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ABSTRACT 

Sequential decision-making problems in the context of uncertainty naturally arise in healthcare 
settings. In general, the frequency at which decisions can be made or changed is determined by 
physical limitations, such as the frequency of doctor’s visits or transplantation offers. Quantifying 
the benefits of increasing the frequency of decision-making allows us to quantify the value of 
changing these physical constraints and thus improve the quality of care. In this article, we study 
the value provided by having additional decision-making opportunities in each epoch. We model 
this problem using a Markov Decision Process (MDP) framework. We provide structural properties 
of the optimal policies and quantify the difference in optimal values between MDP problems of 
different decision-making frequencies. We analyze numerical examples using liver transplantation 
in high-risk patients and treatment initiation in chronic kidney disease to illustrate our findings.
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1. Introduction

Sequential decision-making problems with fixed decision 

intervals in the context of uncertainty naturally arise in 

healthcare settings: monitoring problems, treatment initi-

ation problems, disease testing, and diagnosis frequency, etc. 

For example, a patient with a chronic illness may require a 

tailored treatment regimen as their disease progresses over 

time, or a patient with organ failures may be offered organ 

transplants of varying quality, and may choose to wait or 

accept offered organs as their own survival probability 

declines.
In general, the frequency at which decisions can be made 

or changed in these contexts is determined by some physical 

limitation that occurs regularly over time, e.g., the frequency 

of doctor’s visits or transplantation offers. In many health-

care settings, such limitations are often costly and must 

occur after a discrete interval of time. For instance, Chronic 

Kidney Disease (CKD) treatment regimen changes can only 

be made when the patient visits a doctor’s office, which may 

happen at some interval (e.g., weekly, monthly, etc.). These 

followup frequencies often vary by patient health or disease 

progression rate, but the optimal frequency for a particular 

health state may be unknown. Increasing the frequency may 

provide benefits – catching disease progression sooner and 

faster modification of treatment plans as the patient’s needs 

change – but may also impose costs to patients. It is 

therefore critical to carefully determine whether it is net 

beneficial to have more frequent visits.
This problem also arises in the context of organ trans-

plantation. A patient waiting for organ transplantation may 

choose to invest in efforts to increase the frequency of 

receiving organ offers. Such efforts include transferring to 

hospitals that have shorter waiting periods (UCSF Health, 

2023; UW Health, 2023), and multiple-listing (US Dept. of 

Health & Human Services, 2023). Transplant centers may 

have different organ offer frequencies and duration until 

transplant. Multiple listing entails the process of enrolling at 

two or more transplant hospitals. Candidates located near 

the donor hospital are typically prioritized over those farther 

away, so opting for multiple-listing can enhance patients’ 

prospects of receiving a local organ offer and chance of 

transplantation (US Dept. of Health & Human Services, 

2023). For example, people who are multiple-listed for heart 

transplantation have a shorter average second listing waiting 

period (126 days) compared with the first listing waiting 

period (335 days) (Givens et al., 2015). The Organ 

Procurement & Transplant Network policy also allows 

patients to transfer primary waiting time to another hospital 

or switch wait time between programs if multiple-listed. 

However, multiple-listing usually involves completing add-

itional evaluations for the new hospital and coordination 

with the insurance provider. Such efforts may be financially 

costly and time-consuming, and it may be useful to under-

stand the value of increasing the frequency of donated 
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organs to organ recipients to better determine whether the 

costs associated with such efforts are justified. As these 

efforts for increasing the frequency of receiving an organ 

offer are primarily an individual patient’s medical decision, 

we approach the problem from the patient’s perspective.
In these contexts, it is important to identify the best 

times to offer more frequent decision-making opportunities 

and quantify the associated benefits. This allows for better 

evaluation of whether the benefits justify the potential costs 

of creating these additional decision-making opportunities.

1.1. Research question and approach

What is the value in increasing opportunities to make deci-

sions, specifically in the context of stopping problems when 

decisions can only happen at regular intervals? While many 

works have studied timing trade-offs, even within the 

Markov Decision Process (MDP) literature, we here take a 

novel approach of directly comparing two MDPs—one with 

more frequent decisions, structured such that the state out-

comes are equivalent if the action is to continue (as opposed 

to stopping). This comparison allows direct quantification of 

the value of more frequent decisions in addition to the iden-

tification of the optimal stopping time (which is the typical 

motivation in previous literature).
We will explore this problem in the context of the 

“more-frequent” and the “less-frequent” MDP problems. In 

scenario 1 (“less-frequent” decision), a decision-maker has 

an opportunity to “stop” a process at each interval. We con-

trast this to scenario 2 (“more-frequent” decision), where 

the decision is made every 1/k intervals (where k is an inte-

ger). How much more should a policy-maker value these 

additional opportunities?
We use the same state space, action space, and discount 

factor for both the more- and less-frequent problems, but 

the number of epochs in the more-frequent problem is k 

times that of the less-frequent problem. The transitions are 

such that, given the same sequence of actions (i.e., the 

more-frequent problem follows the same policy as in the 

less-frequent problem for all additional decision-making 

epochs at each state), both problems generate the same like-

lihood of ending up in each state. The reward values over a 

given duration are also equivalent if the same actions are 

used in both problems. In the more-frequent framework, a 

per-period cost accounts for all costs associated with add-

itional decision-making opportunities. This problem setup 

allows us to use these two scenarios to study the benefits of 

increasing decision-making frequency in stopping problems, 

all else equal.
We make four main contributions in this study. First, we 

provide structural results around the valuation of decision- 

making frequency in MDP stopping problem frameworks. 

Understanding this valuation allows us to decide how often 

decisions ought to be made to increase utility. Despite sub-

stantial prior literature in the area of discrete-time MDPs, 

we are not aware of any prior work that has examined this 

problem rigorously. Secondly, we provide structural results 

relating to less-frequent and more-frequent problem 

solutions. This allows us to partially solve one problem 
when the optimal solution is known for the other, allowing 
us to translate knowledge from one context to another. 
Third, we analyze the difference between the optimal values 
of the two problems and when this quantity is maximized. 
This novel approach allows us to quantify the benefits of 
making more frequent decisions. Moreover, this informs us 
of when it would be more profitable to switch to a more- 
frequent decision-making framework. Fourth, we provide 
two numerical examples using liver transplantation among a 
particularly severely ill patient population and early-stage 
CKD treatment initiation using empirical data. These exam-
ples demonstrate how this framework might be used in 
diverse healthcare applications and illustrate its applicability 
in similar problem contexts.

2. Literature review

2.1. MDPs in healthcare applications

MDPs have long been used in the operation research litera-
ture for a variety of applications, including inventory man-
agement (Giannoccaro and Pontrandolfo, 2002), portfolio 
management (B€auerle and Rieder, 2009), production and 
storage (Arruda and do Val, 2008), and others. There is a 
deep literature in solving and understanding MDP structure 
(Puterman, 1994; Givan and Parr, 2001; Topkis, 2011). 
These works have provided the foundations of many subse-
quent results on threshold structures of MDP policies, and 
we will similarly rely on those results here. As in prior lit-
erature, we will examine threshold policies and monotonic 
structure over time and state space, but we will extend this 
work to examine their implications when comparing more- 
and less-frequent decision-making frameworks. We point 
the reader to Sonnenberg and Beck (1993), and Givan and 
Parr (2001), Schaefer et al. (2004), Alagoz et al. (2010) for a 
more complete review of MDPs.

