrease in membrane diffusivity. Consistent 
with Dy647-PI3Kβ having a weak affinity for GβGγ, pY peptides in solution were unable to strongly 
localize Dy647-PI3Kβ to SLBs containing membrane-anchored GβGγ unless there was 20% PS lipids 
present. This is in agreement with HDX-MS data showing that the p110β-GβGγ interaction can only be 
detected using a GβGγ-p85α(icSH2) chimeric fusion or pre-activating PI3Kβ with solution pY (Dbouk 
et al., 2012). Using AlphaFold Multimer (Evans et al., 2022; Jumper et al., 2021), we created a 
model that illustrates how the p85α(nSH2) domain is predicted to sterically block GβGγ binding to 
p110β. This model was validated by comparing the AlphaFold Multimer model to previous reported 
HDX-MS (Dbouk et al., 2010) and X-ray crystallography data (Zhang et al., 2011). Further supporting 
this model, we found that the Dy647-PI3Kβ nSH2(R358A) mutant tethered to membrane-conjugated 
pY peptide was unable to engage membrane-anchored GβGγ. Membrane targeting of PI3Kβ by pY 
was required to relieve nSH2 mediated autoinhibition and expose the GβGγ binding site. Recruit-
ment by membrane-tethered pY also reduces the translational and rotational entropy of PI3Kβ, which 
facilitates PI3Kβ-pY-GβGγ complex formation. We observed a similar mechanism of synergistic PI3Kβ 
localization on SLBs containing pY and Rac1(GTP). This was consistent with single molecule studies 
investigating synergistic enhanced localization of PI3Kα in the presence of H-Ras(GTP) and solution 
pY peptide (Buckles et al., 2017). It remains unclear how p85α-mediated inhibition controls the asso-
ciation dynamics between PI3Kβ and Rac1(GTP).

Mechanism of synergistic activation
Previous characterization of PI3Kβ lipid kinase activity has utilized solution-based assays to measure 
P(3,4,5)P3 production. These solution-based measurements lack spatial information concerning the 
mechanism of PI3Kβ membrane recruitment and activation. Our ability to simultaneously visualize 
PI3Kβ membrane localization and P(3,4,5)P3 production was critical for determining which regula-
tory factors directly modulate the catalytic efficiency of PI3Kβ. In the case of PI3Kα, the enhanced 
membrane recruitment model has been used to explain the synergistic activation mediated by pY 
and Ras(GTP) (Buckles et al., 2017). In other words, the PI3Kα-pY-Ras complex is more robustly local-
ized to membranes compared to the PI3Kα-pY and PI3Kα-Ras complexes, which results in a larger 
total catalytic output for the system. Although the Ras binding domain (RBD) of PI3Kα and PI3Kβ are 
conserved, these kinases interact with distinct Ras superfamily GTPases (Fritsch et al., 2013). There-
fore, it’s possible that PI3Kα and PI3Kβ display different mechanisms of synergistic activation, which 
could explain their non-overlapping roles in cell signaling.

Studies of PI3Kβ mouse knock-in mutations in primary macrophages and neutrophils have shown 
that robust PI3Kβ activation requires coincident activation through the RTK and GPCR signaling path-
ways (Houslay et al., 2016). This response most strongly depends on the ability of PI3Kβ to bind 
GβGγ and, to a lesser extent, Rac1/Cdc42 (Houslay et al., 2016). A similar mechanism of synergistic 
activation has been reported for PI3Kγ in the presence of H-Ras(GTP) and GβGγ (Suire and Lécureuil, 
2012; Rathinaswamy et al., 2021). Although mutational studies have deciphered the pathways that 
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drive synergistic of PI3Kγ and PI3Kβ activation in cells, signaling network crosstalk and redundancy 
limits our mechanistic understanding of how these kinases prioritizes signaling inputs and the exact 
mechanism for driving PI(3,4,5)P3 production. Based on our single molecule membrane binding exper-
iments, autoinhibited PI3Kβ does not strongly associate with either Rac1(GTP) or GβGγ in the absence 
of pY peptides. We found that PI3Kβ kinase activity is also relatively insensitive to either Rac1(GTP) 
or GβGγ alone but can stimulate some PI3Kβ activity when 20% PS lipids is incorporated into the 
supported lipid bilayers. Importantly, the prioritization of signal input localization strengths was similar 
across all membrane compositions tested. Previous studies that showed Rho-GTPases (Fritsch et al., 
2013) and GβGγ (Katada et  al., 1999; Dbouk et  al., 2012; Maier et  al., 1999) can individually 
activate PI3Kβ used more complex lipid mixtures that incorporate sphingomyelin, cholesterol, and 
phosphatidylethanolamine to mimic the cellular plasma membrane composition. In the future, a more 
comprehensive analysis will be required to map the relationship between PI3Kβ activity, membrane 
localization, and lipid composition.

In our single molecule TIRF experiments, we find that the pY peptide is the only factor that 
robustly localizes PI3Kβ to supported membranes in an autonomous manner. However, the pY-PI3Kβ 
complexdisplays weak lipid kinase activity (kcat = 3 PI(3,4,5)P3 lipids/sec per PI3Kβ). This is consis-
tent with cellular measurements showing that RTK activation by insulin (Knight et al., 2006), PDGF 
(Guillermet-Guibert et al., 2008), or EGF (Ciraolo et al., 2008) show little PI3Kβ dependence for 
PI(3,4,5)P3 production. Although the dominant role of PI3Kα in controlling PI(3,4,5)P3 production 
downstream of RTKs can mask the contribution from PI3Kβ in some cell types, these results high-
light the need for PI3Kβ to be synergistically activated. When we measured the kinetics of lipid 
phosphorylation for PI3Kβ-pY-Rac1(GTP) and PI3Kβ-pY-GβGγ complexes, we observed synergistic 
activation beyond simply enhancing PI3Kβ membrane localization. After accounting for the ~1.8-
fold increase in membrane localization between PI3Kβ-pY-Rac1(GTP) and PI3Kβ-pY-Rac1(GDP), we 
calculated a 4.3-fold increase in kcat (13 PI(3,4,5)P3 lipids/sec per PI3Kβ) that was dependent on 
engaging Rac1(GTP). Comparing the kinase activity of PI3Kβ-pY and PI3Kβ-pY-GβGγ complexes 
that are present at the same membrane surface density (~0.2 PI3Kβ/µm2) revealed a 22-fold increase 
in kcat mediated by the GβGγ interaction. Together, these results indicate that PI3Kβ-pY complex 
association with either Rac1(GTP) or GβGγ allosterically modulates PI3Kβ, making it more catalyti-
cally efficient.

Mechanisms controlling cellular activation of PI3Kβ
Studies of PI3K activation by pY peptides have mostly been performed using peptides derived 
from the IRS-1 (Insulin Receptor Substrate 1) and the EGFR/PDGF receptors (Backer et al., 1992; 
Fantl et al., 1992). As a result, we still have not defined the broad specificity p85α has for tyrosine-
phosphorylated peptides. Biochemistry studies indicate that the nSH2 and cSH2 domains of p85α 
robustly bind pY residues with a methionine in the +3 position (pYXXM) (Breeze et al., 1996; Nolte 
et al., 1996; Backer et al., 1992; Fantl et al., 1992). The p85α subunit is also predicted to interact 
with the broad repertoire of receptors that contain immunoreceptor tyrosine-based activation motifs 
(ITAMs) baring the pYXX(L/I) motif (Reth, 1989; Osman et al., 1996; Zenner et al., 1996; Love and 
Hayes, 2010). Based on RNA seq data, human neutrophils express at least six different Fc receptors 
(FcRs) that all contain phosphorylated ITAMs that can potentially facilitate membrane localization of 
class 1A PI3Ks (Rincón et al., 2018).

