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Abstract: The specificity and potency of venom components give them a unique advantage in
developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are
the synergy and association between various venom components studied. Understanding the
relationship between various components of venom is critical in medical research. Using meta-
analysis, we observed underlying patterns and associations in the appearance of the toxin families.
For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO;
SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most
associations. These associations can predict the presence of proteins in novel venom and understand
synergies between venom components for enhanced bioactivity. Using this approach, the need
to revisit the classification of proteins as major components or minor components is highlighted.
The revised classification of venom components is based on ubiquity, bioactivity, the number of
associations, and synergies. The revised classification can be expected to trigger increased research
on venom components, such as NGF, which have high biomedical significance. Using hierarchical
clustering, we observed that the genera’s venom compositions were similar, based on functional
characteristics rather than phylogenetic relationships.

Keywords: rattlesnake; Crotalus; Sistrurus; venom; toxin; association

Key Contribution: Crotalus and Sistrurus, to determine the associations between toxin families.
These results are expected to lead to a better understanding of the synergistic activities between these
components. A synergistic relationship between toxins can be potentially exploited in the design and
development of new pharmaceutical drugs.

1. Introduction

Venom study has become an integral part of the biomedical research [1] as various
venom components have been critical in the development of new pharmaceutical drugs [2]
that are potentially useful for the treatment of diabetes, strokes, heart attacks [3,4], and can-
cer [5–12]. For most extant research, venom is sourced from various venomous organisms,
such as snakes, scorpions, spiders, etc. Among snakes, venomous snakes are distributed
mainly in three families: Atractaspidae, Elapidae, Viperidae [13]. Venom from these snake
families is highly complex and variable in composition [14–16]. The variation in biochemi-
cal composition of snake venom can occur between closely related species and within a
single species itself [1,17–22]. For example, intragenus or intraspecific variation in venom
in pit vipers and adders [17,23] has been correlated to diet [17,18,24,25] or topographical
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features [26,27]. One of the primary reasons for high diversity and plasticity in snake
venom is frequent duplication of toxin-encoding genes and recruitment strategies [28–32]
followed by functional and structural diversification [1,33–37].

Within the North and South American continent, it is suggested that the venom
of Crotalidae has the highest variation in toxicity is associated with high proteolytic
activity [38]. Rattlesnakes are a part of the Crotalinae subfamily and consist of two genera
Crotalus and Sistrurus. They are native to the Americas ranging from southern Alberta,
Saskatchewan, and southern British Columbia in Canada to central Argentina. There are
approximately 32 species of rattlesnakes within the Crotalus and Sistrurus genus [39]. These
snakes are found in many habitat types ranging from the Sonoran Desert of northwestern
Mexico to alpine and cloud forest in central and southern Mexico [39]. They occur from
below sea level in desert basins in California to about 4500 m in the Transverse Volcanic
Cordillera of central Mexico [39]. Mexican Plateau and its fringing mountains have the
highest diversity of rattlesnakes [39]. This high variability in the habitat type, altitude, and
associated diet types, along with a large geographical range, allows the rattlesnakes to
have high variability in their venom composition.

Rattlesnakes possess various different toxins from 10–20 protein families [7,30,40–42].
These families possess several enzymes, such as: L-amino acid oxidases (LAAO) [30,43–46],
phosphodiesterase (PDE) [47–49], snake venom metalloproteases (SVMP) [50–52], serine pro-
teases (SVSP) [44,53–55], phospholipases (PLA2) [56–59].Additionally, rattlesnake venoms
also contain nonenzymatic proteins like myotoxin a and its homologs [60–63], bradykinin-
potentiating peptides and bradykinin-inhibitory peptide (BPPs and BIPs) [30,44,64,65], dis-
integrins (Dis) [3,44,45,55,66–68], cysteine-rich secretory proteins (CRiSPs) [2,45,55,62], and
C-type lectins (CTL) [30,41,48,69]. It is not uncommon to have variation in venom composition
within species [17,23]. This plasticity and variability of venom gives it a unique advantage in
biomedical research.

Even though venom enjoys a unique advantage in biomedical research, it is plagued
by three main issues: (i) absence of data on venom composition of several species within
Crotalus genus (rare and/or topographically inaccessible species); (ii) high-cost associated
with venom-based studies; (iii) high variability in venom composition rendering venom
composition studies for all age classes in all populations of rattlesnakes impractical; and
(iv) sparse data on the relationship between various venom components. These factors
manifesting together often make it difficult to predict the venom components in any
species. A natural solution to this issue is quantifying the relationship between venom
components rather than individual units. For example, within Crotalus polystictus, the
type and potency of proteins expressed vary with age and sex [48,69–71]. Many venom
components discovered, such as LAAO and PDE, have not been explored for their potential
biomedical applications [32,72]. However, based on the associations and ubiquity alone, it
is evident that they do play a role during envenomation.

These new-found relationships between various protein components in snake venom
may play key roles in developing suitable treatments for prevalent diseases. Such relation-
ships between toxins, often termed synergisms, are joint effects of multiple toxins, which
assert greater effects than the sum of individual potencies, thus allowing the individual
components to be highly effective with only trace amounts [73,74]. In the current study, we
conduct a meta-analysis to understand the relationship between various protein compo-
nents in Crotalus and Sistrurus’ venoms. We also report the frequency with which various
proteins occur in Crotalus and Sistrurus’ venoms. Here we re-classify venom components
as major or minor based on their medical relevance, synergies with other toxins, frequency
of occurrences.

2. Result

Our search consisting of six keywords and 14 databases produced 192 studies on
Crotalus and Sistrurus venom. Out of these 192 studies, 77 studies are not included in the
current meta-analysis; 36 out of 77 studies did not meet inclusion criteria, and 41 studies
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met the exclusion criteria. The remaining 115 full-text articles are included in the analysis.
From these 115 articles, only 47 reported a relative abundance of venom components for
Crotalus and Sistrurus species.

2.1. Venom Constituents in Crotalus Venom

We identified compositional venom studies, through both transcriptomic and pro-
teomic technologies, for 30 entries, including species and subspecies, within the genus
Crotalus. 46 protein families are present in Crotalus (Table 1). These protein families could be
classified based on ubiquity or relationship with other proteins. There is little information
regarding the venom composition of nine Crotalus species and subspecies (Table 1). 41
studies reported the relative abundance of protein constituents.

Table 1. Venom components within the Crotalus genus.

