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Abstract

Computational preference elicitation methods are tools used
to learn people’s preferences quantitatively in a given context.
Recent works on preference elicitation advocate for active
learning as an efficient method to iteratively construct queries
(framed as comparisons between context-specific cases) that
are likely to be most informative about an agent’s underly-
ing preferences. In this work, we argue that the use of ac-
tive learning for moral preference elicitation relies on certain
assumptions about the underlying moral preferences, which
can be violated in practice. Specifically, we highlight the fol-
lowing common assumptions: (a) preferences are stable over
time and not sensitive to the sequence of presented queries,
(b) the appropriate hypothesis class is chosen to model moral
preferences, and (c) noise in the agent’s responses is limited.
While these assumptions can be appropriate for preference
elicitation in certain domains, prior research on moral psy-
chology suggests they may not be valid for moral judgments.
Through a synthetic simulation of preferences that violate the
above assumptions, we observe that active learning can have
similar or worse performance than a basic random query se-
lection method in certain settings. Yet, simulation results also
demonstrate that active learning can still be viable if the de-
gree of instability or noise is relatively small and when the
agent’s preferences can be approximately represented with
the hypothesis class used for learning. Our study highlights
the nuances associated with effective moral preference elici-
tation in practice and advocates for the cautious use of active
learning as a methodology to learn moral preferences.

1 Introduction

Ensuring proper deployment of artificial intelligence (AI)
systems in high-stakes societal domains requires building
trust in the decisions of these systems. To that end, recent
work on ethical and participatory algorithmic development
emphasizes the importance of encoding stakeholders’ val-
ues in these systems, especially their moral judgments/pref-
erences over actions that can cause significant harm to others
(Feffer et al. 2023). Incorporating stakeholders’ moral pref-
erences allows for the creation of tools whose judgments
are normatively aligned with those of the stakeholders and
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helps counter various harms associated with the use of com-
putational tools. To accomplish this goal, however, one first
needs to accurately elicit people’s moral preferences.

Studies on moral preference elicitation often present
agents with pairs of context-specific cases and ask them to
choose the one they prefer. Using the agent’s responses for
a set of such pairwise comparisons, one can try to learn a
representation of their underlying preferences. To formalize
this setting, let X C R? denote the space of all cases over
which any agent has preferences, with d € Z,. denoting the
number of features describing each case. Following the stan-
dard preference elicitation literature, suppose that an agent’s
preferences are determined by comparing the value of an un-
derlying utility function v : X — R across cases (Freedman
et al. 2020). For any input pair x,x’ € X x X, the agent
prefers x over x’ iff u(x) > u(x’). Let R : X x X — {0, 1}
denote their response function, with R(x,x’) = 1(u(x) >
u(x')), where 1(-) is the indicator function.

Multiple recent studies employ this framework for moral
preference elicitation. For example, Boestler et al. (2024)
model lay-agent’s moral preferences in kidney allocation.
They provide participants with profiles of two patients who
need kidney transplants and ask them to decide which pa-
tient should receive the one available kidney. Each patient
profile contains features like the patient’s number of chil-
dren, years of life they will gain from the transplant, etc. The
choice between the two patients can pose a moral dilemma
when different features favor different patients (Sinnott-
Armstrong, Skorburg et al. 2021) (Figure 1 presents a pair-
wise comparison scenario from this study). Another well-
known example of this approach is the “Moral Machines”
study, in which participants are presented with sacrificial
moral dilemmas and asked what an autonomous vehicle
should do in each case (Awad et al. 2018; Noothigattu et al.
2018). In another study, Srivastava, Heidari, and Krause
(2019) elicit fairness preferences by presenting participants
with pairwise comparisons of algorithmic predictions and
backing out the notion of fairness that is most compati-
ble with their responses. Preference elicitation has similarly
been part of the development pipeline of various partici-
patory computational frameworks (Lee et al. 2019; Kahng
et al. 2019; Loreggia et al. 2019; Feffer et al. 2023).

The goal of preference elicitation in these settings is
to accurately and efficiently learn a representation of



Patient A should get the kidney Patient B should get the kidney
PATIENT A PATIENT B
Weekly Work Hours Weekly Work Hours
10 30
Life Years Gain Life Years Gain
25 25
Elderly Dependents Elderly Dependents
3 0
Years Waiting Years Waiting
5 1

Figure 1: Example of a pairwise comparison from the
Boestler et al. (2024) study on kidney allocation decisions.

the agent’s underlying utility u(-) using their responses
for a given set of N pairwise comparisons, i.e., using
{(x¢, %}, R(x¢,x}))}Y,. Here, accuracy refers to the abil-
ity to (a) recover the utility function » and/or (b) offer an
approximate representation of u that mimics decisions made
through w in a large number of comparisons. Achieving ac-
curacy often requires presenting an agent with numerous
pairwise comparisons, which can be onerous and expensive.
To reduce the number of queries required to obtain a desired
level of accuracy, active learning is frequently invoked as an
alternative approach.

