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Abstract. We study a class of nonconvex nonsmooth optimization problems in which the objective is a sum of
two functions; one function is the average of a large number of differentiable functions, while the other
function is proper, lower semicontinuous. Such problems arise in machine learning and regularized
empirical risk minimization applications. However, nonconvexity and the large-sum structure are
challenging for the design of new algorithms. Consequently, effective algorithms for such scenarios are
scarce. We introduce and study three stochastic variance-reduced majorization-minimization (MM)
algorithms, combining the general MM principle with new variance-reduced techniques. We provide
almost surely subsequential convergence of the generated sequence to a stationary point. We further
show that our algorithms possess the best-known complexity bounds in terms of gradient evaluations.
We demonstrate the effectiveness of our algorithms on sparse binary classification problems, sparse
multiclass logistic regressions, and neural networks by employing several widely used and publicly
available data sets.
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1. Introduction. We focus on a class of nonsmooth and nonconvex problems of the form
(1.1) min{F(z):= f(z) +r(z)},
rERY

where 7 : R — R U {400} is a proper and lower semicontinuous function, d is a positive
integer, and f has a large-sum structure, that is,

(12) fla)=— 3" fila),
=1

where n is a positive integer and f; : R? — R is differentiable (possibly nonconvex). The
large-sum structure captures, in particular, reqularized empirical risk, where f; represents a
loss function on a single data point and r is often a nonsmooth (possibly nonconvex) function
that regularizes the promotion of sparse solutions, such as ¢;-norm, Geman [17], MCP [52],
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log-sum penalty [8], and exponential concave penalty [7]. Thus, problem (1.1) models a broad
range of optimization problems from convex problems (i.e., f; and r are convex functions),
such as logistic regression, to fully nonconvex problems (i.e., both f; and r are nonconvex)
such as optimizing deep neural networks. Since nonconvex optimization became indispensable
in recent advances in machine learning models, we focus our attention on the fully nonconvex
scenario in problem (1.1). Specifically, we are interested in the case where the number of
components n is extremely large since it is a key challenge in the era of big data applications.

1.1. Notation. We follow standard notation as in [4, 46]. For any real number a, |a]
denotes the largest integer less than or equal to a while [a] denotes the smallest integer
greater than or equal to a. We use [n] to denote the set {1,2,...,n}. For k€ N and b € [n],
we denote by I the index batch which is a list of (possibly repeated) indices (i1, 12, ...,4) of
fixed size b where each index i; is independently and randomly chosen from [n]. We refer to
I; as a batch of size b. Let z° € R?. With a sequence z* € R? and a sequence of batches Iy,
we associate x; L— 20 for allie [n], and inductively, having defined xf_l, we set

k. .

T 1 €I
1.3 zh=0"" ’
(13) ! {xfl otherwise.

In other words, J:f’ is updated to z* if and only if i € I,. Denote &, = I}, for MM-SAGA and
&k = (I, dy) for MM-SVRG and MM-SARAH (see descriptions of MM-SAGA, MM-SVRG, and MM-SARAH
in section 3), where dj, € {0,1}.

Let 2 be the sample space of all sequences w = {wy}72 5, wi = &. We define a sequence of
o-algebras Fj, on € as follows. Fix k> 1. For each (£o,&1,...,8k—1), define the cylinder set

C(&0,&15-- - &) ={weQrwy=&p,w1 =&1,... ,wp—1 =Ep—1} -

Denote by C* the collection of all cylinder set C(&,&1,...,&k—1). Now denote Fj, := o(CF)
the o-algebra generated by C*, and F := U( Zo:le). Clearly, the o-algebra sequence {Fj}
satisfies Fi, C Fiy1 C F for all k > 1. Thus, the o-algebra F is associated with a probability
measure p forming the probability space (2, F, P). We use E;, as shorthand for the conditional
expectation operator E[-|Fy| given F.

Throughout, (-, -) denotes the inner product in R? with induced norm || - || defined by
lz|]| = \/{z,z),r € R% We set Ry = {r € R:7>0}. For a nonempty closed set C C R, the
distance of = from C is defined by dist(z,C) = infyec ||z —y||. An extended-real-valued function
g:R?— RU {400} is said to be proper if its domain, the set dom g = {z € R%: g(x) < +o0},
is nonempty. We say that g is lower semicontinuous if, at each z* € R%,

) < Tim
g(a”) < liminf g(z).
Let a € R. We say that g is a-convex if g — || - |2 is convex, equivalently, if
a
9((1— N+ 29) < (1= X)g(x) +dg(0) — SA1 =Nz g’ ¥a,y e RE A€ [0,1].

In particular, g is convex if and only if g is 0-convex. In the case where the function g is
a-convex, we say that g is a-strongly convex if o >0 and we say that g is a-weakly convex if
a < 0. Finally, 0f denotes the subdifferential of the function f (see Definition 2.1).
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1.2. Motivation and related work. In the convex setting, a standard method for solving
the noncomposite form (r = 0) of problem (1.1) is the gradient descent method (GD). Given
an initial point z° € R?, the iterative step of the GD method computes z*+! by

xk+1 — xk . nkvf(xk)a

where 1 > 0 is a stepsize and k is a nonnegative integer. In (1.2), if the number of components
n is very large, each iteration of the GD method becomes extremely expensive since it requires
the computation of the gradient for all of the components f;. An effective alternative is the
standard stochastic gradient method (SGD) [44]. In this case, in each iteration, the SGD draws
randomly i;, from [n] and updates z**! by

aFtl =gk — &V fi,. (xk)

The advantage of the SGD method is that in each iteration, it only evaluates the gradient of
a single component function. Consequently, the computational cost per iteration is only 1/n
of that of the full step in the GD method. However, due to the variance, inadvertently gener-
ated by random sampling, the SGD method converges much slower than the full GD method.
Fortunately, we can overcome this drawback by variance reduction techniques, utilizing in-
formation regarding the gradient from previous iterations to construct a better estimation of
the gradient at the current step. To date, some of the most widely applied variance reduction
methods in the literature are the stochastic average gradient algorithm (SAGA) [12], the stochas-
tic variance-reduced gradient (SVRG) [22], and the stochastic average gradient (SAG) [49]. We
note in passing that SAGA is an unbiased version of SAG. Variance reduction methods inherit
the advantage of low iteration cost of the SGD method while providing similar convergence
rates of the full GD method in convex settings.

Thus far, however, only several variance reduction methods have been developed in order to
deal with nonconvex optimization problems possessing the large-sum structure. Furthermore,
these methods mainly focus on special cases of (1.1), where r =0, such as [1, 2, 38], or where
7 is convex, such as [21, 30]. For the fully nonconvex problem with an extremely large value of
n (such as we study here), such developments become even more challenging. Consequently,
research in this direction is sparse. Several recent studies, such as [27, 28, 31, 50], promote
stochastic methods based on the difference-of-convex (DC) algorithm, developed in [29, 42],
or majorization-minimization (MM), developed in [26]. In particular, if f; is L-smooth and r
has a DC structure, that is, » =1 —re with r; being proper lower semicontinuous convex and
ro being convex, problem (1.1) can be reformulated as a DC program

(1.4) min G(z) — H(x),

where G(z) = &||z||*+71(z) and H(z) = §||z||* — f(x) +r2(x) are convex functions with p > L.
The classic DC algorithm (DCA) linearizes the function H iteratively and updates 2*+1 by

(1.5) gt = argminHHxHQ +ri(z) — <;m:k — Vf(a*) + yk,3:>
zeRd 2

for some y* € Ora(a*).
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n [27, 50], a stochastic version of DCA, named SDCA, was studied based on the idea of
1ncrementally linearizing the components § HxH2 fi(z)+ra(x) of H. More specifically, uz® —
V f(2*) 4 y* is replaced by the so-called SAG estimator

n

Z[lw — Vil )—I—yl}, where y¥ € drq ().