Species Venom Components Reference

C. adamanteus
5′NT, BPP, carboxypeptidase (E-Like), CNP, CRiSP, CTL, dipeptidase, Dis, EF-hand
protein, EGF, GC, Hya, Kun, LAAO, MYO, NGF, PDE, PLA2, PLB, SVMP-P I/II/III,

SVSP, VEGF, vespryn
[75–87]

C. aquilus Hya, PLA2, SVMP P-III, SVSP (TLE) [59,69]

C. atrox BIPs, BPPs, CNP, CRiSP, Dis, Hya, LAAO, CTL, PLA2, SVMP P-I/III, SVSP, VEGF [6,44,80,88–95]

C. basiliscus BPP, CRISP, CTL, Dis, LAAO, PLA2 (CRTX, non-CRTX), SVMP P-I/II/III, SVMP
inhibitor, SVSP [96–99]

C. catalinesis SVSP, SVMP P-III, PLA2 [40]

C. cerastes 3FTx, 5′NT, BPP, CRiSP, CTL, Dis, ficolin, Hya, Kun, LAAO, MYO, NGF, PDE, PLA2,
SVMP P-II/III, SVSP, VEGF, vespryn, WAP [98,100–102]

C. durissus

3FTx, achase, aminopeptidase, angiogenin, BPP, carboxypeptidase, CNP, CRiSP,
CTL, CysProt inhibitor, CysProt, dipeptidyl peptidase, Dis, FGF, fraction 5, Hya,

Kazal, Kun, LAAO, lipase, MYO, NGF, PDGF, PLA2 (non-CRTX, CRTX), PLB, PLD,
Serpin-like, SVMP inhibitor, SVMP P-III, SVSP, VEGF, vespryn, WAP

[45,64,103–118]

C. enyo SVSP, SVMP P-I/III, PLA2 [40]

C. horridus 5′-NT, BPP, CNP, CRiSP, Dis, EGF-like, GC, Hya, Kun, LAAO, MYO, neurotrophic
factor, NGF, PDE, PLA2, SVMP P-I/III, SVSP, VEGF, vespryn [29,119,120]

C. lepidus 5′NT, CRiSP, CTL, Dis, LAAO, PDE, PLA2, SVMP-P-I/III, SVSP (TLE, kallikrein) [49,121–123]

C. mitchelli LAAO, SVSP, PLA2 (CRTX/MTX) [40,124,125]

C. molossus Dis, LAAO, MYO, PLA2, SVMP P-I/III, SVSP (TLE) [58,98,126–130]

C. oreganus ANP/BNP, BPP, CNP, CRiSP, CTL, Dis, Hya, Kun, LAAO, MYO, NGF, PLA2 (D49),
PLA2, SVMP P-II/III, SVSP, VEGF, vespryn [51,56,57,131–137]

C. polystictus BIPs, CRiSPs, CTL, Dis, GC, Hya, LAAO, NGF, PDE, PLA2, PLB, SVMP P-I/II/III,
SVSP (kallikrein, TLE), vespryn [48,69]

C. ruber CTL, Dis, LAAO, PDE, PLA2, SVMP P-I/III, SVSP (kallikrein) [40,47,138–143]

C. scutulatus 5′-NT, APase, BPPs, CRiSP, CTL, Dis, Hya, Kun, LAAO, MYO, NGF, PDE, PLA2
(MTX, non-CRTX), SVMP P-I/II/III, SVSP, VEGF, vespryn [41,52,63,144–148]

C. simus 3FTX, 5′-NT, BIPs, BPPs, CRiSP, CTL, Dis, GC, Hya, Kaz, Kun, LAAO, MYO, NGF,
OHA, PDE, PLA2 (CRTX, non-CRTX), PLB, SVMP P-I/III, SVSP, VEGF, WAP [7,54,68,149–151]

C. tigris CRiSP, Dis, PLA2 (MTX), SVMP P-III, SVSP, VEGF [55,152–154]

C. vegrandis
5′-NT, ATPase, BIP, BPP, carboxypeptidase, CNP, CRiSP, CTL, Dis, endonuclease

(DNAse, RNAse), exendin4-like protein, glutathione peroxidase, Hya, LAAO, MYO,
NGF, PDE, PLA2 (CRTX), PLB, SVMP P-II/III, SVSP

[77,155–159]

C. viridis 5′-NT, APase, BPP, CRiSP, CTL, Dis, GC, LAAO, MYO, OHA, PDE, PLA2 (CRTX,
non-CRTX), PLB, SVMP inhibitor, SVMP P-I/II/III, SVSP (TLE, kallikrein) [42,60–62,160–163]
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Table 1. Cont.

Species Venom Components Reference

C. willardi CRiSP, CTL, Dis, LAAO, PDE, PLA2, SVMP P-I/III, SVSP (TLE, kallikrein) [49,153]

C. tortugenesis N/A

C. stejnegeri N/A

C. tancitarensis N/A

C. lannomi N/A

C. pusillus N/A

C. transversus N/A

C. triseriatus N/A

C. unicolor N/A

C. intermedius N/A

Note: three-finger toxin (3FTx), 5′-nucleotidase (5′-NT), acetylcholinesterase (achase), natriuretic peptide type A (ANP), adenosine
triphosphatase (ATPase), bradykinin inhibitory peptide (BIP), natriuretic peptide type B (BNP), bradykinin potentiate peptide (BPP), C-type
lectins (CTL), natriuretic peptide type C (CNP), cysteine protease (CysProt), cysteine-rich secretory protein (CRiSP), crotoxin (CRTX),
disintegrin (Dis), epidermal growth factor (EGF), fibroblast growth factor (FGF), guanylyl cyclase (GC), hyaluronidase (Hya), kazal-type
inhibitor (Kazal), Kunitz-type inhibitor (Kun), L-amino acid oxidase (LAAO), Mojave toxin (MTX), myotoxin (MYO), nerve growth factor
(NGF), ohanin (OHA), phosphodiesterase (PDE), platelet-derived growth factor (PDGF), phospholipase A2 (PLA2), phospholipase B (PLB),
phospholipase D (PLD), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), thrombin-like enzyme (TLE), vascular
endothelial growth factor (VEGF), waparin (WAP).

2.1.1. Frequency of Protein Components in Crotalus Venom

The ubiquitous protein families in Crotalus venom are PLA2, SVMP P-III, SVSP, Dis,
LAAO, CRiSP, CTL, SVMP P-I, BPP, Hya, and PDE (Figure 1).