Active learning methods operate in the realm of scarce
outcome-labeled data, where one has the option to interac-
tively query an oracle (the user/agent in this case) for la-
bels, and the goal is to learn the relationship between labels
and relevant features using as few queries as possible (Set-
tles 2009). These methods can help improve the efficiency
of preference elicitation as well. For preference elicitation,
active learning techniques can suggest new pairwise com-
parisons that would provide the maximal information about
the agent’s utility function given the information gathered
so far (Dragone, Teso, and Passerini 2018). Using this form
of structured determination of the next pairwise comparison
(based on the agent’s previous responses), the agent’s pref-
erences can be inferred faster than the setting where they are
presented with random comparisons at each time step. For
this reason, multiple recent works consider active-learning-
based preference elicitation. Yang et al. (2021) use interac-
tive elicitation to create recommendation systems. Srivas-
tava, Heidari, and Krause (2019) develop active-learning-
based surveys to elicit fairness preferences. Johnston et al.
(2023) use active learning to learn preferences regarding
healthcare resource allocation. These recent use cases of
active learning provide evidence of its ability to efficiently
elicit people’s preferences. However, the effectiveness of
active learning relies on certain assumptions that may
not hold in the case of moral preferences.

Moral preferences capture a person’s normative views
over available actions in moral dilemmas—that is, what is
the right thing to do when the chosen action could lead to
significant harm to others, but not (or not only) to the partic-
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ipant themself? A popular example is the trolley problem,
where the participant is asked which human lives should
be prioritized, passengers or pedestrians (Foot 1967). Sim-
ilarly, in the kidney allocation example described earlier,
when asked to decide which of two patients on the kidney
transplant list should get the kidney, a participant’s decisions
are based on patient features that they consider morally rele-
vant. In these settings, when an agent expresses a preference
for one patient over another, their judgment can be charac-
terized by the underlying utility function they use to assign
relevance scores to the available actions, choosing the action
with the highest assigned score. Note that, despite the use
of utility functions, this standard setup does not presuppose
any utilitarian moral theory because it can model agents who
base their decisions on non-utilitarian factors, such as past
misbehaviors by patients. Modeling the participant’s prefer-
ences in moral decision-making settings (e.g., by learning
their underlying utility function) allows for predicting their
moral judgments when presented with new dilemmas in the
same setting. Therefore, these models can be useful in the
development of ethical Al tools (Feffer et al. 2023)." How-
ever, eliciting moral preferences can be challenging, and dif-
fer from the process of eliciting other kinds of preferences.

Moral preferences concern harms to others, and dif-
fer from self-interested, economic, or material preferences,
where the agent chooses the option with the highest sub-
jective utility to self (Capraro and Perc 2021). Instead of
being concerned only with the self, moral preferences are
intended to be impartial (Vanberg 2008) and fair (Bicchieri
and Chavez 2010). Computational modeling of these pref-
erences can, therefore, help develop decision-aid tools that
incorporate stakeholders’ moral values, e.g., in applications
like autonomous vehicles or biomedical situations. Unsur-
prisingly, the standards of expected elicitation accuracy in
these domains are quite high, since inaccurate prediction
of moral judgments can significantly harm the people us-
ing or affected by the decision-aid tool. For these reasons,
greater attention to elicitation performance is required in
moral decision-making settings.

Yet, a crucial problem in eliciting moral preferences is
that they can be unstable, i.e., the participant’s choices for
the first few presented moral dilemmas might appear in-
consistent with each other (Crockett 2016). The partici-
pant can also be indecisive and provide “noisy” judgments
to moral dilemmas (e.g., there may be variability in their
choices for similar scenarios), further complicating the elic-
itation process (Rehren and Sinnott-Armstrong 2022). Re-
search on moral psychology also lacks consensus on the
structure of cognitive processes that incorporate moral pref-
erences within our judgments (Ugazio et al. 2022). Limited
understanding of moral decision-making structures makes it
difficult to model them computationally. All these properties

'A note on terminology: what we call moral preferences can
also be described as judgments/orderings over available actions in
moral dilemmas. This characterization is different than decision
theory literature, which defines preference orderings over outcomes
rather than actions (Arrow et al. 1996). Yet, we use the term pref-
erences to be consistent with CS preference elicitation literature on
modeling decision processes in pairwise comparison settings.



taken together make moral preference elicitation a complex
task and call into question the validity of active learning as
a reliable elicitation methodology.

