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ABSTRACT

Sequential decision-making problems in the context of uncertainty naturally arise in healthcare
settings. In general, the frequency at which decisions can be made or changed is determined by

ARTICLE HISTORY
Received 17 May 2022
Accepted 11 February 2024

physical limitations, such as the frequency of doctor’s visits or transplantation offers. Quantifying

the benefits of increasing the frequency of decision-making allows us to quantify the value of
changing these physical constraints and thus improve the quality of care. In this article, we study
the value provided by having additional decision-making opportunities in each epoch. We model
this problem using a Markov Decision Process (MDP) framework. We provide structural properties
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of the optimal policies and quantify the difference in optimal values between MDP problems of
different decision-making frequencies. We analyze numerical examples using liver transplantation
in high-risk patients and treatment initiation in chronic kidney disease to illustrate our findings.

1. Introduction

Sequential decision-making problems with fixed decision
intervals in the context of uncertainty naturally arise in
healthcare settings: monitoring problems, treatment initi-
ation problems, disease testing, and diagnosis frequency, etc.
For example, a patient with a chronic illness may require a
tailored treatment regimen as their disease progresses over
time, or a patient with organ failures may be offered organ
transplants of varying quality, and may choose to wait or
accept offered organs as their own survival probability
declines.

In general, the frequency at which decisions can be made
or changed in these contexts is determined by some physical
limitation that occurs regularly over time, e.g., the frequency
of doctor’s visits or transplantation offers. In many health-
care settings, such limitations are often costly and must
occur after a discrete interval of time. For instance, Chronic
Kidney Disease (CKD) treatment regimen changes can only
be made when the patient visits a doctor’s office, which may
happen at some interval (e.g., weekly, monthly, etc.). These
followup frequencies often vary by patient health or disease
progression rate, but the optimal frequency for a particular
health state may be unknown. Increasing the frequency may
provide benefits - catching disease progression sooner and
faster modification of treatment plans as the patient’s needs
change - but may also impose costs to patients. It is

therefore critical to carefully determine whether it is net
beneficial to have more frequent visits.

This problem also arises in the context of organ trans-
plantation. A patient waiting for organ transplantation may
choose to invest in efforts to increase the frequency of
receiving organ offers. Such efforts include transferring to
hospitals that have shorter waiting periods (UCSF Health,
2023; UW Health, 2023), and multiple-listing (US Dept. of
Health & Human Services, 2023). Transplant centers may
have different organ offer frequencies and duration until
transplant. Multiple listing entails the process of enrolling at
two or more transplant hospitals. Candidates located near
the donor hospital are typically prioritized over those farther
away, so opting for multiple-listing can enhance patients’
prospects of receiving a local organ offer and chance of
transplantation (US Dept. of Health & Human Services,
2023). For example, people who are multiple-listed for heart
transplantation have a shorter average second listing waiting
period (126 days) compared with the first listing waiting
period (335 days) (Givens et al, 2015). The Organ
Procurement & Transplant Network policy also allows
patients to transfer primary waiting time to another hospital
or switch wait time between programs if multiple-listed.
However, multiple-listing usually involves completing add-
itional evaluations for the new hospital and coordination
with the insurance provider. Such efforts may be financially
costly and time-consuming, and it may be useful to under-
stand the value of increasing the frequency of donated
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organs to organ recipients to better determine whether the
costs associated with such efforts are justified. As these
efforts for increasing the frequency of receiving an organ
offer are primarily an individual patient’s medical decision,
we approach the problem from the patient’s perspective.

In these contexts, it is important to identify the best
times to offer more frequent decision-making opportunities
and quantify the associated benefits. This allows for better
evaluation of whether the benefits justify the potential costs
of creating these additional decision-making opportunities.

1.1. Research question and approach

What is the value in increasing opportunities to make deci-
sions, specifically in the context of stopping problems when
decisions can only happen at regular intervals? While many
works have studied timing trade-offs, even within the
Markov Decision Process (MDP) literature, we here take a
novel approach of directly comparing two MDPs—one with
more frequent decisions, structured such that the state out-
comes are equivalent if the action is to continue (as opposed
to stopping). This comparison allows direct quantification of
the value of more frequent decisions in addition to the iden-
tification of the optimal stopping time (which is the typical
motivation in previous literature).

We will explore this problem in the context of the
“more-frequent” and the “less-frequent” MDP problems. In
scenario 1 (“less-frequent” decision), a decision-maker has
an opportunity to “stop” a process at each interval. We con-
trast this to scenario 2 (“more-frequent” decision), where
the decision is made every 1/k intervals (where k is an inte-
ger). How much more should a policy-maker value these
additional opportunities?

We use the same state space, action space, and discount
factor for both the more- and less-frequent problems, but
the number of epochs in the more-frequent problem is k
times that of the less-frequent problem. The transitions are
such that, given the same sequence of actions (i.e., the
more-frequent problem follows the same policy as in the
less-frequent problem for all additional decision-making
epochs at each state), both problems generate the same like-
lihood of ending up in each state. The reward values over a
given duration are also equivalent if the same actions are
used in both problems. In the more-frequent framework, a
per-period cost accounts for all costs associated with add-
itional decision-making opportunities. This problem setup
allows us to use these two scenarios to study the benefits of
increasing decision-making frequency in stopping problems,
all else equal.

We make four main contributions in this study. First, we
provide structural results around the valuation of decision-
making frequency in MDP stopping problem frameworks.
Understanding this valuation allows us to decide how often
decisions ought to be made to increase utility. Despite sub-
stantial prior literature in the area of discrete-time MDPs,
we are not aware of any prior work that has examined this
problem rigorously. Secondly, we provide structural results
relating to less-frequent and more-frequent problem

solutions. This allows us to partially solve one problem
when the optimal solution is known for the other, allowing
us to translate knowledge from one context to another.
Third, we analyze the difference between the optimal values
of the two problems and when this quantity is maximized.
This novel approach allows us to quantify the benefits of
making more frequent decisions. Moreover, this informs us
of when it would be more profitable to switch to a more-
frequent decision-making framework. Fourth, we provide
two numerical examples using liver transplantation among a
particularly severely ill patient population and early-stage
CKD treatment initiation using empirical data. These exam-
ples demonstrate how this framework might be used in
diverse healthcare applications and illustrate its applicability
in similar problem contexts.

2. Literature review
2.1. MDPs in healthcare applications

MDPs have long been used in the operation research litera-
ture for a variety of applications, including inventory man-
agement (Giannoccaro and Pontrandolfo, 2002), portfolio
management (Bauerle and Rieder, 2009), production and
storage (Arruda and do Val, 2008), and others. There is a
deep literature in solving and understanding MDP structure
(Puterman, 1994; Givan and Parr, 2001; Topkis, 2011).
These works have provided the foundations of many subse-
quent results on threshold structures of MDP policies, and
we will similarly rely on those results here. As in prior lit-
erature, we will examine threshold policies and monotonic
structure over time and state space, but we will extend this
work to examine their implications when comparing more-
and less-frequent decision-making frameworks. We point
the reader to Sonnenberg and Beck (1993), and Givan and
Parr (2001), Schaefer et al. (2004), Alagoz et al. (2010) for a
more complete review of MDPs.