Toxins 2021, 13, x FOR PEER REVIEW 4 of 30 
 

 

C. tigris CRiSP, Dis, PLA2 (MTX), SVMP P-III, SVSP, VEGF [55,152–154] 

C. vegrandis 
5′-NT, ATPase, BIP, BPP, carboxypeptidase, CNP, CRiSP, CTL, Dis, endonuclease 

(DNAse, RNAse), exendin4-like protein, glutathione peroxidase, Hya, LAAO, MYO, 
NGF, PDE, PLA2 (CRTX), PLB, SVMP P-II/III, SVSP 

[77,155–159] 

C. viridis 
5′-NT, APase, BPP, CRiSP, CTL, Dis, GC, LAAO, MYO, OHA, PDE, PLA2 (CRTX, non-

CRTX), PLB, SVMP inhibitor, SVMP P-I/II/III, SVSP (TLE, kallikrein) 
[42,60–62,160–

163] 
C. willardi CRiSP, CTL, Dis, LAAO, PDE, PLA2, SVMP P-I/III, SVSP (TLE, kallikrein) [49,153] 

C. tortugenesis N/A  
C. stejnegeri N/A  

C. tancitarensis N/A  
C. lannomi N/A  
C. pusillus N/A  

C. transversus N/A  
C. triseriatus N/A  
C. unicolor N/A  

C. intermedius N/A  
Note: three-finger toxin (3FTx), 5′-nucleotidase (5′-NT), acetylcholinesterase (achase), natriuretic peptide type A (ANP), 
adenosine triphosphatase (ATPase), bradykinin inhibitory peptide (BIP), natriuretic peptide type B (BNP), bradykinin 
potentiate peptide (BPP), C-type lectins (CTL), natriuretic peptide type C (CNP), cysteine protease (CysProt), cysteine-rich 
secretory protein (CRiSP), crotoxin (CRTX), disintegrin (Dis), epidermal growth factor (EGF), fibroblast growth factor 
(FGF), guanylyl cyclase (GC), hyaluronidase (Hya), kazal-type inhibitor (Kazal), Kunitz-type inhibitor (Kun), L-amino 
acid oxidase (LAAO), Mojave toxin (MTX), myotoxin (MYO), nerve growth factor (NGF), ohanin (OHA), phosphodiester-
ase (PDE), platelet-derived growth factor (PDGF), phospholipase A2 (PLA2), phospholipase B (PLB), phospholipase D 
(PLD), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), thrombin-like enzyme (TLE), vascular 
endothelial growth factor (VEGF), waparin (WAP). 

2.1.1. Frequency of Protein Components in Crotalus Venom 
The ubiquitous protein families in Crotalus venom are PLA2, SVMP P-III, SVSP, Dis, 

LAAO, CRiSP, CTL, SVMP P-I, BPP, Hya, and PDE (Figure 1). 

 

Ite
m

 fr
eq

ue
nc

y (
re

la
tiv

e)

Crotalus Venom Components Frequency

Figure 1. Twenty most common venom components in venom expressed by genus: Crotalus. PLA2 and SVSP are identified
as the most common among Crotalus species (relative frequency is 1). Note: 5′-nucleotidase (5′-NT), bradykinin inhibitory
peptide (BIP), bradykinin potentiate peptide (BPP), C-type lectins (CTL), natriuretic peptide type C (CNP), crotoxin (CRTX),
disintegrin (Dis), guanylyl cyclase (GC), hyaluronidase (Hya), Kunitz-type inhibitor (Kun), L-amino acid oxidase (LAAO),
myotoxin (MYO), nerve growth factor (NGF), phosphodiesterase (PDE), phospholipase a2 (PLA2), phospholipase b (PLB),
snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), vascular endothelial growth factor (VEGF).
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2.1.2. Association between Various Venom Components in Crotalus Venom Using
Presence/Absence Data

Using the frequent item-set approach from data-mining literature [164], we identify a
total of 559 relationships between different venom components for Crotalus (Table S1) (first
three rules did not identify the predictor protein(s) and hence are discarded). See Box 1 for
further discussion of terms associated with frequent item-set data-mining.

Box 1. Frequent item-set data-mining.

First introduced in 1993 [165], association rule mining has emerged as a popular technique in detecting and extracting key
structural information from large-scale transaction data that is often generated in organizations, such as Krogers, Walmart, etc. [166].
These rules help the organizations understand the co-occurrence patterns and frequencies of various transactions, thus helping them
become more efficient and profitable. By leveraging the similarity between the co-occurrence of protein components in venom, and
transactions done by various shoppers in these supermarkets, we can use the powerful data-mining tools for discovering patterns in
venom composition to boost the efficiency of biomedical research.

Let I = { i1, i2, i3, . . . , in) be a set of n protein components (referred to as “items” in data-mining literature) and D = {t1, t2, t3,
. . . , tn} be the set of venom samples. An association rule is defined as an implication of the form X => Y where X, Y ⊆ I and X ∩ Y
= ∅. The set of protein components (referred to as item sets) X and Y are called antecedent (left–hand side LHS or predictor) and
consequent (right-hand side RHS or predicted) of the rule [167].

The support (supp) (X) of itemset X is defined as the proportion of venom samples in the data set which contain the itemset.
Confidence of a rule is defined as conf (X => Y) = supp (X ∪ Y)/supp (X) [167]. Confidence can be interpreted as an estimate

of the probability P (Y|X), the probability of finding RHS of the rule in the venom sample under the condition that these venom
samples also contain LHS [167].

Lift of a rule is defined as (X => Y) = supp (X ∪ Y)/(supp(X)supp(Y)). It can be interpreted as the deviation of the support of the
whole rule from the support expected under independence given the supports of the LHS and RHS [167]. Greater lift values indicate
stronger associations [167].

In this study, we highlight the top 20 associations (Figure 2), e.g., Dis is associated
with CTL with a confidence of 1 and support of 0.667 (Table 2), implying that Dis and
CTL are expressed together 66.7% times in venom of all species of Crotalus, and if CTL is
expressed in venom, then Dis is expressed 100% times.

Crotalus’ venom components are well studied to generate more than 500 associations,
but only the top twenty relevant rules with at least 1 minor component are depicted in
Table 2. If protein (predictor) is present in venom, then chances of the protein (predicted)
to be expressed in the venom are given by combining “confidence” and “lift”. Dis has
the highest number of associations as a predicted component, which is 7: PDE, BPP, CRL,
CRiSP, LAAO, SVMP P-I and LAAO, SVMP P-III and LAAO. Followed by LAAO with six
associations: PDE, BPP, CTL, Dis and SVMP P-I, Dis, and CRiSP. On the other hand, CTL
is associated with five groups, and CRiSP is represented by two associations. However,
5 associations of CTL have higher lift and confidence than LAAO’s and Dis’, indicating
better associations.

2.1.3. Association between Various Venom Components in Crotalus Venom Using the
Relative Abundance of Protein Components

A key challenge in inferring association between different species is the lack of data on
relative abundance for venom components, e.g., for the Crotalus species, relative abundance
is reported only for 14 out of the 30 species. Within these 14 species, relative abundance
is reported for only 56.7% of the venom components. Using the limited data on relative
abundances, we can identify a total of 47 association rules, also referred to as relationships
between different venom components for Crotalus (Table S2). Herein we report only the
top twenty relevant rules (Table 3, Figure 3).

