
Context-aware Prefetching for Near-Storage
Accelerators

Jian Zhang (Rutgers), Marie Nguyen (Samsung), Sanidhya Kashyap (EPFL)
Sudarsun Kannan (Rutgers)

Abstract
We present ContextPrefetcher, a host-guided high-performant
prefetching framework for near-storage accelerators that
prefetches data blocks from storage (e.g., NAND) to device-
level RAM. Efficiently prefetching data blocks to device-level
RAM reduces storage access costs and improves I/O per-
formance. We introduce a novel abstraction, Cross-layered
Context (CLC), a virtual entity that spans across the host and
the device and is used for identifying, managing, and tracking
active and inactive data such as files, objects (within object
stores), or a range of blocks. To support efficient prefetching
of actively used CLCs to device memory without incurring
near-device resource (memory and compute) bottlenecks,
ContextPrefetcher delegates prefetching management to the
host, guiding near-device compute to prefetch blocks of ac-
tive CLC. Finally, ContextPrefetcher facilitates the swift recla-
mation of blocks associated with inactive CLC. Preliminary
evaluation against state-of-the-art near-storage accelerator
designs demonstrates performance gains of up to 1.34×.
ACM Reference Format:
Jian Zhang (Rutgers), Marie Nguyen (Samsung), Sanidhya Kashyap
(EPFL), Sudarsun Kannan (Rutgers). 2024. Context-aware Prefetch-
ing for Near-Storage Accelerators. In 16th ACM Workshop on Hot
Topics in Storage and File Systems (HOTSTORAGE ’24), July 8–9,
2024, Santa Clara, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3655038.3665956

1 Introduction
To reduce the cost of data movement from storage devices to
compute, hardware companies have started integrating com-
putational capabilities directly into storage devices, creating
Computational Storage Devices (CSDs). These devices, such
as Newport, SmartSSD, and ScaleFlux [5, 14, 15], perform
tasks near where data is stored, enhancing system efficiency
and performance. Furthermore, the emergence of high-speed
communication protocols like Compute Express Link (CXL)
is expected to enhance near-storage processing capabilities

This work is licensed under a Creative Commons Attribution International
4.0 License.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0630-1/24/07.
https://doi.org/10.1145/3655038.3665956

by enabling applications and the host compute to access near-
storage memory directly. Despite their in-storage processing
capabilities, for cost ($/𝐺𝐵) and power reasons, these devices
are expected to host low-power wimpy compute cores and
relatively smaller in-storage DRAM.
Despite these advancements in storage technology, opti-

mizing data access remains challenging, particularly consid-
ering the substantial performance differences between the
main memory and storage. Caching and prefetching tech-
niques have been extensively explored to reduce data access
costs in traditional storage, and the techniques could be ap-
plied to accelerate data access for near-storage accelerators.

More broadly, caching and prefetching techniques can be
classified into systems focusing on (1) host-level caching by
prefetching data from the device to the host and (2) device-
level caching by prefetching data from NAND flash to the
device memory. Host-level caching systems, such as the OS
page cache, prefetch data from the device to the host to re-
duce application stalls in case of cache misses but suffer from
high kernel software overheads and do not utilize device-
level memory resources.

Recent state-of-the-art near-storage caching solutions (e.g.,
OmniCache [19]) have explored the benefits of utilizing
device-level RAM as a parallel cache to speed up data ac-
cess and data processing. However, these designs assume a
large device-level DRAM (henceforth referred to as device-
DRAM) for caching and employing compute-heavy caching
policies (e.g., LRU-based caching), which is often impractical
in real-world near-storage technologies that must also use
the device-DRAM for storing FTL’s logical to physical block
mapping, wear-leveling, and as request transit buffer. Fur-
ther, these approaches lack support for near-storage data
prefetching, which is critical for expediting host-level I/O
(e.g., read, write) and prefetching (e.g., readahead) oper-
ations for minimizing disk access. Replicating prefetching
techniques using host OS caches [8] or application/runtime
caches [2, 10] is infeasible due to restrictivememory and com-
pute limits. Orthongally, prefetching has also been explored
for memory expansion technologies like CXL SSDs [16] with
near-device memory that prefetches next N-lines or blocks
or techniques that use computationally-heavy ML training
models (ExPAND [9]).
Unfortunately, across all the aforementioned prior work,

besides resource overheads, these techniques fail to capture
the context of which files, objects, or a range of blocks an ap-
plication is accessing. This leads to imprecise prefetching and

131

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665956&domain=pdf&date_stamp=2024-07-08

higher cache pollution, leaving considerable performance
benefits on the table.