A variety of human diseases result from the overexpression of RTKs, especially the epithelial 
growth factor receptor (EGFR) (Sauter et al., 1996). When the cellular plasma membrane contains 
densities of EGFR greater than 2000 receptors/µm2, trans-autophosphorylation, and activation can 
occur in an EGF-independent manner (Endres et al., 2013). Membrane surface densities above the 
threshold required for spontaneous trans-autophosphorylation of EGFR have been observed in many 
cancer cells (Haigler et al., 1978). In these disease states, PI3K is expected to localize to the plasma 
membrane in the absence of ligand-induced RTK or GPCR signaling. The slow rate of PI(3,4,5)P3 
production we measured for the membrane-tethered pY-PI3Kβ complex suggests that PI(3,4,5)P3 
levels are not likely to rise above the global inhibition imposed by lipid phosphatases until synergistic 
activation of PI3Kβ by RTKs and GPCRs. However, loss of PTEN in some cancers (Jia et al., 2008) 
could produce an elevated level of PI(3,4,5)P3 due to PI3Kβ being constitutively membrane localized 
via ligand-independent trans-autophosphorylation of RTKs.
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Materials and methods
Molecular biology
The following genes were used as templates for PCR to clone plasmids used for recombinant protein 
expression: PIK3CB (human 1-1070aa; Uniprot Accession #P42338), PIK3R1 (human 1-724aa; Uniprot 
Accession #P27986), PIK3CG (human 1-1102aa; Uniprot Accession #P48736), PIK3R5 (human 1-880aa; 
Uniprot Accession #Q8WYR1), RAC1 (human 1-192aa; Uniprot Accession #P63000), CYTH3/Grp1 
(human 1-400aa; Uniprot Accession #O43739), BTK (bovine 1-659aa; Uniprot Accession #Q3ZC95), 
neutrophil cytosol factor 2 (NCF2, human 1-526aa; Uniprot Accession #P19878, referred to as p67/
phox), PREX1 (human 1-1659aa; Uniprot Accession #Q8TCU6), GNB1/GBB1 (Gβ1, bovine 1-340aa; 
Uniprot Accession #P62871), GNG2/GBG2 (Gγ2, bovine 1-71aa; Uniprot Accession #P63212). The 
following plasmids were purchased as cDNA clones from Horizon (PerkinElmer), formerly known as 
Open Biosystems and Dharmacon: human PIK3R1 (clone #30528412, cat #MHS6278-202806334) 
and human CYTH3/Grp1 (clone #4811560, cat #MHS6278-202806616). Genes encoding bovine Gβ1 
and Gγ2 were derived from the following plasmids: YFP-Gβ1 (Addgene plasmid # 36397) and YFP-
Gγ2 (Addgene plasmid # 36102). These Gβ1 and Gγ2 containing plasmids were kindly provided to 
Addgene by Narasimhan Gautam (Saini et al., 2007). In this study, we used a previously described 
mutant form of Btk with mutations in the peripheral PI(3,4,5)P3 binding site (R49S/K52S) (Chung 
et al., 2019; Wang et al., 2015). The Btk peripheral site mutant was PCR amplified using a plasmid 
provided by Jean Chung (Colorado State, Fort Collins) that contained the following coding sequence: 
his6-SUMO-Btk(PH-TH, R49S/K52S)-EGFP. The nSH2 biosensor was derived from human PIK3R1. The 
gene encoding human PREX1 was provided by Orion Weiner (University of California San Francisco). 
Refer to supplemental text to see exact peptide sequence of every protein purified in this study. The 
following mutations were introduced into either the PIK3CB (p110β) or PIK3R1 (p85α) genes using 
site-directed mutagenesis: p85α nSH2 (R358A, FLVR->FLVA), p85α cSH2 (R649A, FLVR->FLVA), p110β 
GβGγ mutant (K532D/K533D). For cloning, genes were PCR amplified using AccuPrime Pfx master 
mix (Thermo Fisher, Cat#12344040) and combined with a restriction digested plasmids using Gibson 
assembly (Gibson et al., 2009). Refer to the Appendix Resource Table for a complete list of plasmids 
used in this study. The complete open reading frame of all vectors used in this study were sequenced 
to ensure the plasmids lacked deleterious mutations.

BACMID and baculovirus production
We generated BACMID DNA as previously described (Hansen et  al., 2019). FASTBac1 plasmids 
containing our gene of interested were transformed into DH10 Bac cells and plated on LB agar media 
containing 50 µg/mL kanamycin, 10 µg/mL tetracycline, 7 µg/mL gentamycin, 40 µg/mL X-GAL, and 
40 µg/mL IPTG. Plated cells were incubated for 2–3 days at 37 °C before positive clones were isolated 
based on blue-white colony selection. White colonies were inoculated into 5 mL of TPM containing 
50 µg/mL kanamycin, 10 µg/mL tetracycline, 7 µg/mL gentamycin, and grown overnight at 37 °C. To 
purify the BACMID DNA, bacteria were pelleted by centrifugation and then re-suspended in 300 µL 
of buffer containing 50 mM Tris [pH 8.0], 10 mM EDTA, 100 µg/mL RNase A. Bacteria were lysed into 
300 µL of buffer containing 200 mM NaOH, 1% SDS before neutralization with 300 µL of 4.2 M Guani-
dine HCl, 0.9 M KOAc [pH 4.8]. Samples we subsequently centrifuged at 23 °C for 10 min at 14,000 × 
g. Supernatant containing the BACMID DNA was combined with 700 µL 100% isopropanol and spun 
for 10 min at 14,000 × g. The DNA pellets were washed twice with 70% ethanol (200 µL and 50 µL) and 
centrifuged. The ethanol was removed by vacuum aspiration and the final DNA pellet was dried in a 
biosafety hood. Finally, we solubilized the BACMID DNA in 50–100 µL of sterile filtered MilliQwater. A 
Nanodrop was used to quantify the total DNA concentration. BACMID DNA was stored at –20 °C or 
used immediately for higher transfection efficiency. Baculovirus was generated as previously described. 
In brief, we incubated 5–7 µg of BACMID DNA with 4 µL Fugene (Thermo Fisher, Cat# 10362100) in 
250  µL of Opti-MEM serum-free media for 30  min at 23  °C. The DNA-Fugene mixture was then 
added to a Corning six-well plastic dish (Cat# 07-200-80) containing 1 × 106 Spodoptera frugiperda 
(Sf9) insect cells in 2 mL of ESF 921 Serum-Free Insect Cell Culture media (Expression Systems, Cat# 
96–001, Davis, CA.). 4–5 days following the initial transfection, we harvested and centrifuged the viral 
supernatant (called ‘P0’). P0 was used to generate a P1 titer by infecting 7 × 106 Sf9 cells plated on a 
10 cm tissue culture grade petri dish containing 10 mL of ESF 921 media and 2% Fetal Bovine serum 
(Seradigm, Cat# 1500–500, Lot# 176B14). After 5 days of transfection, the P1 titer was harvest and 
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clarified by centrifugation. The P1 titer was expanded by infecting 100 mL Sf9 cell culture grown to 
a density of 106 cells/mL with 1% vol/vol P1 viral titer in a sterile 250 mL polycarbonate Erlenmeyer 
flask with a vented cap (Corning, #431144). The P2 titer (viral supernatant) was harvested, centrifuged, 
and 0.22 µm filtered in 150 mL filter-top bottle (Corning, polyethersulfone (PES), Cat#431153). The 
P2 viral titer was subsequently used for protein expression in High five cells grown in ESF 921 Serum-
Free Insect Cell Culture media (0% FBS) using a final baculovirus concentration of ~2% vol/vol. All our 
media contained 1 x concentration of Antibiotic-Antimycotic (Gibco/Invitrogen, Cat#15240–062). A 
PCR-based Mycoplasma Detection kit was used to verify our insect cell lines were free of mycoplasma 
contaminants (ATCC, Cat #30–1012 K).