MDPs are also a commonly used tool for healthcare 
applications, and have been used for applications such as 
screening (Chhatwal et al., 2010; Alagoz et al., 2013), 
sequential disease testing (Arruda et al., 2019; Singh et al., 
2020), treatment initiation (Shechter et al., 2008; Liu et al., 
2017), and organ transplantation (see below). Within this 
MDP framework, we focus our analysis on finite horizon 
stopping problems. Stopping problems are commonly used 
for treatment initiation problems and organ transplantation 
problems and form an important healthcare policy decision 
tool. In these and other health-related problems, a finite 
decision horizon is typically considered. Among the prob-
lems mentioned here, several are stopping problems (David 
and Yechiali, 1985; Ahn and Hornberger, 1996; Alagoz 
et al., 2004, 2007; Shechter et al., 2008; Chhatwal et al., 
2010; Kurt et al., 2011; Alagoz et al., 2013; Liu et al., 2017). 
Previously, authors have focused on establishing threshold 
policies over either state or time in an MDP framework. For 
instance, Alagoz et al. (2007) identified an at-most-three- 
region optimal policy for an infinite-horizon MDP model 
for liver transplantation. Shechter et al. (2008) considered 
both state thresholds and time thresholds to find the optimal 
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HIV treatment initiation time. However, to the best of our 

knowledge, no paper has considered how these threshold 

policies may change if the frequency of decision-making is 

changed. In this work, we extend prior analyses by addition-

ally studying this problem and extending threshold proper-

ties to provide novel insights into estimating the value of 

decision-making frequency.

2.2. Epoch sizes in MDPs

There are two main time-related components that impact a 

decision-making process: the time horizon and epoch size. 

The former has been studied in prior literature, as exempli-

fied by literature that considers the effect of different lengths 

of life on decision-making (Ehrlich, 2000; Dybvig and Liu, 

2010). The latter has received less attention, although many 

authors have investigated questions involving epoch intervals 

in their work, particularly within the reliability literature. 

For instance, Barlow and Proschan (1975) focus on prob-

abilistic aspects of reliability theory and include discussion 

of timing problems, and Kuo (2006) used a partially observ-

able MDP (POMDP) in machine maintenance, allowing the 

intervals between sampling draws to vary. See Wang (2002) 

for a review of the reliability literature. However, unlike 

prior work, we do not only focus on when an action should 

be taken, but also the additional value generated from hav-

ing the opportunity to make more frequent decisions. 

Although we may find that the optimal time to act may be 

the same, there may be value in having had more chances to 

change one’s decision.
While an alternative would be to use a Continuous-Time 

MDP (CTMDP) or Semi-MDP (SMDP) model, we focus on 

a discrete-time formulation in alignment with the majority 

of the work in clinical and healthcare applications using 

MDPs, with the hope that this makes our work more gener-

alizable. CTMDP and SMDP frameworks are usually more 

difficult and more computationally costly to solve than dis-

crete-time MDP models, and this may also contribute 

towards their relative unpopularity in the healthcare applica-

tion context.
However, even within the context of discrete-time models 

in healthcare, the choice of epoch size is not always clear. 

This has led to prior work on methods to convert between 

epoch sizes; for example, Chhatwal et al. (2016) shows how 

eigen-decomposition methods can be used for converting 

transition probability matrices between different lengths of 

time. We will use this technique to convert transition proba-

bilities and rewards between frequencies in our work. One 

notable prior work has tangentially addressed the issue of 

epoch size in an MDP using a variable decision-making fre-

quency model. Alagoz et al. (2013) formulated a finite- 

horizon MDP model (a stopping problem) in breast cancer 

diagnosis. The goal of the work is to reduce unnecessary fol-

low-ups by considering follow up with different frequencies. 

Alagoz et al. (2013) introduced two non-terminate actions 

(follow-ups) which may be chosen every 6 and 12 months 

respectively. This problem introduces the utility of consider-

ing different action frequencies when solving for optimal 

health policies, but does not quantify the benefits of more 

frequent decision-making, which we do here.
There are also examples of using restless bandits to 

choose epoch sizes in decision-making problems. For 

instance, Herlihy et al. (2023) develop a restless multi-armed 

bandit framework for monitoring drug adherence. The doc-

tor can choose to observe the patient’s state at each decision 

epoch, potentially resulting in variable lengths of time 

between observations. However, this approach cannot 

compare the exact additional value of more frequent deci-

sion-making, as we do in this work by comparing two MDP 

formulations. In addition, our approach extends the existing 

MDP literature on organ transplantation, of which there is a 

rich legacy (David and Yechiali, 1985; Ahn and Hornberger, 

1996; Alagoz et al., 2004, 2007; Sandıkçı et al., 2008; 

Sandıkçı et al., 2013).

2.3. Organ transplantation with stochastic dynamic 

models

We use the optimal timing of liver transplantation as one of 

our motivating examples, for which we will also provide a 

numerical analysis. Prior work has applied MDPs to organ 

transplantation problems (David and Yechiali, 1985; Ahn 

and Hornberger, 1996; Sandıkçı et al., 2008; Sandıkçı et al., 

2013; Boloori et al., 2020). Although prior work has exam-

ined liver transplantation problems for patients with end- 

stage liver failure under an MDP framework, they have not 

examined the value of increasing transplant offers. In this 

article, we determine the value of increasing the frequency 

at which livers are offered to inform patients of how much 

cost would be justified in doing so. We consider a particu-

larly vulnerable patient population (acute-on-liver-failure 

grade 2 or 3, or ACLF2 and ACLF3, patients, who have two, 

three, or more failed organs), where patients are severely ill 

and at very high priority for liver transplant, making the 

offer of more frequent organ offers particularly salient 

(Mahmud et al., 2020).

2.4. Treatment initiation with stochastic dynamic 

models

In this work, we also examine when to initiate treatment for 

early-stage CKD patients. Prior work has studied the opti-

mal time to initiate treatment in the context of stochastic 

disease progression; for instance, Shechter et al. (2008) iden-

tified the optimal timing of initiating HIV treatment using 

an MDP, Kurt et al. (2011) studied structural properties of 

statin initiation for type 2 diabetic patients using an MDP 

framework, and Liu et al. (2017) proposed an MDP frame-

work to find the optimal strategy for treatments considering 

technology changes. Although the structural properties of 

the optimal policy have been thoroughly analyzed by many, 

there has been limited exploration of how changes in the 

frequency of decision-making can affect the optimal policy 

and value, which is what we focus on here.
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3. Model formulation

We formulate two finite-horizon, discrete-time MDPs (the 
less-frequent and more-frequent problem). Both MDPs have 
the same objective, which is to maximize the total expected 
discounted rewards for a patient. As shown in Figure 1, in 
the more-frequent problem, the decision-maker is able to 
make k − 1 additional decisions in each interval compared 
with the less-frequent problem, resulting in k times as many 
decision-making opportunities in the more-frequent prob-
lem. We consider non-stationary transition probabilities and 
rewards as these are common in health application 
problems.

The notation used in this article is as follows. The set of 
health states in both more- and less-frequent problems is 
the same and denoted by S ¼ f1, 2, :::, post-decision-making 
state (jSj−1Þ, death ðjSj)}. We assume there exists an order-
ing of the states. As typical in many healthcare MDP prob-
lems, we will order the states such that state 1 is the 
healthiest state and the health status in the state j is worse 
than that of state i if i < j: Some states may be absorbing 
(the death state and post-decision-making state).

We limit our analysis to stopping problems, in which the 
decision-maker may continue or stop the problem. In our 
motivating organ transplantation problem, this is equivalent 
to continuing to wait for a better organ or stopping the 
decision process by accepting an organ offer. We therefore 
denote the set of available actions in both more- and less- 
frequent problems as A¼ {wait (w), accept (a)}. If wait is 
chosen, the patient can remain alive or die before the next 
decision period, when the process repeats. Once the accept 
decision is made, the patient will permanently enter a post- 
decision-making state. We allow the action space to vary 
across states, where only wait is allowed in some states 
(“wait states”) whereas both wait and accept are allowed in 
all others (“non-wait states”). This allows us to model situa-
tions where no decision other than wait can be made (e.g., 
if no liver is offered this period). We use ~S � S to denote a 
set containing all non-wait states.