Therefore, we proposeContextPrefetcher, a host-guided
prefetching design for near-storage accelerators. The key
insight of ContextPrefetcher is that the host (OS or runtime)
creates a context using an actively-used file or object or block
range for the device to prefetch to its RAM, termed as Cross-
layered Context (CLC) using a prefetching logic (e.g., access
pattern). The device uses CLC to prefetch without requiring
substantial memory or compute resources tomanage caching
and prefetching. While we focus on ContextPrefetcher for
exclusive caches maintained at the host and the device (e.g.,
OmniCache [19]), we envision ContextPrefetcher to support
inclusive caches too (e.g., 𝜆-IO [17]).
A CLC can represent various data entities, such as files,

objects (in object stores), or fine-grained block ranges ac-
cessed by applications, aiding efficient prefetching. CLC fa-
cilitates the host in guiding the device on when and what
to prefetch or evict without imposing substantial compu-
tational overhead. For example, a CLC enables the host to
prioritize prefetching of active files used by applications or
evicting cached blocks of inactive files.
Because applications can switch between files where an

inactive file becomes active or vice versa, we take inspiration
from CPU thread contexts to switch in and out the CLC of ac-
tive and inactive files, respectively. Inactive CLC (s) are saved
to a host data structure and restored when they become ac-
tive again; if needed, their blocks are prefetched. This enables
efficient use of device-DRAM to store only needed prefetch
metadata and data and timely cache space reclamation.
Our preliminary evaluation of ContextPrefetcher on ex-

clusive cache design, conducted by implementing our design
on the prior state-of-the-art near-storage design [19] on a
microbenchmark (Section 2.4), demonstrates up to 1.34x per-
formance gains. In the remainder of the paper, we detail our
preliminary design and discuss the challenges that must be
addressed to fully realize ContextPrefetcher.

2 Background and Motivation
2.1 Host-level I/O Caching and Prefetching
Numerous prefetching techniques propose to enhance I/O
performance at the host level. OSes like Linux offer page
cache to expedite I/O performance according to access pat-
terns. Linux also provides prefetching system calls like reada-
head, enabling applications to manage prefetching by spec-
ifying offsets and bytes to prefetch. Additionally, Leap [2]
introduces an online, majority-based prefetching algorithm
designed to boost the page cache hit rate. Lynx [10] presents
a learning-based SSD prefetching mechanism that captures
random access patterns utilizing Markov chains.
However, these approaches fail to utilize device memory

resources and are not directly applicable to near-storage ac-
celerators. Host-level prefetching operations, such as those

in the Linux OS, result in high compute and memory over-
heads. For instance, the Linux OS requires maintaining a
per-inode Xarray [7, 8], which could significantly impact
performance when applied to CXL-connected storage with
near-storage processing capabilities and strict memory con-
straints [16]. File system caches typically reside within the
kernel, necessitating kernel involvement for prefetching and
incurring associated software overheads. For example, each
readahead call incurs system call and kernel trap overheads.

2.2 Near-storage Processing
While modern solid-state and nonvolatile memory storage
devices have significantly improved I/O performance, soft-
ware and hardware data access costs remain high. To tackle
this challenge, hardware vendors have started integrating
computational capabilities directly into storage devices, a
concept known as Computational Storage Devices (CSDs).
By executing tasks near the storage medium, CSDs enhance
system efficiency, reduce data movement, and amplify per-
formance. Several companies have introduced various CSD
solutions, including Newport CSDs [5], FPGA-based solu-
tions like SmartSSD [6], and ScaleFlux CSDs [15]. Addition-
ally, the emergence of Compute Express Link (CXL) has
notably advanced the capabilities of near-storage computing
elements. If designed well, CXL can enable high-speed com-
munication between CPUs and near-storage accelerators,
facilitating direct access to the device-level RAM. However,
for near-storage devices, hardware resources are limited. For
instance, the processor frequency is significantly lower than
the host CPU, typically around 1.2-1.8 GHz [3, 5]. Similarly,
DRAM resources are constrained, ranging from 1-4GB [4–6].
Moreover, DRAM cannot be fully utilized for acceleration
purposes as it needs to be reserved for internal tasks or soft-
ware. For example, the BlueField SmartNIC [11] installs a
Linux OS, which requires substantial memory resources.
Near-storage Caching: For near-storage accelerators,