Protein purification
PI3Kβ and PI3Kγ
Genes encoding human his6-TEV-PIK3CB (1-1070aa) and ybbr-PIK3R1 (1-724aa) were cloned into 
a modified FastBac1 dual expression vector containing tandem polyhedrin (pH) promoters. Genes 
encoding human PIK3CG (1-1102aa) and TwinStreptTag-his10-TEV-ybbr-PIK3R5 (1-880aa) were 
expressed and purified using separate FastBac1 vectors under the polyhedrin (pH) promoters as 
previously described (Rathinaswamy et al., 2021). For protein expression, high titer baculovirus was 
generated by transfecting 1 × 106 Spodoptera frugiperda (Sf9) with 0.75–1 µg of BACMID DNA as 
previously described (Hansen et al., 2019). After two rounds of baculovirus amplification and protein 
test expression, 2 × 106 cells/mL High five cells were infected with 2% vol/vol PI3Kβ (PIK3CB/PIK3R1) or 
2% vol/vol PI3Kγ (PIK3CG/PIK3R5) baculovirus and grown at 27 °C in ESF 921 Serum-Free Insect Cell 
Culture media (Expression Systems, Cat# 96–001) for 48 hrs. High five cells were harvested by centrif-
ugation and washed with 1 x PBS [pH 7.2] and centrifuged again. Final cell pellets were resuspended 
in an equal volume of 1 x PBS [pH 7.2] buffer containing 10% glycerol and 2 x protease inhibitor cock-
tail (Sigma, Cat# P5726) before being stored in the –80 °C freezer. For protein purification, frozen cell 
pellets from 4 liters of cell culture were lysed by Dounce homogenization into buffer containing 50 mM 
Na2HPO4 [pH 8.0], 10 mM imidazole, 400 mM NaCl, 5% glycerol, 2 mM PMSF, 5 mM BME, 100 µg/
mL DNase, 1 x protease inhibitor cocktail (Sigma, Cat# P5726). Lysate was centrifuged at 35,000 rpm 
(140,000 × g) for 60 min under vacuum in a Beckman centrifuge using a Ti-45 rotor at 4 °C. Lysate was 
batch bound to 5 mL of HisPur Ni-NTA Superflow Agarose (Thermo Scientific, Cat #25216) resin for 
90 min stirring in a beaker at 4 °C. Resin was washed with buffer containing 50 mM Na2HPO4 [pH 8.0], 
30 mM imidazole, 400 mM NaCl, and 5 mM BME. Protein was eluted from Ni-NTA resin with wash 
buffer containing 500 mM imidazole. The his6-TEV-PIK3CB/ybbr-PIK3R1 complex was then desalted 
on a G25 Sephadex column in buffer containing 20 mM Tris [pH 8.0], 100 mM NaCl, 1 mM DTT. Peak 
fractions were pooled and loaded onto a Heparin anion exchange column equilibrated in 20 mM Tris 
[pH 8.0], 100 mM NaCl, 1 mM DTT buffer. Proteins were resolved over a 10–100% linear gradient 
(0.1–1 M NaCl) at 2 mL/min flow rate over 20 min. Peak fractions were pooled and supplemented 
with 10% glycerol, 0.05% CHAPS, and 200 µg/mL his6-TEV(S291V) protease. The his6-TEV-PIK3CB/
ybbr-PIK3R1 complex was incubated overnight at 4 °C with TEV protease to cleave off the his6 affinity 
tag. The TEV protease cleaved PIK3CB/ybbr-PIK3R1 complex was separated on a Superdex 200 size 
exclusion column (GE Healthcare, Cat# 17-5174-01) equilibrated with 20 mM Tris [pH 8.0], 150 mM 
NaCl, 10% glycerol, 1 mM TCEP, 0.05% CHAPS. Peak fractions were concentrated in a 50 kDa MWCO 
Amicon centrifuge tube and snap frozen at a final concentration of 10 µM using liquid nitrogen. This 
protein is referred to as PI3Kβ throughout the manuscript. The same protocol was followed to purify 
the various PI3Kβ mutants reported in this study.

Rac1
The gene encoding human Rac1 were expressed in BL21 (DE3) bacteria as his10-SUMO3-(Gly)5-Rac1 
fusion protein. Bacteria were grown at 37  °C in 4  L of Terrific Broth for 2 hrs or until OD600=0.8. 
Cultures were shifted to 18 °C for 1 hour and then induced with 0.1 mM IPTG. Expression was allowed 
to continue for 20 hr before harvesting. Cells were lysed into 50 mM Na2HPO4 [pH 8.0], 400 mM 
NaCl, 0.4 mM BME, 1 mM PMSF, 100 μg/mL DNase using a microfluidizer. Lysate was centrifuged at 
16,000 rpm (35,000 × g) for 60 min in a Beckman JA-20 rotor at 4 °C. Lysate was circulated over a 
5 mL HiTrap Chelating column (GE Healthcare, Cat# 17-0409-01) loaded with CoCl2. Bound protein 
was eluted at a flow rate of 4 mL/min into 50 mM Na2HPO4 [pH 8.0], 400 mM NaCl, 500 mM imidazole. 
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Peak fractions were pooled and combined with SUMO protease (his6-SenP2) at a final concentration 
of 50 µg/mL and dialyzed against 4 liters of buffer containing 20 mM Tris [pH 8.0], 250 mM NaCl, 10% 
Glycerol, 1 mM MgCl2, 0.4 mM BME. Dialysate containing SUMO cleaved protein was recirculated 
for 2 hrs over a 5 mL HiTrap Chelating column. Flowthrough containing (Gly)5-Rac1 was concentrated 
in a 5 MWCO Vivaspin 20 before being loaded on a 124 mL Superdex 75 column equilibrated in 
20 mM Tris [pH 8.0], 150 mM NaCl, 10% Glycerol, 1 mM TCEP, 1 mM MgCl2. Peak fractions containing 
(Gly)5-Rac1 were pooled and concentrated to 400–500 µM (~10 mg/mL) and snap frozen with liquid 
nitrogen and stored at –80 °C.

Grp1 and nSH2
The gene encoding the Grp1 PH domain derived from human CYTH3 was expressed in BL21 (DE3) 
bacteria as a his6-MBP-N10-TEV-GGGG-Grp1 fusion protein. The gene encoding the N-terminal SH2 
(nSH2, 322-440aa) domain derived from the PIK3R1 gene was cloned and expressed as a his6-GST-
TEV-nSH2 fusion protein. A single cysteine was encoded in the C-terminus of the nSH2 domain and 
Grp1 to allow for chemical labeling with maleimide dyes. For both recombinant proteins, bacteria 
were grown at 37 °C in 4 L of Terrific Broth for 2 hrs or until OD600=0.8 and then shifted to 18 °C for 
1 hr. Cells were then induced to express either the Grp1 or nSH2 fusion by adding 0.1 mM IPTG. Cells 
were harvested 20 hrs post-induction. Bacteria were lysed into 50 mM Na2HPO4 [pH 8.0], 400 mM 
NaCl, 0.4 mM BME, 1 mM PMSF, 100 μg/mL DNase using a microfluidizer. Next, lysate was centrifuged 
at 16,000 rpm (35,000 × g) for 60 min in a Beckman JA-20 rotor at 4 °C. Supernatant was circulated 
over 5 mL HiTrap chelating column (GE Healthcare, Cat# 17-0409-01) that was pre-incubated with 
100 mM CoCl2 for 10 min, wash with MilliQ water, and equilibrated into lysis buffer lacking PMSF and 
DNase. Clarified cell lysate containing his6-MBP-N10-TEV-GGGG-Grp1 was circulated over the HiTrap 
column and washed with 20 column volumes of 50 mM Na2HPO4 [pH 8.0], 300 mM NaCl, 0.4 mM 
BME containing buffer. Protein was eluted with buffer containing 50 mM Na2HPO4 [pH 8.0], 300 mM 
NaCl, and 500 mM imidazole at a flow rate of 4 mL/min. Peak HiTrap elution fractions were combined 
with 750 µL of 2 mg/mL TEV protease and dialyzed overnight against 4 L of buffer containing 20 mM 
Tris [pH 8.0], 200 mM NaCl, and 0.4 mM BME. The next day, we recirculated cleaved proteins over 
two HiTrap (Co+2) columns (2 × 5 mL) that were equilibrated in 50 mM Na2HPO4 [pH 8.0], 300 mM 
NaCl, and 0.4 mM BME containing buffer for 1 hr. Proteins were concentrated using a 10 kDa MWCO 
Vivaspin 20 and then loaded on a 124 mL Superdex 75 column equilibrated in in 20 mM Tris [pH 8], 
200 mM NaCl, 10% glycerol, and 1 mM TCEP. Proteins were eluted at a flow rate of 1 mL/min. Peak 
fractions containing Grp1 were pooled and concentrated to 500–600 µM (~8 mg/mL). Peak fractions 
containing nSH2 were pooled and concentrated to 200–250 µM (~3 mg/mL). Proteins were frozen 
with liquid nitrogen and stored at –80 °C.