MDPs are also a commonly used tool for healthcare
applications, and have been used for applications such as
screening (Chhatwal et al, 2010; Alagoz et al, 2013),
sequential disease testing (Arruda et al, 2019; Singh et al,
2020), treatment initiation (Shechter et al, 2008; Liu et al,
2017), and organ transplantation (see below). Within this
MDP framework, we focus our analysis on finite horizon
stopping problems. Stopping problems are commonly used
for treatment initiation problems and organ transplantation
problems and form an important healthcare policy decision
tool. In these and other health-related problems, a finite
decision horizon is typically considered. Among the prob-
lems mentioned here, several are stopping problems (David
and Yechiali, 1985; Ahn and Hornberger, 1996; Alagoz
et al., 2004, 2007; Shechter et al, 2008; Chhatwal et al,
2010; Kurt et al, 2011; Alagoz et al., 2013; Liu et al., 2017).
Previously, authors have focused on establishing threshold
policies over either state or time in an MDP framework. For
instance, Alagoz et al. (2007) identified an at-most-three-
region optimal policy for an infinite-horizon MDP model
for liver transplantation. Shechter et al. (2008) considered
both state thresholds and time thresholds to find the optimal



HIV treatment initiation time. However, to the best of our
knowledge, no paper has considered how these threshold
policies may change if the frequency of decision-making is
changed. In this work, we extend prior analyses by addition-
ally studying this problem and extending threshold proper-
ties to provide novel insights into estimating the value of
decision-making frequency.

2.2. Epoch sizes in MDPs

There are two main time-related components that impact a
decision-making process: the time horizon and epoch size.
The former has been studied in prior literature, as exempli-
fied by literature that considers the effect of different lengths
of life on decision-making (Ehrlich, 2000; Dybvig and Liu,
2010). The latter has received less attention, although many
authors have investigated questions involving epoch intervals
in their work, particularly within the reliability literature.
For instance, Barlow and Proschan (1975) focus on prob-
abilistic aspects of reliability theory and include discussion
of timing problems, and Kuo (2006) used a partially observ-
able MDP (POMDP) in machine maintenance, allowing the
intervals between sampling draws to vary. See Wang (2002)
for a review of the reliability literature. However, unlike
prior work, we do not only focus on when an action should
be taken, but also the additional value generated from hav-
ing the opportunity to make more frequent decisions.
Although we may find that the optimal time to act may be
the same, there may be value in having had more chances to
change one’s decision.

While an alternative would be to use a Continuous-Time
MDP (CTMDP) or Semi-MDP (SMDP) model, we focus on
a discrete-time formulation in alignment with the majority
of the work in clinical and healthcare applications using
MDPs, with the hope that this makes our work more gener-
alizable. CTMDP and SMDP frameworks are usually more
difficult and more computationally costly to solve than dis-
crete-time MDP models, and this may also contribute
towards their relative unpopularity in the healthcare applica-
tion context.

However, even within the context of discrete-time models
in healthcare, the choice of epoch size is not always clear.
This has led to prior work on methods to convert between
epoch sizes; for example, Chhatwal et al. (2016) shows how
eigen-decomposition methods can be used for converting
transition probability matrices between different lengths of
time. We will use this technique to convert transition proba-
bilities and rewards between frequencies in our work. One
notable prior work has tangentially addressed the issue of
epoch size in an MDP using a variable decision-making fre-
quency model. Alagoz et al. (2013) formulated a finite-
horizon MDP model (a stopping problem) in breast cancer
diagnosis. The goal of the work is to reduce unnecessary fol-
low-ups by considering follow up with different frequencies.
Alagoz et al. (2013) introduced two non-terminate actions
(follow-ups) which may be chosen every 6 and 12 months
respectively. This problem introduces the utility of consider-
ing different action frequencies when solving for optimal
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health policies, but does not quantify the benefits of more
frequent decision-making, which we do here.

There are also examples of using restless bandits to
choose epoch sizes in decision-making problems. For
instance, Herlihy et al. (2023) develop a restless multi-armed
bandit framework for monitoring drug adherence. The doc-
tor can choose to observe the patient’s state at each decision
epoch, potentially resulting in variable lengths of time
between observations. However, this approach cannot
compare the exact additional value of more frequent deci-
sion-making, as we do in this work by comparing two MDP
formulations. In addition, our approach extends the existing
MDP literature on organ transplantation, of which there is a
rich legacy (David and Yechiali, 1985; Ahn and Hornberger,
1996; Alagoz et al., 2004, 2007; Sandik¢i et al, 2008;
Sandikel et al., 2013).

2.3. Organ transplantation with stochastic dynamic
models

We use the optimal timing of liver transplantation as one of
our motivating examples, for which we will also provide a
numerical analysis. Prior work has applied MDPs to organ
transplantation problems (David and Yechiali, 1985; Ahn
and Hornberger, 1996; Sandik¢l et al., 2008; Sandik¢1 et al.,
2013; Boloori et al, 2020). Although prior work has exam-
ined liver transplantation problems for patients with end-
stage liver failure under an MDP framework, they have not
examined the value of increasing transplant offers. In this
article, we determine the value of increasing the frequency
at which livers are offered to inform patients of how much
cost would be justified in doing so. We consider a particu-
larly vulnerable patient population (acute-on-liver-failure
grade 2 or 3, or ACLF2 and ACLF3, patients, who have two,
three, or more failed organs), where patients are severely ill
and at very high priority for liver transplant, making the
offer of more frequent organ offers particularly salient
(Mahmud et al., 2020).

2.4. Treatment initiation with stochastic dynamic
models

In this work, we also examine when to initiate treatment for
early-stage CKD patients. Prior work has studied the opti-
mal time to initiate treatment in the context of stochastic
disease progression; for instance, Shechter et al. (2008) iden-
tified the optimal timing of initiating HIV treatment using
an MDP, Kurt et al. (2011) studied structural properties of
statin initiation for type 2 diabetic patients using an MDP
framework, and Liu et al. (2017) proposed an MDP frame-
work to find the optimal strategy for treatments considering
technology changes. Although the structural properties of
the optimal policy have been thoroughly analyzed by many,
there has been limited exploration of how changes in the
frequency of decision-making can affect the optimal policy
and value, which is what we focus on here.
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3. Model formulation

We formulate two finite-horizon, discrete-time MDPs (the
less-frequent and more-frequent problem). Both MDPs have
the same objective, which is to maximize the total expected
discounted rewards for a patient. As shown in Figure 1, in
the more-frequent problem, the decision-maker is able to
make k — 1 additional decisions in each interval compared
with the less-frequent problem, resulting in k times as many
decision-making opportunities in the more-frequent prob-
lem. We consider non-stationary transition probabilities and
rewards as these are common in health application
problems.

The notation used in this article is as follows. The set of
health states in both more- and less-frequent problems is
the same and denoted by § = {1,2, ..., post-decision-making
state (|S|—1), death (|S|)}. We assume there exists an order-
ing of the states. As typical in many healthcare MDP prob-
lems, we will order the states such that state 1 is the
healthiest state and the health status in the state j is worse
than that of state i if i <j. Some states may be absorbing
(the death state and post-decision-making state).