=1

(1.6) VercH(2F)

3\>—‘

Consequently, subproblem (1.5) is replaced by

(1.7) pF = argmin HHxHQ +7r(x) — <%SAGH($’€),$> ,
rER? 2

where y¥ € Ory(2F) for all 4.

Recently, Le Th1 et al. [28] developed stochastic DC algorithms, named DCA-SAGA and
DCA-SVRG, based on the so-called SAGA and SVRG estimators for the problem in which 7 is a
DC function. Specifically, DCA-SAGA applied to (1.4) successively replaces pz* — Vf(2*) in
DCA’s subproblem (1.5) by the SAGA stochastic gradient estimate,

Vesor (51 1P = 1) @)= 3 3 [ = Vileb) = o+ Vit

2
i€y,
1 k-1 k=1 }
+nz {,uxi Vfilzi )]s
which, when combined with (1.5), implies that

(18) o+ = argmin Zflall? +71(@) = (Varen (511 I = ) @) +9F,)
z€R

In comparison, DCA-SVRG replaces pux® — V f(x*) in DCA’s subproblem by the SVRG stochastic
gradient estimate:

o) Voo (517 = 1) @)= 5 3 ek = Vfilah) - e + Vfi@h)| + pa* - V(@)
. 1€y,

— ,U$k - €SVRGf($k)?

where % = z* if k € mN, and #*~! otherwise, where m is a fixed positive integer. Conse-
quently, the corresponding subproblem for DCA-SVRG is

(1.10) 41 = argmnin &l — 5?4 1 (@) — (oo f ) + ).
zER?

In general, problem (1.1) can be solved by an MM principle such that at each iteration, a
complex objective function is approximated by an upper bound which is created around the
current iteration and which can be minimized effectively. This step is called the majorization
step. The minimum of this upper bound (the minimization step) is then used to sequentially
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create another, hopefully tighter, upper bound (another majorization step) to be minimized.
More specifically, the MM scheme applied to (1.1) computes k1 by

(1.11) e argminHHx —z*|? + <Vf(xk),x - xk> + u(z, z¥),
TER4 2

where u(z,z*) is an upper bound (or surrogate; see Definition 3.1) of r at z*. Indeed, vari-
ous deterministic approaches can be interpreted from the MM point of view such as proximal
or gradient-based methods [3, 6, 11, 18, 23, 32, 35, 47], and expectation-maximization al-
gorithms in statistics [13, 33]. To date, many extensions of MM have been developed, e.g.,
[9, 10, 19, 20, 24, 40, 43]. However, only a few algorithms have been applied in the large-
sum structure settings. In particular, Mairal [31] introduced the minimization of incremental
surrogate (MIS0) that applies to problem (1.1) and successively updates z¥*! by

R
(1.12) AR eargmmﬁz [gﬂx — k| + <Vfi(wf),x —wf> + fi(z®) + u(z,2h) |,
i=1

k

where u(-,z;) is a surrogate of r at :1:5C . However, in order to study asymptotic convergence,

Mairal [31] employs a strong assumption, namely, that the approximation errors h(z,z¥) :=
u(z,2¥)—r(x) are L-smooth in z. It is noteworthy that although MISO was inspired by SAG (see
(1.6)), it does not recover SAG as a special case for smooth and composite convex optimization.

To the best of our knowledge, the incorporation of new stochastic gradient estimators
SAGA, SVRG, and the stochastic recursive gradient (SARAH) [37] into MM algorithms for solving

the nonconvex problem (1.1) was not previously studied.

1.3. Contribution and organization. For solving problem (1.1) in the case where it in-
corporates a large-sum structure and nonconvexity of the objective, we introduce three sto-
chastic variance-reduced majorization-minimization (SVRMM) algorithms: MM-SAGA, MM-SVRG,
and MM-SARAH. Unlike MISO, the SVRMM iterates on r and the large-sum f separately. In par-
ticular, at each iteration, MM-SAGA, MM-SVRG, and MM-SARAH replace the full gradient of f in
the deterministic MM by stochastic gradient estimators employing SAGA, loopless SVRG, and
loopless SARAH, respectively. It is important to note that MM-SAGA updates the proximal term
L)z — 2¥||? at the current iterate 2 in the same manner as in the MM scheme. This distin-
guishes MM-SAGA from DCA-SAGA when applied to the DC program (1.4), where the latter’s
update rule consists of the proximal &||z —z*||? at zF = $ 37, ) [2% — e R DDIE L
addition, we point out that MM-SVRG employs the loopless SVRG estimator, which was shown
to have superior performance [25] when compared to the classic estimator technique SVRG,
employed in DCA-SVRG.

Under mild assumptions, we analyze the subsequential convergence for the generated
sequence of the SVRMM algorithms. More concretely, we show that each limit point of the
generated sequence is a stationary point of problem (1.1). Meanwhile, Le Thi et al. [28]
showed that each limit point z* of the generated sequence by their algorithms DCA-SAGA
and DCA-SVRG is a DC critical point of G — H, i.e., 0G(z*) N OH (z*) # 0, which is weaker
than the stationary point property, since OF C 0G — 0H. Furthermore, we show that our
algorithms have (’)(l{:fl/ 2) convergence rate with respect to the proximity to a stationary
point. In order to obtain an e-stationary point, we show that MM-SAGA and MM-SVRG have

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/29/25 to 198.82.230.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC VARIANCE-REDUCED MM 931

Table 1
SVRMM versus stochastic-based DCA.

Method Requirement Stepsize  Batch size Complexity — Reference
DCA-SAGA [28] n bg“’ < i% = b=[2'/42p3/1] O(n®*/e*)  Theorem 5(5)
DCA-SVRG [28] Aol L b=|n*?], m=|25] O®m*?/*) Theorem 2(4)
MM-SAGA (new) iz S iZ“;L 1 b=[25/3n?/3] On*3/e*)  Corollary 4.10(a)
MM-SVRG (new) %< o + b=|n*?|, m= 4—‘/52 On??/e?)  Corollary 4.10(b)
MM-SARAH (new) LT: < %2“;L 1 b=[n'?|, m= 2 O(n'?/e*)  Corollary 4.10(c)

complexity of O(n?/?/e?) while MM-SARAH has complexity of O(n'/2/e?) in terms of gradient
evaluations. That is, our results are superior to those of DCA-SAGA and DCA-SVRG which have
complexity of O(n®*/e2) and O(n?/3/€?), respectively, for finding an eDC critical point.
Another advantage of our methods is that we do not impose L-smoothness on the function 7;
it may be nonsmooth and nonconvex, but rather, in order to obtain our results, the stochastic
DCA based algorithms require that the second DC component of r, namely, the component o
in the decomposition r = r; — re, is L-smooth. Table 1 contains a comparison between our
new methods and DCA-SAGA and DCA-SVRG for solving nonsmooth nonconvex optimization
problems, in terms of the requirement on our stepsize 1/u and our batchsize b, in order to
achieve the corresponding complexity.

In Table 1, the stepsizes and batchsizes of DCA-SAGA and DCA-SVRG are taken from [28],
and the stepsizes and batchsizes for MM-SAGA, MM-SVRG, and MM-SARAH are chosen in order to
achieve the optimal order of complexity. We also note in passing that by setting the stepsize
% = ﬁ, we obtain the same complexity in all three SVRMM algorithms.

Finally, we apply our algorithms to solve three problems in order to illustrate their ap-
plicability and efficiency: sparse binary classification with nonconvex loss and regularizer,
sparse multiclass logistic regression with nonconvex regularizer, and feedforward neural net-
work training.