The total number of decision epochs in the more- 
frequent problem is denoted by N. We assume N is a 
multiple of k. T ¼ f1, :::, Ng is the set of possible decision 
periods for the more-frequent problem. ~T ¼ f1, k þ 1, 2k þ
1, :::, Ng is the set of possible decision periods for the less- 
frequent problem. We use ~t

þ
to represent the decision 

period after time ~t in the less-frequent problem, and use ~t
− 

to represent the epoch before ~t , i.e., ~t
þ
¼ ~t þ k, ~t

−

¼ ~t − k:

We denote ptðdÞ as the transition probability matrix for 

the more-frequent problem when the decision-maker choo-

ses action d 2 A and t 2 T: In the less-frequent problem, we 

use P~t ðdÞ ¼ pk
~t
ðdÞ,~t 2 ~T , which is p~t ðdÞ multiplied by itself 

k times, to represent the transition probability matrix for 

action d 2 A: This means that the likelihood of being in any 

state for each t 2 T in the more-frequent problem is the 

same as in the less-frequent problem at those same epochs, 

provided the same actions were taken. In the more-frequent 

problem, we assume ptðdÞ ¼ ptþmðdÞ for m � k for any t 2
~T : We make this assumption as the transition probabilities 

typically do not vary much within a short interval (daily, 

monthly, or yearly). We could relax this assumption using a 

continuous approximation, e.g., Gompertz functions 

(Gompertz, 1825; Sonnenberg and Beck, 1993), but we omit 

this here for simplicity. We use ptðijdÞ to represent the ith 

row of the matrix ptðdÞ: Throughout this article, we use 

pss0 , tðdÞ to denote an element of the matrix, the transition 

probability from state s to state s0 at time t given action d. 

We discuss how we parameterize the matrix in Section 5. k 

denotes the discount factor for the more-frequent problem, 

0 � k � 1: For the less-frequent problem, the discount fac-

tor is kk
:

The reward earned for the patient at state s 2 S and tak-

ing action d 2 A for t 2 T for the more-frequent problem is 

denoted using rtðs, dÞ, the health benefits to the patient. We 

consider two types of rewards: the immediate reward and 

the lump-sum reward. Once the decision-maker chooses 

wait, the patient will earn immediate reward rtðs, wÞ based 

on s, t and advance to the next decision period. If the 

decision-maker chooses accept, the patient will earn the 

lump-sum reward rtðs, aÞ given s, t and enter the post-deci-

sion-making state. We assume that the value of the reward 

is the same for both t and t þ m (t 2 ~T , m � k) for both 

types of rewards in the more-frequent problem. We there-

fore use rtðs, dÞ to represent both rtðs, dÞ and rtþmðs, dÞ for 

the more-frequent problem (t 2 ~T , m � k). We use r!tðdÞ to 

denote the vector of rewards for action d for different states 

at time t. In the less-frequent problem, we use R~t ðs, dÞ to 

denote the reward for the patient at state s 2 S and taking 

action d 2 A for ~t 2 ~T : We assume the lump-sum reward of 

the less-frequent problem is the same as the more-frequent 

problem at ~t 2 ~T (R~t ðs, aÞ ¼ r~t ðs, aÞ). Also, we assume the 

lump-sum reward of wait states is zero. For the immediate 

reward, the rewards earned at time ~t in the less-frequent 

problem should equal the immediate reward earned in the 

more-frequent problem at time ~t plus the expected dis-

counted immediate reward in the remainder of that interval 

(R~t ðs,wÞ ¼ r~t ðs,wÞþ
Pk−1

j¼1 kjp
j
~t
ðsjwÞ r!~tþjðwÞ ¼ r~t ðs,wÞþ

Pk−1
j¼1 

kjp
j
~t
ðsjwÞ r!~t ðwÞ).

Ck represents the per-period costs needed to use the 

more-frequent decision-making frequency compared with 

the less-frequent frequency; this value is dependent on k. 

We assume that Ck is time-homogeneous, and, since it 

captures costs, is non-positive. Ck only appears in the more- 

frequent problem, as this cost is not incurred in the less- 

frequent problem.

Figure 1. Timeline of the more- and less-frequent problems (using k¼ 4 as an 
example). In the less-frequent problem, the decision-maker can make one deci-
sion every four time units at the beginning of each decision epoch. In the 
more-frequent problem, the decision-maker can make one decision every one 
time unit at the beginning each decision epoch, resulting in four times as many 
decisions as the less-frequent problem.
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Let vtðsÞ, V~t ðsÞ denote the optimal value function of the 
state s 2 S, t 2 T,~t 2 ~T for the more-frequent and less- 
frequent problem respectively. At optimality, the following 
must hold for the more-frequent problem:

Similarly, for the less-frequent problem:

This problem is equivalent to one where the decision- 
maker may choose to accept while in a wait state if the 
lump-sum reward in that state is smaller than 

minðkvtðsÞ, 0Þ,8t 2 T, s 2 S, as wait will then always be 
chosen in wait states (see Lemma 1 in Appendix 1.1). We 
can set the reward for accept in wait states to satisfy this 
condition for any realistic problem. Therefore, for ease of 

notation in the remainder of this manuscript, we assume 
the action space is {accept, wait} for all states and the 
lump-sum reward for accept is sufficiently small in wait 
states.

4. Structural properties

4.1. Assumptions

We first make the following reasonable assumptions for the 

more-frequent problem; we also make analogous assump-
tions for the less-frequent problem as well (not shown for 
simplicity). In this and the following sections, many results 
pertain to a threshold policy. Similar to Bertsekas (2012) 

and Puterman (1994), we define a threshold policy where, 
given that the optimal action is accept for non-wait state i at 
time t, the optimal action will also be to accept for non-wait 
states j > i or for time t0 > t:

Assumption 1. Rewards are non-increasing over time and 
non-wait states.  

Assumption 2. Both P and p have the increasing failure rate 
property for all non-wait states.  

This means that as a patient progresses to a worse 
state, then this patient has a higher chance of progressing 
to an even worse state compared with patients in better 

health condition states. This is generally true in the 
healthcare context. 

Assumption 3. 

rtðs, wÞ þ
X

~Sj j

j¼1

psj, tðdÞuðjÞ − rtðs, aÞ � rtð�s, wÞ

þ
X

~Sj j

j¼1

p�sj, tðdÞuðjÞ − rtð�s, aÞ, for any non-increasing

u vector over state, 8s,�s 2 ~S,�s > s, t 2 T   

This means that the reward difference between wait and 
accept is non-increasing over states. For instance, the benefit 
of waiting is higher in a healthier state, as sicker states usu-
ally have higher mortality. Similar assumptions are com-
monly used in sequential decision-making problems in 
healthcare and have been used in prior work to show there 
exists a threshold policy over states (see Puterman (1994), 
page 107, and Chhatwal et al. (2010), for example). We will 
use this assumption for a similar purpose. 

Assumption 4. rt−1ðs, wÞ þ
P

~Sj j
j¼1 psj, t−1ðdÞuðjÞ − rt−1ðs, aÞ �

rtðs, wÞ þ
P

~Sj j
j¼1 psj, tðdÞ�uðjÞ − rtðs, aÞ, 8 non-increasing u, �u 

over state j such that uðjÞ � �uðjÞ > 0, 8s 2 ~S,8t 2 T, 8d 2 A.  

This means that the reward difference between wait and 
accept is non-increasing over time. For instance, the benefit 
of waiting is higher in an earlier decision epoch, as later 
decision epochs usually have higher mortality. Diseases with 
increasing mortality risk and progression probabilities satisfy 
this assumption. This assumption is very common in health-
care problems, as patients in worse health states are more 
likely to become sicker, and that effect worsens over time. 
For instance, one disease can lead to complications and 
comorbidities, as biological systems within the body are 
linked (e.g., having severe cirrhosis of the liver can lead to 
liver failure (University of California San Francisco, 2021), 

V~t ðsÞ ¼
max R~t ðs, aÞ, R~t ðs, wÞ þ kkP~t ðsjwÞV

!
~t
þ

h i

if s 62 fwait states, post-decision, deathg

R~t ðs, wÞ þ kkP~t ðsjwÞV
!