The use of active learning for preference elicitation of-
ten presupposes that the context in question does not suffer
from the above issues. Preference stability, limited variabil-
ity in responses, and availability of a hypothesis class that
captures the underlying utility « are common assumptions
(Dragone, Teso, and Passerini 2018). An obvious question
that then arises is whether active learning still leads to ef-
ficient moral preference elicitation when these assumptions
are violated. Research from moral psychology suggests that
these assumptions may specifically not hold for moral pref-
erences. Hence, the efficacy of active learning for moral
preference elicitation needs further examination.

Our Contributions. In this paper, we investigate whether
active learning can be effective for moral preference elici-
tation, based on simulations designed to replicate the above
challenges with moral preferences. Our simulations test two
popular active learning paradigms, version-space-based ac-
tive learning and Bayesian active learning (Section 2). In-
spired by recent human subject research on properties of
moral decision-making (Section 3), we consider the follow-
ing challenges: (a) preference instability, (b) model mis-
specification, and (c) noisy responses. In all settings, we
compare active-learning-based approaches against a stan-
dard approach that presents agents with random pairwise
comparisons. We observe the following:

o Preference instability: Our simulations here evaluate
elicitation performance when the agent’s moral preference
model stabilizes only after responding to a certain number
of initial comparisons (Section 4.1). Specific scenarios we
consider include: (1) the agent, after a few comparisons,
simplifies their moral preference to reduce the decision-
making effort, (2) the agent makes their preference more
complex to incorporate additional information, and (3) the
agent changes their preference entirely to reflect significant
updates to their moral values. We observe that, in all three
cases, when the number of features is small, the Bayesian
active learning approach recovers well from instability and
achieves higher accuracy than the random query baseline
within a small number of comparisons after a preference
change. However, in cases of drastic preference changes and
a large number of features, both active learning approaches
have similar or worse performance than the random query
baseline due to their dependence on previous comparisons.
The key takeaway here is that the accuracy and efficiency of
active learning depend on the expected scale of preference
instability (as captured by the kind of preference change)
and the complexity of the decision-making context (as cap-
tured by the number of features).

» Model misspecification: Our model misspecification sim-
ulation evaluates preference elicitation performance when
the agent’s moral decision-making model and the model
class used by the elicitation framework are different (Sec-
tion 4.2). For instance, suppose the agent uses a shallow de-
cision tree to encode preferences, but the preference elici-
tation framework uses the class of linear models. Here, ac-
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tive learning at best converges to the best hypothesis in the
linear class but has a relatively high predictive error—as ob-
served in our simulations. Along with agents that use tree-
based models, we simulate other scenarios of model mis-
specification, such as scenarios where the agent uses feature
interactions but the elicitation model doesn’t, and scenar-
ios where the agent and the elicitation model use different
feature sets. When the extent of model misspecification is
large, we observe that active learning approaches and ran-
dom query baseline have similar performance. The key take-
away here is that appropriate modeling of the agent’s moral
decision-making process is necessary for active learning to
improve the elicitation efficiency of the framework.

» Noisy responses: We also consider the setting where the
agent’s responses are stochastic and simulate two kinds of
stochasticity: (a) response noise: when stochasticity in the
agent’s response to a pairwise comparison depends on the
difference between utility assigned to each item in the pair
(i.e., higher variability when utilities are close) and (b) pref-
erence noise: when the agent’s preference model is sampled
from a certain distribution. For response noise, we observe
that the Bayesian active learning approach is still more effi-
cient than the random query baseline despite noise. For pref-
erence noise, active learning is more efficient than random
query baseline only when noise is small (e.g., when noise
magnitude is small relative to the range of model parameter
values). The key takeaway here is that one needs to consider
the source and impact of variability in agent responses to
assess the effectiveness of active-learning-based elicitation.

Overall, our simulations shed light on the performance of ac-
tive learning for simulated moral preference elicitation tasks.
We find that active learning can improve elicitation effi-
ciency in certain settings (e.g., small-scale noise) but also re-
duce elicitation efficiency in other settings (e.g., large-scale
preference instability). Based on these results, we empha-
size the need to understand the nuances associated with the
moral decision-making context in question before deploying
active learning-based elicitation frameworks. Additionally,
our findings can inform future human-subject studies aimed
at understanding the extent to which these assumptions are
violated in common moral preference elicitation tasks.>

Related Work. Preference elicitation methods are em-
ployed in multiple domains to create user-centered services,
e.g. to create recommendation systems (Priyogi 2019), to
understand consumer behaviour (Ben-Akiva, McFadden,
and Train 2019), and for patient-centered decision-making
in healthcare (Weernink et al. 2014). Research on preference
elicitation similarly spans multiple disciplines, including
computer science (Chen and Pu 2004), economics (Beshears
et al. 2008), and psychology (Slovic 2020). Machine-aided
elicitation has further improved learning efficiency by help-
ing process available agent data and/or the choices they
make in real and hypothetical scenarios (Soekhai et al.
2019). As mentioned earlier, similar efforts have been made
in moral domains, with several applications employing elic-