device-memory caching has been explored recently. For in-
stance, OmniCache [19] presents a horizontal (exclusive)
caching across the host and the near-storage memory. How-
ever, OmniCache lacks support for prefetching and efficient
eviction of the near-storage cache. Supporting efficient prefetch-
ing and eviction for near-storage devices presents several
challenges due to their limited processor and memory re-
sources. First, existing designs assume large internal device
memory, which is impractical given that the device memory
must be used for internal storage management and block
allocations like FTL. Therefore, ContextPrefetcher optimizes
device memory use by prefetching and only retaining data in
active use through CLC. Second, adopting host-level caching
and prefetching techniques for near-storage is not feasible.
Host-level caching designs rely on high-performance CPUs
with complex prefetching logic. For example, traversing the
per-file Xarray is expensive for near-storage with limited

132

compute resources. ContextPrefetcher mitigates device com-
pute overheads by delegating the expensive prefetching logic
to the host. Third, traditional host-level caching designs em-
ploy FIFO/LRU or similar eviction strategies that are ineffec-
tive for small device memory caches and can lead to frequent
cache evictions. Fourth, caching policies such as exclusive
caching (e.g., OmniCache) and inclusive caching (e.g., 𝜆-IO)
are feasible with near-storage cache. ContextPrefetcher oper-
ates independently of caching design, compatible with both
exclusive and inclusive cache designs.
Near-storage Prefetching: 𝜆-IO [17] exploits host OS-

level caches and prefetching by offloading processing for data
not in the host cache. However, it overlooks the potential
benefits of leveraging device-level caches and prefetching.
Shao-Peng et al.[16] propose utilizing device-DRAM for

caching and prefetching ‘next N cache lines‘ in CXL-based
SSDs to reduce latency and increase endurance. Besides us-
ing LRU-based techniques for device memory management
that incur high compute and memory overheads, these ap-
proaches lack host-level context. For example, an application
thread could switch access to some other file(s) or block
range(s), and a device without application or host context
could continue to prefetch N lines and pollute the cache.
ExPAND[9], an orthogonal approach aims to improve CPU
prefetching for CXL-SSDs by employing ML-based predic-
tion, which can demand a high computational cost for near-
storage accelerators.

2.3 Limitations of state-of-the-art systems:
Next, we outline limitations observed in state-of-the-art
systems, which serve as the motivation for our proposed
prefetching techniques.
Lack of Prefetching for Device-DRAM: State-of-the-

art systems lack prefetching for device-DRAM, impacting
I/O performance. For instance, the OSes on the host file
systems could either issue regular I/O or prefetch data from
a file from the device to the host DRAM. For the data to
be prefetched, the file’s blocks must be first loaded to the
device cache and then returned to the application. Besides
being slow because the devices lack a context on what active
file or object is accessed by an application, the device cache
may cache currently inactive (not accessed) files, resulting
in inefficient utilization of DRAM resources and failure to
achieve peak I/O performance. An ideal approach would be
to maintain a common context accessed by applications and
accelerate prefetching around that context. We discuss the
details of our proposed CLC in Section 3.2.