We limit our analysis to stopping problems, in which the
decision-maker may continue or stop the problem. In our
motivating organ transplantation problem, this is equivalent
to continuing to wait for a better organ or stopping the
decision process by accepting an organ offer. We therefore
denote the set of available actions in both more- and less-
frequent problems as A={wait (w), accept (a)}. If wait is
chosen, the patient can remain alive or die before the next
decision period, when the process repeats. Once the accept
decision is made, the patient will permanently enter a post-
decision-making state. We allow the action space to vary
across states, where only wait is allowed in some states
(“wait states”) whereas both wait and accept are allowed in
all others (“non-wait states”). This allows us to model situa-
tions where no decision other than wait can be made (e.g.,
if no liver is offered this period). We use S C S to denote a
set containing all non-wait states.

The total number of decision epochs in the more-
frequent problem is denoted by N. We assume N is a
multiple of k. T ={1,...,N} is the set of possible decision
periods for the more-frequent problem. T = {1,k + 1,2k +
1,..., N} is the set of possible decision periods for the less-
frequent problem. We use ?  to represent the decision
period after time t in the less-frequent problem, and use ¢~
to represent the epoch before ¢, i.e., T=t4+kt =i—k

More-frequent I | | I | I I I I

» Time
problem ts t; t3 ty t; tg t; tg to '
Less-freque .
ess-frequent I | | > T
problem ty ts tg

Figure 1. Timeline of the more- and less-frequent problems (using k=4 as an
example). In the less-frequent problem, the decision-maker can make one deci-
sion every four time units at the beginning of each decision epoch. In the
more-frequent problem, the decision-maker can make one decision every one
time unit at the beginning each decision epoch, resulting in four times as many
decisions as the less-frequent problem.

We denote p;(d) as the transition probability matrix for
the more-frequent problem when the decision-maker choo-
ses action d € A and t € T. In the less-frequent problem, we
use P;(d) = pé‘(d),? € T, which is p;(d) multiplied by itself
k times, to represent the transition probability matrix for
action d € A. This means that the likelihood of being in any
state for each t € T in the more-frequent problem is the
same as in the less-frequent problem at those same epochs,
provided the same actions were taken. In the more-frequent
problem, we assume p;(d) = prym(d) for m < k for any t €
T. We make this assumption as the transition probabilities
typically do not vary much within a short interval (daily,
monthly, or yearly). We could relax this assumption using a
continuous approximation, e.g, Gompertz functions
(Gompertz, 1825; Sonnenberg and Beck, 1993), but we omit
this here for simplicity. We use p;(i|d) to represent the ith
row of the matrix p;(d). Throughout this article, we use
Ps¢,:(d) to denote an element of the matrix, the transition
probability from state s to state s’ at time ¢ given action d.
We discuss how we parameterize the matrix in Section 5. A
denotes the discount factor for the more-frequent problem,
0 < 1 < 1. For the less-frequent problem, the discount fac-
tor is A,

The reward earned for the patient at state s € S and tak-
ing action d € A for t € T for the more-frequent problem is
denoted using r,(s,d), the health benefits to the patient. We
consider two types of rewards: the immediate reward and
the lump-sum reward. Once the decision-maker chooses
wait, the patient will earn immediate reward r;(s, w) based
on s, t and advance to the next decision period. If the
decision-maker chooses accept, the patient will earn the
lump-sum reward r:(s,a) given s, ¢t and enter the post-deci-
sion-making state. We assume that the value of the reward
is the same for both ¢ and t+m (t € T,m < k) for both
types of rewards in the more-frequent problem. We there-
fore use r,(s,d) to represent both r;(s,d) and rr (s, d) for
the more-frequent problem (t € T,m < k). We use 7 ,(d) to
denote the vector of rewards for action d for different states
at time t. In the less-frequent problem, we use R;(s,d) to
denote the reward for the patient at state s € S and taking
action d € A for f € T. We assume the lump-sum reward of
the less-frequent problem is the same as the more-frequent
problem at £ € T (R;(s,a) = r;(s,a)). Also, we assume the
lump-sum reward of wait states is zero. For the immediate
reward, the rewards earned at time f in the less-frequent
problem should equal the immediate reward earned in the
more-frequent problem at time ¢ plus the expected dis-
counted immediate reward in the remainder of that interval
(Ry(5:) = 1y(5,) + 3570 20p] (o) 7' (w) = 13 (5, w) + 3570
Ppl (sw) T3 w))

Cy represents the per-period costs needed to use the
more-frequent decision-making frequency compared with
the less-frequent frequency; this value is dependent on k.
We assume that C; is time-homogeneous, and, since it
captures costs, is non-positive. Cy only appears in the more-
frequent problem, as this cost is not incurred in the less-
frequent problem.



Let v,(s), Vi(s) denote the optimal value function of the
state seS,t e T,ieT for the more-frequent and less-
frequent problem respectively. At optimality, the following
must hold for the more-frequent problem:

Cr + max[rt(s, a),r
Cr + (s, w) + Ape(s|w) V11
0

ve(s) =

Similarly, for the less-frequent problem:

max[R~(s,a), Ri(s,w) + ¥

Ri(s,w) + A*P;(s|w) V-
0

Vi(s) =

This problem is equivalent to one where the decision-
maker may choose to accept while in a wait state if the
lump-sum reward in that state is smaller than
min(Av(s),0),Vt € T,s € S, as wait will then always be
chosen in wait states (see Lemma 1 in Appendix 1.1). We
can set the reward for accept in wait states to satisfy this
condition for any realistic problem. Therefore, for ease of
notation in the remainder of this manuscript, we assume
the action space is {accept, wait} for all states and the
lump-sum reward for accept is sufficiently small in wait
states.

4. Structural properties
4.1. Assumptions

We first make the following reasonable assumptions for the
more-frequent problem; we also make analogous assump-
tions for the less-frequent problem as well (not shown for
simplicity). In this and the following sections, many results
pertain to a threshold policy. Similar to Bertsekas (2012)
and Puterman (1994), we define a threshold policy where,
given that the optimal action is accept for non-wait state i at
time ¢, the optimal action will also be to accept for non-wait
states j > i or for time ' > t.

Assumption 1. Rewards are non-increasing over time and
non-wait states.

Assumption 2. Both P and p have the increasing failure rate
property for all non-wait states.

This means that as a patient progresses to a worse
state, then this patient has a higher chance of progressing
to an even worse state compared with patients in better
health condition states. This is generally true in the
healthcare context.

(5, W) + Ape(s|w) V 141

Pi(s|w) V-
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if s ¢ {wait states, post-decision, death}
if s € {wait states}
if s € {post-decision, death}

if s ¢ {wait states, post-decision, death}

if s € {wait states}
if s € {post-decision, death}

Assumption 3.

A)u(j) — ri(s,a) > r(s, w)

+ZPSJ ‘

u vector over state,Vs,s €S,s >s,te T

d)u(j) — (5, a), for any non-increasing

This means that the reward difference between wait and
accept is non-increasing over states. For instance, the benefit
of waiting is higher in a healthier state, as sicker states usu-
ally have higher mortality. Similar assumptions are com-
monly used in sequential decision-making problems in
healthcare and have been used in prior work to show there
exists a threshold policy over states (see Puterman (1994),
page 107, and Chhatwal et al. (2010), for example). We will
use this assumption for a similar purpose.

Assumption|s|4 r—1(s,w) + ZJ' |1 Py i—1(d)u(j) = r1(s,a) >
re(s,w) + >0 psie(d)u(j) — re(s,a),V  non-increasing  u,u
over state j such that u(j) > u(j) > 0,Vs € §,Vt € T,Vd € A.