2The technical appendix sections for this paper are available in
the extended version on Arxiv.



itation frameworks to model moral preferences (Awad et al.
2018; Srivastava, Heidari, and Krause 2019; Loreggia et al.
2019; Balakrishnan et al. 2019; Sinnott-Armstrong, Skor-
burg et al. 2021; Johnston et al. 2023). For a general sur-
vey of moral preference elicitation methods, we recommend
Feffer et al. (2023). In our work, we focus on methods
that query an agent to choose between two given cases and
use their responses to learn their preferences (Ben-Akiva,
McFadden, and Train 2019). While pairwise comparisons
are a popular elicitation technique, there are alternative ap-
proaches as well, e.g., asking agents to report their prefer-
ence strength (Toubia et al. 2003), rank choices (Ali and
Ronaldson 2012), participate in bidding processes (Conen
and Sandholm 2001), or describe the motivations for their
choices (Liscio et al. 2023, 2024).

Active learning can be used to either learn the agent’s util-
ity model or to successively present them with better rec-
ommendations (Houlsby et al. 2011; Dragone, Teso, and
Passerini 2018). For the former setting learning the utility
model, Huang and Luo (2016) propose active learning meth-
ods to learn marketplace consumer preferences and Srivas-
tava, Heidari, and Krause (2019) elicit fairness preferences
using active-learning-based surveys. For the latter setting of
generating personalized recommendations, Elahi, Ricci, and
Rubens (2014) and Yang et al. (2021) discuss active learn-
ing strategies to streamline data collection for recommenda-
tion systems. Johnston et al. (2023) use uncertainty-based
active learning methods proposed by Vayanos et al. (2020)
to model healthcare resource allocation preferences of sur-
vey participants. Our work focuses on learning the utility
model since the eventual goal is to use the learned utility
and preferences for downstream applications.

Most preference elicitation studies focus on preferences
involving self-benefits, e.g., to create recommendation sys-
tems or better-personalized services. As mentioned earlier,
moral preferences go beyond self-interest and explain peo-
ple’s normative impartial judgments. For instance, Bicchieri
and Chavez (2010) show the insufficiency of monetary pref-
erences in explaining people’s fairness perceptions. Capraro
and Rand (2018) discuss how social preference models can
be incompatible with people’s choices of equitable actions.
Other experimental analyses from psychology (see Capraro
and Perc (2021) for a review) provide further evidence of
contrasts between moral and material preferences.

Beyond our work, certain recent papers examine the lim-
itations of active learning in different contexts. Margatina
and Aletras (2023) and Kottke et al. (2019) discuss the
dependence of active learning’s performance on common
(but potentially unrealistic) assumptions, e.g. representative
training data and equal labeling costs across cases. Active
learning can also fail to outperform random query base-
lines when faced with distribution shifts (Snijders, Kiela,
and Margatina 2023) or outliers (Karamcheti et al. 2021).
Data collected using active learning is implicitly tied to the
learning model and can lead to generalization issues (Low-
ell, Lipton, and Wallace 2019). Our work adds to this line of
research, specifically questioning the applicability of active
learning to moral preference elicitation.
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Algorithm 1: Online preference elicitation
Input: Functions sample(-), R(-, -), and fit(+, -), N, class H
1: S« 0
2: fort e {1,...,N} do
3: xy,x; < sample(S) {sample new comparison}
4:  ry — R(xy,x}) {Get agent’s response }
5: S%SU{(Xt,Xg,Tt)}
6:  hy < fit(S,H) {Learn hypothesis using dataset S’}
7: return hy

2 Algorithms for Preference Elicitation

The basic structure of the elicitation procedure is described
in Algorithm 1. At time-step ¢, the agent is presented with a
sampled comparison (x;, x}) and their response is recorded.
Then, the algorithm finds the hypothesis h; from class H
which best fits the labeled comparisons recorded till time ¢.

The sampling step of Algorithm 1 (Step 3) can be exe-
cuted either by randomly sampling a pair of input cases or
by using active learning, whereby the chosen pair depends
on the comparisons presented so far and the hypothesis class
H. We will use RANDOM-PE to refer to the instance of
Algorithm 1 that uses random sampling. When using ac-
tive learning to sample comparisons, multiple methods from
prior works can be employed and we outline two popular ap-
proaches below. Longer mathematical descriptions and use
cases of these methods are provided in Appendix A.

Version-Space-based Active Learning. Given a kernel-
SVM decision boundary learned using available labeled
data, the informativeness of any new query can be approx-
imated using the distance of the query from the decision
boundary and this heuristic can be used to generate an in-
formative next query (Tong and Koller 2001). To implement
this approach, we learn an SVM hypothesis f that best fits
((xi,x}))t_; to labels (r;)!_, and find a comparison that is
closest to f’s decision boundary. We will call this approach
ACTIVE-VS-PE.