Despite limited data, many relationships reported through presence/absence data are
also reported through relative abundance data, such as CTL and LAAO, CTL and SVMP-
PIII, CTL and SVSP, BPP and LAAO, and CRiSP and LAAO. Through relative abundance
data, we identified several new relationships, such as PLA2 and SVMP_PIII, SVMP_PII
and CTL, etc. (Figure 3).
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2.1.4. Hierarchical Clustering of Venom Components to Identify any Similarity or
Dissimilarity with Phylogenetic Relationships

We used hierarchical clustering analysis of venom components with known relative
abundances to cluster different Crotalus species according to the similarity in venom
components (Figure 4). We found the clustering similar when we used maximum reported
values of relative abundances for each venom component within a species to the average
relative abundances of venom components within a species. One would expect similar
venom composition in closely related species due to recent common ancestor, but such
similarity was not observed. We conjecture that the reason different species have similar
compositions is due to functional similarities. The venom composition of Crotalus durissus is
different from the rest of the 14 species. Crotalus polystictus and Crotalus simus have similar
venom composition, while Crotalus atrox, Crotalus bassilliscus, Crotalus tzabcan, Crotalus
cerastes, Crotalus scutulatus, Crotalus viridis, Crotalus molossus, Crotalus vergandis, Crotalus
tigris, Crotalus ruber, Crotalus horridus have similar venom composition (Figure 4).
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Table 2. Depictions of association rules between proteins expressed in Crotalus venom. Lift signifies the correlation between
different venom components. Confidence shows the percentage in which the predicted venom component occurs with the
predictor venom component. Support is the number of transactions in which the desired venom component occurs.

Rule No. Protein (Predictor) Protein (Predicted) Support Confidence Lift

1 CRiSP, LAAO, SVSP CTL 0.61 1 1.5
2 Dis, LAAO, SVSP CTL 0.67 0.93 1.4
3 LAAO, SVMP P-III, SVSP CTL 0.67 0.93 1.4
4 BPP CRiSP 0.52 1 1.4
5 CRiSP, LAAO CTL 0.61 0.92 1.39
6 CRiSP, SVSP CTL 0.61 0.92 1.39
7 CTL CRiSP 0.61 0.92 1.3
8 PDE LAAO 0.52 1 1.23
9 PDE Dis 0.52 1 1.23

10 BPP LAAO 0.52 1 1.23
11 BPP Dis 0.52 1 1.23
12 CTL LAAO 0.67 1 1.23
13 CTL Dis 0.66 1 1.23
14 CRiSP Dis 0.71 1 1.23
15 LAAO, SVMP P-I Dis 0.57 1 1.23
16 Dis, SVMP P-I LAAO 0.57 1 1.23
17 LAAO, SVMP P-III Dis 0.76 1 1.23
18 LAAO Dis 0.76 0.94 1.16
19 Dis LAAO 0.76 0.94 1.16
20 CRiSP LAAO 0.67 0.93 1.15

Note: 5′-nucleotidase (5′-NT), bradykinin potentiate peptide (BPP), C-type lectins (CTL), cysteine-rich secretory protein (CRiSP), disintegrin
(Dis), L-amino acid oxidase (LAAO), nerve growth factor (NGF), phosphodiesterase (PDE), phospholipase a2 (PLA2), snake venom
metalloprotease (SVMP), and snake venom serine protease (SVSP).

Table 3. Using maximum values of relative abundances of venom components, the association rules between proteins
expressed in Crotalus venom. Lift signifies the correlation between different venom components. Confidence shows the
percentage in which the predicted venom component occurs with the predictor venom component. Support is the number
of transactions in which the desired venom component occurs.

Rules No. Protein (Predictor) Protein (Predicted) Support Confidence Lift

1 SVMP_PI LAAO 0.6 1 1.5
2 BPP, CRiSP LAAO 0.6 1 1.5
3 CRiSP, CTL LAAO 0.67 1 1.5
5 CRiSP, CTL SVMP_PI 0.6 0.9 1.5
6 CTL BPP 0.67 0.9 1.36
7 CTL LAAO 0.67 0.9 1.36
8 CRiSP LAAO 0.67 0.9 1.36
9 SVMP_PI CTL 0.6 1 1.36
10 SVMP_PI CRiSP 0.6 1 1.36
14 SVMP_PII, SVMP_PIII CTL 0.53 1 1.36
15 CTL, SVMP_PII SVMP_PIII 0.53 1 1.36
16 SVMP_PII, SVSP SVMP_PIII 0.53 1 1.36
17 SVMP_PII, SVSP CTL 0.53 1 1.36
18 BPP LAAO 0.6 0.9 1.35
20 PLA2(Other), SVSP SVMP_PIII 0.73 0.91 1.25
21 PLA2(Other), SVSP CTL 0.73 0.91 1.25
22 PLA2(Other), SVSP CRiSP 0.73 0.91 1.25
23 SVMP_PIII CTL 0.67 0.9 1.23
25 SVMP_PIII CRiSP 0.67 0.9 1.23
26 CRiSP SVMP_PIII 0.67 0.9 1.24

Note: 5′-nucleotidase (5′-NT), bradykinin potentiate peptide (BPP), C-type lectins (CTL), cysteine-rich secretory protein (CRiSP), disintegrin
(Dis), L-amino acid oxidase (LAAO), nerve growth factor (NGF), phosphodiesterase (PDE), phospholipase a2 (PLA2), snake venom
metalloprotease (SVMP), and snake venom serine protease (SVSP).
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2.2. Venom Constituents in Sistrurus Venom

We identified compositional venom studies, through both transcriptomic and pro-
teomic technologies, for 34 entries, including species and subspecies, within the genus
Sistrurus. Few studies have focused on the Sistrurus subspecies’ venom. 19 protein fami-
lies are present in Sistrurus (Table 4). These protein families could be classified based on
ubiquity or relationship with other proteins.
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Table 4. Venom components in Sistrurus genus.

Species Venom Components Reference

S. catenatus
3FTx, 5′-NT, BPP, CNP, CRiSP, CTL, Dis, GC, LAAO, MYO, NGF, PDE, PLA2
(CRTX, non-CRTX), PLB, Renin-like Aspartic Protease, SVMP P-I/II/III, SVSP,

VEGF
[29,70,168–173]

S. miliarius miliarius BPP, CRiSP, CTL, Dis, NGF, PLA2, SVMP P-I/III, SVMP-inhibitor, SVSP [71]

S. miliarius streckeri BPP, CRiSP, CTL, Dis, NGF, PLA2, SVMP P-I/III, SVMP-inhibitor, SVSP [71]

S. miliarius barbouri BPP, CNP, CRiSP, Dis, PLA2, SVMP P-I/III, SVSP [29,30,70,71,173–176]

Note: three-finger toxin (3FTx), 5′-nucleotidase (5′-NT), bradykinin potentiate peptide (BPP), C-type lectins (CTL), natriuretic peptide type
C (CNP), cysteine-rich secretory protein (CRiSP), crotoxin (CRTX), disintegrin (Dis), guanylyl cyclase (GC), hyaluronidase (Hya), L-amino
acid oxidase (LAAO), myotoxin (MYO), nerve growth factor (NGF), phosphodiesterase (PDE), phospholipase a2 (PLA2), phospholipase b
(PLB), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), and vascular endothelial growth factor (VEGF).