This means that the reward difference between wait and
accept is non-increasing over time. For instance, the benefit
of waiting is higher in an earlier decision epoch, as later
decision epochs usually have higher mortality. Diseases with
increasing mortality risk and progression probabilities satisfy
this assumption. This assumption is very common in health-
care problems, as patients in worse health states are more
likely to become sicker, and that effect worsens over time.
For instance, one disease can lead to complications and
comorbidities, as biological systems within the body are
linked (e.g., having severe cirrhosis of the liver can lead to
liver failure (University of California San Francisco, 2021),
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but over time this can also lead to other organs failing as
well (Wu and Sundaram, 2019)).

Assumption 5. The probability of entering wait states is
zero.

We focus our attention on non-wait states only, as wait
will always be preferred in wait states by construction. This
assumption allows us to establish a threshold policy and
monotonicity over non-wait states. We show numerically
that our structural outcomes can hold in non-wait states
with violation of this assumption in Section 5.

The above assumptions are important to establish thresh-
old policies and the theoretical results below. Topkis (2011),
Puterman (1994) and other works have used supermodularity
assumptions to establish control-type policies. We will also
establish theoretical results based on similar assumptions.

4.2. Structural observations

Prior work on MDPs shows that our assumptions will gen-
erate monotonic (non-increasing) optimal policies in state
for both the more-frequent and the less-frequent problem
(Puterman, 1994). This means that if wait is preferred at
non-wait state s at any time, then it is also the optimal pol-
icy for any non-wait state before s; if accept is preferred at
non-wait state s, then it will be for all non-wait states after
s. Similarly, there also exists monotonic optimal policies in
time for both problems, as we show using a similar proced-
ure as in Chhatwal et al (2016) (see Lemma 3 in
Appendix). At any non-wait state, if accept is preferred at
time t, then it will also be preferred in any time after ¢ if
wait is preferred at time f, then it is also preferred for all
times before t. These threshold policy results imply that if it
is optimal to stop the problem at one time or state, then it
is also optimal to do so at any later time or sicker state.

Proposition 1.

N-t-N=t
vi(s) — Vi(s) > Z NG, Vi e T,s e S.
i=0

All proofs are provided in the Appendix. Proposition 1
holds without any of the previous assumptions. In the
more-frequent problem, the decision-maker has more
opportunities to make decisions, so it is intuitive that the
optimal value for the more-frequent problem should be no
less than the optimal value for the less-frequent problem if
the cost of increasing the frequency is not considered. The
right-hand-side is the total discounted cost of increasing the
decision-making frequency k times. We can then think of a
decision-maker comparing total costs to this additional
benefit when making a decision about which offer frequency
to use. This proposition also serves as the basis for discover-
ing relationships between the more-frequent and the less-
frequent problem.

Proposition 2. When accept is the optimal action in the
more-frequent problem for non-wait state s, epoch t € T, if

Cr < vi(s) — Vi(s), then accept is also the optimal action for
the less-frequent problem for state s at time t.

Proposition 2 helps us understand the relationship
between the more-frequent and less-frequent problem in the
case where financial costs are less than the additional bene-
fits. This can serve as the foundation when building other
interesting structural properties. This proposition does not
rely on any assumptions and should hold for any problem
(even without any threshold policies over state or time)
described in the problem setup. Using this proposition, we
can identify properties of the solution of the more-frequent
problem by examining the solution for the less-frequent
problem via contraposition. For instance, for a non-wait
state s in a period #, if the optimal action in the less-fre-
quent problem is wait, then we know the optimal action at
state s in £ must also be wait in the more-frequent problem
(as it cannot be accept, as it would also then be accept in the
less-frequent problem). If there exists a threshold policy in
both the less-frequent and more-frequent problems, the
optimal action at t <t for the more-frequent problem must
also be wait. We can then pre-solve part of the optimal
strategy for the more-frequent problem by solving the less-
frequent problem. Similar logic using this proposition shows
that when there exists a threshold policy over time, then it
must be the case that whenever the more-frequent and less-
frequent problems differ in optimal policy, the less-frequent
problem chooses accept while the more-frequent problem
chooses wait for all 7 € T.

However, note that this proposition does not comment
on the optimal actions at time ¢ ¢ T, and it is possible for
the more-frequent problem to choose accept at a time t ¢ T
while the less-frequent problem does not have the opportun-
ity to change from the wait action. If so, the less-frequent
problem’s optimal action at the next opportunity t& T
should be accept (provided a threshold policy over time
exists in the more-frequent problem). Also, this proposition
does not provide a way to check if v;(s) — Vi(s) > Ci. In
Theorem 4, we will provide a sufficient condition to
ensure v;(s) — Vi(s) > C.

Let D;(s) = v;(s) — V;(s) denote the difference in optimal
values between the more- and less-frequent problem at time
t and state s. We next develop properties concerning D; (s).

Theorem 1. When both problems have different optimal
actions and Assumption 4 and Assumption 5 hold, then the
difference in the optimal value, D;(s),s € S, is non-increasing
in time for all t € T when the optimal action for the more-
frequent problem is to wait. Otherwise, D;(s) is non-decreas-
ing in time for all T € T.

Theorem 2. When both problems have different optimal
actions, if Assumption 3 and Assumption 5 hold, then the dif-
ference in the optimal value, D;(s),s € S, is non-increasing in
state for all s €S when the optimal action for the more-
frequent problem is to wait. Otherwise, D;(s), is non-decreas-
ing in state for all s € S.

Theorem 1 and Theorem 2 state that the difference in
the optimal value is always non-increasing over time and



over non-wait states if both the more- and less-frequent
problems give different optimal actions and more-frequent
problem choose to wait. This means that the additional
benefit we could earn from switching to the more-frequent
problems from the less-frequent problem will be non-
increasing over both time and non-wait states if both prob-
lems do not agree with each other (however, note that when
accept is the optimal action at time # € T for both problems
then Dj, the difference between optimal values, is zero).
When both the more-frequent and less-frequent problems
give different optimal actions and the more-frequent prob-
lem prefers accept, using Proposition 2, we have D;(s) < C.
In this case, using the more-frequent problem costs more
than the additional benefits gained.

Let B(s) € T be the last epoch where the optimal policy
for both problems is wait for state s € .

Theorem 3. D;(s),s €S is non-decreasing over time and
states for t € [0,B*(s))NT,s€S, where B(s)" = B(s)+
k,B~(s) = B(s) — k, if: (a) there is a threshold policy over
time and non-wait states; (b) optimal values are non-increas-
ing over time; (c) Dy () is non-decreasing over non-wait state
s (d) pp-(5(ilw) D) < pp(s) (ilw) Dp-(s)» i€ S; (e) and
Assumption 5 holds.

Theorem 3 requires that a threshold policy over non-wait
states exists. However, note that if there exists a threshold
policy only over some states, Theorem 3 may still be true.
Condition (c) means that the additional benefit of more-fre-
quent decision-making is non-decreasing if health states are
worse. This means a more severely ill patient would gain
more from additional decision-making opportunities, which
may be realistic as the potential health gains of intervention
increase as a patient nears death. Condition (d) means the
one-step ahead expected additional benefits of more-fre-
quent decision-making by choosing wait is smaller at time
B(s) than at time B(s) + k. For example, this would mean
that the one-step ahead expected additional benefits for an
ACLF3 patient aged 50 is less than that of the same individ-
ual at the same state at an older age. This may be reasonable
as an older individual may have a faster expected rate of
health decline and therefore have larger expected one-step
ahead expected benefits of more frequent decision-making.
When Theorem 1 and Theorem 3 hold, we know the largest
additional benefit from switching to the more-frequent
problem in each non-wait state will be garnered either in
the last time period where both problems choose wait, in
the first time the optimal policies do not agree, or the last
decision epoch.