The paper is organized as follows. In section 2, we present basic concepts and properties in
nonconvex optimization. In section 3, we present our algorithms. We analyze the convergence
properties of our methods in section 4. In section 5, we provide a demonstration by numerical
experiments, followed by conclusions in section 6.

2. Preliminaries.

Definition 2.1 (Fréchet and limiting subdifferential [46, Definition 8.3]). Let g : R* = RU
{+00} be a proper lower semicontinuous function.
(a) For each x € dom g, we denote by 39(:@ the Fréchet subdifferential of g at x. It contains
all of the vectors v € RY which satisfy

liminf ——(g(y) — g(x) — (v, — 2)) > 0.

yAzy—w ||y — |

If & ¢ dom g, we set Hg(z) = 0.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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(b) The limiting subdifferential Og(x) of g at x € dom g is defined by
dg(x) = {v eR?: 32 = 2, g(a¥) = g(x), v* € dg(a¥), v* — v} .

If g is convex, then the Fréchet and limiting subdifferentials coincide with the convex
subdifferential:

9g(z) = {v 9(y) = g(x) +(y —z,v)Vy € Rd} :

Definition 2.2 (L-Lipschitz). A mapping T : D C R? — R* is said to be L-Lipschitz, L >0,
if
Vo,ye D, || Tz —Ty|| < Lilz —yl|.

Definition 2.3 (L-smooth). Let g :R% — R. We say that g is L-smooth if it is everywhere
differentiable and its gradient, Vg, is L-Lipschitz.

We now recall several useful basic facts.

Lemma 2.4. Let g and h be proper and lower semicontinuous. Then,

(a) 0€0g(x) if g attains a local minimum at T € dom g;

(b) 0f(z)=0g(x) + Vh(Z) if f=g+h and h is continuously differentiable in a neighbor-
hood of T;

(c) g(z) >g(y) + pllz — y||* if g is convex and y is defined by

y = argmin {g(z) + gHz — xHQ} ;
z

(d) lg(@) = g(y) = (Vo(y).z =) | < llw =yl for all 2,y eR? if g is L-smooth.
Proof. (a) See, e.g., [46, Theorem 8.15]. (b) See, e.g., [46, Exercise 8.8]. (c) See, e.g., [5,
Theorem 6.39]. (d) See, e.g., [36, Lemma 1.2.3]. |

Definition 2.5 (e-stationary point). A point x* is said to be an e-stationary point of g if
dist(0,0¢g(z")) <e.

In particular, we say that x* is a stationary point of g if it is a 0-stationary point.
The following lemma is a fundamental tool in our convergence analysis.

Lemma 2.6 (supermartingale convergence [45, Theorem 1]). Let {Y;},{Zx}, and {Wy} be
three sequences of random variables and let {Fi} be a sequence of sub-o-algebras such that
Fr C Fia1 for all k. Assume that, almost surely,

(a) for each k, {Yy},{Zr}, and W}, are nonnegative Fi-measurable random variables;

(b) E[Yiy1|Fr) <Yy — Zp + Wy for each k;

(€) 325 Wi < +oo.

Then, Z:(:)?) Zy < 400, and {Yy} converges to a nonnegative random variable, almost surely.

3. Stochastic variance-reduced majorization-minimization. In this section, we introduce
three SVRMM algorithms for solving problem (1.1). To this end, we define surrogate functions
as follows.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Definition 3.1 (tangent majorant function). A function u:R% x R* = RU {400} is said to
be a tangent magjorant function of r: R4 — R U {+o0} if

(a) uly,y) =r(y) for all y € R%;

(b) w(z,y) >r(z) for all x,y € R

We introduce our first SVRMM algorithm, which we call MM-SAGA. It combines the deter-
ministic MM and the SAGA-style of stochastic gradient update. In particular, we replace the
full gradlent Vf(z¥) in the deterministic MM (1.11) with the stochastic gradient estimate
VSAGAf( k) as follows:

(31) Vanond @) =5 3 (V) = Thia 1) + ZVfZ ).
i€l
where z¥ is determined by (1.3) with ;' = 2% and V f;(z; 1) = Vf(2°) for i=1,...,n.
Our second SVRMM algorithm, named MM-SVRG, is inspired by a loopless SVRG estimator.
Specifically, we replace the full gradient V f (%) in the deterministic MM (1.11) by the loopless
SVRG stochastic gradient estimate Vgyre f(2¥) as follows:

~ 1
ky _ & (kY =k ~k
(3.2) Voo (@) =33 (V1) = V(@) + V5 (),
where 77! = 20 and #*F = 2F if dj, = 1 and 7! otherwise, with dj, being randomly chosen

from {0,1} such that dy =1 with probability (w.p.) 1/m and 0 otherwise with m > 1. That
is, #* = 2* w.p. 1/m and #*~! otherwise.
Our third SVRMM algorithm is named MM-SARAH, in which we replace the gradient V f(z*)

in the deterministic MM (1.11) with a loopless variant of SARAH as follows:

R V f (%) if dp, =1,
(33) vsARAHf($k) - % Z (Vfl(xk) _ sz(xk_l)) + %SAR,AHf(xk_l) otherwise,
1€l

where 71 =2V, and ﬁsARAHf( ) =Vf(a0).

The general framework of our SVRMM algorithms is described in Algorithm 3.1, wherein
MM-SAGA, MM-SVRG, and MM-SARAH employ their own gradient estimate Venoa f(zF),
VewnaS (:vk), and 63 aranf (%), accordingly. Additional details regarding our new algorithms
are available in supplementary material section SM1.

Remark 3.2 (MM-SAGA vs. DCA-SAGA). The update rule (1.8) of DCA-SAGA [28] is

min 2z — 282+ (Vosan @), 0) + (@) = (4F,),
zeRe 2
where zF = 3 Zzelk (zF —2f 1ty 1 Ly L2871 and y* € Ore(2*). This update is different from
our update rule (3.4) in MM-SAGA “which employs the proximal term &|lz — z¥||?, in the same
manner as in the deterministic MM.

It is worth mentioning an advantage of MM-SAGA when compared to DCA-SAGA in terms
of memory storage, which can be described as follows. For MM-SAGA, one employs mf solely
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Algorithm 3.1. SVRMM framework.

Input: 2° € RY, a batch size b € [n], p > %, a gradient estimator v (either Vs AGA > ﬁsvm, or
%SARAH), m > 1 for %SVRG and %SARAH, a tangent majorant function u of r, and
k=0.

repeat

Choose a random batch I}, of size b.

Compute the stochastic gradient estimate V f(z*): using (3.1) for MM-SAGA, using (3.2) for

MM-SVRG, using (3.3) for MM-SARAH.

Compute

(3.4) 2! € argmin HHm —¥2 + <6f(95k), x> + u(z, ).
veRd 2

until Stopping criterion.
Set k+ k+1

for computing V fi(x¥). In other words, (3.1) and (3.4) are defined and updated using only
gradient values. Thus, it suffices to keep only the value V f;(z¥), and then discard #¥. In many
problems, such as binary classifications and multiclass logistic regressions, each gradient V f;
is a scalar multiple of the data point 7, where the scalar can be updated in each iteration.
In such cases, one may only store the weights, instead of the full gradient Vf;, e.g., [12].
In contrast, for DCA-SAGA, in addition to the values of gradients V fz(xf), one must store all
vectors :Uf in order to compute z" in each iteration.