P-Rex1 (DH-PH) domain
The DH-PH domain of human P-Rex1 was expressed as a fusion protein, his6-MBP-N10-TEV-PRex1(40-
405aa), in BL21(DE3) Star bacteria. Bacteria were grown at 37 °C in 2 L of Terrific Broth for 2 hrs or 
until OD600=0.8. Cultures were shifted to 18  °C for 1 hr then induced with 0.1 mM IPTG. Expres-
sion was allowed to continue for 20 hrs before harvesting. Cells were lysed into buffer containing 
50 mM NaHPO4 [pH 8.0], 400 mM NaCl, 5% glycerol, 1 mM PMSF, 0.4 mM BME, 100 μg/mL DNase 
using microtip sonication. Cell lysate was clarified by centrifugation at 16,000 rpm (35,000 × g) for 
60 min in a Beckman JA-20 rotor at 4 °C. To capture his6-MBP-N10-TEV-PRex1, cell lysate was circu-
lated over a 5 mL HiTrap Chelating column (GE Healthcare, Cat# 17-0409-01) charged CoCl2. The 
column was washed with 100 mL of 50 mM NaHPO4 [pH 8.0], 400 mM NaCl, 5% glycerol, 0.4 mM 
BME buffer. Protein was eluted into 15 mL with buffer containing 50 mM NaHPO4 [pH 8.0], 400 mM 
NaCl, 500 mM imidazole, 5% glycerol, 0.4 mM BME. Peak fractions were pooled and combined with 
his6-TEV protease and dialyzed against 4 liters of buffer containing 50 mM NaHPO4 [pH 8.0], 400 mM 
NaCl, 5% glycerol, 0.4 mM BME. The next day, dialysate containing TEV protease cleaved protein was 
recirculated for 2 hrs over a 5 mL HiTrapchelating column. Flowthrough containing P-Rex1 (40-405aa) 
was desalted into 20 mM Tris [pH 8.0], 50 mM NaCl, 1 mM DTT using a G25 Sephadex column. Note 
that some of the protein precipitated during the desalting step. Desalted protein was clarified using 
centrifugation and 0.22 µm syringe filter. P-Rex1(40-405aa, pI = 8.68) was further purified by cation 
exchange chromatography (i.e. MonoS) using a 20 mM Tris [pH 8.0], 1 mM DTT, and 0.05 to 1 M 
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NaCl gradient. P-Rex1(40-405aa) bound eluted broadly in the presence of 100–260 mM NaCl. Pure 
fractions as determined by SDS-PAGE were pooled, spin concentrated, and loaded onto a 120 mL 
Superdex 75 column equilibrated in 20 mM Tris [pH 8], 150 mM NaCl, 10% glycerol, 1 mM TCEP. Peak 
fractions containing P-Rex1(40-405aa) were pooled and concentrated to a concentration of 114 µM, 
aliquoted, frozen with liquid nitrogen, and stored at –80 °C.

Btk
The mutant BtkPI(3,4,5)P3 fluorescent biosensor was recombinantly expressed in BL21 Star E. coli as 
a his6-SUMO-Btk(1-171aa PH-TH domain; R49S/K52S)-SNAP fusion. Bacteria were grown at 37 °C in 
Terrific Broth to an OD600=0.8. These cultures were then shifted to 18 °C for 1 hr, induced with 0.1 mM 
IPTG, and allowed to express protein for 20 hrs at 18 °C before being harvested. Cells were lysed 
into 50 mM NaPO4 (pH 8.0), 400 mM NaCl, 0.5 mM BME, 10 mM Imidazole, and 5% glycerol. Lysate 
was then centrifuged at 16,000 rpm (35,172 × g) for 60 min in a Beckman JA-20 rotor chilled to 4 °C. 
Lysate was circulated over 5 mL HiTrap Chelating column (GE Healthcare, Cat# 17-0409-01) charged 
with 100  mM CoCl2 for 2  hrs. Bound protein was then eluted with a linear gradient of imidazole 
(0–500 mM, 8 CV, 40 mL total, 2 mL/min flow rate). Peak fractions were pooled, combined with SUMO 
protease Ulp1 (50 µg/mL final concentration), and dialyzed against 4 L of buffer containing 20 mM Tris 
[pH 8.0], 200 mM NaCl, and 0.5 mM BME for 16–18 hrs at 4 °C. SUMO protease cleaved Btk was recir-
culated for 1 hr over a 5 mL HiTrap Chelating column. Flow-through containing Btk-SNAP was then 
concentrated in a 5 kDa MWCO Vivaspin 20 before being loaded on a Superdex 75 size-exclusion 
column equilibrated in 20 mM Tris [pH 8.0], 200 mM NaCl, 10% glycerol, 1 mM TCEP. Peak fractions 
containing Btk-SNAP were pooled and concentrated to a concentration of 30 µM before snap-freezing 
with liquid nitrogen and storage at –80 °C. For labeling, Btk-SNAP was combined with a 1.5 x molar 
excess of SNAP-Surface Alexa488 dye (NEB, Cat# S9129S) and incubated overnight at 4 °C. The next 
day, Btk-SNAP-AF488 was desalted into buffer containing 20 mM Tris [pH 8.0], 200 mM NaCl, 10% 
glycerol, 1 mM TCEP using a PD10 column. The protein was then spin concentrated using a Amicon 
filter and loaded onto a Superdex 75 column to isolate dye free monodispersed Btk-SNAP-AF488. 
The peak elution was pooled, concentrated, aliquoted, and flash frozen with liquid nitrogen.

p67/phox
Genes encoding the Rac1(GTP) biosensor, p67/phox, were cloned into a plasmid as his10-TEV-
SUMO-p67/phox fusion proteins and expressed in Rosetta2 (DE3) pLysS bacteria. Bacteria were grown 
in 3 L of Terrific Broth 37 °C for 2 hrs or until OD600=0.8 before shifting temperature to 18 °C for 1 hr. 
Protein expression was induced by adding 50 µM IPTG. Cells expressed overnight for 20 hrs at 18 °C 
before harvesting. We lysted cells into buffer containing 50 mM Na2HPO4 [pH 8.0], 400 mM NaCl, 
0.4 mM BME, 1 mM PMSF, and 100 μg/mL DNase using a microfluidizer. The lysate was centrifuged 
at 16,000 rpm (35,000 × g) for 60 min in a Beckman JA-20 rotor at 4 °C. Supernatant was then circu-
lated over 5 mL HiTrap Chelating column (GE Healthcare, Cat# 17-0409-01) load with 100 mM CoCl2 
for 10 min. The HiTrap column was washed with 20 column volumes (100 mL) of 50 mM Na2HPO4 
[pH 8.0], 400 mM NaCl, 10 mM imidazole, and 0.4 mM BME containing buffer. Bound protein was 
eluted at a flow rate of 4 mL/min with 15–20 mL of 50 mM Na2HPO4 [pH 8.0], 400 mM NaCl, and 
500  mM imidazole-containing buffer. Peak fractions were pooled and combined with his6-SenP2 
(SUMO protease) at a final concentration of 50 µg/mL and dialyzed against 4 liters of buffer containing 
25 mM Tris [pH 8.0], 400 mM NaCl, and 0.4 mM BME. Dialysate containing SUMO cleaved protein was 
recirculated for 2 hrs over two 5 mL HiTrap Chelating (Co2+) columns that were equilibrated in buffer 
containing 25 mM Tris [pH 8.0], 400 mM NaCl, and 0.4 mM BME. Recirculated protein was concen-
trated to a volume of 5 mL using a 5 kDa MWCO Vivaspin 20 before loading on a 124 mL Superdex 
75 column at a flow rate of 1 mL/min. The column was equilibrated in buffer containing 20 mM HEPES 
[pH 7], 200 mM NaCl, 10% glycerol, and 1 mM TCEP. Peak fractions off the Superdex 75 column were 
concentrated in a 5 kDa MWCO Vivaspin 20 to a concentration between 200–500 µM (5–12 mg/mL). 
Protein was frozen with liquid nitrogen and stored at –80 °C.