We now turn to when D;(s)>0. Vi(s) =
max{r;(s, @), r; (s, w) +2pi(s) 71 41(a)}-

if Cp+ ACk + ri(s,w)+

Let

Theorem 4. For s€S,fc T,
Ap;i (s|lw) 3 > Vi(s), then D;(s) > 0.
Theorem 4 provides a sufficient condition for when
D;(s) > 0. When this theorem holds, the largest additional
benefit when comparing the less-frequent problem to the
more-frequent problem will either be in the last time both
problems choose wait or in the first time the optimal poli-
cies do not agree. Intuitively, this means that if the benefits
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of making an additional decision is greater than the costs of
doing it, then D;(s) > 0.

Furthermore, for all time ¢ and state s such that D;(s) >
0, according to Theorem 4, the optimal action for the
more-frequent problem is always wait. In other words, we
can identify a time threshold ¢, (for state s) for the more-fre-
quent problem, such that for any f < f,, the optimal action
for state s is to wait. With this, we only need to focus on
solving the periods (t;, N] for each state s for the more-fre-
quent problem.

These four theorems are important in determining and
quantifying the difference in value when comparing the less-
frequent problem to the more-frequent problem. In the next
section, we show numeric examples to better illustrate our
theoretical results.

5. Numerical examples

We provide two numerical examples in this work. The first
is on liver transplantation decision-making with k = 2, for-
mulated through a partnership with a physician specializing
in liver transplantation at Cedars-Sinai Hospital in Los
Angeles (Section 5.1). The second example examines treat-
ment initiation for early-stage CKD patients (Section 5.5),
with model details and results in the Appendix Section 1.3
due to space constraints.

5.1. Organ transplantation decisions among ACLF
patients

Unlike typical prior literature in organ transplantation
(Alagoz et al., 2004, 2007), which focuses on general End-
Stage Liver Diseases (ESLD) where patients have a relatively
lower death probability within a year after entering the
ESLD health state, we focus on a cohort of patients diag-
nosed with acute-on-liver-failure grade-2 and grade-3
(ACLF2 and ACLF3, respectively). ACLF are types of acute
liver failure where the patient has two (ACLF2) or three or
more (ACLF3) simultaneous Organ Failures (OF) and is
therefore in a severe, life-threatening condition.
Conventionally, the transplant decision for these patients is
made within a week or a month after transplant eligibility to
avoid the high likelihood of death (Mahmud et al., 2020;
Zhang et al., 2021).

Some livers may have a higher probability of resulting in
a successful transplantation, as measured by the Donor Risk
Index (DRI), which is a function of age, cause of donor
death (if donor is dead), race, donation after cardiac death,
partial/split grafts, donor height, donor location, and organ
cool time (Feng et al, 2006; Rosenberger et al., 2014). DRI
depends on the donor, but not the recipient. Marginal livers
(DRI > 1.7) are less likely to lead to successful transplant-
ation, whereas optimal livers (DRI < 1.7) are more likely to
do so. The 1.7 threshold is well accepted in clinical practice;
for instance, it is used in various prior medical literature
(Avolio et al, 2008; Croome et al., 2012; Jesudian et al.,
2016).
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Patient-physician teams may decline an offered organ in
hopes of being offered another with better outcome proba-
bilities later. Different health systems have different expected
waiting periods (Thuluvath et al., 2018). Our physician part-
ner indicated that in some health systems, ACLF2 and
ACLF3 patients are offered a liver for transplantation as
often as once per day. We therefore consider a 28-day deci-
sion-making framework, and a liver (either marginal or opti-
mal) may be offered to the patient every 2 days with some
probability. Given these high-need patients, we forgo the
queuing systems often seen in liver transplantation models
(e.g., Bandi et al. (2019)) as these patients cannot survive a
long transplant waitlist, and instead use an MDP stopping
problem framework. Although our decision time horizon is
short (a month), we include health outcomes one-year post-
transplant and lifetime expected outcomes to capture clinic-
ally relevant outcomes. The model can also be extended to
longer time horizons without structural modifications.

We assume a liver is offered to eligible patients with
probability Q on a bi-daily basis. Conditional on a liver
offer, we assume the likelihood of receiving an optimal liver
offer is time-invariant. We assume that a liver offered on
the last decision epoch must be accepted if the patient choo-
ses to wait on all prior decision epochs.

Our objective is to evaluate the outcome of providing
more frequent liver offers to eligible patients at specific
times/health states, which may improve patients’ health at a
cost. Additional liver offers may rely on multiple listing or
transferring to other transplant centers (Ardekani and
Orlowski, 2010; Vagefi et al., 2014; UCSF Health, 2023; US
Dept. of Health & Human Services, 2023), and may also
depend on a hospital’s resources, the price of organ trans-
portation, and other logistical costs. It may also mean add-
itional costs borne by the patient, if they must make
additional decisions regarding accepting/rejecting a liver.
Identifying the value in increasing the frequency of liver
offers is therefore of policy importance; this value must
exceed the costs if the increase in offers is to be net
beneficial.

We compare the less-frequent problem where an organ is
offered with probability Q every 2 days to the more-frequent
problem where a liver is offered with probability w every
day (the more-frequent problem). Q and ® depend on the
number of organ failures suffered by the patient; those with
more fajlures are prioritized over those with fewer
(Thuluvath et al, 2018). If a liver is offered, with probability
o it will be an optimal liver offer, and we assume this is
invariant across patient-types. Thus at each epoch in the
more-frequent problem, an ACLF2 or ACLF3 patient may
be offered one of three options: a marginal liver ((1 —o)w),
an optimal liver (ow), or no liver at all (1 — w). The patient
can decide to accept the offer if a liver is offered. If an opti-
mal liver is offered, there are no benefits to rejection, so it
will be accepted. This is confirmed by both clinical experts
and model outputs if we allow patients to make decisions
when receiving an optimal liver. However, if a marginal liver
is offered, the patient may decide whether to accept the liver
or not. Accepting a marginal liver will lead to a lower post-

transplant quality of life, while rejecting will mean the
patient is exposed to mortality risk for at least the time until
another liver is offered.

Our goal is to quantify the benefit of increased decision-
making frequency. In this scenario, there are benefits
accrued from both additional offered livers (w livers offered
per 2 days in expectation in the less-frequent problem and
Q livers offered per day in expectation in the more-frequent
problem), as well as additional opportunities to make more
decisions as the patient’s health state is observed (ACLF3,
ACLF2, dead, etc.). We first quantify the total benefit, then
analyze the contribution of each separately in Section 5.1.4.