Overheads of Intricate and Expensive Prefetch Oper-
ations: Attempting to directly apply host-level prefetching
designs onto device prefetching encounters feasibility chal-
lenges. The resource-intensive nature of host prefetching
leads to performance degradation on devices with limited
CPU resources. In addition to the cost of detecting access pat-
terns for prefetching, managing, and iterating data structures

1 4 16 32
0

2

4

6

of threads

T
h

ro
u

g
h

p
u

t
(G

B
/s

) FusionFS

lambda-IO-emulate

OmniCache

ContextPrefetcher

(a) Seq. Read

1 4 16 32
0

1

2

3

4

of threads

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

(b) Rand. Read

Figure 1. Analysis of prefetching benefits. The figure shows the
throughput of near-storage designs w/o caching and prefetching
for sequential and random reads. Only ContextPrefetcher (last bar)
supports prefetching for near-storage devices.

like per-inode Xarray used in OS page caches could impose
significant CPU overhead. Likewise, device-level prefetch-
ing strategies, such as those employed for other technolo-
gies like CXL-SSDs, could impose high computing demands.
For instance, ExPAND [9] relies on machine learning-based
prefetching, where training and inference consume higher
computational needs.

Efficient and Timely Eviction of Near-Device Caches
is Challenging: State-of-the-art near-storage caching de-
signs employ cache eviction policies used for systems with
large amounts of memory and compute resources [19]. For
example, these designs frequently rely on conventional block
eviction policies such as LRU, iterating over all the blocks in
the cache to identify the least recently used blocks for evic-
tion. Unfortunately, these techniques lack the information
(i.e., context) to determine whether they are evicting blocks
of a file or object that are currently active or inactive. This re-
sults in two types of overhead. Storing inactive files or objects
in capacity-constrained caches leads to cache pollution. Un-
derstanding if they are inactive (or active) helps quickly evict
cache blocks and reclaim memory space in a timely manner
without the need to iterate across all blocks using block-level
LRU, thus saving compute cycles and admitting cache blocks
of actively used files or objects. Similarly, it also helps to
retain blocks of active files longer and increase prefetching,
techniques lacking in today’s near-device caches [16].

We demonstrate that CLC, equipped with context switch
capabilities, offers an efficient solution for managing near-
device memory.

2.4 Analysis
We compare ContextPrefetcher with the following designs:
(1) FusionFS [18] (a near-storage file system without caching
and prefetching support); (2) emulated 𝜆-I/O without FPGA
but with host-level OS caching and prefetching but fails
to utilize near-device memory for caching or prefetching;
(3) OmniCache, a recently proposed unified caching design
for near-storage accelerators but lacks prefetching support.
Due to a lack of programmable near-storage accelerators,
we carefully emulate near-storage accelerators similar to
prior designs. We use a machine with 512 GB DC Optane

133

NVM for storage, 64 CPUs, and 32 GB DRAM. For near-
device computational units, we dedicate 4 cores with their
frequency set to 1.2 GHz. Further, as used in prior studies [19],
we throttle the memory bandwidth and add PCIe latency.
The host-to-device interface is a block interface using NVMe
commands.
For host caching, we allocate a total cache size of 32 GB

of memory across all workloads. However, for device-level
cache (for OmniCache), we limit the device cache size to 1 GB
but maintain the same total cache size (32GB) across the host
and the device. It is important to note that while OmniCache
employs a larger device cache (up to 8GB), such assumptions
are not always practical or restricted to high-end resources,
specifically in scenarios where the device memory is shared
for other operations inside a device, which include maintain-
ing a file translation table, wear-leveling, handling transit
I/O requests, and near-storage data processing. Therefore,
we deliberately demonstrate the effects of a smaller cache
size. Likewise, ContextPrefetcher employs the same device
cache size as OmniCache. We designed a microbenchmark
that simulates real-world applications for this study; we
only consider read access patterns. Each thread concurrently
opens multiple database SST files, performs sequential/ran-
dom reads, and closes them after finishing using [1].

As shown in Figure 1, FusionFS exhibits poor performance
due to the lack of caching and prefetching support. While
𝜆-I/O outperforms FusionFS with host caching and prefetch-
ing, it suffers from significant kernel overheads because its
cache resides within the OS. More importantly, 𝜆-I/O does
not leverage near-device caching or prefetching, resulting
in spending substantial cycles for cache misses to fetch the
data from storage. OmniCache shows similar performance
when the near-device cache size is small and in the absence
of near-device prefetching capability. On the other hand, the
preliminary ContextPrefetcher design demonstrates consid-
erable performance gains. This improvement is due to several
factors. First, ContextPrefetcher supports efficient prefetch-
ing for device-DRAM, which reduces I/O overheads. Second,
and importantly, ContextPrefetcher can efficiently switch be-
tween active and inactive CLC when accessing multiple files,
minimizing cache pollution and retaining the most needed
data in the device cache. Our analysis indicates that existing
techniques lack the context of files that applications are cur-
rently accessing and, therefore, could retain inactive files in
the cache (i.e., cache pollution), increasing cache misses. We
will discuss the design details of ContextPrefetcher shortly.