Remark 3.3. It is worth noting that MM-SVRG employs the loopless SVRG estimator which
was demonstrated to have practical advantages in [25] when compared to the estimator (1.9)
used in DCA-SVRG [28]. We also note that although the loopless SVRG estimator and SVRG may
seem similar, they differ in the ZF-update. Specifically, the loopless SVRG estimator updates
ik = 2¥ with a probability of 1/m (m > 1), while the SVRG estimator updates ¥ = 2* after
every m iterations, i.e., if k € mN (m is a fixed positive integer). In other words, the loopless
SVRG estimator removes the explicit loop structure of SVRG.

4. Convergence analysis. We now focus on convergence analysis of our SVRMM algorithms.
To this end, throughout this paper, we assume the following basic assumptions regarding
problem (1.1). Such assumptions are standard in optimization literature; see, e.g., [34, 41].

Assumption 1.

(a) F is bounded from below, that is, F* =inf,crs F(2) > —00, and dom F # ().

(b) Each f; is L;-smooth; equivalently, each f; is continuously differentiable and there
exists a positive constant L such that

1 n
4.1 - (2) — V)| < L2z — 2 R,
(4.1) n;llvf(fﬁ) VW< Lz —y||® Vo,ye

Our following assumption is regarding the tangent majorant function u of r; see
Definition 3.1.
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Assumption 2.

(a) u is lower semicontinuous.

(b) For every x, u(x,-) is continuous.

(c) There exists a function h : RY x R? — R U {400} such that for every y € R?, h(-,y)
is continuously differentiable at y with VA(-,y)(y) = 0, and the approximation error
satisfies

(4.2) u(y) —r(-) <h(,y).

Remark 4.1. We note that Assumption 2(c) encapsulates surrogate functions previously
studied by Mairal [31, Definition 2.2], where it is assumed that the approximation error
h(-,y) == u(-,y) — r(-) is L-smooth and Vh(-,y)(y) = 0. Indeed, in this case, we simply set

We recall an important class of functions r with continuously differentiable approxima-
tion error h(-,y) such that Vh(-,y)(y) = 0. Consequently, this class satisfies Assumption 2.
Additional examples can be found in [24, 31].

Ezample 4.2 (DC surrogates). If r is a DC function, that is, r = r; — ro where r1 and r
are convex, by assuming further ro is continuously differentiable, we consider the surrogate
function

u(w,y) =ri(2) = [(Vra(y)e = y) +72(y)].

We now provide an example in which the approximation error function is nonsmooth; however,
Assumption 2 is satisfied.

Ezample 4.3 (composite surrogates). Consider a class of functions of the form
m
r(@) =Y mi(gi(x:)),
=1

where x is decomposed into m blocks z = (z1,...,zy,) with x; € R% o, di=d, and where
gi : R% — R are convex and Lipschitz continuous with a common Lipschitz constant Ly, and
n; : R — R are concave and smooth with a common smoothness constant L, on the image
gi(R). This class includes composite functions, in particular, several existing sparsity-reduced
regularizers, which are nonconvex and nonsmooth approximations of the £p-norm or ¢, o-norm;
see, e.g., [7, 8]. Since 7; is concave, we can set up a surrogate function u for r as follows:

m

u(@,y) =r(y) + Y mi(g:(vi) (gi(x:) — 6i(w)-

i=1
Since 7); is Ly-smooth on the image g;(R), it follows from Lemma 2.4(d) that

m m

@) > rly) + 3 ) 0i(e0) — gi(0)) — D (o) — gi(wi)

i=1 i=1

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/29/25 to 198.82.230.35 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

936 DUY NHAT PHAN, SEDI BARTZ, NILABJA GUHA, AND HUNG M. PHAN

which, when combined with the L,-Lipschitz continuity of g;, implies that
2

L L,L
ueyy) = (@) £ 3 Zgilw) — gilun) 2 < =5 lo — g
=1

Therefore, Assumption 2(c) is satisfied when we set h(z,y) = %Hx —yl%

Before we proceed to our convergence analysis, for simplicity, we associate with each of
our algorithms a sequence of random variables {Y*}, which is defined by

Method Tk

MM-SAGA | o~ HV fi(2®) =V fi(x
MM-SVRG | £ 3" ||V fi(aF) - Vfi(a
MM-SARAH H%mmf(a;’“—l) —Vfr H

(4.3)

In the following Lemmas 4.4 and 4.5, we estimate Ey||V f(z*) — Vf(2%)||2, where V f(z*)
denotes either %SAGA, %SVRG, or %SARAH. We also provide several properties of the sequence
{Y*}. Our arguments are similar to the arguments in the study [14] of stochastic proximal
alternating linearized minimization algorithms using SAGA and SARAH for two-block optimiza-
tion. However, we consider one block, which yields tighter bounds when compared to the
bounds in [14, Proposition 2]. The proofs of Lemmas 4.4 and 4.5 are available in supplemen-
tary material section SM2.

Lemma 4.4. Let {z*} be generated by MM-SAGA or by MM-SVRG with m — 1> 0 and let T*
be defined by (4.3). Then

(a) B[V f(2%) = Vf(ah)]? <T*;

(b) ExYF < (1 — p)TF + Ve Ey||2* ! — 2|2, where p and Vy are defined by (4.4).

Method | p | Vy
(4.4) MM-SAGA | L | Gnblf
1 (2m—1)L?
MM-SVRG | 5 | g

Lemma 4.5. Let {z*} be generated by MM-SARAH with m — 1 >0 and let Y* be defined by
(4.3). Then

(8) B |[Fonnnaf (@) = V()| <00 4 2l — 212
(b) BT < (1= p)T* + Vy [[2 -t

1
(4.5) p=— and Vy=
m

2, where
(m —1)L?
mb

We now present our main convergence results. The following theorem provides almost
surely subsequential convergence of the iterations generated by our algorithms to a stationary
point. For simplicity, we set the constant V' in (4.6).

Method V
(4.6) MM-SAGA/MM-SVRG | 0
MM-SARAH L
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Theorem 4.6 (almost surely subsequential convergence). Let {zF} be a sequence generated
by one of the SVRMM algorithms. Suppose that Assumptions 1 and 2 are satisfied, m > 1 for
MM-SVRG and MM-SARAH, and that the condition

(4.7) 2 —L—2y/V +Vy/p>0,

where Vy and p are determined by (4.4) for MM-SAGA and MM-SVRG and by (4.5) for MM-SARAH
and V is defined by (4.6), holds. Then
(a) the sequence {F(xz*)} converges almost surely,
(b) the sequence {||z* — x¥=Y|?} has a finite sum (in particular, vanishes) almost surely,
(c) every limit point of {x*} is a stationary point of F, almost surely.

Proof. First, we prove (a) and (b). Let us fix k¥ € N. From the definition of a tangent
majorant function (see Definition 3.1), it follows that

(4.8) r(zP ) <w(xFL 2k).
By combining the L-smoothness of f with Lemma 2.4(d), we arrive at
L
(4.9) @) < @)+ (VI h), b —ak) 4 Dkt — 2k
Now, by combining the update rule for z**! with Lemma 2.4(c), we see that
(4.10) <§f(ack),ac’l“rl - a:k> +u(zPT 2Ry 4 p)|a T = 2F)? <w(af 2b) = r(2").

Consequently, by summing up (4.8), (4.9), and (4.10), and by recalling that F' = f 4+ r, we

obtain

2u— L
2

(4.11) < Pt + 1|[T 1) - Vf(a:k)HZ + L a1 - kaQ
' - 2 2n ’

F(zF) + ka—l-l B kaQ < F(a) + <vf($k) C Y f(ah), et - xk>

for any n > 0, where (4.11) holds due to the Cauchy—Schwarz inequality, more precisely,
(a,b) < Hlal]* + %wa for all » > 0 and a,b € R%. Later in our analysis, we will employ a
particular choice of 7. By taking the expectation in (4.11), conditioned on Fj, we arrive at
2u—L 1
2 2n

(4.12) Ey {F(azkﬂ) + ( ) ka“ - x’fm < F(a*)+ gEk Hﬁf(x’f) - vf(w’“)HQ.