We quantify the benefit of increased quality of life and
duration of life (the rewards R) through Quality Adjusted
Life Years (QALYs) and the willingness-to-pay threshold.
QALYs were first adopted for cost-effectiveness analysis and
is now widely used in medical decision-making problems
(Weinstein et al., 2009). QALY weights range from zero to
one, and they take both quality of life and quantity of life
lived into consideration. For example, for a patient with
ACLF, the QALY weight for a year of life is 0.4 (Wells
et al., 2004) while a perfectly healthy person will have
QALY weight of one. Because we need to compare these
benefits with financial costs, we convert these QALY
rewards to dollars using a conversion factor, 7 (the com-
monly used “Willingness-To-Pay (WTP) threshold”)
(Weinstein et al., 2009). For example, an accepted WTP per
QALY gained in typical cost-effectiveness analyses is $50,000
per QALY gained (Grosse, 2008); the dollar value of the
health benefit is then the product of the QALYs gained and
$50,000 per QALY gained. Thus, R=7x QALYs. Our
value function at time ¢, which additionally takes into
account the financial costs Cy in the more-frequent problem,
is then the Net Monetary Benefits (NMB), as commonly
referred to in healthcare decision-making (Trippoli, 2017).

We solve both the more- and less-frequent MDPs with
NMB objective values. This allows us to compare the mar-
ginal benefits of increasing the frequency of organ dona-
tions. We also identify when the difference between the
optimal values of the two problems (D) is maximized in
each state. We perform this analysis using empirical data
and perform sensitivity analyses around uncertain parame-
ters. We examine how D changes over states in our sensitiv-
ity analysis to numerically demonstrate Theorems 2 and 3.

5.1.1. Model inputs

We use United Network for Organ Sharing (UNOS) data
and values from the medical literature to parameterize both
MDPs. We use the likelihood of receiving an organ (w), the
conditional likelihood of receiving an optimal liver given a
liver offer (o), death probability (y), and the probability of
improving from a worse to a better health state (&) to
parameterize the transition matrix p;(w). We use the eigen-
decomposition method to calculate P;(w). The time-invari-
ant relative risk (rr) of survival is used to calculate the
post-transplant survival probabilities for a marginal organ.
The model structure and inputs were validated by clinical
experts from the Cedars Sinai Health System. we vary o and



rr in sensitivity analysis as they are uncertain and may vary
by transplant center. Critically, we relax the assumption that
there is no probability of entering a wait state to numerically
evaluate whether this will change outcomes from the theor-
etically proven results above. See Appendix 1.2.1 for details
on model inputs.

5.1.2. Assumptions

We make the following additional assumptions in our
numeric experiments while relaxing Assumption 5. First, we
assume a ACLF2/3 patient will always accept an optimal
liver if it is offered. Second, we stratify ACLF3 patients to
ACLF =30F and ACLF >30F with the former having
exactly three OFs and the latter having more than three
OFs. We assume the likelihood of improving from ACLF
>30F to ACLF = 3OF is equivalent to the probability of
improving from ACLF = 30F to ACLF2. Third, we assume
that all patients will accept the offered liver at the end of
the time horizon if a liver is offered, regardless of organ

type.

5.1.3. Base case results
We relax the assumption that the probability of entering
wait states is zero in our numerical analyses. Even so, our
base case outcomes are consistent with our theoretical
results on threshold policies over time and state when a
marginal liver is offered, as well as with all propositions and
theorems. In the less-frequent problem, for ACLF2, ACLF
=30F, and ACLF >3O0F patients, respectively, we find that
the optimal policy recommends waiting at most 4 days, 2
days, and 2 days for an optimal liver. We then use these
results and Theorem 4 to identify the threshold ¢, for all
states (the threshold for state s such that for any f < t,
D;(s) > 0 - the optimal action for state s at time ¢ must be
wait). The thresholds are day 4, 2, and 2 for ACLF2, ACLF
=3 OF, and ACLF > 3 OF patients, respectively. Given the
solution from the less-frequent problem, we know the opti-
mal action for the more-frequent problem must be wait
from day 0-4, 0-2, and 0-2 for ACLF2, ACLF =3 OF, and
ACLF > 3 OF patients, respectively, in the more frequent
problem. We then only need to solve for the optimal action
on days 4-28, 2-28, and 2-28 for ACLF2, ACLF = 3 OF, and
ACLF > 3 OF patients, respectively. After doing so, we find
that the optimal policy recommends waiting at most 6 days,
2 days, and 2 days for ACLF2, ACLF = 3 OF, and ACLF >
3 OF patients. As expected, the results from the more-fre-
quent problem recommend a longer wait duration than the
less-frequent problem as the more-frequent problem pro-
vides an additional offer every 2 days.

We show the difference in optimal values (D) in Figure
2. The largest difference in the optimal value between the
more-frequent and less-frequent problems ranges from
$50,730 to $59,203. For ACLF3 patients (both with 30F and
>30F), these differences decrease over time until both prob-
lems have the same optimal action, when the difference
value goes below zero (when both problems’ optimal action
is accept). When D >0, it would be beneficial for the patient
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Figure 2. Difference in the expected reward earned over time between more-
frequent (M) and less-frequent (L) problems for the marginal states with ACLF2,
ACLF =30F, ACLF >30F. The difference between more-frequent and less-fre-
quent problem drops below $0 once both problems’ optimal actions are accept.
Triangles denote when the optimal actions for both problems are wait, “+"
when it is wait in M and acccept in L, and “*” when the optimal actions for
both problems are accept.

to choose multiple-listing or transfer to another transplant
center for a higher frequency of receiving livers. For
example, suppose there was an ACLF2 patient (without an
optimal liver offer) who had an opportunity to transfer to a
transplant center with average offer frequency of once a day
from another transplant center with an average offer fre-
quency of once every 2 days. From Figure 2, we see that this
patient would not benefit from the transfer after day 6, so
transfers should be made before then.

From Figure 2, we see D > 0 even when both problems
have the same recommendation, but note that the difference
in expected rewards may not be C; even when the optimal
actions for both problems across time are the same. The dif-
ference in expected values can vary because the more-fre-
quent problem allows the decision-maker to more closely
track the status of the patient’s state, leading to a higher
expected reward even when the optimal policy is the same.
Moreover, the decision-maker is provided additional offers
which also leads to a higher expected reward.

We identify when the difference between the optimal val-
ues of the two problems (D) is maximized for ACLF2,
ACLF =30F, and ACLF >3O0F patients when a marginal
liver is offered. We will refer to this epoch as the “time of
peak D” and the D value at this time as the “value of peak
D.” Note that different states have possibly distinct “time of
peak D” and “value of peak D.” Identifying the difference at
the time of peak D is important as it is the maximum per-
epoch benefit of switching to the more frequent decision-
making framework. In the base case, the time of peak D are
day 4, day 2, and day 2 for ACLF2, ACLF =30F, and ACLF
>30F, respectively. The values of peak D are $59,203,
$50,730, and $54,974 for ACLF2, ACLF =30F, and ACLF
>30F, respectively.
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Analyzing how the difference value changes over time
helps us determine the time of peak D. The difference
increases until the more-frequent and less-frequent problems
have different optimal strategies, after which it decreases.
When the optimal actions for both problems are accept, the
difference value becomes negative, as both problems have
the same action but the more-frequent problem has costs of
additional decision-making opportunities. This insight illus-
trates a general insight into when the time of peak D occurs:
the largest difference in value occurs at either the last deci-
sion epoch when the optimal action for both problems is
wait or the first decision epoch when both problems have
different optimal actions. This is because the difference value
is non-decreasing when the optimal action for both prob-
lems is wait and non-increasing when the problems have
different optimal actions. For instance, according to
Theorem 3, for ACLF2 patients, the difference value D is
non-decreasing between day 0 to 4 as both problems recom-
mend to wait.