3 Design
3.1 Design Goals
1. Host-guided Prefetching at the Near-storage Mem-
ory. Our primary objective is to establish a host-guided

Device

LibFS

DevCache

pread(fd1, buf, 4KB, 0)Thread1

Storage

File1 Inactive CLC

close(fd1)

2-4MB

0-2MB

8-10MB

4-6MB

1
6-8 MB

2-4MB

11 0 0

4-6MB

Inactive Context

Per-file range-tree
(File1 Cache)

File1 Active CLC

6-8MB 0-2MB
(access frequency: ~10) (access frequency: ~10000)

Active Context

CLC context switch to
another active file

11 0 0

2

3

4

Prefetch

Figure 2. High-level Design. The figure shows ContextPrefetcher
handling CLC context switch. 1 The thread issues pread to read the data
residing in the active CLC. 2 ContextPrefetcher issues prefetching requests
along with the block range metadata and a bitmap to indicate which blocks
to fetch to the device cache or have already been fetched. 3 The thread
closes the current file. 4 ContextPrefetcher switches to another active
CLC for prefetching and reclaims cache space from inactive CLC in the
device-DRAM due to space constraints.

prefetching at the near-storage RAM to increase I/O prefetch-
ing efficiency by proactively prefetching data for actively
used files or objects (context) to device-DRAM.
2. Prioritize efficient device memory utilization by

only maintaining data and metadata of active context.
We introduce a novel prefetching abstraction: Cross-layered
Context. This abstraction allows us to prioritize efficient
device-DRAM usage by prefetching and retaining metadata
and data for actively accessed files. We demonstrate the effi-
cacy of our approach in achieving efficient prefetching and
timely memory reclamation.
3. Avoid computing-intensive prefetching logic in-

side the device by delegating it to the host. We delegate
the prefetching logic, such as access pattern detection as
well as an expensive index or data structure, to track what
and when to prefetch to the host, with the device simply
performing the prefetch operations for missing blocks. This
approach helps reduce near-device computational overheads
and the metadata (e.g., index) memory overheads.

3.2 Preliminary Design

3.2.1 Cross-layered Context (CLC)
At its core, CLC is a virtual entity for grouping and man-
aging active and inactive data, as well as prefetching sta-
tus, spanning across both the host and the device. CLC ab-
straction facilitates seamless connectivity in prefetching ac-
tivities between devices. Through CLC, we introduce Con-
textPrefetcher, a host-guided prefetching framework tailored
for near-storage accelerators operating across the host and
the device.

134

The rationale behind this design is simple yet powerful. By
capturing accesses for active or inactive context right down
to the device layer, caching and prefetching can be optimized
for actively used CLC instances. Conversely, CLC identified
as inactive (e.g., an open but inactively used) unused (e.g.,
a file is closed) file can be evicted or context-switched out
based on the available device-DRAM or a specific policy.

As shown in Figure 2, we show an example of using CLC
and the context-switching between active and inactive files.
We draw inspiration from the CPU thread contexts to im-
plement CLC context switch mechanisms. Much like how
a CPU context switch efficiently manages multiple tasks or
processes on a single physical CPU core, CLC context switch
ensures optimal caching and prefetching for multiple files
on limited device memory. It achieves this by selectively pre-
serving prefetching metadata and data pertinent to actively
used files on the device.

In essence, during a CLC context switch, only the blocks or
a designated range of blocks associated with the current ac-
tive CLC are retained in memory. Inactive or less frequently
accessed CLC instances are swiftly replaced, potentially free-
ing up valuable memory space to support prefetching for
new files. While in this paper, we focus on file-level contexts,
CLC can be generalized to other contexts, such as object con-
texts in Object Storage Devices (OSD) or memory-context to
memory-mapped regions, which will be our future work.