Bayesian Active Learning. The Bayesian Active Learn-
ing with Disagreement (BALD) algorithm represents prefer-
ences using a Gaussian process with a specified kernel and
chooses the next query to be the one that maximizes the
mutual information between model predictions and model
posterior (Houlsby et al. 2011). Implementation of this
approach for Algorithm 1 requires learning a representa-
tion of the posterior corresponding to the labeled dataset
((xi,x%,7;))t_; and then finding the pairwise comparison
with high mutual information. We will call this approach
ACTIVE-BAYES-PE. Note that the use of learned posterior
is limited to the sampling step and can be independent of the
learning step.

The final step of Algorithm 1 (Step 6) uses a pre-
specified function fit(-, ) to learn a hypothesis h; from H
that “best” simulates responses (r;)!_; using comparisons
((xi,x%))t_;. For instance, if H is the class of linear func-
tions, then fit(, -) can implement an SVM, logistic regres-
sion, or any other linear classification training procedure
(with appropriate regularization). Alternately, to rank cases



based on the agent’s responses (with H denoting the set of
all rankings), the popular Bradley-Terry approach can be im-
plemented within fit(-,-) (Bradley 1984). The choice of H
here depends on prior beliefs about the agent’s preference
model. However, a mismatch between the agent’s preference
model and 7 can impact the effectiveness of the framework,
as we show in Section 4.2.

3 Challenges to Modeling Moral Preferences

Inspired by prior research from moral psychology, we high-
light three obstacles to computationally modeling an agent’s
moral preferences. These obstacles are (a) change in pref-
erence after making a certain number of decisions, (b) the
agent’s model not being included in #, and (c) noise in the
agent’s responses. We describe these challenges here, specif-
ically focusing on prior empirical evidence for them from
human subject research in the pairwise comparison setting.

Preference instability. Empirical studies in psychology
provide extensive evidence that agent’s preferences in un-
familiar contexts are developed as they make decisions in
those contexts (Hoeffler and Ariely 1999; Ariely and Zakay
2001; Warren, McGraw, and Van Boven 2011; Dhar, Nowlis,
and Sherman 1999). In these settings, the first few choices
made by an agent can be unstable (i.e., their preferences can
change after making some decisions) and may not reflect
their eventual preferences for future decisions. Moral pref-
erences can have similar instability and can be shaped by an
agent’s ongoing experience with the decision-making con-
text (Crockett 2016; Rehren and Sinnott-Armstrong 2022;
Helzer et al. 2017; Curry, Chesters, and Van Lissa 2019).

In the context of pairwise comparisons, data from
Boestler et al. (2024) provides evidence of this phenomenon
in the kidney allocation setting. In their study, participants
are asked to participate in 10 sessions (one per day) and
presented with 60 pairwise comparisons in each session.
Session-specific analysis shows that, for many participants,
there is significant variation in their weight distribution
over the patient features across different sessions. In other
words, for many participants, their underlying utility func-
tions change from session to session. This kind of preference
change can significantly impair the ability to computation-
ally model moral preferences.

Note that we consider the instability of moral preferences
over available actions and not preferences over moral values
(e.g., one’s value preference could be to prioritize equality
in resource allocation over efficiency). Moral values do in-
form moral judgments and the preferences an agent has over
available actions. But prior work has argued that while val-
ues are generally stable, agents can still be unstable in apply-
ing those values to make moral judgments — this is referred
to as the “value-action gap” (Gould et al. 2023). In our set-
ting, since we only observe the agent’s moral judgments, we
mainly focus on the challenge posed by the observed insta-
bility of preferences expressed through these judgments.

Model misspecification. Another challenge in the compu-
tational modeling of moral preferences is model misspec-
ification, i.e., making incorrect/misrepresentative assump-
tions regarding the structure of the agent’s decision-making
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process. A popular modeling assumption is the additive in-
dependence model, where we assume the utility the agent
assigns to any input can be represented as a sum of the
utilities assigned to individual input features (Chen and Pu
2004) (e.g., linear utility satisfies this assumption). Another
common modeling assumption is the complete information
assumption, i.e., all the information explicitly used by the
agent to make their decision is available to the elicitation
framework. Assumptions of this kind are common in ac-
tive learning-based elicitation as they reduce the complex-
ity of query generation (Yang et al. 2021; Johnston et al.
2023). They also affect the choice of H in Algorithm 1, e.g.,
if we assume additive independence and complete informa-
tion, then setting H to be the linear class can help learn ex-
plainable representations of the agent’s preferences.