Farnesylated Gβ1Gγ2 and SNAP-Gβ1Gγ2

The native eukaryotic farnesyl Gβ1/Gγ2 and SNAP-Gβ1/Gγ2 complexes were expressed and purified 
from insect cells as previously described (Rathinaswamy et al., 2021; Kozasa and Gilman, 1995; 
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Dbouk et al., 2012). The Gβ1 and Gγ2 genes were cloned into dual expression vectors containing 
tandem polyhedron promoters. A single baculovirus expressing either Gβ1/his6-TEV-Gγ2 or SNAP-
Gβ1/his6-TEV-Gγ2 were used to infect 2–4 liters of High Five cells (2 × 106 cells/mL) with 2% vol/vol of 
baculovirus. Cultures were then grown in shaker flasks (120 rpm) for 48 hr at 27 °C before harvesting 
cells by centrifugation. Insect cells pellets were stored as 10 g pellets in the –80 °C before purification. 
To isolate farnesylated Gβ1/his6-TEV-Gγ2 or SNAP-Gβ1/his6-TEV-Gγ2 complexes, insect cells were lysed 
by microtip sonication in buffer containing 50 mM HEPES-NaOH [pH 8], 100 mM NaCl, 3 mM MgCl2, 
0.1 mM EDTA, 10 µM GDP, 10 mM BME, Sigma PI tablets (Cat #P5726), 1 mM PMSF, DNase (GoldBio, 
Cat# D-303–1). Homogenized cell lysate was centrifuged for 10 min at 800 × g to remove nuclei and 
whole cell debris. The supernatant was then centrifuged for 30 min at 4ºC in a Beckman Ti45 rotor 
at 100,000 × g. The post-centrifugation pellet containing plasma membranes was resuspended in a 
buffer containing 50 mM HEPES-NaOH [pH 8], 50 mM NaCl, 3 mM MgCl2, 1% sodium deoxycholate 
(wt/vol, Sigma D6750), 10 µM GDP (Sigma, cat# G7127), 10 mM BME, and a Sigma Protease Inhibitor 
tablet (Cat #P5726) to a concentration of 5 mg/mL total protein. A dounce homogenizer was then 
used to homogenize membranes in the detergent containing buffer. The homogenized solution was 
then allowed to stir for 1 hr at 4 °C. The solubilized extracted membrane solution was then centri-
fuged in a Beckman Ti45 rotor 100,000 × g for 45 min at 4 °C. The supernatant containing solubilized 
Gβ1/his6-TEV-Gγ2 or SNAP-Gβ1/his6-TEV-Gγ2 was diluted into buffer containing 20 mM HEPES-NaOH 
[pH 7.7], 100 mM NaCl, 0.1% C12E10 (Polyoxyethylene (10) lauryl ether; Sigma, P9769), 25 mM imid-
azole, and 2 mM BME.

Soluble membrane extracted Gβ1/his6-TEV-Gγ2 or SNAP-Gβ1/his6-TEV-Gγ2 was purified by 
affinity chromagraphy using HisPur Ni-NTA Superflow Agarose (Thermo Scientific, Cat #25216). 
After adding Ni-NTA resin to the diluted solubilized extracted membrane solution, the resin and 
membrane solubilized protein was allowed to stir in a beaker at 4 °C for 2 hrs. The protein-bound 
resin beads were then packed into a gravity flow column and washed with 20 column volumes of 
buffer containing 20  mM HEPES-NaOH [pH 7.7], 100  mM NaCl, 0.1% C12E10, 20  mM imidazole, 
and 2  mM BME. To dissociate the bound G alpha subunit from the Gβ1/Gγ2 complex, the resin 
was washed with warm buffer (30  °C) containing 20  mM HEPES-NaOH [pH 7.7], 100  mM NaCl, 
0.1% C12E10, 20 mM imidazole, 2 mM BME, 50 mM MgCl2, 10 µM GDP, 30 µM AlCl3 (J.T. Baker 
5–0660), and 10 mM NaF. Finally, the Gβ1/his6-TEV-Gγ2 or SNAP-Gβ1/his6-TEV-Gγ2 was eluted from 
the NiNTA resin with buffer containing 20 mM Tris-HCl (pH 8.0), 25 mM NaCl, 0.1% C12E10, 200 mM 
imidazole, and 2 mM BME. The eluted protein was incubated overnight at 4 °C with TEV protease 
to cleave off the his6 affinity tag.

The next day, the cleaved protein was desalted on a G25 Sephadex column into buffer containing 
20 mM Tris-HCl [pH 8.0], 25 mM NaCl, 8 mM CHAPS, and 2 mM TCEP. Buffer exchanged protein 
was loaded on an anion exchange chromatography column (i.e. MonoQ) and eluted in the presence 
of 175-200 mM NaCl. Peak-containing fractions were combined and concentrated using a Millipore 
Amicon Ultra-4 (10 kDa MWCO) centrifuge filter. Concentrated samples of Gβ1/Gγ2 or SNAP-Gβ1/Gγ2, 
respectively, were loaded on either Superdex 75 or Superdex 200 gel filtration columns equilibrated 
20 mM Tris [pH 8.0], 100 mM NaCl, 8 mM CHAPS, and 2 mM TCEP. Peak fractions were combined 
and concentrated in a Millipore Amicon Ultra-4 (10 kDa MWCO) centrifuge tube. Finally, Gβ1/Gγ2 and 
SNAP-Gβ1/Gγ2 were aliquoted and flash frozen with liquid nitrogen before storing at –80 °C.

Fluorescent labeling of SNAP-Gβ1/Gγ2

To fluorescently label SNAP-Gβ1/Gγ2, the protein complex was combined with 1.5  x molar excess 
of SNAP-Surface Alexa488 dye (NEB, Cat# S9129S). SNAP dye labeling was performed in buffer 
containing 20 mM Tris [pH 8.0], 100 mM NaCl, 8 mM CHAPS, and 2 mM TCEP overnight at 4 °C. 
Labeled protein was then separated from free Alexa488-SNAP surface dye using a 10 kDa MWCO 
Amicon spin concentrator followed by size exclusion chromatography (Superdex 75 10/300 GL) in 
buffer containing 20 mM Tris [pH 8.0], 100 mM NaCl, 8 mM CHAPS, 1 mM TCEP. Peak SEC fractions 
containing Alexa488-SNAP-Gβ1/Gγ2 were pooled and centrifuged in a 10 kDa MWCO Amicon spin 
concentrator to reach a final concentration of 15–20 µM before snap freezing in liquid nitrogen and 
storiage in the –80 °C. To calculate the SNAP dye labeling efficiency, we determined that Alexa488 
contributes 11% of the peak A494 signal to the measured A280. Note that Alexa488 non-intuitively has a 
peak absorbance at 494 nm. The final concentration of Alexa488-SNAP-Gβ1/Gγ2 was calculated after 
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adjusting the A280 (i.e. A280(protein) = A280(observed) – A494(dye)*0.11) and using the following extinction coeffi-
cients: ε280(SNAP-Gβ1/Gγ2)=78,380 M–1×cm–1, ε494(Alexa488) = 71,000 M–1×cm–1.

Fluorescent labeling of PI3K using Sfp transferase
As previously described (Rathinaswamy et al., 2021), Dyomics647-CoA was created by incubating 
a mixture of 15 mM Dyomics647 maleimide (Dyomics, Cat #647P1-03) in DMSO with 10 mM CoA 
(Sigma, #C3019, MW = 785.33 g/mole) overnight at 23 °C. To quench excess unreacted Dyomics647 
maleimide, 5 mM DTT was added to the reaction mixture. Fluorescent labeling of purified PIK3CB/ybbr-
PIK3R1 (referred to as PI3Kβ or p110β-p85α in manuscript) was achieved by mixing Dyomics647-CoA 
and Sfp-his6. The ybbrR13 motif fused to PIK3R1 contained the following peptide sequence: DSLEFI-
ASKLA (Yin et al., 2006). In a total reaction volume of 2 mL, a combination of 5 µM PI3Kβ, 4 µM Sfp-
his6, and 10 µM DY647-CoA was mixed in buffer containing 20 mM Tris [pH 8], 150 mM NaCl, 10 mM 
MgCl2, 10% Glycerol, 1 mM TCEP, and 0.05% CHAPS. The ybbr labeling reaction was allowed to 
proceed for 4 hrs on ice. Excess Dyomics647-CoA was removed using a gravity flow PD-10 desalting 
column. Fluorescently labeled Dy647-PI3Kβ was spin concentrated in a 50 kDa MWCO Amicon centri-
fuge tube before loading on a Superdex 200 gel filtration column equilibrated in 20 mM Tris [pH 8], 
150 mM NaCl, 10% glycerol, 1 mM TCEP, and 0.05% CHAPS (GoldBio, Cat# C-080–100). Peak frac-
tions were pooled and concentrated to 5–10 µM before being aliquoted and flash frozen with liquid 
nitrogen. The final Dy647-PI3Kβ was stored at –80 °C.