~t
þ if s 2 fwait statesg

0 if s 2 fpost-decision, deathg

8

>

>

<

>

>

:

9

>

>

=

>

>

;

:

vtðsÞ ¼
Ck þ max rtðs, aÞ, rtðs, wÞ þ kptðsjwÞ v!tþ1

� �

if s 62 fwait states, post-decision, deathg
Ck þ rtðs, wÞ þ kptðsjwÞ v!tþ1 if s 2 fwait statesg
0 if s 2 fpost-decision, deathg

8

<

:

9

=

;

:
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but over time this can also lead to other organs failing as 

well (Wu and Sundaram, 2019)). 

Assumption 5. The probability of entering wait states is 

zero. 
We focus our attention on non-wait states only, as wait 

will always be preferred in wait states by construction. This 

assumption allows us to establish a threshold policy and 

monotonicity over non-wait states. We show numerically 

that our structural outcomes can hold in non-wait states 

with violation of this assumption in Section 5. 
The above assumptions are important to establish thresh-

old policies and the theoretical results below. Topkis (2011), 

Puterman (1994) and other works have used supermodularity 

assumptions to establish control-type policies. We will also 

establish theoretical results based on similar assumptions. 

4.2. Structural observations 

Prior work on MDPs shows that our assumptions will gen-

erate monotonic (non-increasing) optimal policies in state 

for both the more-frequent and the less-frequent problem 

(Puterman, 1994). This means that if wait is preferred at 

non-wait state s at any time, then it is also the optimal pol-

icy for any non-wait state before s; if accept is preferred at 

non-wait state s, then it will be for all non-wait states after 

s. Similarly, there also exists monotonic optimal policies in 

time for both problems, as we show using a similar proced-

ure as in Chhatwal et al. (2016) (see Lemma 3 in 

Appendix). At any non-wait state, if accept is preferred at 

time t, then it will also be preferred in any time after t; if 

wait is preferred at time t, then it is also preferred for all 

times before t. These threshold policy results imply that if it 

is optimal to stop the problem at one time or state, then it 

is also optimal to do so at any later time or sicker state. 

Proposition 1. 

v~t ðsÞ − V~t ðsÞ �
X

N−
~t−

N−
~t

k

i¼0

kiCk, 8~t 2 ~T , s 2 ~S:

All proofs are provided in the Appendix. Proposition 1

holds without any of the previous assumptions. In the 

more-frequent problem, the decision-maker has more 

opportunities to make decisions, so it is intuitive that the 

optimal value for the more-frequent problem should be no 

less than the optimal value for the less-frequent problem if 

the cost of increasing the frequency is not considered. The 

right-hand-side is the total discounted cost of increasing the 

decision-making frequency k times. We can then think of a 

decision-maker comparing total costs to this additional 

benefit when making a decision about which offer frequency 

to use. This proposition also serves as the basis for discover-

ing relationships between the more-frequent and the less- 

frequent problem.  

Proposition 2. When accept is the optimal action in the 

more-frequent problem for non-wait state s, epoch ~t 2 ~T, if 

Ck � v~t ðsÞ − V~t ðsÞ, then accept is also the optimal action for 
the less-frequent problem for state s at time ~t:

Proposition 2 helps us understand the relationship 
between the more-frequent and less-frequent problem in the 
case where financial costs are less than the additional bene-
fits. This can serve as the foundation when building other 
interesting structural properties. This proposition does not 
rely on any assumptions and should hold for any problem 
(even without any threshold policies over state or time) 
described in the problem setup. Using this proposition, we 
can identify properties of the solution of the more-frequent 
problem by examining the solution for the less-frequent 
problem via contraposition. For instance, for a non-wait 
state s in a period ~t , if the optimal action in the less-fre-
quent problem is wait, then we know the optimal action at 
state s in ~t must also be wait in the more-frequent problem 
(as it cannot be accept, as it would also then be accept in the 

less-frequent problem). If there exists a threshold policy in 
both the less-frequent and more-frequent problems, the 
optimal action at t � ~t for the more-frequent problem must 
also be wait. We can then pre-solve part of the optimal 
strategy for the more-frequent problem by solving the less- 
frequent problem. Similar logic using this proposition shows 
that when there exists a threshold policy over time, then it 
must be the case that whenever the more-frequent and less- 
frequent problems differ in optimal policy, the less-frequent 
problem chooses accept while the more-frequent problem 
chooses wait for all ~t 2 ~T :

However, note that this proposition does not comment 
on the optimal actions at time t 62 ~T , and it is possible for 
the more-frequent problem to choose accept at a time t 62 ~T 
while the less-frequent problem does not have the opportun-
ity to change from the wait action. If so, the less-frequent 
problem’s optimal action at the next opportunity t 2 ~T 
should be accept (provided a threshold policy over time 
exists in the more-frequent problem). Also, this proposition 
does not provide a way to check if v~t ðsÞ − V~t ðsÞ � Ck: In 
Theorem 4, we will provide a sufficient condition to 
ensure v~t ðsÞ − V~t ðsÞ � Ck:

Let D~t ðsÞ ¼ v~t ðsÞ − V~t ðsÞ denote the difference in optimal 
values between the more- and less-frequent problem at time 
~t and state s. We next develop properties concerning D~t ðsÞ:

Theorem 1. When both problems have different optimal 
actions and Assumption 4 and Assumption 5 hold, then the 
difference in the optimal value, D~t ðsÞ, s 2 ~S, is non-increasing 
in time for all ~t 2 ~T when the optimal action for the more- 
frequent problem is to wait. Otherwise, D~t ðsÞ is non-decreas-
ing in time for all ~t 2 ~T :

Theorem 2. When both problems have different optimal 
actions, if Assumption 3 and Assumption 5 hold, then the dif-
ference in the optimal value, D~t ðsÞ, s 2 ~S, is non-increasing in 
state for all s 2 ~S when the optimal action for the more- 
frequent problem is to wait. Otherwise, D~t ðsÞ, is non-decreas-
ing in state for all s 2 ~S:

Theorem 1 and Theorem 2 state that the difference in 
the optimal value is always non-increasing over time and 
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over non-wait states if both the more- and less-frequent 
problems give different optimal actions and more-frequent 
problem choose to wait. This means that the additional 
benefit we could earn from switching to the more-frequent 
problems from the less-frequent problem will be non- 
increasing over both time and non-wait states if both prob-
lems do not agree with each other (however, note that when 
accept is the optimal action at time ~t 2 ~T for both problems 
then D~t , the difference between optimal values, is zero). 
When both the more-frequent and less-frequent problems 
give different optimal actions and the more-frequent prob-
lem prefers accept, using Proposition 2, we have D~t ðsÞ � Ck:

In this case, using the more-frequent problem costs more 
than the additional benefits gained. 

Let BðsÞ 2 ~T be the last epoch where the optimal policy 
for both problems is wait for state s 2 ~S:

Theorem 3. D~t ðsÞ, s 2 ~S is non-decreasing over time and 
states for ~t 2 ½0, BþðsÞÞ \ ~T , s 2 ~S, where BðsÞþ ¼ BðsÞþ
k, B−ðsÞ ¼ BðsÞ − k, if: (a) there is a threshold policy over 
time and non-wait states; (b) optimal values are non-increas-
ing over time; (c) DBþðsÞ is non-decreasing over non-wait state 
s; (d) pB−ðsÞðijwÞD

!
BðsÞ � pBðsÞðijwÞD

!
BþðsÞ, i 2 ~S; (e) and 

Assumption 5 holds.  