2.2.1. Frequency of Protein Components in Sistrurus Venom

The dominant protein families based on ubiquity in Sistrurus are BPP, CRiSP, Dis,
SVMP, CTL, NGF, PLA2, and SVSP (Figure 4). The main difference between Crotalus and
Sistrurus proteins is due to the absence of 27 venom components in Sistrurus (Figures 1 and
5). Some of the absent venom components from Sistrurus’ proteomic and transcriptomic
are: alkaline phosphomonoesterase (APase), acetylcholinesterase (achase), aminopeptidase,
angiogenin, natriuretic peptide (ANP and BNP), ATPase, bradykinin inhibitory peptide
(BIP), platelet-derived growth factor (PDGF), carboxypeptidase, cysteine protease (CysProt)
and CysProt inhibitor, dipeptidase, dipeptidyl peptidase, EF-hand protein, epidermal
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growth factor (EGF), exendin4-like protein, endonuclease (DNAse and RNAse), fibroblast
growth factor (FGF), ficolin/veficolin, glutathione peroxidase, hyaluronidase (Hya), Kazal-
type inhibitor (Kazal), Kunitz-type inhibitor (Kun), lipase, ohanin (OHA), platelet-derived
growth factor (PDGF), vespryn, phospholipase d (PLD), and waparin (WAP).
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Figure 5. Twenty most common venom components in venom expressed by genus: Sistrurus. BPP, CRiSP, Dis, SVMP P-I/III
are the most common toxins (relative frequencies are 1). Note: three-finger toxin (3FTx), 5′-nucleotidase (5′-NT), bradykinin
potentiate peptide (BPP), C-type lectins (CTL), natriuretic peptide type C (CNP), cysteine-rich secretory protein (CRiSP),
crotoxin (CRTX), disintegrin (Dis), guanylyl cyclase (GC), L-amino acid oxidase (LAAO), myotoxin (MYO), nerve growth
factor (NGF), phosphodiesterase (PDE), phospholipase a2 (PLA2), phospholipase b (PLB), snake venom metalloprotease
(SVMP), snake venom serine protease (SVSP), vascular endothelial growth factor (VEGF).

2.2.2. Association between Various Venom Components in Sistrurus Venom Using
Presence/Absence Data

Using the frequent item-set data mining approach from data mining literature [164],
we can identify eight relationships between different venom components for Sistrurus
(Figure 6), e.g., NGF is associated with CTL with confidence = 1, support = 0.75 (Table 5),
implying that NGF and CTL are expressed together 75% times in venom of all species of
Sistrurus, and if NGF is expressed in venom, then 100% times CTL is also expressed.



Toxins 2021, 13, 372 11 of 28
Toxins 2021, 13, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 6. Depictions of association between components of venom expressed by genus Sistrurus. The rules are depicted 
by the top eight rules as stated in Table 5. The size and the depth of color of the graph nodes are proportional to the 
support level and lift ratios of the underlying association rules. 

In contrast to Crotalus’ venom components, studies on Sistrurus’ venom component 
are lacking, and thus, only a small pool of studies are used to generate only eight associa-
tions, as depicted in Table 5. CTL and NGF each have three associations with different 
venom components. CTL is associated with NGF, SVMP inhibitor, and SVSP; NGF is as-
sociated with CTL, SVMP inhibitor, and SVSP. They are followed by SVMP inhibitor and 
SVSP with one association each: SVMP inhibitor is associated with SVSP and vice versa. 
However, SVMP inhibitor and SVSP’s associations have higher lift and confidence than 
CTL’s and NGF’s, indicating better associations. 

Table 5. Depictions of association rules between proteins expressed in Sistrurus venom. Lift signi-
fies the correlation between different venom components. Confidence shows the percentage in 
which the predicted venom component occurs with the predictor venom component. Support is 
the number of transactions in which the desired venom component occurs. 

Rules No. Protein (Predictor) Protein (Predicted) Support Confidence Lift 
1 SVSP SVMP inhibitor 0.5 1 2 
2 SVMP inhibitor SVSP 0.5 1 2 
3 SVSP CTL 0.5 1 1.33 
4 SVSP NGF 0.5 1 1.33 

Figure 6. Depictions of association between components of venom expressed by genus Sistrurus. The rules are depicted by
the top eight rules as stated in Table 5. The size and the depth of color of the graph nodes are proportional to the support
level and lift ratios of the underlying association rules.

Table 5. Depictions of association rules between proteins expressed in Sistrurus venom. Lift signifies the correlation between
different venom components. Confidence shows the percentage in which the predicted venom component occurs with the
predictor venom component. Support is the number of transactions in which the desired venom component occurs.

Rules No. Protein (Predictor) Protein (Predicted) Support Confidence Lift

1 SVSP SVMP inhibitor 0.5 1 2
2 SVMP inhibitor SVSP 0.5 1 2
3 SVSP CTL 0.5 1 1.33
4 SVSP NGF 0.5 1 1.33
5 SVMP inhibitor CTL 0.5 1 1.33
6 SVMP inhibitor NGF 0.5 1 1.33
7 CTL NGF 0.75 1 1.33
8 NGF CTL 0.75 1 1.33

Note: C-type lectins (CTL), nerve growth factor (NGF), snake venom metalloprotease (SVMP), snake venom metalloprotease inhibitor
(SVMP inhibitor), snake venom serine protease (SVSP).
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In contrast to Crotalus’ venom components, studies on Sistrurus’ venom component are
lacking, and thus, only a small pool of studies are used to generate only eight associations,
as depicted in Table 5. CTL and NGF each have three associations with different venom
components. CTL is associated with NGF, SVMP inhibitor, and SVSP; NGF is associated
with CTL, SVMP inhibitor, and SVSP. They are followed by SVMP inhibitor and SVSP with
one association each: SVMP inhibitor is associated with SVSP and vice versa. However,
SVMP inhibitor and SVSP’s associations have higher lift and confidence than CTL’s and
NGF’s, indicating better associations.

2.2.3. Association between Various Venom Components in Sistrurus Venom Using the
Relative Abundance of Protein Components

Similar to Crotalus, a key challenge in inferring association between different species
is the lack of data on relative abundance for venom components. There are only six studies
that reported relative abundances for all species and subspecies within the genus Sistrurus.
Relative abundance is reported for 21 out of 25 venom components. We identified a total of
13 associations (Table 6). Nine associations are discarded as they did not have any predictor
component or are duplicates.