However, in many situations, these assumptions do not re-
flect the agent’s decision-making process (Pine et al. 2009;
Gonzalez Sepulveda, Johnson, and Marshall 2021). Cog-
nitive processes underlying moral decision-making are not
clearly understood (Ugazio et al. 2022) and can be more
complex than a linear combination of available features
(Hofmann, Hoelzl, and Kirchler 2008). Both empirical and
theoretical analyses of moral judgments highlight this com-
plexity. Cohen and Ahn (2016) fit multiple kinds of lin-
ear and nonlinear models over people’s responses in moral
dilemmas and find that models from the exponential func-
tion family often provide the best fit. Kagan (1988) theo-
retically questions both the additive and independence as-
sumption (in an article appropriately titled “The Additive
Fallacy”), explaining through multiple contrastive examples
that (a) moral status of an act cannot always be determined
by the sum of weights of individual features, and (b) weight
assigned to each feature can depend on the weight assigned
to other features (i.e., feature interactions). As such, non-
linearity and dependence across various features can be ex-
pected in moral decision-making processes.

Noisy responses. Stochasticity in agent’s choices, (specif-
ically, changes in their responses to similar scenarios at dif-
ferent times) has been noted in various domains (Marley and
Regenwetter 2016; Becker, DeGroot, and Marschak 1963).
The same is true for moral decision-making domains, where
response variability can be a result of ongoing deliberation,
increased decision “difficulty”, and/or increased complexity
of the decision context (Sivill 2019). Boestler et al. (2024)
provide concrete evidence of this phenomenon. In their kid-
ney allocation study, participants take part in multiple ses-
sions and six pairwise comparisons are repeated in each ses-
sion. Participants’ responses to the repeated comparisons
provide insight into response variability, quantified by the
fraction of times a participant’s choice to a repeated sce-
nario differed from their majority choice for this scenario.
Boestler et al. (2024) observe significant response variability
for certain repeated comparisons (in the range of 10-18%).
Additionally, the results of Boestler et al. (2024) suggest that
response variability is larger when the pairwise comparison
is perceived as being more “difficult” by the participant, im-
plying amplified stochasticity for difficult moral dilemmas.

All of these properties pose significant obstacles to the com-



putational modeling of moral preferences. As we see in the
following sections, the impact of these challenges can po-
tentially be amplified by the use of active learning.

4 Testing the Efficacy of Active Learning

With the above challenges in mind, we next compare the per-
formance of active learning for preference elicitation against
the random baseline over simulations of these challenges.

Simulation setup. We primarily simulate agents that use
linear utility functions, i.e., u(x) = w'x, forany x € X,
given weights w € R?. The assumption of linear utility is
quite prevalent in the preference elicitation literature (e.g.,
Noothigattu et al. (2018), McElfresh et al. (2021), Johnston
et al. (2023)). In Section 4.2, we will also question this as-
sumption and simulate agents that use tree-based models and
linear models with feature interactions. To simulate an agent
with linear utility, we sample weights w from the uniform
distribution Unif([—1,1]%). We run Algorithm 1 for each
simulated agent, presenting them with /N pairwise compar-
isons (ranging from 5 to 50). H is set to be the class of linear
SVM classifiers over feature differences (with fit(-) perform-
ing SVM training). Hence, each h; will contain the learned
SVM weights, say Wy, . We evaluate performance using two
metrics: (i) accuracy - for a held-out collection of 1000 com-
parisons, measure the fraction of comparisons for which
the response using weights Wp,,, matches that of the agent
- and (i) normalized distance - measure the L,-distance
between Wy, and w after normalization. For each setup,
we report the mean and standard deviation of these metrics
across 50 simulated agents. In the main body of the paper,
we will primarily discuss the accuracy metric. Results with
respect to distance are similar but deferred to Appendix C.
The number of features d is varied from {3,...,15} and
each feature has range {1,...,10} (unless specified other-
wise). ACTIVE-VS-PE and ACTIVE-BAYES-PE will use a
linear kernel function x. Other implementation details are
presented in Appendix B.

4.1 Preference Instability

The first challenge we discuss in Section 3 is preference in-
stability, i.e., the agent’s underlying preferences can change
after making some decisions. Since the next query suggested
by active learning depends on the agent’s responses to com-
parisons presented so far, we simulate scenarios where an
agent’s preferences undergo changes to assess the impact of
preference instability on active learning algorithms.

We assume that the agent’s utility function is linear.
Suppose that the agent changes their preferences once, at
timestep fchange € [IV]. Let wP™® € R? denote the agent’s
weight vector for all timesteps ¢ < tchange and wP*' € R
denote the agent’s weight vector for all timesteps ¢ > #change-
We simulate the following kinds of preference changes.