Theorem 3 requires that a threshold policy over non-wait 
states exists. However, note that if there exists a threshold 
policy only over some states, Theorem 3 may still be true. 
Condition (c) means that the additional benefit of more-fre-
quent decision-making is non-decreasing if health states are 
worse. This means a more severely ill patient would gain 
more from additional decision-making opportunities, which 
may be realistic as the potential health gains of intervention 
increase as a patient nears death. Condition (d) means the 
one-step ahead expected additional benefits of more-fre-
quent decision-making by choosing wait is smaller at time 
BðsÞ than at time BðsÞ þ k: For example, this would mean 
that the one-step ahead expected additional benefits for an 
ACLF3 patient aged 50 is less than that of the same individ-
ual at the same state at an older age. This may be reasonable 
as an older individual may have a faster expected rate of 
health decline and therefore have larger expected one-step 
ahead expected benefits of more frequent decision-making. 
When Theorem 1 and Theorem 3 hold, we know the largest 
additional benefit from switching to the more-frequent 
problem in each non-wait state will be garnered either in 
the last time period where both problems choose wait, in 
the first time the optimal policies do not agree, or the last 
decision epoch. 

We now turn to when D~t ðsÞ � 0: Let w~t ðsÞ ¼
maxfr~t ðs, aÞ, r~t ðs, wÞ þkp~t ðsÞ r!~tþ1ðaÞg:

Theorem 4. For s 2 ~S,~t 2 ~T, if Ck þ kCk þ r~t ðs, wÞþ
kp~t ðsjwÞw

!
~t � V~t ðsÞ, then D~t ðsÞ � 0:

Theorem 4 provides a sufficient condition for when 
D~t ðsÞ � 0: When this theorem holds, the largest additional 
benefit when comparing the less-frequent problem to the 
more-frequent problem will either be in the last time both 
problems choose wait or in the first time the optimal poli-
cies do not agree. Intuitively, this means that if the benefits 

of making an additional decision is greater than the costs of 

doing it, then D~t ðsÞ � 0:
Furthermore, for all time ~t and state s such that D~t ðsÞ �

0, according to Theorem 4, the optimal action for the 

more-frequent problem is always wait. In other words, we 

can identify a time threshold ts (for state s) for the more-fre-

quent problem, such that for any ~t � ts, the optimal action 

for state s is to wait. With this, we only need to focus on 

solving the periods ðts, N� for each state s for the more-fre-

quent problem. 
These four theorems are important in determining and 

quantifying the difference in value when comparing the less- 

frequent problem to the more-frequent problem. In the next 

section, we show numeric examples to better illustrate our 

theoretical results. 

5. Numerical examples 

We provide two numerical examples in this work. The first 

is on liver transplantation decision-making with k ¼ 2, for-

mulated through a partnership with a physician specializing 

in liver transplantation at Cedars-Sinai Hospital in Los 

Angeles (Section 5.1). The second example examines treat-

ment initiation for early-stage CKD patients (Section 5.5), 

with model details and results in the Appendix Section 1.3 

due to space constraints. 

5.1. Organ transplantation decisions among ACLF 

patients 

Unlike typical prior literature in organ transplantation 

(Alagoz et al., 2004, 2007), which focuses on general End- 

Stage Liver Diseases (ESLD) where patients have a relatively 

lower death probability within a year after entering the 

ESLD health state, we focus on a cohort of patients diag-

nosed with acute-on-liver-failure grade-2 and grade-3 

(ACLF2 and ACLF3, respectively). ACLF are types of acute 

liver failure where the patient has two (ACLF2) or three or 

more (ACLF3) simultaneous Organ Failures (OF) and is 

therefore in a severe, life-threatening condition. 

Conventionally, the transplant decision for these patients is 

made within a week or a month after transplant eligibility to 

avoid the high likelihood of death (Mahmud et al., 2020; 

Zhang et al., 2021). 
Some livers may have a higher probability of resulting in 

a successful transplantation, as measured by the Donor Risk 

Index (DRI), which is a function of age, cause of donor 

death (if donor is dead), race, donation after cardiac death, 

partial/split grafts, donor height, donor location, and organ 

cool time (Feng et al., 2006; Rosenberger et al., 2014). DRI 

depends on the donor, but not the recipient. Marginal livers 

(DRI � 1.7) are less likely to lead to successful transplant-

ation, whereas optimal livers (DRI < 1.7) are more likely to 

do so. The 1.7 threshold is well accepted in clinical practice; 

for instance, it is used in various prior medical literature 

(Avolio et al., 2008; Croome et al., 2012; Jesudian et al., 

2016). 
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Patient-physician teams may decline an offered organ in 

hopes of being offered another with better outcome proba-

bilities later. Different health systems have different expected 

waiting periods (Thuluvath et al., 2018). Our physician part-

ner indicated that in some health systems, ACLF2 and 

ACLF3 patients are offered a liver for transplantation as 

often as once per day. We therefore consider a 28-day deci-

sion-making framework, and a liver (either marginal or opti-

mal) may be offered to the patient every 2 days with some 

probability. Given these high-need patients, we forgo the 

queuing systems often seen in liver transplantation models 

(e.g., Bandi et al. (2019)) as these patients cannot survive a 

long transplant waitlist, and instead use an MDP stopping 

problem framework. Although our decision time horizon is 

short (a month), we include health outcomes one-year post- 

transplant and lifetime expected outcomes to capture clinic-

ally relevant outcomes. The model can also be extended to 

longer time horizons without structural modifications. 
We assume a liver is offered to eligible patients with 

probability X on a bi-daily basis. Conditional on a liver 

offer, we assume the likelihood of receiving an optimal liver 

offer is time-invariant. We assume that a liver offered on 

the last decision epoch must be accepted if the patient choo-

ses to wait on all prior decision epochs. 
Our objective is to evaluate the outcome of providing 

more frequent liver offers to eligible patients at specific 

times/health states, which may improve patients’ health at a 

cost. Additional liver offers may rely on multiple listing or 

transferring to other transplant centers (Ardekani and 

Orlowski, 2010; Vagefi et al., 2014; UCSF Health, 2023; US 

Dept. of Health & Human Services, 2023), and may also 

depend on a hospital’s resources, the price of organ trans-

portation, and other logistical costs. It may also mean add-

itional costs borne by the patient, if they must make 

additional decisions regarding accepting/rejecting a liver. 

Identifying the value in increasing the frequency of liver 

offers is therefore of policy importance; this value must 

exceed the costs if the increase in offers is to be net 

beneficial. 
We compare the less-frequent problem where an organ is 

offered with probability X every 2 days to the more-frequent 

problem where a liver is offered with probability x every 

day (the more-frequent problem). X and x depend on the 

number of organ failures suffered by the patient; those with 

more failures are prioritized over those with fewer 

(Thuluvath et al., 2018). If a liver is offered, with probability 

o it will be an optimal liver offer, and we assume this is 

invariant across patient-types. Thus at each epoch in the 

more-frequent problem, an ACLF2 or ACLF3 patient may 

be offered one of three options: a marginal liver (ð1 − oÞx), 

an optimal liver (ox), or no liver at all (1 − x). The patient 

can decide to accept the offer if a liver is offered. If an opti-

mal liver is offered, there are no benefits to rejection, so it 

will be accepted. This is confirmed by both clinical experts 

and model outputs if we allow patients to make decisions 

when receiving an optimal liver. However, if a marginal liver 

is offered, the patient may decide whether to accept the liver 

or not. Accepting a marginal liver will lead to a lower post- 

transplant quality of life, while rejecting will mean the 
patient is exposed to mortality risk for at least the time until 
another liver is offered. 

Our goal is to quantify the benefit of increased decision- 
making frequency. In this scenario, there are benefits 
accrued from both additional offered livers (x livers offered 
per 2 days in expectation in the less-frequent problem and 
X livers offered per day in expectation in the more-frequent 
problem), as well as additional opportunities to make more 
decisions as the patient’s health state is observed (ACLF3, 
ACLF2, dead, etc.). We first quantify the total benefit, then 
analyze the contribution of each separately in Section 5.1.4. 