Table 6. Using maximum values of relative abundances of venom components, the association rules
between proteins expressed in Sistrurus venom. Lift signifies the correlation between different venom
components. Confidence shows the percentage in which the predicted venom component occurs
with the predictor venom component. Support is the number of transactions in which the desired
venom component occurs.

Rule No. Protein Predictor Protein (Predicted) Support Confidence Lift

1 SVMP_PIII SVMP_PI 0.5 1 2
3 SVMP_PIII Vasoactive peptide 0.5 1 2
5 SVMP_PI Vasoactive peptide 0.5 1 2
7 PLA2, CRTX LAAO 0.5 1 1.5
8 SVMP_PIII BPP 0.5 1 1.5
9 SVMP_PI BPP 0.5 1 1.5
10 Vasoactive peptide BPP 0.5 1 1.5
11 CNP BPP 0.5 1 1.5
12 PLA2, CRTX CTL 0.5 1 1.2
13 PLA2, CRTX NGF 0.5 1 1.2
14 LAAO CTL 0.67 1 1.2
15 LAAO NGF 0.67 1 1.2
16 CTL NGF 0.83 1 1.2

Unlike presence/absence data, we found several new associations, such as PLA2
associated with LAAO, CTL, and NGF; SVMP_PIII associated with SVMP_PI, Vasoactive
peptide, and BPP, etc. (Table 6, Figure 7).
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2.2.4. Hierarchical Clustering of Venom Components to Identify Similarities or
Dissimilarities in Phylogenetic Relationships

Next, we use hierarchical clustering analysis of venom components with known
relative abundances to cluster different Sistrurus species according to the similarity in
venom components (Figure 8). One would expect similar venom composition in closely
related species due to recent common ancestor, but such similarity is not observed. We
conjecture that the reason different species have similar compositions is due to functional
similarities. We found that the venom compositions of Sistrurus miliarius miliarius and
Sistrurus miliarius strecki are similar. However, Sistrurus miliarius barbouri, phylogenetically
similar to Sistrurus miliarius miliarius and Sistrurus miliarius strecki, does not have similar
venom composition to these two subspecies of Sistrurus miliarius. Instead, its venom
composition is similar to that of Sistrurus catenatus tergeminus and Sistrurus catenatus
catenatus. Sistrurus catenatus edwardsii have a different venom composition than the other
two subspecies (Figure 8).
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3. Discussion

A total of 46 families of proteins are identified in the venom of 34 species and sub-
species of rattlesnakes. Most studies focus on Crotalus, and a subset of studies focus on
Sistrurus. Through our analysis, using the presence/absence of venom components, we can
discover a total of 562 association rules for Crotalus and 25 association rules for Sistrurus
venom components. In this study, we present the 20 most relevant rules for Crotalus and
eight rules for Sistrurus venom components, respectively (Tables 2 and 5). Using the known
relative abundances of venom components, we discovered 47 rules for Crotalus and 13
rules for Sistrurus venom components (Tables 3 and 6).

Using presence/absence data in developing venom component association only gives
limited insight as venom becomes functionally different with changes in relative abun-
dances of its components. However, we have been limited by existing information on the
relative abundances of venom components. Within Crotalus, relative abundances have been
reported for 46% of the species, and within these species, relative abundances have been re-
ported for only 56% of venom components. Within Sistrurus, for all species and subspecies,
relative abundances have been reported for 84% of venom components. Reporting relative
abundances of different venom components would play a critical role in developing more
insightful associations between different venom components.

There is an emphasis on investigating venom components stand-alone units with a
lack of investigations of their relationships with each other and the subsequent effects
of co-administering different components. On the other hand, understanding the rela-
tionship between venom components could open a new avenue for biomedical research
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and unlock protein combinations that yield enhanced bioactivity in pharmaceutical drugs.
Additionally, studying components as stand-alone may have produced a negative effect
in which many components have received skewed attention in biomedical research. For
example, protein families are often classified as major or minor based on importance and
ubiquity [13,128]. Thus, causing the dominant protein families, such as proteases, neuro-
toxins, and phospholipases, to be more researched than other protein families, such as
growth factors. However, it is by combining ubiquity, bioactivity, and relationship between
the protein families that we can classify the venom components as major or minor.

In rattlesnakes, MYO, PLA2, SVMP, and SVSP are classified as major components
based on medical importance and ubiquity [13,128], which is also confirmed by our analysis
(Figure 1). However, with a new approach of using both ubiquity and number of associa-
tions for each protein, we find that Dis, LAAO, CTL are all more ubiquitous and have more
associations with other proteins in Crotalus species (Table 2). Similarly, in Sistrurus species,
the SVMP inhibitor and NGF (Figure 4) have the most associations than MYO, which has
only one association (Table 3).

These associations play a critical role in the synergy between venom components [73].
This synergism causes the joint effects of multiple toxins to assert greater effects than
the sum of individual potencies [73], making trace amount of snake venom to be highly
efficient and effective [73,74]. Such combinations of venom proteins often cause various
symptoms of bleedings, tissue degradation, necrosis, and further complications in prey
and bite victims [69,177] and improve the lethality of whole crude venom in contrast to
individual components [73,178].

Through mostly studies of predominant toxins, different general mechanisms for toxin
synergisms have been proposed [73,179]:

(1) Two or more toxins interact with different targets on related biological pathways,
resulting in synergistically increased toxicity;

(2) Two or more toxins recognize and interact with the same target synergistically and
produce the same effect, and is often called amplification;

(3) One toxin (subunit) acts as a chaperone to potentiate another one. The chaperone may
expose the active/functional site of the second toxin (subunit), or expose target sites,
or increase affinity to target or modify the active surface of the other toxin (subunit).
Such complexes usually dissociate after asserting their toxicity.

Synergisms are mostly reported for major toxins in rattlesnake venoms [73]. A notable
example of synergism through complex formation (mechanism 3) is crotoxin, a lethal
neurotoxin from C. durissus terrificus, by two subunits: an acidic subunit component A
(CA or crotapotin) and a basic subunit component B (CB) [109,115,116,180,181]. CB is
identified as a basic PLA2 with phospholipase activities and low toxicity, while the CA
component is said to be a small acidic, nonenzymatic, nontoxic subunit [73,181]. However,
once combined non-covalently, CA improves the potency of CB by enabling CB to reach
the specific crotoxin receptors at the neuromuscular junction as well as inhibits other
CB functions, such as catalytic and anticoagulant activities [115,181]. Thus, the resulting
crotoxin complex is highly active, compared to individual components, showing the
synergy between two subunits blocking acetylcholine release [180,181]. Similarly, in C.
scutulatus scutulatus, the Mojave toxin is another PLA2 complex: one acidic and nonlethal
subunit acts as a chaperon for the other basic subunit to improves lethality [41,148,162].
Other examples of synergistic complexes have been found and reported in many species of
Viperidae and Crotalidae [73]. Such interactions show the strong synergistic activities in
rattlesnake venoms that have been studied intensively through previous endeavors.