This difference in value function between the two prob-
lems represents the additional lifetime expected NMBs for
using the more-frequent framework. As Cy increases, D will
decrease. For example, for ACLF2 patients using base case
parameter values, the peak value of D will decrease by
approximately $1200 if Cy increases by $500.

We find that twice-as-frequent offers would not be net
beneficial at any time if Cy is greater than $27,209 for
ACLF2 patients, $24,256 for ACLF =3OF patients, or
$27,044 for ACLF >3O0F patients. If costs were higher than
these values, it would not be worthwhile to pursue increased
organ offers even if it resulted in twice as frequent offers.
Although our analysis is conservative and very uncertain,
this provides a ballpark threshold for costs.

We can also use Theorem 4 to identify an upper bound
on the Cj to ensure that twice-as-frequent decisions would
be net beneficia. We find these values to be $21,121,
$20,395, and $27,030 for ACLF2, ACLF =30F, and ACLF
>30F patients, respectively. Comparing these values with
the actual Cy upper bound values derived numerically above,
we find that these values are smaller, as expected (as
Theorem 4 only provides sufficient conditions). However, all
theoretical values are close to the numerically derived values,
showing that this sufficient condition can be practically use-
ful. The gap between actual and Theorem 4-derived Cj is
larger for healthier patient, as one-step look ahead approxi-
mation is less accurate when patient has longer time to wait.

Variation in k. Our framework also allows us to consider
situations where the offer frequency is more than doubled—
k can by any integer. With a larger k, we observed a longer
maximal waiting duration for an optimal liver for patients
and a larger value of peak D. For more details, we refer the
reader to Appendix 1.2.7.

5.1.4. Sensitivity analyses: Variation in relative risk of
mortality and probability of being offered an opti-
mal liver

Changes in difference value changes over time. The value of

the relative risk (rr) of post-transplant mortality and the
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Figure 3. Difference in the expected reward earned over time between more-
frequent (M) and less-frequent (L) problems for the marginal states with ACLF2.
The difference in optimal value is marked triangular when the optimal action
for both problems is wait, marked “+" when the optimal action for the more-
frequent problem is wait while the optimal action for less-frequent problem is
accept, and marked “*” when the optimal action for both problems is accept.

likelihood of receiving an optimal liver (o) depends on hos-
pital characteristics. We vary o between 0.5 and 0.7 and rr
between 0.7 and 0.9 (ranges determined from discussions
with clinical experts). Appendix table 3 shows the maximum
number of days the model recommends waiting for an opti-
mal liver and the maximum benefits provided by the more-
frequent compared to the less-frequent problem.

We find that the propositions and theorems demon-
strated in the base case analysis also hold for cases in the
sensitivity analysis: there exists threshold policies over time
and states with marginal liver offered for all cases, the
more-frequent problem always provides more benefits, and
the optimal value function is always non-increasing in time.
The value of D is monotone over the appropriate times as
defined in Theorem 1 and Theorem 3.

Figure 3 illustrates the outcome described in Theorem 1,
which states that when the problems have different optimal
actions, the difference in optimal values must be non-
increasing over time. We see this from day 6-8 for ACLF2
patients — in this period, the optimal action for the more-
frequent problem is wait whereas the optimal action for the
less-frequent problem is accept. Similarly, Theorem 3 states
that when the optimal policy for both problems is the same
(wait), the difference in optimal values must be non-
decreasing over time, as seen in days 0-4.

We see substantial variation across both problems in the
maximum number of days to wait for an optimal liver
across the o and rr ranges evaluated. In all but the last case
in Appendix table 3, the results from the more-frequent
problem recommend a longer waiting period, as expected.
Offering an additional liver each day as well as allowing the
decision-maker to track the patient’s status more closely
makes the wait option more beneficial, as there will be more
opportunities to be offered an optimal liver in the future
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Figure 4. Difference in the expected reward earned over states between more-
frequent (M) and less-frequent (L) problems for day 2, 4, and 6.

and there will be more opportunities to halt a quickly dete-
riorating health state.

As shown in Appendix table 3, we notice that both the
time of peak D and the cost at that time increases as the
relative risk decreases, because the decrease in the relative
risk will lead to a larger difference in benefit between an
optimal and a marginal liver. The time of peak D also
increases as the likelihood of receiving an optimal liver
increases. This suggests that the decision-maker would
switch from a less-frequent problem to a more-frequent
problem later when the likelihood of receiving an optimal
liver is larger.

Appendix table 3 also illustrates that the largest difference
in value occurs at either the last decision epoch when the
optimal action for both problems is wait or the first decision
epoch when both problems have different optimal actions.
For instance, when 0=70% and rr=0.7 for ACLF = 30F
patients, the maximum D value is achieved at the last deci-
sion epoch when the optimal action for both problems is
wait (day 2). For ACLF2 patients in this case, however, the
time of peak D is the first decision epoch with discordant
optimal policies. Also, by finding the value differences at
peak D for these two cases, we know that the maximum
benefit of switching from the less-frequent problem to the
more-frequent problem is $79,937 for ACLF2 patients and
$68,923 for ACLF =3O0F patients.

Changes in difference value over states. Figure 4 shows D
when 0=70% and rr = 0.5. Theorem 2 states that when
both problems have different optimal actions, the difference
in optimal values must be non-increasing over states. We
see this among ACLF = 30FOF and ACLF >3OF patients
on day 6, as the optimal action for the more-frequent prob-
lem is wait whereas it is accept for the less-frequent prob-
lem. Similarly, Theorem 3 states that when the optimal
policy for both problems is the same (wait), the difference
in optimal values must be non-decreasing over states, as
seen in all states in days 2 and 4, when both more- and
less-frequent problems recommend wait.
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Analyzing how the difference value changes over non-
wait states helps us understand how the benefits change
over the health state. Generally, in early decision-making
periods, when both problems recommend wait, patients
with more organ failures will benefit more from additional
liver offers. Later, the two problems recommend different
optimal actions (if offered a marginal liver, the more-fre-
quent problem recommends wait whereas the less-frequent
problem recommends accept) in sicker states while both
problems recommend wait in healthier states. This shows
that the sicker states will gain less benefit from additional
decision-making as sicker patients are recommended to
accept a marginal liver in the less-frequent problem, due to
higher mortality probability, and therefore have lower bene-
fits compared with healthier states when both problems rec-
ommend wait.

Where does the benefit come from? In this example, the
benefit of more-frequent decision-making arises from both
receiving more liver offers and additional decision-making
opportunities. To wunderstand which contributes more
towards increasing the value of peak D, we consider a case
study for ACLF2 patients, where we fix the probability of
receiving a liver offer to be the same over a 2-day interval
in both the more- and less-frequent problems. The differ-
ence between the benefit accrued in this scenario and the
previous base case values will then quantify the benefit asso-
ciated with receiving more livers. To do this, we set the like-
lihood of receiving a liver for the less-frequent problem (Q)
to one. Then we set the probability for the more-frequent
problem (w) such that both problems produce one liver
offer every 2 days in expectation. Assuming o=70% and
rr=0.7, we found that the value of peak D is $1490. The
base case found $79,937 of additional benefit obtained for
ACLF2 patients, so the additional benefit mainly comes
from receiving liver offers.