We now claim that

where ®F is defined by (4.14).

Method PF
2u—L |4 V5 1112
(4.14) MM-SAGA/MM-SVRG | F(a*) + (255 — L — 1) — ’727;) % — b1 |* 4z
k 2u=L _ 1 k_ o k—1]2 k
MM-SARAH F(ak) + (2L - %) % — 21| + 2y
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We will prove that the claim (4.13) holds by considering two cases. One case, in which the
sequence {xk} is generated by either MM-SAGA or MM-SVRG, and the second case, in which the
sequence {z*} is generated by MM-SARAH.

Case 1. Suppose that {z*} is generated by either MM-SAGA or MM-SVRG. Lemma 4.4(a)
asserts that
2

I

Ex H%f(:rk) — Vf(:vk)H2 <YF+VE, kaH — :):k‘

which, when combined with inequality (4.12), implies that

2u—L 1 Vv 2 n
E. | F(gFt! L H k+1 _ kH < F(2®) + 27k,
k[ (z )—I—( 5 o 2) x T < (:E)+2

By recalling Lemma 4.4(b), which asserts that T* < %
we obtain

2u—L 1 9V by 2 U
E. | F(g*+1 p—L Loomv nvy H k+1 _ kH Tkt | <« prgky 2 yk
k[ (x )~l—< 5 o 2 2% x ="l + < (x)—|-2p

2
(Tk _ Eka+1) + %Ek ||$k+1 _ I‘kH ’

Consequently, (4.13) holds due to the definition of ®* in (4.14).

Case 2. Suppose that the sequence {z*} is generated by MM-SARAH. We now prove that
(4.13) holds in this case as well.

First, Lemma 4.5(a) asserts that

2

)

Ex H%f(:nk) - Vf(xk)H2 <YF 4V H:Bk —:L'k_l‘

which, when combined with (4.12) and the relation from Lemma 4.5(b) where T* < %(Tk -
Ep YrE+L) + %ka — 212, implies that

2

N~k nv . nVr k k—1||?
< F(aby + Lk (V1Y H — H
< (l’)+2p +(2+2p>x T

2u—L 1 2
Ek |:F(1Ek+1) + <:u _ 2> Hxlﬂ-‘rl _:L,kH + nTk+1:|
n

Thus, (4.13) holds due to the definition of ®* in (4.14).
Consequently, in both cases, (4.13) holds for the corresponding sequences {®*}. Now, due

to (4.7), by setting n = m, we see that
2p=L 1 vV _agVx_2u—L V+Vi/p_,
2 2n 2 20 4 24— L ‘

We also have 2u4 — L > 0 and 2“2_L — % > 0. On the other hand, without the loss of
generality, we may assume that F* > 0. Thus, by supermartingale convergence (Lemma 2.6),
the sequence {||2*—2*~1||2} almost surely has a finite sum (in particular, it vanishes), and {®*}
almost surely converges to a nonnegative random variable ®*°. Consequently, by combining
Lemmas 4.4 and 4.5 and the supermartingale convergence in Lemma 2.6, T* has a finite sum
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(in particular, it vanishes) almost surely. It follows that the sequence {F(z*)} converges to
®° almost surely, which concludes the proof of (a) and (b).

Proof of (¢). First, we claim that
(4.15) lim [ﬁf(xk) - Vf(xk)} =0 almost surely.

k—+o0

To prove this claim, by taking the total expectation in (4.13) with n = , we see that

2u—L
2V +Vr/7)
2
(4.16) EoF! <EoF — kE H:Ek - x’“—lH ,

)2—4(V+Vxy

_ (@2p-L
where k = Gu=T)

/) - . By telescoping (4.16) over k, we arrive at
K 2

S KE ka _ xk—lH <Ed' — B+ <Ep' — F*,

k=1

where we employed the fact that @K+ > F(xK+1) > F*. Consequently, {E||z* — z¥~1||?} has
a finite sum.

We now prove that the claim holds by considering two cases: Case 1, where {2} is
generated by either MM-SAGA or MM-SVRG, and Case 2, where the sequence {z*} is generated
by MM-SARAH.

Case 1. Suppose that {xk} is generated by either MM-SAGA or MM-SVRG. Lemma 4.4 implies
that

417) E H%f(x’@) _ Vf(a:k)H2 <ETF< (ET"“‘ - Erk“) o+ Vr/pE ka'H - ;EkHQ .

By telescoping (4.17), we see that

K _ 9 K 9
S E HVf(:ck) - Vf(xk)H < (EY°—EYEH) /p+ Va/pY E H:c’““ _ ka
k=0 k=0

2

Y

K
(4.18) gvy/pZEHx’““—x’f‘
k=0

where (4.18) is a consequence of T* >0 and T° = 0. The claim now follows from (4.18) and
the fact that {E||z* — 2¥~1||?} has a finite sum.
Case 2. Suppose that {xk } is generated by MM-SARAH. Lemma 4.5 implies that

B[ 95t - Vf(;c’f)H2 <ET 4 VE||* - x’HHQ
(4.19) < (ETk - ET’““) Jp+(V +Vy/p)E ka - xk_1H2.

By telescoping (4.19), we see that

K ~ 2 K 2
S E HVf(xk) - Vf(mk)H < (BEYC —EYSH) /p+ (V+Vr/p) ) E ka - ggk—lH
k=0 k=0

K 2
(4.20) g(V+VT/,o)ZEH$k_xk_1H ’
k=0
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where (4.20) is a consequence of T* >0 and T° = 0. The claim now follows from (4.20) and
the fact that {E[z* — 2¥71||?} has a finite sum.

This concludes the proof of claim (4.15).

By combining (4.15) and part (b), for any sequence x* generated by one of our SVRMM
algorithms,

(4.21) klim %f(xk) — Vf(xk) =0 and klim gkl =0
—00

—00

almost surely. Let {z*} be generated by an SVRMM algorithm which satisfies (4.21). Let z*
be a limit point of {z¥}, that is, there is a subsequence {2*'} of {2*} such that 2% — 2* as
j — +oo. From the update rule of the SVRMM algorithms, it follows that

PR im (et = a) = V() € du(, 2P (o),
which implies that for any = € R?,
(4.22) w(z, zh) > (@bt k) 4 <1/kf+1,m - xkf+1> .
By plugging = = z* into (4.22) and by letting j — 400, we arrive at

(4.23) r(z*) > limsup u(zh 1, k),
Jj—+oo

where we employed the continuity of u(z,y) in y (Assumption 2(b)), the fact that

lim 2%+ = lim 2% =2* and lim /%' = lim —Vf(z®)=-Vf(z*).

J—+oo Jj—+oo Jj—+oo Jj—+oo

Here, limj_ 4o —Vf(z*) = =V f(2*) follows from (4.15) and the continuity of Vf. By
combining (4.23) with the lower semicontinuity of u(z,y) (Assumption 2(a)), we conclude
that

im (@b = r(a).