A prevalent example between major components is SVMP P-III and an acidic PLA2 in
Bothrops alternatus called baltergin and Ba SpII RP4 PLA2, respectively [182,183]. The more
abundant PLA2 has no myotoxic activities, while the less abundant baltergin possesses
high edematogenic and myotoxic activities [182], while PLA2 has no myotoxicity, although
it is the most abundant PLA2 in this species [183]. When acting simultaneously, both
can cause complete detachment of C2C12 myoblast cells, while none can achieve 50%



Toxins 2021, 13, 372 16 of 28

of detachment on their own [184]. The analogous synergism has also been recorded
in endothelial cells, SVMP’s natural target [73,185]. The mechanism of synergism for
such interaction is proposed through interactions with endothelial cells’ membranes, free
of catalysis rather than enzymatic activities of PLA2 [185]. Since PLA2 does not target
extracellular matrix proteins like SVMP [182], indicating that the second general mechanism
of toxin synergism is followed. Both enzymes are present in many rattlesnakes’ venoms
(Tables 1 and 3), and their association is also reported through our analysis (Table S1).
There are reports indicating the synergism between crotoxin and crotamine, a member of
MYO toxins in Crotalus venoms, which facilitates the internalization of the CB subunit and
increases neuronal toxicity [73,186]. Unfortunately, these interactions are not found in the
analysis (Table 2), although they are present in Crotalus venoms (Table 1), which could be
due to the sparse reports on Crotalus’ venoms with many species are still under-investigated
as stated previously.

Even fewer studies focus on the synergism between major and minor components:
SVSP, a major toxin, and BPPs, a minor toxin [73], indicating a biased approach in studying
venom toxins produced by the current major/minor toxin classification convention. BPPs,
which are micromolecular hypotensive peptides in snake venoms, can inhibit angiotensin-
converting enzymes and induce hypotensive action of bradykinin, accompanied by hy-
perpermeability of blood vessels [65,107,187,188]. Thus, BPPs are targeted for many phar-
maceutical developments to treat hypertension and heart failure [189,190]. On the other
hand, many SVSPs show activities that are similar to kallikrein, a serine proteinase, with
the specific and limited proteolytic functions that release bradykinin [73,143,191]. Previ-
ous works indicated that BPPs could act synergistically with kallikrein-like SVSPs, which
release bradykinin more effectively than endogenous kallikrein to produce potent hypoten-
sion and vascular shock in prey [73,95,143,192–194] (mechanism 1). Similarly, SVSP-BPP
interaction results in a stronger physiological effect than from individual components.
However, studies dedicated to understanding the mechanism and effects of such interac-
tions are limited. The absence of such studies highlights the bias in current classification
systems of major and minor venom components. Likewise, there are many components
(e.g., LAAO) with substantial associations with other toxins, like CTL or NGF, that have
not been investigated for their potential synergisms. Therefore, there is a need to develop a
deeper understanding of minor components in the venom of rattlesnakes to discover more
associations, such as that of SVSP and BPP.

Another way to explain the associations of these toxins is through the evolution of
toxins. One relationship that has been explored in previous studies is between SVMP
P-III and Dis. Dis is a small, nonenzymatic protein that can bind to extracellular receptors
(integrins) with many motifs and sizes, two of which are RGD and MVD motifs [9,68,144,
195,196]. While SVMP-PIII is a subclass of SVMP with a Dis-like domain [197,198], Dis,
especially the RGD/MVD motifs, is suggested to be produced from the rapid evolution of
the genes coding of SVMP-PIII [195,196,199]. The RGD/MVD motifs of Dis are presented
in many Crotalus species [195] along with SVMP-PIII, represent as rule 17 (Table 2) can be
explained through this evolution model, although the co-association with LAAO is still
largely unknown.

Some associations may not need to be derived through their toxicity but could be
explained through the proteins’ housekeeping functions. The existence of SVMP inhibitor
is thought to be a housekeeping molecule, despite its potential therapeutic activities, which
helps neutralize the potent SVMP in the venom glands as a self-defense mechanism [200].
Yet, not many studies have been invested in this family, along with the lack of occurrence
in many rattlesnake venoms, where high amounts of SVMP exist (Table 1), which indicates
a knowledge gap that requires further investigations. Likewise, NGF is known for its
ability to inhibit SVMP proteolysis in Viperidae [201,202]. However, growing evidence
has suggested the plausibility of other mechanisms in which NGF can act as cytotoxic
proapoptotic factors in tissues that do not have TrkA receptors [201,203,204]; or as ancillary
functions, like Hya, to help with efficient absorption of venom component through the
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release of granules molecules (histamine, serotonin, etc.) [179,201,205]. Such large release
can also have impactful consequences (anaphylaxis, bronchoconstriction, vasodilation,
etc.) [201,206]. However, not many Crotalus species have NGF, as observed previously in
Table 1, indicating yet another gap of knowledge in Crotalus venomics. Using SVMP as a
common targeting model to explain the association of NGF and SVMP inhibitor (rule 6,
Table 5) is promising, but due to the insufficient amount of information provided, such
explanation warrants further attempts in co-administration testing to confirm.

Developing phylogenetic relationships between different species using venom compo-
sition would further explain the various associations between different venom components
as two species can have similar venom composition due to recent common ancestor or
functional reasons. The existing venom composition data is greatly insufficient for devel-
oping the phylogenetic tree (Figure 4). However, the hierarchical clusters developed using
known relative abundances show a different relationship than the observed phylogenetic
relationships [207]. Even though C. durissus is similar to C. basiliscus, the venom composi-
tion of the latter is much more similar to that of C. molossus. The venom composition of C.
durissus is unique compared to other species (Figure 4). Similar patterns can be observed
with Sistrurus species (Figure 8). The possible explanations for this may be either functional
similarity or insufficient data. However, one would expect the cluster structure to change
with changes in venom composition due to age, sex, diet [17,18,24,25], or topographical
features [26,27]. We did not observe any difference between clusters built using the maxi-
mum relative abundance value or the average values. However, this result should be taken
with caution as only a few studies reported multiple relative abundance values for some of
the venom components. Thus, to have a deeper insight into the venom associations and
venom component relationships, relative abundances must be quantified and reported.

4. Conclusions

In this paper, we have elicited the associations between different venom components.
Thus, expediting future research on the synergy between various venom components.
We also establish the need to report relative abundances for different venom components
to increase the accuracy of the predicted associations and the understanding of venom
evolution.