5.2. Treatment initiation for early-stage CKD

Our second numerical example focuses on a monitoring
problem for treatment initiation, where physicians can only
observe patient health states for updating treatment plans
during an office visit. Disease progression progresses sto-
chastically, and the optimal frequency of these visits may
vary by health state and time.

In this example, we examine a decision for how fre-
quently to monitor early-stage CKD patients to determine
treatment initiation time. CKD patients are categorized into
five stages by disease severity, as measured using the esti-
mated Glomerular Filtration Rate (eGFR). According to cur-
rent guidelines, CKD patients should undergo at least yearly
eGFR checkups and initiate Angiotensin-Converting Enzyme
(ACE)/Angiotensin Receptor Blocker (ARB) treatment
immediately after reaching stage 3 (New et al., 2007; Tahir
et al., 2007). However, there is some controversy regarding
whether annual checkups are sufficient (Hirano et al., 2019),
and considering the low cost associated with ACE/ARB
treatment, there is a possibility that early initiation of such
treatment could benefit patients (Sharma et al., 2011). The
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optimal monitoring frequency and time to initiate treatment
would depend on the lifetime health benefits and costs (as
measured using NMB). However, more frequent office visits
for CKD status monitoring incurs additional costs, and
more-frequent physician visits would only be beneficial if
these costs were offset by the health benefits of catching dis-
ease progression earlier.

We therefore use our approach to quantify the relative
benefit of more frequent treatment initiation opportunities
for early stage (stage 1-2) CKD patients. To do this, we cre-
ate two equivalent MDPs for patients in stages 1, 2, and 3+.
The less-frequent MDP problem uses a 12-month decision-
making frequency, whereas the more-frequent assumes 6-
month checkups. The available actions in both MDPs are to
either initiate treatment or wait. We assume increasing the
decision-making frequency incurs a cost (Cx). We use a pre-
viously established CKD simulation model to estimate
rewards and transition probabilities (Hoerger et al., 2010).
Details of the model, solution, and outcomes are given in
Appendix Section 1.3.

Our investigation shows that early treatment initiation is
necessary and beneficial for stage 1 and 2 CKD patients for
some age groups, regardless of the decision-making fre-
quency. Remarkably, the optimal policies derived from both
MDPs are identical, indicating that the decision-making fre-
quency does not significantly impact the recommended
course of action. Furthermore, the differences in optimal
values between the two MDPs fall below zero. This suggests
that a higher frequency decision-making framework may not
yield substantial benefits, as the progression of chronic dis-
eases like CKD tends to be slow. These results indicate that
the current monitoring frequency recommendations are suf-
ficient, despite ongoing controversy to the contrary.

Our findings in this example also validate and strengthen
our theoretical results, as all results were consistent with our
theoretical conclusions and served to illustrate that they
were applicable in a CKD context. These results demonstrate
that our approach to quantifying the benefit of additional
decision-making opportunities can be extended and applied
to various healthcare scenarios, showcasing its generalizabil-
ity and relevance in different healthcare applications.

6. Conclusions

We examine the value of making more frequent decisions in
a discrete-time, finite-horizon MDP stopping problem
framework. We quantify the benefits of making more fre-
quent decisions as well as provide useful structural proper-
ties that can help decision-makers decide which frequency
decision-making model to use when more frequent decisions
are costly.

In our theorems, we provide novel insights comparing
the value difference between the more- and less-frequent
problems. We identified properties of the more- and less-
frequent problems to determine when there exists a thresh-
old policy in time and in non-wait states. We additionally
found properties of the difference in expected value between
these problems and provide sufficient conditions for when

more-frequent decision-making would be net beneficial. We
provide sufficient conditions under which we can guarantee
that the more-frequent decision-making framework would
be preferred for some states at some time, and we demon-
strate all of our theoretical results numerically in our
examples.

We provide two numerical examples to showcase the
practical application of our work. The first examines liver
transplantation to determine the value of more frequent
liver donations. We use data from the UNOS database to
parameterize our model for severely ill patients with mul-
tiple organ failures (ACLF2/3). Our numerical example
shows that the maximum benefit from additional decisions
(the value at peak D) is roughly $60,000 in NMB over the
post-transplant lifetime when Cj is $2000. This benefit,
which includes both health outcomes and financial costs,
decreases to zero if the per-patient, per-period cost of using
the more-frequent framework increases to roughly $25,000.
In sensitivity analyses, we find that this benefit is inversely
proportional to the relative risk of mortality, rr, but is rela-
tively invariant with the likelihood of receiving an optimal
liver, o.

The policy implications of our work are that (i) we can
identify cost-thresholds over which it would not be benefi-
cial to provide even severely ill patients (ACLF2/3) patients
with more frequent organ offers, and (ii) even if it is net
beneficial to do so, it may not be beneficial to do so for all
periods and patient health states—and our analysis frame-
work can identify when it is worth it, thus allowing for tar-
geted offer frequencies. Currently, liver offers already
consider patient severity (through MELD scores, etc. (US
Dept. of Health & Human Services, 2022)), and given the
push for more patient-tailored healthcare, perhaps it would
be realistic to push for individualized organ offer frequency.

In a second example, we demonstrate the broad applic-
ability of this framework by considering a treatment initi-
ation problem for CKD patients. This example not only
confirms the validity of our theoretical findings, but also
offers insights into the importance of early treatment initi-
ation for CKD patients. We found that the value at peak D
is negative, indicating that it would not be net beneficial to
increase the frequency of early-stage CKD patient monitor-
ing from the recommended annual check-up. This shows
how our comparative MDP analysis can contribute towards
clinical controversies in monitoring frequency.

We must acknowledge several limitations of this work.
We set up the more-frequent problem in a way that the two
transition probability matrices for every 2 days are identical
if their time indices belong to the same time epoch in the
less-frequent problem for simplicity. In reality, the transition
probability matrix is changing continuously over time.
However, since the change in the transitions within a short
time period is negligible, our results should not change sub-
stantially in our numerical analysis even had we allowed the
transition matrices for t and t + 1 periods to be different.

We limit our analysis to stopping problems, as these
occur naturally in many healthcare settings, but many inter-
esting MDPs also fall outside this category. We only analyze



problems where the more-frequent framework allows for k
times as many decisions, where k is an integer; this limits
the generalizability of our analysis. In our theoretical ana-
lysis, we assume that the probability of entering wait states
is zero. Future work should focus on incorporating the pos-
sibility of transitions into wait states. Our analysis focuses
on finite horizon models, and we leave the extension of this
work to infinite horizon models for future work.

Our numerical analysis relies on highly uncertain input
values, particularly Ci. However, we perform sensitivity
analyses and identify upper bounds for C; above which the
cost would no longer justify the additional decision-making
opportunities, and we compare these numerical outcomes to
our theoretical bounds.

Despite these limitations, we believe that this work pro-
vides interesting insights for not only transplantation appli-
cations, but also other applications such as monitoring
problems with regular decision epochs. This article draws
attention to quantifying the benefits of a more-frequent
decision-making framework in healthcare settings. We
derived structural properties between the more-frequent and
the less-frequent problems, and provided a numerical
example to show how to make use of these results. These
results have implications for a wide variety of MDP stopping
problems and provide insight into future work on improving
the speed of MDP solution algorithms.
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