3.2.2 ContextPrefetcher Components
Our preliminary system design comprises a user-level run-
time (LibFS) and near-device component. LibFS in the host
manages caching and prefetching for both the host and the
device. Our current implementation of the host component
is a user-level library for quick prototyping, but our ongoing
work also includes building support for integrated OS-level
and device-level solutions.
To enable concurrent data access and caching across the

host and the device, LibFS maintains a per-file range tree,
serving as a unified index for managing caches across both
domains. Each node within the range tree corresponds to a
specific range of a file (each range size is 2 MB by default
but is configurable). This index is crucial in locating cached
data in both the host and device caches.

Regarding the near-device component, in contrast to ear-
lier near-storage file system designs [12, 13, 18, 19], which re-
quire complex integration between file systems and firmware,
our proposed ContextPrefetcher operates withoutmandating
a file system on the device itself. The near-device component
is only responsible for prefetching data based on the context
passed by the host.

3.2.3 Using and Updating CLC
As shown in Figure 2, when a file is first created or opened,
we associate a new empty CLC with the corresponding file,
and it is marked as inactive. As we discussed in Section 3.2.2,

CLC maintains a per-file range tree for caching indexing
(both host and device).

Initially, in the absence of prefetching information, as
an application reads a range of blocks, the blocks are first
read to the device cache based on a policy used by prior
work [19] to reduce data movement to the host. To track
the blocks cached on the device, LibFS maintains a per-file
range tree where the range represents a block range on the
device cache. Each range node also stores a bitmap with
one bit for each block in the range, indicating if the block
is in the device cache. As blocks of a file are accessed, the
host-level LibFS uses its prefetching logic to predict the next
set of accesses and issues a prefetching request to the device
using a special NVMe-like command that contains the CLC
structure with the blocks to be prefetched. The device uses
the CLC, creates an equivalent bitmap, prefetches the blocks,
sets the corresponding bits on the bitmap upon prefetching,
and resets them upon eviction. This bitmap, for instance,
on a large 1 TB file would necessitate, at most, a 32 MB
bitmap compared to hundreds of MBs for other complex
data structures.
For the actual prefetching logic in the host, our current

prefetcher can detect sequential, random, and strided access
patterns, but we envision designing a more sophisticated
prefetcher to capture different access patterns.
In addition to facilitating efficient prefetching, CLC also

offers swift reclamation for inactive data. As shown in Figure
2, each file and a file’s range tree’s node is equipped with
a frequency counter. For a file or a range within the file, if
the frequency exceeds a certain threshold (a configurable
parameter), we mark the file and the range as an active CLC
and instruct the device to prefetch. Similarly, any inactive
file or a range in a file is marked as an inactive CLC, the
device CLC (a bitmap) is context switched out, and the cache
blocks are reclaimed if needed. Our future work will focus
on efficiently tracking active and inactive contexts, reducing
frequent context switches, and potentially leveraging ML-
based techniques using host-level computational resources.

In this paper, we focus on exclusive caching and prefetch-
ing design paradigms and only on device-level prefetching.
Our ongoing future work will analyze and design coordi-
nated host-device prefetching.

4 Discussion and Conclusion
This paper introduces a novel context-aware prefetching
approach for near-storage devices. Our work demonstrates
that traditional prefetching and eviction methods are inad-
equate for near-storage accelerators due to constraints on
their computational and memory resources. Therefore, facil-
itating prefetching across devices necessitates establishing a
unified and coordinated prefetching context (CLC), which
helps delegate prefetching complexities to the host. In this

135

preliminary work, we focus on the general principles of push-
ing down application context (i.e., a file) to the device. We
will explore how the host and the device can collaboratively
prefetch the contents of different files or even different blocks
of the same file. Similarly, our approach can be generalized
to objects and memory-mapped ranges, which is important
for other devices such as CXL-SSDs and memory expanders,
areas we will focus on in our future work.