We quantify the benefit of increased quality of life and 
duration of life (the rewards R) through Quality Adjusted 
Life Years (QALYs) and the willingness-to-pay threshold. 
QALYs were first adopted for cost-effectiveness analysis and 
is now widely used in medical decision-making problems 
(Weinstein et al., 2009). QALY weights range from zero to 
one, and they take both quality of life and quantity of life 
lived into consideration. For example, for a patient with 
ACLF, the QALY weight for a year of life is 0.4 (Wells 
et al., 2004) while a perfectly healthy person will have 
QALY weight of one. Because we need to compare these 
benefits with financial costs, we convert these QALY 
rewards to dollars using a conversion factor, T (the com-
monly used “Willingness-To-Pay (WTP) threshold”) 
(Weinstein et al., 2009). For example, an accepted WTP per 
QALY gained in typical cost-effectiveness analyses is $50,000 
per QALY gained (Grosse, 2008); the dollar value of the 
health benefit is then the product of the QALYs gained and 
$50,000 per QALY gained. Thus, R ¼ T � QALYs. Our 
value function at time t, which additionally takes into 
account the financial costs Ck in the more-frequent problem, 
is then the Net Monetary Benefits (NMB), as commonly 
referred to in healthcare decision-making (Trippoli, 2017). 

We solve both the more- and less-frequent MDPs with 
NMB objective values. This allows us to compare the mar-
ginal benefits of increasing the frequency of organ dona-
tions. We also identify when the difference between the 
optimal values of the two problems (D) is maximized in 
each state. We perform this analysis using empirical data 
and perform sensitivity analyses around uncertain parame-
ters. We examine how D changes over states in our sensitiv-
ity analysis to numerically demonstrate Theorems 2 and 3. 

5.1.1. Model inputs 

We use United Network for Organ Sharing (UNOS) data 
and values from the medical literature to parameterize both 
MDPs. We use the likelihood of receiving an organ (x), the 
conditional likelihood of receiving an optimal liver given a 
liver offer (o), death probability (c), and the probability of 
improving from a worse to a better health state (n) to 
parameterize the transition matrix p~t ðwÞ: We use the eigen- 
decomposition method to calculate P~t ðwÞ: The time-invari-
ant relative risk (rr) of survival is used to calculate the 
post-transplant survival probabilities for a marginal organ. 
The model structure and inputs were validated by clinical 
experts from the Cedars Sinai Health System. we vary o and 
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rr in sensitivity analysis as they are uncertain and may vary 

by transplant center. Critically, we relax the assumption that 

there is no probability of entering a wait state to numerically 

evaluate whether this will change outcomes from the theor-

etically proven results above. See Appendix 1.2.1 for details 

on model inputs. 

5.1.2. Assumptions 

We make the following additional assumptions in our 

numeric experiments while relaxing Assumption 5. First, we 

assume a ACLF2/3 patient will always accept an optimal 

liver if it is offered. Second, we stratify ACLF3 patients to 

ACLF ¼3OF and ACLF >3OF with the former having 

exactly three OFs and the latter having more than three 

OFs. We assume the likelihood of improving from ACLF 

>3OF to ACLF ¼ 3OF is equivalent to the probability of 

improving from ACLF ¼ 3OF to ACLF2. Third, we assume 

that all patients will accept the offered liver at the end of 

the time horizon if a liver is offered, regardless of organ 

type. 

5.1.3. Base case results 

We relax the assumption that the probability of entering 

wait states is zero in our numerical analyses. Even so, our 

base case outcomes are consistent with our theoretical 

results on threshold policies over time and state when a 

marginal liver is offered, as well as with all propositions and 

theorems. In the less-frequent problem, for ACLF2, ACLF 

¼3OF, and ACLF >3OF patients, respectively, we find that 

the optimal policy recommends waiting at most 4 days, 2 

days, and 2 days for an optimal liver. We then use these 

results and Theorem 4 to identify the threshold ts for all 

states (the threshold for state s such that for any ~t � ts, 

D~t ðsÞ � 0 – the optimal action for state s at time ~t must be 

wait). The thresholds are day 4, 2, and 2 for ACLF2, ACLF 

¼ 3 OF, and ACLF > 3 OF patients, respectively. Given the 

solution from the less-frequent problem, we know the opti-

mal action for the more-frequent problem must be wait 

from day 0-4, 0-2, and 0-2 for ACLF2, ACLF ¼ 3 OF, and 

ACLF > 3 OF patients, respectively, in the more frequent 

problem. We then only need to solve for the optimal action 

on days 4-28, 2-28, and 2-28 for ACLF2, ACLF ¼ 3 OF, and 

ACLF > 3 OF patients, respectively. After doing so, we find 

that the optimal policy recommends waiting at most 6 days, 

2 days, and 2 days for ACLF2, ACLF ¼ 3 OF, and ACLF >

3 OF patients. As expected, the results from the more-fre-

quent problem recommend a longer wait duration than the 

less-frequent problem as the more-frequent problem pro-

vides an additional offer every 2 days. 
We show the difference in optimal values (D) in Figure 

2. The largest difference in the optimal value between the 

more-frequent and less-frequent problems ranges from 

$50,730 to $59,203. For ACLF3 patients (both with 3OF and 

>3OF), these differences decrease over time until both prob-

lems have the same optimal action, when the difference 

value goes below zero (when both problems’ optimal action 

is accept). When D >0, it would be beneficial for the patient 

to choose multiple-listing or transfer to another transplant 

center for a higher frequency of receiving livers. For 

example, suppose there was an ACLF2 patient (without an 

optimal liver offer) who had an opportunity to transfer to a 

transplant center with average offer frequency of once a day 

from another transplant center with an average offer fre-

quency of once every 2 days. From Figure 2, we see that this 

patient would not benefit from the transfer after day 6, so 

transfers should be made before then. 
From Figure 2, we see D > 0 even when both problems 

have the same recommendation, but note that the difference 

in expected rewards may not be Ck even when the optimal 

actions for both problems across time are the same. The dif-

ference in expected values can vary because the more-fre-

quent problem allows the decision-maker to more closely 

track the status of the patient’s state, leading to a higher 

expected reward even when the optimal policy is the same. 

Moreover, the decision-maker is provided additional offers 

which also leads to a higher expected reward. 
We identify when the difference between the optimal val-

ues of the two problems (D) is maximized for ACLF2, 

ACLF ¼3OF, and ACLF >3OF patients when a marginal 

liver is offered. We will refer to this epoch as the “time of 

peak D” and the D value at this time as the “value of peak 

D.” Note that different states have possibly distinct “time of 

peak D” and “value of peak D.” Identifying the difference at 

the time of peak D is important as it is the maximum per- 

epoch benefit of switching to the more frequent decision- 

making framework. In the base case, the time of peak D are 

day 4, day 2, and day 2 for ACLF2, ACLF ¼3OF, and ACLF 

>3OF, respectively. The values of peak D are $59,203, 

$50,730, and $54,974 for ACLF2, ACLF ¼3OF, and ACLF 

>3OF, respectively. 

Figure 2. Difference in the expected reward earned over time between more- 
frequent (M) and less-frequent (L) problems for the marginal states with ACLF2, 
ACLF ¼3OF, ACLF >3OF. The difference between more-frequent and less-fre-
quent problem drops below $0 once both problems’ optimal actions are accept. 
Triangles denote when the optimal actions for both problems are wait, “þ” 
when it is wait in M and acccept in L, and “�” when the optimal actions for 
both problems are accept.
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Analyzing how the difference value changes over time 
helps us determine the time of peak D. The difference 
increases until the more-frequent and less-frequent problems 
have different optimal strategies, after which it decreases. 
When the optimal actions for both problems are accept, the 
difference value becomes negative, as both problems have 
the same action but the more-frequent problem has costs of 
additional decision-making opportunities. This insight illus-
trates a general insight into when the time of peak D occurs: 
the largest difference in value occurs at either the last deci-
sion epoch when the optimal action for both problems is 
wait or the first decision epoch when both problems have 
different optimal actions. This is because the difference value 
is non-decreasing when the optimal action for both prob-
lems is wait and non-increasing when the problems have 
different optimal actions. For instance, according to 
Theorem 3, for ACLF2 patients, the difference value D is 
non-decreasing between day 0 to 4 as both problems recom-
mend to wait. 