* Downscale-ordered. Agent changes their preference
utility function to only use the feature to which they as-
signed the highest weight previously. For this agent, we
sample pre-change preference wP® ~ Unif([—1, 1]¢) and
set I = argmax; |w?*|. Then, for post-change prefer-

ence, Wi = w® and W™ = 0 forall i € [d] \ {I}.
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* Downscale-random. Agent changes their utility func-
tion to again use only one feature, but the feature is ran-
domly selected. For this agent, we sample pre-change
preference wP® ~ Unif([—1,1]%) and set I is chosen
randomly from set [d]. Then, for post-change preference,

POt — P and wl™ = 0 forall i € [d] \ {I}.

wy = wr i
» Upscale-ordered: Agent changes preference utility
function from using just one feature to all features, with
features in wP*' having lower relative weight than the
non-zero weight in w?™®. For this agent, sample wP*' ~
Unif([—1,1]%) and T = arg max; [w!™"|. Then, w}* =
Pt and w!'™ = 0 for all ic[d] \ {I}.

Wy i
* Random-switch. Agent changes to a random new pref-
erence after ¢cpange. Here, we sample both weights vectors

wP® WPt ~ Unif[—1, 1]¢, independently.

Downscale-ordered and Downscale-random model the
settings where an agent changes their preference to reduce
decision-making effort (Shah and Oppenheimer 2008). In
certain cases, the agent can choose only to use the feature
that was most important to them pre-Zcpange, Which is mod-
eled by Downscale-ordered. Upscale-ordered is a sym-
metric scenario where the agent instead incorporates addi-
tional features in their preference. Finally, Random-switch
models agents who make more drastic changes to their pref-
erence, e.g. following an entirely different set of moral
norms. Appendix C.I models multiple other scenarios as
well, e.g., agent downscaling/upscaling to or from random
features (instead of highest weighted feature) and downscal-
ing/upscaling to or from more than one feature. For all sce-
narios, we compare the accuracy achieved by ACTIVE-VS-
PE and ACTIVE-BAYES-PE vs. RANDOM-PE, varying the
number of features, number of comparisons, and #change-

Results. The results of our simulations are presented
in Figure 2. As expected, ACTIVE-VS-PE and ACTIVE-
BAYES-PE always achieve higher accuracy than RANDOM-
PE prior to tchange- POSt-fchange performance shows how well
each algorithm recovers from preference change.

Let us first look at the Downscale-ordered setting (plots
on the top-left side of Figure 2). In this case, when the pref-
erence change occurs early (i.e., tchange = 10), ACTIVE-
BAYES-PE recovers quite fast from the preference change:
the accuracy of ACTIVE-BAYES-PE becomes higher than
that of RANDOM-PE within 10 timesteps (on average) post-
tchange When d = 5. In comparison, ACTIVE-VS-PE takes
longer to recover and exceeds RANDOM-PE in accuracy.
For larger ?change, both active learning approaches seem to
recover slower and incompletely. When d = 10 and Zcpange
is 20 or 30, we further observe that ACTIVE-BAYES-PE and
ACTIVE-VS-PE have similar or even lower accuracy than
RANDOM-PE for all timesteps post-tchange. This also im-
plies reduced efficiency of active learning in settings with
high feature complexity; for any desired level of accuracy,
active learning approaches take a similar or larger number
of comparisons than the random query baseline to achieve
that accuracy level. In the case of Downscale-random set-
ting, the performance of active learning algorithms, relative
to RANDOM-PE, follows similar patterns — when d = 5
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Figure 2: Performance for preference-change scenarios from Section 4.1. ACTIVE-BAYES-PE often performs better than
RANDOM-PE post-tepange When d=5. However, in many cases (e.g., d=10, fchange=20, 30), both active learning algorithms

have similar or worse performance than RANDOM-PE.

and Zcpange is small, ACTIVE-BAYES-PE recovers well com-
pared to other algorithms, but this recovery is much slower
for d = 10. The drop in accuracy around timestep fchange
is also larger in magnitude for Downscale-random com-
pared to Downscale-ordered; this is expected since there
is relatively more consistency between pre-change and post-
change preferences in the Downscale-ordered setting.

Similar trends are observed for the Upscale-Ordered
and Random-switch plots in Figure 2. Active learning ap-
proaches have the worst recovery in the Random-switch
setting where, due to the drastic change in the agent’s pref-
erences, both ACTIVE-BAYES-PE and ACTIVE-VS-PE
have similar or worse performance than the RANDOM-PE
post tchange When d = 10. On the positive side, when d =
5, ACTIVE-BAYES-PE does achieve higher accuracy than
RANDOM-PE within 20 timesteps post-tchange ON average.