Acknowledgements
We thank Michio Honda (our shepherd) for his insightful
comments to improve the quality of this paper. We also thank
the anonymous reviewers and the members of RSRL for their
valuable feedback. This research was supported by funding
from Samsung (Memory Solutions Lab), and NSF CNS grants
1910593 and 2231724. This work was partially carried out
on the experimental platform funded by NSF II-EN grant
1730043.

References
[1] [n.d.]. RocksDB. http://rocksdb.org/.
[2] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively prefetch-

ing remote memory with leap. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). 843–857.

[3] ARM. [n.d.]. ARM CSD. https://www.arm.com/markets/storage/
computational-storage.

[4] ARM. [n.d.]. Cosmos+ OpenSSD. http://www.openssd-project.org/
cosmospl/overview/.

[5] Jaeyoung Do, Victor C. Ferreira, Hossein Bobarshad, Mahdi
Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Diego Souza,
Brunno F. Goldstein, Leandro Santiago, Min Soo Kim, Priscila M. V.
Lima, Felipe M. G. França, and Vladimir Alves. 2020. Cost-Effective,
Energy-Efficient, and Scalable Storage Computing for Large-Scale AI
Applications. ACM Trans. Storage 16, 4, Article 21 (Oct. 2020), 37 pages.
https://doi.org/10.1145/3415580

[6] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. 2013. Query Processing on
Smart SSDs: Opportunities and Challenges. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data (New
York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA, 1221–
1230. https://doi.org/10.1145/2463676.2465295

[7] Shaleen Garg, Jian Zhang, Rekha Pitchumani, Manish Parashar, Bing
Xie, and Sudarsun Kannan. 2024. CrossPrefetch: Accelerating I/O
Prefetching forModern Storage. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1. 102–116.

[8] https://docs.kernel.org/core api/xarray.html. [n.d.]. Xarray Documen-
tation. https://docs.kernel.org/core-api/xarray.html

[9] Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung. 2023. Cache in
Hand: Expander-Driven CXL Prefetcher for Next Generation CXL-SSD.
In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems. 24–30.

[10] Arezki Laga, Jalil Boukhobza, Michel Koskas, and Frank Singhoff. 2016.
Lynx: A learning linux prefetching mechanism for ssd performance
model. In 2016 5th Non-Volatile Memory Systems and Applications Sym-
posium (NVMSA). IEEE, 1–6.

[11] Nvidia. [n.d.]. NVIDIA Mellanox BlueField SmartNIC. https://network.
nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf.

[12] Yujie Ren, Changwoo Min, and Sudarsun Kannan. 2020. CrossFS: A
Cross-layered Direct-Access File System. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 137–154. https://www.usenix.org/conference/osdi20/
presentation/ren

[13] Yujie Ren, Jian Zhang, and Sudarsun Kannan. 2020. {CompoundFS}:
Compounding {I/O} Operations in Firmware File Systems. In 12th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
20).

[14] Samsung. [n.d.]. Samsung Key Value SSD. https://www.samsung.
com/semiconductor/global.semi.staticSamsung_Key_Value_SSD_
enables_High_Performance_Scaling-0.pdf.

[15] ScaleFlux. [n.d.]. https://scaleflux.com/.
[16] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-yong

Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S Kim. 2023.
Overcoming the Memory Wall with {CXL-Enabled}{SSDs}. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 601–617.

[17] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He,
and Jiwu Shu. 2023. {𝜆-IO}: A Unified {IO} Stack for Computational
Storage. In 21st USENIX Conference on File and Storage Technologies
(FAST 23). 347–362.

[18] Jian Zhang, Yujie Ren, and Sudarsun Kannan. 2022. FusionFS: Fus-
ing I/O Operations using CISCOps in Firmware File Systems. In
20th USENIX Conference on File and Storage Technologies (FAST 22).
USENIX Association, Santa Clara, CA, 297–312. https://www.usenix.
org/conference/fast22/presentation/zhang-jian

[19] Jian Zhang, Yujie Ren, Marie Nguyen, Changwoo Min, and Sudarsun
Kannan. 2024. {OmniCache}: Collaborative Caching for Near-storage
Accelerators. In 22nd USENIX Conference on File and Storage Technolo-
gies (FAST 24). 35–50.

136