Consequently, by letting j — +o0o in (4.22), we see that for all z € R,
(4.24) r(z*) <u(z,z*) +(Vf(z"),z —x¥).
On the other hand, since f is L-smooth,
L
(4.25) fla™) < flz) - (Vf(w*),fv—x*H5!\96—96*”2-
By summing up (4.24) and (4.25), we arrive at
* * L * 12 * L *|2
F(z") Sule,a®) + f(2) + S llo —2™|" = F(2) + u(z,2”) = r(z) + S llz — 27|

- L
< F(@) + he,2%) + 5 o = 2|
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*

for some function h which satisfies Assumption 2(c). Consequently, z* is a minimizer of

- L
min F(z) + h(z,z*) + = ||z — z*||2.
rER 2

It follows that

(4.26) 0€ OF (z*) + Vh(-,2*)(z*) = OF (z*),
which concludes part (¢) and completes the proof. |
Remark 4.7 (feasibility of the batchsize b and the stepsize /%) For MM-SAGA, since V =0,
Vy = (2ng2b)L2, and p= %, condition (4.7) is satisfied when
4nL
For MM-SVRG, since V =0, Vy = M, and p= ﬁ, condition (4.7) is satisfied when
dmL

For MM-SARAH, since V = %2, Vy = %, and p= %, condition (4.7) is satisfied when

2M—L>2L,/%.

We now provide iteration complexity in order to obtain an e-stationary point. To this
end, we incorporate the following additional assumption [19, Assumption 3(ii)] regarding the
tangent majorant function u of r.

Assumption 3. There exists a (deterministic) constant L, such that, almost surely, for
any k € N and for any v € du(-,2F)(x**1), there exists ¢ € 9r(xF!) such that ||v — (|| <
Lu”xk+1 _ ka

Remark 4.8. We consider the case where h(z,y) := u(z,y) — r(x) is Ly-smooth in = and
Vh(-,y)(y) =0, as assumed in [31]. We assert that Assumption 3 captures this case. Indeed,
since Ou(-,y)(x) =0r(z) + Vh(-,y)(x), if v € Ou(-,y)(x), then there exists ¢ € Or(x) such that

v =l =IVAC y) (@) | = [VR(,y) (@) = VA, y) ()]l < Lullz = yll.

It follows that the DC surrogates (Example 4.2), where ro is L-smooth, satisfy Assumption 3.
Furthermore, Assumption 3 captures composite surrogates (Example 4.3) with nonsmooth
approximation error functions. We assume further that for any x;, dg;(z;) are bounded sets
with a common constant M, i.e., ||£]| < M for any & € 0g;(z;) and z; € R%. Let v € Qu(-,y)(z).
Then

v=0(g1(v1)1 M (9m(Ym))em), where & € dg;(x;).
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On the other hand, it follows from [48, Corollary 5Q] that
A(nj 0 g;)(wz) =/ (gj(x;))g;(x;).

Consequently, by letting ¢ = (7} (g1(21))&1, - -+, M (G (X)) Em) € Or(x), we arrive at

m
by =l < | D L3lgi(x5) — g5 () P11 < Lo LgM]lz — yll,
j=1

which implies that Assumption 3 is satisfied by letting L, = L, LyM.

Theorem 4.9 (iteration complexity). Let {z*} be a sequence generated by one of the SVRMM
algorithms. Suppose that Assumptions 1, 2, and 3, m > 1 for MM-SVRG and MM-SARAH, and
condition (4.7) are satisfied. Then for any positive natural number K,

K
L& 8(2 — D)L + o+ L)’ + Vi /ol (F(a®) — F*)
4.7 = S Edist? (o,aF ok ) < .
@m g ol (- L)~ 4(V + Vi /p)
Proof. From the update rule of the SVRMM algorithms, it follows that
VR = (2P — 2F) — W (2F) € Ou(-, 2F) (2F ).

Thus, by Assumption 3, there exists (¥*! € 9r(z*+1) such that [|vFT! —CFF|| < L, ||z —2F].
Consequently, by invoking Lemma 2.4(b), it follows that

V(") + FT e V(P 4 or (M) = 0F (aF ).
We see that
dist(0, 0F (1)) < Hv Fla*) + c’““H
= [Vt = ViR + V) - Vi h) - pt =)+ -k

<(L+p+Ly) ‘ajkﬂ - ka v H%f(a;k) - Vf(a:’“)” .

It now follows that
(4.28) Edist? (0,8F(:1:k+1)) <2(L+p+L,)°E kaH - x’“HZ +2E H?f(x’“) - Vf(:c’“)H2 :

On the other hand, if the sequence is generated by either MM-SAGA or MM-SVRG, Lemma 4.4
implies that

(4.29) E H%f(x’f) - Vf(xk)H2 < (Mk - IET’““) /p+Vy/pE ka“ - x’fHQ .

By plugging (4.29) into (4.28) we arrive at

(4.30)
2
Edist? (0,0F (z"1)) < [2(L + s+ Lu)® + 2V /p] B||o*1 — oF||" + 2 (BX* — EY*1) /p.
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Moreover, it follows from (4.13) with n= 2(‘/23*_7‘_/5/[)) that

2
(4.31) E kaH _ ka <kl (E(bk“ — E@M) ,

where k= (2“7%2(;;92?%/”). By combining (4.30) and (4.31), we see that

(4.32)

Consequently, by telescoping (4.32) over k=0,..., K — 1, we obtain

K
> Edist? (0,0F (%)) <257 [(L+ i+ Lu) + Vi /p| (B! ~ESF ) 42 (ET® ~ETF) /p
k=1

(4.33) <2k [(L+M+Lu)2 —i—VT/p} (ED! — F*),

where (4.33) follows from Y° =0, Y% >0, and ®* > F(2*) > F*. We conclude the proof in
the case of MM-SAGA and MM-SVRG by combining (4.33) and the fact that

2u—L V+Vy/p 2 2u—L
(434) (PIZF(.TI)—F ( 4 - 2,[1,—L Hxl—l’OH +WT1
2u—L 2 2u—L
<Py P T P T
SFE+ == e =2+ vy
2u—L
(4.35) §F(w1)—|—Lle—w0H2
(4.36) < F(z9),
where (4.34) follows from (4.14) with k =1 and n = 20/217%’ (4.36) follows from the first
inequality in (4.11) with k=0 and Vf(z°) = Vf(2°), and (4.35) follows by recalling that
! 1 1 & 2 1 L? 2 2
— - \V4 : 1 i v/ ; 0 < = 1.0 < 1.0 )
PV + Vr pV—l—VTbn;H fi@) =IO < 3 et =2l < et =2

In the case where the sequence {2*} is generated by MM-SARAH, Lemma 4.5(b) implies that
(4.37)
~ 2 2
E HVSARAHf(xk) - Vf(a:k)H —EYH < (ET’““ - ET’“”) /p+ Vr/pE kaH - ka .
By plugging (4.37) into (4.28), we see that

(4.38)
2
Edist?(0, 9F (1)) < [2 (L+p+ L)+ 2VT/p} E Hz’fﬂ - azkH 42 (ET’f“ - IET’““) /p.
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By telescoping (4.38) over k=0,..., K — 1, we obtain

iEdistQ (0, 8F(xk)) <2 [(L L)t Vr/p} KzlE ka“ - :c’fH2 +2 (BT —EYA+) /p
k=1 k=0

(4.39) < 2k [(L bt L)+ Vy/p} (Ed! — EXH)

<2571 [(L bt L)+ Vy/p} (E®! — F*),

where we employed the fact that Y! =0, Y% >0, ®* > F(2*) > F*, and (4.31). We conclude
the proof in the case of MM-SARAH by combining (4.39) and the fact that

Lo 2u—L V+W/p 1_ o2, 20—l g
(4.40) ol = F(x )+< 5 Ty >Hx P+ o T
o 2u—L V+WVr/p\ 1 o2
(4.41) — F(z )+< 5 T >Hx 2
< P+ 2 ot =2
(4.42) < F(a%),

where (4.40) follows from (4.14) with k=1 and n = 2(‘,2_‘1';7%, (4.41) holds due to Y1 =0,

and (4.42) follows from the first inequality in (4.11) with k=0 and Vf(z°) = Vf(z°). [ ]
The following corollary follows directly from Theorem 4.9.