Preparation of supported lipid bilayers
Small unilamellar vesicles (SUVs) were generated using the following lipids: 1,2-dioleoyl-sn-glycero-
3-phosphocholine (18:1 DOPC, Avanti #850375C), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (18:1 
DOPS, Avanti #840035C), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (18:1 (Δ9-Cis) DOPE, 
Avanti # 850725C), L-α-phosphatidylinositol-4,5-bisphosphate (Brain PI(4,5)P2, Avanti #840046X), 
synthetic phosphatidylinositol 4,5-bisphosphate 18:0/20:4 (PI(4,5)P2, Echelon, P-4524), and 1,2-dio
leoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide] (18:1 
MCC-PE, Avanti #780201C). All lipid mixtures are based on percentages that are equivalent to molar 
fractions. Each lipid mixture contained 2 µmoles of total lipids combined with 2 mL of chloroform in 
a 35 mL glass round bottom flask containing. This mixture was dried to a thin film using rotary evap-
oration in a glass round-bottom flask incubated in a 42 °C water bath. Following the chloroform roto-
evaporation, the lipid-containing flask was flushed with nitrogen gas or placed in a vacuum desiccator 
for at least 30 min. A final solution concentration of 1 mM lipids was achieved by resuspending the 
dried film in 2 mL of 1 x PBS [pH 7.2]. Extrusion of the 1 mM lipid mixture through a 0.03 µm pore size 
19 mm polycarbonate membrane (Avanti #610002) with filter supports (Avanti #610014) on both sides 
of the PC membrane was used to generate 30–50 nm SUVs. Prior to creating SLBs, coverglass (25 x 75 
mm, IBIDI, cat #10812) was cleaned in a warm (60–70°C) solution of 2% Hellmanex III (Fisher, Cat#14-
385-864) in a glass coplin jar. After 30 min in warm 2% Hellmanex III , coverglass was rinsed at least 
7 times with MilliQ water. The cleaned glass was then etched with Piranha solution (1:3, hydrogen 
peroxide:sulfuric acid) for 5–10 min. Etched glass was then rinsed with a copious volume of MilliQ 
water and then stored in the glass coplin jar containing MilliQ water. To adhere the Piranha etched 
coverglass to a 6-well sticky-side chamber (IBIDI, Cat# 80608), individual coverglass were rapidly dried 
with a stream of nitrogen gas. SLBs were created by flowing 100-150 µL of SUVs with a total lipid 
concentration of 0.25 mM in 1 x PBS [pH 7.2] into the IBIDI chamber. Following 30 min of incubation, 
supported membranes were washed with 4 mL of 1 x PBS [pH 7.2] to remove non-absorbed SUVs. To 
block the membrane defects, a 10 mg/mL beta casein solution (ThermoFisherSci, Cat# 37528) was 
clarified by centrifugation at 4 °C for 30 min at 21,370 x g and then passed through a 0.22 µm PES 
syringe filter (Foxx Life Sciences, Cat#381–2116-OEM). Membrane defects were blocked by incuba-
tion with 1 mg/mL beta casein for 5-10 minutes.

When reconstituting amphiphilic molecules (i.e. lipids) in aqueous solution a variety of structures 
can form based on the lipid composition, including micelles, inverted micelles, and planar bilayers 
(Kulkarni, 2019). The organization of these membrane structures is related to the molecular packing 
parameter of the individual phospholipids (Israelachvili et  al., 1976). The packing parameter 
(‍P = v/

(
alc

)
‍) depends on the volume of the hydrocarbon (‍v‍), area of the lipid head group (‍a‍), and 

the lipid tail length (‍lc‍). When generating supported lipid bilayers on a flat two-dimensional glass 
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surface, this study sought to create fluid lamellar membranes. Using phosphatidylcholine (PC) lipids 
was ideal for making supported lipid bilayers because they have a packing parameter of ~1 (Costigan 
et al., 2000). In other words, PC lipids are cylindrical like a paper towel roll. In contrast, cholesterol 
and phosphatidylethanolamine (PE) lipids have packing parameters of 1.22 and 1.11, respectively 
(Angelov et al., 1999; Carnie et al., 1979). This gives cholesterol and PE lipids an inverted truncated 
cone shape, which prefers to adopt a non-lamellar phase structure when present at high concen-
trations. Due to the intrinsic negative curvature of PE lipids, they can spontaneously form inverted 
micelles (i.e. hexagonal II phase) in aqueous solution when they are the predominant lipid species 
(Israelachvili et al., 1980; Kobierski et al., 2022; Wnętrzak et al., 2013). In this study, incorpora-
tion of PE lipids dramatically reduced the protein-maleimide coupling efficiency, increased membrane 
defects, and resulted in a larger fraction of surface immobilized Dy647-PI3Kβ. This could be related 
to the intrinsic negative curvature of PE membranes. However, further investigation is needed to 
decipher these issues.

Protein conjugation of maleimide lipid
After blocking SLBs with beta-casein, membranes were washed with 2 mL of 1 x PBS and stored at 
room temperature for up to 2 hrs before mounting on the TIRF microscope. Prior to single mole-
cule imaging experiments, supported membranes were washed into TIRF imaging buffer. Supported 
membranes containing MCC-PE lipids were used to covalently couple either Rac1(GDP) or the phos-
photyrosine peptide (pY). For the pY peptide experiments we used a doubly phosphorylated peptide 
derived from the mouse platelet derived growth factor receptor (PDGFR) with the following sequence: 
CSDGG(pY)MDMSKDESID(pY)VPMLDMKGDIKYADIE (33aa). The Alexa488-pY contained the same 
sequence with the dye conjugated to the C-terminus of the peptide. The peptides were synthesized 
to >95% purity by ELIM Biopharmaceuticals (Hayward, CA.). For these SLBs, 100 µL of 30 µM Rac1 
was diluted in a 1 x PBS [pH 7.2] and 0.1 mM TCEP buffer was added to the IBIDI chamber and incu-
bated for 2 hrs at 23 °C. Importantly, the addition of 0.1 mM TCEP significantly increased the coupling 
efficiency. SLBs with MCC-PE lipids were then washed with 2 mL of 1 x PBS [pH 7.2] containing 5 mM 
beta-mercaptoethanol (BME) and incubated for 15 min to neutralize the unreacted maleimide head-
groups. SLBs were washed with 1 mL of 1 x PBS, followed by 1 mL of kinase buffer before starting 
smTIRF-M experiments.

Nucleotide exchange of Rac1
Membrane conjugated Rac1(GDP) was converted to Rac1(GTP) using either chemical activation (i.e. 
EDTA/GTP/MgCl2) or the guanine nucleotide exchange factor (GEF), P-Rex1 (DH-PH domain). Chem-
ical activation was accomplished by washing supported membranes containing maleimide linked 
Rac1(GDP) with 1 x PBS [pH 7.2] containing 1 mM EDTA and 1 mM GTP. Following a 15 min incuba-
tion to exchange GDP for GTP, chambers were washed 1 x PBS [pH 7.2] containing 1 mM MgCl2 and 
50 µM GTP. A complementary approach that utilizes GEF-mediated activation of Rac1 was achieved by 
flowing 50 nM P-Rex1 (DH-PH domain) over Rac1(GDP) conjugated membranes (Figure 1C). Nucleo-
tide exchange was carried out in buffer containing 1 x PBS, 1 mM MgCl2, 50 µM GTP. Both methods of 
activation yielded the same density of active Rac1(GTP). Nucleotide exchange of membrane-tethered 
Rac1 was assessed by visualizing the localization of the Cy3-p67/phox Rac1(GTP) sensor using TIRF-M.