The results of this study suggest a myriad of associations, many of which are yet to
be discovered, but they do provide promising potential synergistic effects that are worth
further investigation. For example, using rules 2 and 13 in Crotalus venoms (Table 2), CTL,
a protein/glycoprotein that specifically binds to carbohydrate moieties and glycoconjugate,
can target and interact with platelet receptors and blood coagulation factors [208], which
are also targets for Dis [209], indicate their potential synergisms with antiplatelet toxins
and assert the hypotensive results along with many other toxin groups like SVSP [73,
95,143,192–194]. Thus, highlighting the importance of characterizing toxin components
and their associations [69]. With an increased amount of characterization studies, novel
families may also be correctly added into the venom profiles, such as three-finger toxins
(3FTx), which often are present in elapids and a few occasions in rattlesnakes genome
and transcriptome [14–16,169,171]. However, attention should be paid to developing
venom profiles for understudied genera (Sistrurus) or species. Additionally, this work also
addresses the problem of conventional classification of venom toxins as major or minor
based on importance and ubiquity, which are often MYO, PLA2, SVMP, and SVSP [13,128],
as the cause of much more attention on these dominant toxin families and overlooking
other protein families, such as Growth factors. Therefore, we highlight the importance of
studying venom components not only as individual components but also in understanding
the relationship between them. We propose using the combination of toxin’s characteristics,
such as its ubiquity, bioactivity, and associations with other toxin families, to classify the
venom components as major or minor.
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5. Materials and Methods

We collected articles and abstracts on venom for each Crotalus and Sistrurus species
through the following: databases (PubMed, ScienceDirect, Scopus, Google Scholar, Web
of Science), journal’s databases (BMC Genomics, Journal of Proteome Research, Journal of
Proteomics, Toxicon, Toxicology, Toxins), publisher databases (Wiley Online Library, MDPI,
Elsevier). We used “venom” OR “proteomic” OR “venomic” OR “transcriptome” OR
“proteome” AND “name of the species” as keywords for conducting our search. We also
examined references in studies produced from the search results for any additional infor-
mation. Collected records were the earliest obtainable records to those that are published
in January of 2020.

From collected records, any article that did not contain information regarding venom
composition and components of any Crotalus and Sistrurus species was not used in the
current analysis. Otherwise, the articles’ full-text version would be further assessed with
the following inclusion and exclusion criteria.

For the article to be included in the current analysis, it had to fulfill one of the follow-
ing inclusion criteria: (1) report proteome or transcriptome profile of the venom of any
corresponding species; (2) report at least 1 toxin family/component, which is not artificially
synthesized based on another similar toxin component; (3) be a comparative study report-
ing transcriptome/proteome profile for Crotalus, Sistrurus species/subspecies; (4) studies
that report variability in venom components for any Crotalus, Sistrurus species/subspecies.

The following exclusion criteria were used to exclude any study from the current
analysis: (1) reviews that focus on toxin families and/or articles focuses on the genomic
evolution of toxin families; (2) articles with no transcriptome/proteome profiles; (3) ar-
ticles with no data on toxin family isolated from venom; (4) articles that focus on new
artificially synthesized molecules, based on similar toxin component or recombinant pro-
tein/peptides in venom; (5) articles reporting methods to inactivate toxin family from
rattlesnakes; (6) case study on rattlesnakes’ bites; (7) studies describing methods to detect
toxin families/components. From the studies that fulfilled our inclusion criteria and did
not meet any exclusion criteria, we collected and compiled all venom constituents that are
reported for each species in the genus Crotalus and Sistrurus in Tables 1 and 4 respectively.
The compiled data were cross-checked by authors for correctness and confirmations.

Using the data from Tables 1 and 4, we performed two separate frequent item-set
data mining analyses for Crotalus and Sistrurus venoms. We conducted frequent item-set
data mining using presence-absence data and a separate analysis using relative abundance
values. In the analysis using relative abundance values, when more than one value for
relative abundance was reported for a particular protein, we used the maximum value
of relative abundances reported. There was no major difference in the results when we
used maximum reported values versus the average of all reported values for a particular
protein. For all values that are reported as below the limit of detection, we used the limit of
detection as the value for that particular component [210]. Frequent item-set data mining
helps identify the association rules associated with the expression of different proteins
in venom. Studies on Sistrurus venom components are sparse, thus, can introduce a bias
towards data-mining analysis. The rules specify the confidence, lift, and support for
specific proteins to occur together in venom. Support is defined as absolute frequency,
i.e., a support of 25% means that venom components x, y, and z occur together in 25%
of all venoms. Confidence is correlative frequency., i.e., a confidence of 60% means that
if x and y occur, then 60% of times z will also occur. Lift signifies the likelihood of the y
occurring when x occurs while taking into account the number of times venom component
y occurs in different species. An association rule is valid only if the lift is greater than 1.
The higher the value of the lift, the higher is the validity of the rule. Since many studies
associated with rattlesnake venom concentrated on highly abundant species or species
containing more “major components”, this affects the performance of the statistical models
due to the presence of null values. For the analysis using only the presence–absence data
for toxin families from individual studies, the chances of bias from individual studies
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affecting our results were low. With the increase in venom composition and variation
data, the associations produced by frequent item-set data-mining analysis will be more
informative. Using the relative abundance data of venom components from Tables 1 and 4,
we performed hierarchical clustering for both Crotalus and Sistrurus species. For species
with multiple values reported for the same venom component, we used the maximum of
all reported values in our analysis. All analysis was performed using the software R (R
Core Team, Vienna, Austria, 2019).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13060372/s1, Table S1: Depictions of full association rules between proteins expressed in
Crotalus venom using presence/absence data. Table S2: Depictions of all association rules between
proteins expressed in Crotalus venom using relative abundance data.
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Abbreviations
The following abbreviations are used in this manuscript:
3FTx Three-finger toxin
5′-NT 5′-nucleotidase
Achase Acetylcholinesterase
ANP Natriuretic peptide type A
ATPase Adenosine triphosphatase
BIP Bradykinin inhibitory peptide
BNP Natriuretic peptide type B
BPP Bradykinin potentiate peptide
CTL C-type Lectins
CNP Natriuretic peptide type C
CysProt Cysteine protease
CRiSP Cysteine-rich secretory protein
CA Crotapotin
CRTX Crotoxin
Dis Disintegrin
EGF Epidermal growth factor
FGF Fibroblast growth factor
GC Guanylyl cyclase
Hya Hyaluronidase
Kazal Kazal-type inhibitor
Kun Kunitz-type inhibitor
LAAO L-amino acid oxidase
MTX Mojave toxin
MYO Myotoxin
NGF Nerve growth factor
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OHA Ohanin
PDE Phosphodiesterase
PDGF Platelet-derived growth factor
PLA2 Phospholipase A2
PLB Phospholipase B
PLD Phospholipase D
SVMP Snake venom metalloprotease
SVSP Snake venom serine protease
TLE Thrombin-like enzyme
VEGF Vascular endothelial growth factor
WAP Waparin
N/A No information available
* Dataset used for generating hierarchical clusters
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