Corollary 4.10. Let {z*} be a sequence generated by one of the SVRMM algorithms. Suppose
that Assumptions 1, 2, and 3, m > 1 for MM-SVRG and MM-SARAH, and condition (4.7) are
satisfied. If % is chosen uniformly from {x',2?%,... 2%}, then

8(2p — L)[(L + p+ Lu)* + Vx /p](F(2°) — F¥)
K[(2pn—L)> = 4(V + Vx/p)]

Edist® (0,0F (2)) < = 0(1/K).

In other words, the number of iterations K needed to obtain an e-stationary point & of F,

~ : ; _ 8Q2u—L)[(L+p+Ly)*+Vx /p|(F(2°)—F*) _ 2
in expectation, is at most K = (=D =1V VA )2 =0(1/€).

The SVRMM algorithms incorporate three parameters: u, the batchsize b, and m. Setting
p = L yields a larger stepsize % when compared to other stochastic gradient methods such
as DCA-SAGA and DCA-SVRG [28], with a stepsize of %, ProxSVRG [21], with a stepsize of
i, and ProxSVRG+ [30], with a stepsize of &. After fixing u, we select the batchsize that
satisfies condition (4.7). The following corollary summarizes choices of the batchsize b and
the associated complexity of each algorithm in terms of the number of individual stochastic

gradient valuations V f;. Its proof is available in supplementary material section SM3.

Corollary 4.11.

a) In the case of MM=SAGA, we set = L and b= [25/3n2/3] and recall that V =0, Vy =
1

(2n;2b)L2, and p = % (see (4.4) and (4.6)). Consequently, to obtain an e-stationary
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point in expectation, the number of individual stochastic gradient evaluations V f; does
not exceed

- 16L[(2+ Ly/L)% +1/8)(F(2°) — F*)

Kb
€2

(25/3712/31 — O(n2/3/62).
In other words, the complexity is O(n?/3/e?).

(b) In the case of MM-SVRG, we set u = L, b = |n*?] and m = % and recall that

V=0Vy= M, and p= 5= (see (4.4) and (4.6)). Consequently, to obtain an e-
stationary point in expectation, the number of individual stochastic gradient evaluations
V fi, in expectation, does not exceed

(GRS )<16“(2““/”2“/81(17@”)—F*>

2/3 _ 2/3 7.2
1= — )20+ —n > (10n%/3 +8) = O(n?/3/€?).

m

In other words, the complexity is O(n?/3/e?).
(¢) In the case of MM-SARAH, we set = L, b= |n/?| and m = g, and recall that V =
2
%,VT = (m;nlb)L ,and p = L (see (4.5) and (4.6)). Consequently, to obtain an e-
stationary point in expectation, the number of individual stochastic gradient evaluations

V fi, in expectation, does not exceed

K1) n) < PSSR+ L/ LY VS =17 g2 oir2e2),

m €2

In other words, the complexity is O(n'/?/?).

Remark 4.12.

(a) Our results coincide with the best-known complexity bounds to obtain an e-stationary
point in expectation for ProxSAGA [21], ProxSVRG [21, 30|, SPIDER [15], SpiderBoost
[51], and ProxSARAH [41] methods in the particular case where r = 0 [15, 51] or the
case where r is convex [21, 30, 41].

(b) To guarantee convergence, we need to choose the parameters i, b, m to satisfy condition
(4.7). Instead of fixing p = L, we may first fix a batchsize b, then choose a compatible
parameter p to comply with condition (4.7). In particular, we may pick a batchsize
be {1,2,...,n — 1} and any m > 1, then set u = (4nL/b%? + L)/2 for MM-SAGA,
p=(4mL/b"/? 4 L)/2 for MM-SVRG, and = (2m"/2L/bY/2+ L)/2+ 1075 for MM-SARAH.

5. Numerical experiments. We now examine the applicability and efficiency of our SVRMM
algorithms. To this end, we consider the following three problems: sparse binary classifica-
tion with nonconvex loss and regularizer, sparse multiclass logistic regression with nonconvex
regularizer, and feedforward neural network training.

We compare six algorithms:

e MM-SAGA with p = L and b= [2%/3n?/3];

o MM-SVRG with p=L, b= [n?/3] and m = YWt
MM-SARAH with p=L, b= |n!/?| and m = ¢;
SDCA [27] with = 1.1L and b= |n/10], which performed well in [27];

S
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e DCA-SAGA [28] with p=2L and b= [2/nv/n + 1];
e DCA-SVRG [28] with = 2L, b= |n*?], and the inner loop length M = {4\/‘??1 .

In our experiments, we run each algorithm 20 epochs repeated 20 times, where each epoch
consists of n gradient evaluations. We are interested in the relative loss residuals %,
where F* is the minimum loss values generated by all algorithms, and in classification accuracy
on testing sets.

All tests are performed using Python on a Linux server with the following configura-
tion: Intel Xeon Gold 5220R CPU 2.20 GHz of 64 GB RAM. The code is available at

https://github.com/nhatpd /SVRMM.

5.1. Sparse binary classification with nonconvex loss and regularizer. Let {(a;,b;):i=
1,...,n} be a training set with observation vectors a; € R? and labels b; € {—1,1}. We consider
the sparse binary classification with nonconvex loss function and nonconvex regularizer:

(5.1) min{F(w):iZE(a?w,bi)—i—r(w)},
=1

weR4
where £ is a nonconvex loss function and r is a regularization term. We revisit a nonconvex

loss function from [53], ¢(s,t) = (1 — mﬂ, and the exponential regularization from [7],
r(w)= Zle no g(w;), where n and g are the functions
(5.2) n(t) = M1 - exp(—at)) and  g(w) = uw],
where \ and o are nonnegative tuning parameters. The hessian matrix of £(al -, ;) is evaluated
as follows:

_ dexp(2bal w) — 2exp(bial w) 1

V2(aTw,b;) = 1 a;a; .
(exp(2bjal w) +1)

We thus have
‘4exp(2biaiTw) - 2exp(bia;fpw)’
(exp(2bjal w) + 1)4

39 + 55v/33
2304

IV20(ai w, bi)|| = lasaq || < [

Therefore, E(a;fr-, b;) is L-smooth with L = % max;—1,.n lla;||? and, in this case, problem
(5.1) is within the scope of problem (1.1) when we let f;(w) = £(alw,b;). Moreover, since n
is concave and Aa?-smooth on R, and since g is convex and 1-Lipschitz continuous, we set a

composite surrogate function u for r as follows:

d
u(w, w*) =r(w®) + ) Aaexp(—alwf|)(jwil - |wf]).
i=1

Assumptions 2 and 3 are then satisfied; see Example 4.3 and Remark 4.8. The SVRMM algo-
rithms update w**! to be the solution of the nonsmooth convex subproblem:

d
min & w — ! + (VIwk),w) +;Aaexp<—arwﬂ>rwir,
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for which a closed-form solution was provided in [39, section 6.5.2] by
bt = mae{ o]~ (a0 psigaol).

where v% = wk — V f(z%)/p.