Single molecule TIRF microscopy
All supported membrane TIRF-M experiments were performed in buffer containing 20 mM HEPES 
[pH 7.0], 150 mM NaCl, 1 mM ATP, 5 mM MgCl2, 0.5 mM EGTA, 20 mM glucose, 200 µg/mL beta 
casein (Thermo Scientific, Cat# 37528), 20 mM BME, 320 µg/mL glucose oxidase (Biophoretics, Cat 
#B01357.02 Aspergillus niger), 50  µg/mL catalase (Sigma, #C40-100MG Bovine Liver), and 2  mM 
Trolox (Cayman Chemicals, Cat#10011659). Perishable reagents (i.e. glucose oxidase, catalase, and 
Trolox) were added 5–10 min before image acquisition.

Microscope hardware and imaging acquisition
Single molecule imaging experiments were performed at room temperature (23 °C) using an inverted 
Nikon Ti2 microscope using a 100 x oil immersion Nikon TIRF objective (1.49 NA). The x-axis and y-axis 
positions were controlled using a Nikon motorized stage, joystick, and Nikon’s NIS element software. 
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Fluorescently labeled proteins were excited with one of three diode lasers: a 488 nm, a 561 nm, or 
642 nm (OBIS laser diode, Coherent Inc, Santa Clara, CA). The lasers were controlled with a Vortran 
laser launch and acousto-optic tuneable filters (AOTF) control. Excitation and emission light was trans-
mitted through a multi-bandpass quad filter cube (C-TIRF ULTRA HI S/N QUAD 405/488/561/642; 
Semrock) containing a dichroic mirror. The laser power measured through the objective for single 
particle visualized was 1–3 mW. Fluorescence emission was captured on an iXon Life 897 EMCCD 
camera (Andor Technology Ltd., UK) after passing through one of the following 25 mm a Nikon Ti2 
emission filters mounted in a Nikon emission filter wheel: ET525/50M, ET600/50M, and ET700/75M 
(Semrock).

Kinetic measurements of PI(3,4,5)P3 lipid production
The production of PI(3,4,5)P3 was measured on SLBs in the presence of 20 nM Btk-SNAP-AF488 and 
visualized using TIRF microscopy. The reaction buffer for lipid phosphorylation reactions contained 
20 mM HEPES (pH 7.0), 150 mM NaCl, 5 mM MgCl2, 1 mM ATP, 0.1 mM GTP, 0.5 mM EGTA, 20 mM 
glucose, 200 µg/mL beta-casein (Thermo Scientific, Cat#37528), 20 mM BME, 320 µg/mL glucose 
oxidase (Serva, #22780.01 Aspergillus niger), 50 µg/mL catalase (Sigma, #C40-100MG Bovine Liver), 
and 2 mM Trolox (Cayman Chemicals, Cat#10011659). Approximately 5–10 min before image acqui-
sition, chemicals and enzymes needed for the oxygen scavenging system were added to the TIRF 
imaging buffer. For experiments where inactive GTPases were coupled to membranes, 0.1 mM GTP 
was replaced with 0.1 mM GDP. For ATP spike-in experiments, 1 mM ATP was omitted from the TIRF 
imaging buffer and then added as a 100 mM ATP solution using the volume needed to reach a final 
concentration of 1 mM ATP.

The concentration of the Btk lipid sensor used for the kinetic assays does not interfere with the 
kinase activity. By comparing the membrane surface intensity of Btk-SNAP-AF488 measured by TIRF 
microscopy in the presence of both 20 nM and near-saturating micromolar concentrations, we esti-
mate that <0.1% of the PIP lipids are bound to a lipid sensor at any point during the kinetic exper-
iments. Assuming an average footprint of 0.72 nm2 for phosphatidylcholine (Carnie et  al., 1979; 
Hansen et al., 2019), supported membranes that contained an initial concentrations of 2% PI(4,5)P2 
had a membrane surface density of 2.8 × 104 PI(4,5)P2 lipids/μm2 at the end of the kinase reaction. The 
plateau fluorescence intensity of the Btk-SNAP-AF488 sensor was considered to be equivalent to the 
production of 2% PI(3,4,5)P3 when membranes contained an initial concentration of 2% PI(4,5)P2. The 
bulk membrane intensity of Btk-SNAP-AF488 was normalized from 0 to 1, and multiplied by the total 
density of PI(3,4,5)P3 lipids to generate kinetic traces that report the kinetics of PI(3,4,5)P3 production.

When performing these lipid kinase assays, it is critical to simultaneously visualize the localization of 
Btk-SNAP-AF488 and Dy647-PI3Kβ. Poor quality supported membranes can artificially enhance PI3Kβ 
activity due to non-specific surface absorption of the kinase. When experiments displayed immobi-
lized Dy647-PI3Kβ molecules, the data was omitted from analysis and experiments were repeated.

Surface density calibration
The density of membrane-tethered proteins attached to supported lipid bilayers was determined by 
coupling a defined ratio of either fluorescently labeled Cy3-Rac1 (1:10,000) or Alexa488-pY (1:30,000) 
in the presence of either 30 µM Rac1 or 10 µM pY, respectively. The membrane surface density of 
GβGγ was quantified at equilibrium using a combination of AF488-SNAP-GβGγ (bulk signal) and 
dilute AF555-SNAP-GβGγ (0.0025%; 1:40,000), which allowed fluorescent proteins to be resolved 
and the single molecule density quantified. Single molecule densities of fluorescently labeled pY, 
Rac1, and GβGγ were estimated using the ImageJ/Fiji Trackmake Plugin. The total surface density was 
calculated based on the dilution factor in the presence of dark unlabeled protein (e.g. Rac1(GTP), pY, 
or SNAP-GβGγ).

Alphafold2 multimer modeling
AlphaFold2 multimer modeling was used through the Mmseqs2 notebook of ColabFold (Mirdita 
et al., 2022) to make structural predictions of PI3Kβ (p110β/p85α) bound to Gβγ. The pLDDT confi-
dence values consistently scored above 90% for all models, with the predicted aligned error and 
pLDDT scores for all models are shown in Figure 3—figure supplement 2.
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Single particle tracking
Single fluorescent Dy647-PI3Kβ complexes bound to supported lipid bilayers were identified and 
tracked using the ImageJ/Fiji TrackMate plugin (Jaqaman et al., 2008). Data was loaded into ImageJ/
Fiji as.nd2 files. Using the LoG detector, fluorescent particles were identified based on their size (~6 
pixel diameter), brightness, and signal-to-noise ratio. The LAP tracker was used to generate trajecto-
ries that followed particle displacement as a function of time. Particle trajectories were then filtered 
based on Track Start (remove particles at start of movie), Track End (remove particles at end of movie), 
Duration (particles track ≥2 frames), Track displacement, and X - Y location (removed particles near 
the edge of the movie). The output files from TrackMate were then analyzed using Prism 9 graphing 
software to calculate the dwell times. To calculate the dwell times of membrane-bound proteins we 
generated cumulative distribution frequency (CDF) plots with the bin size set to image acquisition 
frame interval (e.g. 52 ms). The log10(1-CDF) was plotted as a function dwell time and fit to a single or 
double exponential curve. For the double exponential curve fits, the alpha value is the percentage of 
the fast-dissociating molecules characterized by the time constant, τ1. A typical data set contained 
dwell times measured for n≥1000 trajectories repeated as n=3 technical replicates.