This difference in value function between the two prob-
lems represents the additional lifetime expected NMBs for 
using the more-frequent framework. As Ck increases, D will 
decrease. For example, for ACLF2 patients using base case 
parameter values, the peak value of D will decrease by 
approximately $1200 if Ck increases by $500. 

We find that twice-as-frequent offers would not be net 
beneficial at any time if Ck is greater than $27,209 for 
ACLF2 patients, $24,256 for ACLF ¼3OF patients, or 
$27,044 for ACLF >3OF patients. If costs were higher than 
these values, it would not be worthwhile to pursue increased 
organ offers even if it resulted in twice as frequent offers. 
Although our analysis is conservative and very uncertain, 
this provides a ballpark threshold for costs. 

We can also use Theorem 4 to identify an upper bound 
on the Ck to ensure that twice-as-frequent decisions would 
be net beneficial. We find these values to be $21,121, 
$20,395, and $27,030 for ACLF2, ACLF ¼3OF, and ACLF 
>3OF patients, respectively. Comparing these values with 
the actual Ck upper bound values derived numerically above, 
we find that these values are smaller, as expected (as 
Theorem 4 only provides sufficient conditions). However, all 
theoretical values are close to the numerically derived values, 
showing that this sufficient condition can be practically use-
ful. The gap between actual and Theorem 4-derived Ck is 
larger for healthier patient, as one-step look ahead approxi-
mation is less accurate when patient has longer time to wait. 

Variation in k. Our framework also allows us to consider 
situations where the offer frequency is more than doubled— 
k can by any integer. With a larger k, we observed a longer 
maximal waiting duration for an optimal liver for patients 
and a larger value of peak D. For more details, we refer the 
reader to Appendix 1.2.7. 

5.1.4. Sensitivity analyses: Variation in relative risk of 

mortality and probability of being offered an opti-

mal liver 

Changes in difference value changes over time. The value of 
the relative risk (rr) of post-transplant mortality and the 

likelihood of receiving an optimal liver (o) depends on hos-

pital characteristics. We vary o between 0.5 and 0.7 and rr 

between 0.7 and 0.9 (ranges determined from discussions 

with clinical experts). Appendix table 3 shows the maximum 

number of days the model recommends waiting for an opti-

mal liver and the maximum benefits provided by the more- 

frequent compared to the less-frequent problem. 
We find that the propositions and theorems demon-

strated in the base case analysis also hold for cases in the 

sensitivity analysis: there exists threshold policies over time 

and states with marginal liver offered for all cases, the 

more-frequent problem always provides more benefits, and 

the optimal value function is always non-increasing in time. 

The value of D is monotone over the appropriate times as 

defined in Theorem 1 and Theorem 3. 
Figure 3 illustrates the outcome described in Theorem 1, 

which states that when the problems have different optimal 

actions, the difference in optimal values must be non- 

increasing over time. We see this from day 6-8 for ACLF2 

patients – in this period, the optimal action for the more- 

frequent problem is wait whereas the optimal action for the 

less-frequent problem is accept. Similarly, Theorem 3 states 

that when the optimal policy for both problems is the same 

(wait), the difference in optimal values must be non- 

decreasing over time, as seen in days 0-4. 
We see substantial variation across both problems in the 

maximum number of days to wait for an optimal liver 

across the o and rr ranges evaluated. In all but the last case 

in Appendix table 3, the results from the more-frequent 

problem recommend a longer waiting period, as expected. 

Offering an additional liver each day as well as allowing the 

decision-maker to track the patient’s status more closely 

makes the wait option more beneficial, as there will be more 

opportunities to be offered an optimal liver in the future 

Figure 3. Difference in the expected reward earned over time between more- 
frequent (M) and less-frequent (L) problems for the marginal states with ACLF2. 
The difference in optimal value is marked triangular when the optimal action 
for both problems is wait, marked “þ” when the optimal action for the more- 
frequent problem is wait while the optimal action for less-frequent problem is 
accept, and marked “�” when the optimal action for both problems is accept.
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and there will be more opportunities to halt a quickly dete-

riorating health state. 
As shown in Appendix table 3, we notice that both the 

time of peak D and the cost at that time increases as the 

relative risk decreases, because the decrease in the relative 

risk will lead to a larger difference in benefit between an 

optimal and a marginal liver. The time of peak D also 

increases as the likelihood of receiving an optimal liver 

increases. This suggests that the decision-maker would 

switch from a less-frequent problem to a more-frequent 

problem later when the likelihood of receiving an optimal 

liver is larger. 
Appendix table 3 also illustrates that the largest difference 

in value occurs at either the last decision epoch when the 

optimal action for both problems is wait or the first decision 

epoch when both problems have different optimal actions. 

For instance, when o¼ 70% and rr¼ 0.7 for ACLF ¼ 3OF 

patients, the maximum D value is achieved at the last deci-

sion epoch when the optimal action for both problems is 

wait (day 2). For ACLF2 patients in this case, however, the 

time of peak D is the first decision epoch with discordant 

optimal policies. Also, by finding the value differences at 

peak D for these two cases, we know that the maximum 

benefit of switching from the less-frequent problem to the 

more-frequent problem is $79,937 for ACLF2 patients and 

$68,923 for ACLF ¼3OF patients. 
Changes in difference value over states. Figure 4 shows D 

when o¼ 70% and rr ¼ 0.5. Theorem 2 states that when 

both problems have different optimal actions, the difference 

in optimal values must be non-increasing over states. We 

see this among ACLF ¼ 3OFOF and ACLF >3OF patients 

on day 6, as the optimal action for the more-frequent prob-

lem is wait whereas it is accept for the less-frequent prob-

lem. Similarly, Theorem 3 states that when the optimal 

policy for both problems is the same (wait), the difference 

in optimal values must be non-decreasing over states, as 

seen in all states in days 2 and 4, when both more- and 

less-frequent problems recommend wait. 

Analyzing how the difference value changes over non- 

wait states helps us understand how the benefits change 

over the health state. Generally, in early decision-making 

periods, when both problems recommend wait, patients 

with more organ failures will benefit more from additional 

liver offers. Later, the two problems recommend different 

optimal actions (if offered a marginal liver, the more-fre-

quent problem recommends wait whereas the less-frequent 

problem recommends accept) in sicker states while both 

problems recommend wait in healthier states. This shows 

that the sicker states will gain less benefit from additional 

decision-making as sicker patients are recommended to 

accept a marginal liver in the less-frequent problem, due to 

higher mortality probability, and therefore have lower bene-

fits compared with healthier states when both problems rec-

ommend wait. 
Where does the benefit come from? In this example, the 

benefit of more-frequent decision-making arises from both 

receiving more liver offers and additional decision-making 

opportunities. To understand which contributes more 

towards increasing the value of peak D, we consider a case 

study for ACLF2 patients, where we fix the probability of 

receiving a liver offer to be the same over a 2-day interval 

in both the more- and less-frequent problems. The differ-

ence between the benefit accrued in this scenario and the 

previous base case values will then quantify the benefit asso-

ciated with receiving more livers. To do this, we set the like-

lihood of receiving a liver for the less-frequent problem (X) 

to one. Then we set the probability for the more-frequent 

problem (x) such that both problems produce one liver 

offer every 2 days in expectation. Assuming o¼ 70% and 

rr¼ 0.7, we found that the value of peak D is $1490. The 

base case found $79,937 of additional benefit obtained for 

ACLF2 patients, so the additional benefit mainly comes 

from receiving liver offers. 