5.2. Sparse multiclass logistic regression with nonconvex regularizer. We revisit the
multiclass logistic regression with a nonconvex regularizer:

: 1 ¢
(5.3) Wrélﬂglxq{F(W) == ;e(bi,ai, W)+ r(w)},
where ¢ is the number of classes, {(a;,b;) : i = 1,2,...,¢q} is a training set with the feature
vectors a; € R? and the labels b; € {1,2,...,q}, r is a regularizer, and #(b;,a;,-) is a loss

function defined by

q
0(bj,a;, W) =log (Z exp(a?w@) —alwy,,

k=1
where wy, is the kth column of W. We employ an exponential ¢ regularizer, defined by
r(W) = )\Zle n([|W;|l), where n is defined as in (5.2), and W; is the ith row of W. The
gradient of £(b;,a;,-) is evaluated as follows:

Vi(bi,a;, W) = a;o(a;, W) — a;d;,

where the softmax function o(a;,-) is defined by
B 1

>ty exp(a wy)
and the indicator row-vector ¢; is defined by d;; =1 if b; = k and 0 otherwise. Since o(a;,-) is
L-Lipschitz with L = ||a;|| due to [16, Proposition 4], it follows that ¢(b;, a;,-) is L-smooth with
L = max;—1,_p |la;||*>. This implies that problem (5.3) is within the scope of problem (1.1)
when we set f;(W) = £(b;,a;, W). The SVRMM algorithms applied to (5.3) iteratively determine
a composite surrogate function of r(W) at W* by

[exp(a;fpwl), . ,exp(a%pwq)] ,

J(ai,W)

d
w(W,WH) =r(WF) + 3 Aaexp(—a|[WF ) (W] — W)

i=1

and then update Wt by
d
k41 _ . k2 < k _ k .
WA —arg min W — W2+ (VW >,W>+;Aaexp< ol W) Wi

for which a closed-form solution was provided in [39, section 6.5.1] by

(1 _ Aaexp(—al|[W)/p
Wit = N
0 otherwise,

>vf i [[VE] 2 Aaexp(—al WE])/4,

where VF =Wk — VFWR)/ .
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5.3. Feedforward neural network training problem with nonconvex regularizer. We con-
sider the nonconvex optimization model arising in a feedforward neural network configuration

(5.4) min {F(w) _ %Zﬁ(h(w,ai), b) + r(w)},

€RP
v i=1

where all of the weight matrices and bias vectors of the neural network are concatenated in
one vector of variables w, (a;,b;)!"_; is a training data set with the feature vectors a; € R? and
the labels b; € {1,2,...,q}, h is a composition of linear transforms and activation functions
of the form h(w,a) = o;(Wio1_1(Wi_101_o(---co(Woa + co) -+ ) + ¢i—1) + ¢;), where W; is a
weight matrix, ¢; is a bias vector, o; is an activation function, ! is the number of layers,
¢ is the soft-max cross-entropy loss, and r is a regularizer. By considering the exponential
regularization r(w) = Z?Zl no g(w;), where n and g are set in (5.2), problem (5.4) is within
the scope of problem (1.1) when we let f;(w)=¢(h(w,a;),b;). The SVRMM algorithms applied
to (5.4) are different from the SVRMM algorithms for problem (5.1) only in computation of
stochastic gradient estimates Vf. In our experiment, we employ a one-hidden-layer fully
connected neural network, 784 x 100 x 10, as studied in [41]. The activation function o; of the
hidden layer is ReLU.

5.4. Experiment setups and data sets. In our experiments, for the first two problems
(5.1) and (5.3), all of the algorithms under study start at the zero point, while for the last
problem (5.4), we use the global variables_initializer function from Tensorflow. We set the
regularization parameters a =5 for the first two problems and a = 0.05 for the latter, and we
fix A=1/n. These regularization parameters are standard in the literature, e.g., [7, 41]. It is
important to mention that in all of the experiments, we use the same problem settings for all
of the algorithms.

We conducted experiments on five well-known data sets for sparse binary classification,
including w8a, rcvl, real-sim, epsilon, and url. For sparse multiclass logistic regression, we
tested all of the algorithms on four data sets: dna, shuttle, Sensorless, and connect-4. Finally,
for the feedforward neural network training, we used two data sets, minist and fashion _mnist,
to compare MM-SVRG and MM-SARAH with DCA-SVRG. It is worth noting that the last evaluation
only considered the three algorithms that do not require storing the gradient of each compo-
nent function f;. For all experiments, we randomly pick 90% of the data for training and the
rest for testing. The characteristics of the data sets are provided in supplementary material
section SM4. The first nine data sets are obtained from the LIBSVM Data website' while the
data sets minist and fashion_mnist are obtained from the library tensorflow.keras.datasets.

5.5. Results. We plotted the curves of the average value of relative loss residuals versus
epochs in Figures 1 and 2. We also reported the average and the standard deviation of the
relative loss residuals and the testing accuracy in supplementary material section SM5. We
observe from Figures 1 and 2 that MM-SARAH has the fastest convergence on all of the data
sets. This illustrates the theoretical results (see Corollary 4.11) where MM-SARAH has the best
complexity among these algorithms. In addition, MM-SAGA performs better than DCA-SAGA,
which is not stable on the first nine data sets. This illustrates the benefit of the proximal

Thttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools /datasets/.
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Figure 1. Evolution of the average value of the relative loss residuals with respect to the epoch on w8a, rcvl,
real-sim, epsilon_normalized, url_combined, dna, shuttle, Sensorless, and connect-4.
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Figure 2. Evolution of the average value of the relative loss residuals with respect to the epoch on mnist
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term in the iterate of MM-SAGA. Moreover, MM-SVRG performs better than DCA-SVRG on all of
the data sets, which illustrates the benefit of the loopless variant of SVRG in MM-SVRG.

6. Conclusion. We introduced three stochastic variance-reduced MM algorithms, MM-SAGA,
MM-SVRG, and MM-SARAH, combining the MM principle and the variance reduction techniques
from SAGA, SVRG, and SARAH for solving a class of nonconvex nonsmooth optimization problems
with the large-sum structure. The complex objective function is approximated by compatible
surrogate functions, providing closed-form solutions in the updates of our algorithms. At the
same time, we employ the benefits of the stochastic gradient estimators (SAGA, loopless SVRG,
and loopless SARAH) to overcome the challenge of the large-sum structure. We provided almost
surely subsequential convergence of MM-SAGA, MM-SVRG, and MM-SARAH to a stationary point
under mild assumptions. In addition, we proved that our algorithms possess the state-of-the-
art complexity bounds in terms of the number of gradient evaluations without assuming that
the approximation errors of the regularizer r are L-smooth. We applied our new algorithms
to three important problems in machine learning in order to demonstrate the advantages of
combining the MM principle with SAGA, SVRG, and SARAH. Overall, MM-SARAH outperforms other
stochastic algorithms under consideration. This is not surprising since the methods based
on SAGA and SVRG have unvoidable limitations. In particular, SAGA requires storing the most
recent gradient of each component function f; while SVRG employs a pivot iterate Z* that may
be unchanged during many iterations and, thus, may no longer be highly correlated with the
current iterate z¥.

Finally, nonconvexity and nonsmoothness are inherent in many problems in data science.
The impact of our work stems from new accessible algorithms for such problems. Furthermore,
we provided rigorous convergence guarantees and complexity analysis, which are important
for data science practitioners who need reliable and efficient methods for solving complex
optimization problems.

We employed the large-sum structure of the objective function, which is typical in reg-
ularized empirical risk minimization problems. By leveraging variance reduction techniques,
we improved the convergence rate and reduced the computational cost. This is relevant for
those who work with large-scale data sets and need scalable and fast algorithms.

We also employed surrogate functions to approximate the nonsmooth part of the objective
function, prompting the application of the majorization-minimization principle. We provided
general conditions on the surrogate functions and demonstrated how to verify them for various
nonsmooth regularizers. This is useful for incorporating different types of regularization, such
as sparsity, robustness, or low-rank matrices in various data science problems.

We demonstrated the effectiveness of the proposed algorithms on several real-world prob-
lems, such as sparse binary classification, sparse multiclass logistic regressions, and neural
network training. This shows the practical applicability and potential impact of these algo-
rithms in data science.
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