Single exponential curve fit:
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To calculate the diffusion coefficient (µm2/s), the probability density was plotted (i.e. frequency 
divided by bin size of 0.01 µm) versus step size (µm). The step size distribution was fit to the following 
models:
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Image processing, statistics, and data analysis
Image analysis was performed on ImageJ/Fiji and MatLab. Curve fitting was performed using Prism 
9 GraphPad. The X-fold change in dwell time reported in the main text was calculated by comparing 
the mean single particle dwell time for different experimental conditions. Note that this is different 
from directly comparing the calculated dwell time (or exponential decay time constant, τ1). The X% 
reduction in diffusion or mobility we report in the main text was calculated by comparing the mean 
single particle displacement (or step size) measured under different experimental conditions.
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Appendix 1

Appendix 1—key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Chemical 
compound, drug

AccuPrime Pfx master mix Thermo Fisher 12344040

Chemical 
compound, drug

Pfu Ultra High-Fidelity DNA 
Polymerase

Agilent 600380

Chemical 
compound, drug

Fugene transfection reagent Thermo Fisher 10362100

Chemical 
compound, drug

SIGMAFAST Protease Inhibitor 
Cocktail Tablets, EDTA-Free

Sigma P8830

Chemical 
compound, drug

Beta-mercaptoethanol Sigma M3148-100ML

Chemical 
compound, drug

PMSF Sigma P7626

Chemical 
compound, drug

Guanosine 5′-diphosphate (GDP) 
sodium salt hydrate

Sigma G7127-100MG

Chemical 
compound, drug

Guanosine 5′-triphosphate (GTP) 
sodium salt hydrate

Sigma G8877-250MG

Chemical 
compound, drug

Sodium deoxycholate Sigma D6750

Chemical 
compound, drug

C12E10 (Polyoxyethylene (10) lauryl 
ether)

Sigma P9769

Chemical 
compound, drug

CHAPS Thermo Fisher J6735909

Chemical 
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphocholine (18:1 DOPC)

Avanti 850375 C

Chemical 
compound, drug

1,2-dioleoyl-sn-glycero-3-
phospho-L-serine (18:1 DOPS)

Avanti 840035 C

Chemical 
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (18:1 Δ9-
Cis) DOPE

Avanti 850725 C

Chemical 
compound, drug

L-α-phosphatidylinositol-4,5-
bisphosphate (Brain PI(4,5)P2)

Avanti 840046 X

Chemical 
compound, drug

phosphatidylinositol 
4,5-bisphosphate 18:0/20:4 
(PI(4,5)P2)

Echelon P-4524

Chemical 
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N- 
[4-(p-maleimidomethyl)
cyclohexane-carboxamide] (18:1 
MCC-PE)

Avanti 780201 C

Chemical 
compound, drug

10 x PBS [pH 7.4] Corning 46–013 CM

Chemical 
compound, drug

Trolox Cayman 
Chemicals

10011659

Chemical 
compound, drug

Dyomics 647 maleimide Dyomics 647 P1-03

Chemical 
compound, drug

Cy3 maleimide Cytiva PA23031
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Chemical 
compound, drug

Cy5 maleimide Cytiva PA15131

Chemical 
compound, drug

Cy3 Mono NHS Ester Cytiva PA13101

Chemical 
compound, drug

SNAP-Surface Alexa Fluor 488 NEB S9129S

Chemical 
compound, drug

SNAP-Surface Alexa Fluor 546 NEB S9132S

Chemical 
compound, drug

SNAP-Surface Alexa Fluor 647 NEB S9136S

Chemical 
compound, drug

Coenzyme A Sigma C3019

Chemical 
compound, drug

Sulfuric acid Sigma 58105–2.5 L-PC

Peptide, 
recombinant 
protein

glucose oxidase (Aspergillus 
niger, 225 U/mg)

Biophoretics B01357.02

Peptide, 
recombinant 
protein

catalase (bovine liver) Sigma C40-100MG

Peptide, 
recombinant 
protein

10 mg/mL beta casein solution ThermoFisher 37528

Peptide, 
recombinant 
protein

LPETGG ELIM Biopharm custom peptide synthesis >95% purity

Peptide, 
recombinant 
protein

CSDGG(pY)MDMSKDESID(pY) 
VPMLDMKGDIKYADIE

ELIM Biopharm custom peptide synthesis >95% purity

Peptide, 
recombinant 
protein

CSDGG(pY)MDMSKDESID(pY) 
VPMLDMKGDIKYADIE-Alexa488

ELIM Biopharm custom peptide synthesis >95% purity

Sequence-based 
reagent

CCTT​TTTG​GTAgcaGATGCG 
TCTACTAAAATGCATGGTG

Integrated DNA 
Technologies 
(IDT)

FW_ ybbr-PIK3R1 (R358A)

Sequence-based 
reagent

GTAG​ACGC​
ATCtgcTACCAAAAA 
GGTCCCGTCTGCTGTATC

IDT RV_ ybbr-PIK3R1 (R358A)

Sequence-based 
reagent

CTTT​TCTT​GTCgcgGAGAGC 
AGTAAACAGGGCTGC

IDT FW_ ybbr-PIK3R1 (R358A)

Sequence-based 
reagent

GTTT​ACTG​CTCT​CcgcGACAAG 
AAAAGTGCCATCTCGCTTC

IDT RV_ ybbr-PIK3R1 (R358A)

Sequence-based 
reagent

CAAG​TCGA​GGTG​GAgatgacTTT 
​CTTC​CTGT​ATTG​AAAG​AAAT​
CTTGG

IDT FW_ his6-TEV-
PIK3CB(K532D,K533D)

Sequence-based 
reagent

CAAT​ACAG​GAAG​
AAAgtcatcTCCAC 
​CTCG​ACTT​GACA​CATT​AGCAC

IDT RV_ his6-TEV-
PIK3CB(K532D,K533D)

Recombinant 
DNA reagent

his10-SUMO3-GGGGG-Rac1(1-
192aa)

This paper pSH752 Bacterial protein 
expression 
plasmid
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Recombinant 
DNA reagent

his6-MBP-N10-TEV-GGGGG-P-
Rex1  
(40-405aa, DH-PH)

This paper pSH658 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his10-SUMO3-p67/phox TRP 
(Rac1-GTP sensor)

This paper pSH823 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his6-GST-TEV-nSH2 PIK3R1(322-
440aa)-Cys

This paper pSH615 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his6-SUMO-Btk(PH-TH,R49S/
K52S)-SNAP

This paper pSH1313 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his6-MBP-N10-TEV-GGGGG-
Grp1 (261-387aa)

This paper pSH558 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his6-TEV-SenP2 (368-589aa, 
SUMO protease)

This paper pSH653 Bacterial protein 
expression 
plasmid

Recombinant 
DNA reagent

his6-TEV-PIK3CB (1-1070aa) This paper pSH541 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

ybbr-PIK3R1 (1-724aa) This paper pSH743 Baculovirus 
expression 
plasmid

recombinant 
DNA reagent

ybbr-PIK3R1 (FVLR->FVLA, 
R358A)

This paper pSH1045 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

ybbr-PIK3R1 (FVLR->FVLA, 
R358A)

This paper pSH1046 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

his6-TEV-PIK3CB (1-1070aa; 
K532D,K533D)

This paper pSH1094 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

his6-Gg2, Gb1 (DUAL FastBac) PMID:34452907 pSH414 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

his6-Gg2, SNAP-Gb1 (DUAL 
FastBac)

PMID:34452907 pSH651 Baculovirus 
expression 
plasmid

Recombinant 
DNA reagent

PIK3CG(p110g), TwinStrept-
his10-TEV-ybbr-PIK3R5(p101)

PMID:36842083 HP29 Baculovirus 
expression 
plasmid

Software, 
algorithm

GraphPad Prism 9 GraphPad https://www.graphpad.​
com

Software, 
algorithm

Chimera UCSF https://www.rbvi.ucsf.edu/​
chimera/

Software, 
algorithm

ImageJ/Fiji ImageJ https://imagej.net/​
software/fiji/

Software, 
algorithm

Nikon NIS elements Nikon https://www.microscope.​
healthcare.nikon.com/​
products/software/nis-​
elements
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Cell 
line(Spodoptera 
frugiperda)

Sf9 insect cells Expression 
Systems

94–001 S

Cell line 
(Trichoplusiani)

High five insect cells UC Berkeley 
Barker Hall 
Tissue Culture 
Facility

High five insect cells

Other ESF 921 Serum-Free Insect Cell 
Culture media

Expression 
Systems

96-001-01 Media for insect 
cell culture

Other Fetal Bovine serum Seradigm 1500–500 Media for insect 
cell culture

Other Hellmanex III cleaning solution Fisher 14-385-864 Reagent for 
cleaning 
coverslips prior 
to Pirahna 
etching
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