5.2. Treatment initiation for early-stage CKD 

Our second numerical example focuses on a monitoring 

problem for treatment initiation, where physicians can only 

observe patient health states for updating treatment plans 

during an office visit. Disease progression progresses sto-

chastically, and the optimal frequency of these visits may 

vary by health state and time. 
In this example, we examine a decision for how fre-

quently to monitor early-stage CKD patients to determine 

treatment initiation time. CKD patients are categorized into 

five stages by disease severity, as measured using the esti-

mated Glomerular Filtration Rate (eGFR). According to cur-

rent guidelines, CKD patients should undergo at least yearly 

eGFR checkups and initiate Angiotensin-Converting Enzyme 

(ACE)/Angiotensin Receptor Blocker (ARB) treatment 

immediately after reaching stage 3 (New et al., 2007; Tahir 

et al., 2007). However, there is some controversy regarding 

whether annual checkups are sufficient (Hirano et al., 2019), 

and considering the low cost associated with ACE/ARB 

treatment, there is a possibility that early initiation of such 

treatment could benefit patients (Sharma et al., 2011). The 

Figure 4. Difference in the expected reward earned over states between more- 
frequent (M) and less-frequent (L) problems for day 2, 4, and 6.
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optimal monitoring frequency and time to initiate treatment 

would depend on the lifetime health benefits and costs (as 

measured using NMB). However, more frequent office visits 

for CKD status monitoring incurs additional costs, and 

more-frequent physician visits would only be beneficial if 

these costs were offset by the health benefits of catching dis-

ease progression earlier. 
We therefore use our approach to quantify the relative 

benefit of more frequent treatment initiation opportunities 

for early stage (stage 1-2) CKD patients. To do this, we cre-

ate two equivalent MDPs for patients in stages 1, 2, and 3þ:

The less-frequent MDP problem uses a 12-month decision- 

making frequency, whereas the more-frequent assumes 6- 

month checkups. The available actions in both MDPs are to 

either initiate treatment or wait. We assume increasing the 

decision-making frequency incurs a cost (Ck). We use a pre-

viously established CKD simulation model to estimate 

rewards and transition probabilities (Hoerger et al., 2010). 

Details of the model, solution, and outcomes are given in 

Appendix Section 1.3. 
Our investigation shows that early treatment initiation is 

necessary and beneficial for stage 1 and 2 CKD patients for 

some age groups, regardless of the decision-making fre-

quency. Remarkably, the optimal policies derived from both 

MDPs are identical, indicating that the decision-making fre-

quency does not significantly impact the recommended 

course of action. Furthermore, the differences in optimal 

values between the two MDPs fall below zero. This suggests 

that a higher frequency decision-making framework may not 

yield substantial benefits, as the progression of chronic dis-

eases like CKD tends to be slow. These results indicate that 

the current monitoring frequency recommendations are suf-

ficient, despite ongoing controversy to the contrary. 
Our findings in this example also validate and strengthen 

our theoretical results, as all results were consistent with our 

theoretical conclusions and served to illustrate that they 

were applicable in a CKD context. These results demonstrate 

that our approach to quantifying the benefit of additional 

decision-making opportunities can be extended and applied 

to various healthcare scenarios, showcasing its generalizabil-

ity and relevance in different healthcare applications. 

6. Conclusions 

We examine the value of making more frequent decisions in 

a discrete-time, finite-horizon MDP stopping problem 

framework. We quantify the benefits of making more fre-

quent decisions as well as provide useful structural proper-

ties that can help decision-makers decide which frequency 

decision-making model to use when more frequent decisions 

are costly. 
In our theorems, we provide novel insights comparing 

the value difference between the more- and less-frequent 

problems. We identified properties of the more- and less- 

frequent problems to determine when there exists a thresh-

old policy in time and in non-wait states. We additionally 

found properties of the difference in expected value between 

these problems and provide sufficient conditions for when 

more-frequent decision-making would be net beneficial. We 

provide sufficient conditions under which we can guarantee 

that the more-frequent decision-making framework would 

be preferred for some states at some time, and we demon-

strate all of our theoretical results numerically in our 

examples. 
We provide two numerical examples to showcase the 

practical application of our work. The first examines liver 

transplantation to determine the value of more frequent 

liver donations. We use data from the UNOS database to 

parameterize our model for severely ill patients with mul-

tiple organ failures (ACLF2/3). Our numerical example 

shows that the maximum benefit from additional decisions 

(the value at peak D) is roughly $60,000 in NMB over the 

post-transplant lifetime when Ck is $2000. This benefit, 

which includes both health outcomes and financial costs, 

decreases to zero if the per-patient, per-period cost of using 

the more-frequent framework increases to roughly $25,000. 

In sensitivity analyses, we find that this benefit is inversely 

proportional to the relative risk of mortality, rr, but is rela-

tively invariant with the likelihood of receiving an optimal 

liver, o. 
The policy implications of our work are that (i) we can 

identify cost-thresholds over which it would not be benefi-

cial to provide even severely ill patients (ACLF2/3) patients 

with more frequent organ offers, and (ii) even if it is net 

beneficial to do so, it may not be beneficial to do so for all 

periods and patient health states—and our analysis frame-

work can identify when it is worth it, thus allowing for tar-

geted offer frequencies. Currently, liver offers already 

consider patient severity (through MELD scores, etc. (US 

Dept. of Health & Human Services, 2022)), and given the 

push for more patient-tailored healthcare, perhaps it would 

be realistic to push for individualized organ offer frequency. 
In a second example, we demonstrate the broad applic-

ability of this framework by considering a treatment initi-

ation problem for CKD patients. This example not only 

confirms the validity of our theoretical findings, but also 

offers insights into the importance of early treatment initi-

ation for CKD patients. We found that the value at peak D 

is negative, indicating that it would not be net beneficial to 

increase the frequency of early-stage CKD patient monitor-

ing from the recommended annual check-up. This shows 

how our comparative MDP analysis can contribute towards 

clinical controversies in monitoring frequency. 
We must acknowledge several limitations of this work. 

We set up the more-frequent problem in a way that the two 

transition probability matrices for every 2 days are identical 

if their time indices belong to the same time epoch in the 

less-frequent problem for simplicity. In reality, the transition 

probability matrix is changing continuously over time. 

However, since the change in the transitions within a short 

time period is negligible, our results should not change sub-

stantially in our numerical analysis even had we allowed the 

transition matrices for t and t þ 1 periods to be different. 
We limit our analysis to stopping problems, as these 

occur naturally in many healthcare settings, but many inter-

esting MDPs also fall outside this category. We only analyze 

12 S. ZHANG ET AL.



problems where the more-frequent framework allows for k 

times as many decisions, where k is an integer; this limits 

the generalizability of our analysis. In our theoretical ana-

lysis, we assume that the probability of entering wait states 

is zero. Future work should focus on incorporating the pos-

sibility of transitions into wait states. Our analysis focuses 

on finite horizon models, and we leave the extension of this 

work to infinite horizon models for future work. 
Our numerical analysis relies on highly uncertain input 

values, particularly Ck: However, we perform sensitivity 

analyses and identify upper bounds for Ck above which the 

cost would no longer justify the additional decision-making 

opportunities, and we compare these numerical outcomes to 

our theoretical bounds. 
Despite these limitations, we believe that this work pro-

vides interesting insights for not only transplantation appli-

cations, but also other applications such as monitoring 

problems with regular decision epochs. This article draws 

attention to quantifying the benefits of a more-frequent 

decision-making framework in healthcare settings. We 

derived structural properties between the more-frequent and 

the less-frequent problems, and provided a numerical 

example to show how to make use of these results. These 

results have implications for a wide variety of MDP stopping 

problems and provide insight into future work on improving 

the speed of MDP solution algorithms. 
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