Overall, Bayesian active learning approaches can effi-
ciently elicit preferences while handling preference changes
when the number of features d is small. However, these
approaches fail to provide similarly improved performance
as feature complexity and preference change timestep in-
creases. These results highlight the importance of knowing
the nature and scale of preference instability before deploy-
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ing active learning. While active learning will eventually re-
cover after a larger number of timesteps beyond 50, we see
that in the timesteps following fcpange, it can perform even
worse than the random baseline due to its dependence on the
agent’s previous responses. Considering that active learning
is usually employed when one has to be economical with
the number of presented comparisons (due to time and/or
cost constraints), not being able to rely on a certain number
of initial responses can significantly affect the accuracy of
the learned preferences and fail to improve, or even harm,
the efficiency of the framework.

4.2 Model Misspecification

The second challenge we discussed in Section 3 is model
misspecification, specifically questioning the additive in-
dependence and complete information assumptions for the
agent’s moral decision-making process. In this section, we
evaluate active learning when additive independence and
complete information assumptions are not satisfied. Setting
‘H to be the linear class, we simulate the following scenarios.

» Agent uses tree-based utility. We simulate agents that
use shallow binary decision trees to assign utility. Tree-
based models reflect decisions made using if-then rules;
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Figure 3: Performance for model misspecfication scenarios
from Section 4.2. Active learning is more effective when the
extent of model misspecification is small in scale.

e.g., in an organ allocation setting, an agent might assign
a higher utility to a patient if their age is >50 but can be
indifferent to the exact age number. To maintain parity
between capacity of a tree model and models in H, we
simulate agents with tree models of depth |log d], where
d is the number of features. We simulate this scenario
with binary and non-binary features.

¢ Agent uses second-order interaction terms. Even with
a linear utility model, the agent’s utility function could
use interactions between different features. Interaction
terms account for scenarios where the importance an
agent might assign to any feature is correlated with the
value of another feature. For example, in the organ allo-
cation setting, an agent might assign a higher weight to
a patient’s number of dependents if the patient is young,
implying an interaction between the age and number of
dependents variables. We simulate this scenario by mea-
suring performance across a varying number of features
d and a varying number of second-order interactions.

* Missing features. Finally, we consider the scenario
where the agent uses information unavailable to the elic-
itation framework. We simulate this scenario by allowing
the agent to use a larger feature set than that available for
elicitation. Our simulations assess performance across a
varying number of total and missing features.

Results. The results for these simulations are presented
in Figure 3. When the agent uses tree-based preference,
ACTIVE-BAYES-PE has marginally better accuracy than the
RANDOM-PE after 30 comparisons when d is large. For
small d, both active learning approaches tend to have sim-
ilar or worse accuracy than the random baseline. The impact
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of model misspecification also depends on the input domain
— overall accuracy is lower for non-binary features.

When the agent uses interaction terms, Figure 3 shows
that accuracy decreases as the number of interaction terms
increases. However, when the number of interaction terms
is much smaller than d, ACTIVE-BAYES-PE and ACTIVE-
VS-PE can achieve higher accuracy than RANDOM-PE af-
ter 30 comparisons. Finally, in the case of missing features,
the larger the number of missing features (relative to d),
the lower the accuracy, and the smaller the gap between
ACTIVE-BAYES-PE, ACTIVE-VS-PE, and RANDOM-PE
after 30 comparisons. Missing information reduces the ca-
pacity of the framework to capture the agent’s decision-
making process, leading to an accuracy drop.

For these scenarios, we see that the larger the scale of dis-
parity between the agent’s utility function and H, the worse
the performance of active learning as compared to the ran-
dom query baseline. Active learning might still converge to
the best hypothesis in H (see accuracy vs. timestep results in
Appendix C.2); however, the above results show that dispar-
ity between functions in H and the agent’s utility affects ac-
tive learning’s ability in generating informative queries and
leads to a reduction in accuracy of learned preferences.

4.3 Noisy Responses

The final challenge we highlighted in Section 3 is stochas-
ticity or variability in agent’s responses to moral dilemmas.
Two ways in which this stochasticity has been modeled in
prior literature are (a) response noise: noise that arises and
affects the agent’s response after the agent has computed
utility for the presented cases, and (b) preference noise:
noise that arises due to variability in the agent’s underlying
utility function (Bhatia and Loomes 2017; Marley and Re-
genwetter 2016). Suppose the agent uses linear utility, i.e.,
u(x) = w ' x, for some weR?. Then, the above noise mod-
els can simulated as follows.

* Response noise model. This model induces noise £ ~
N (0, 0?) after utility is computed. Assuming an additive
noise model, the impact of this noise on the agent’s re-
sponse R can be interpreted as changing it to R(x,x’) =
1[u(x) — u(x’) 4+ € > 0]. Our simulations evaluate per-
formance for varying o € R.

* Preference noise model. This model assumes noise in
the utility generation process itself. We simulate this set-
ting as follows: Suppose that whenever presented with
a pairwise comparison, the agent first samples w ~
N(w*,0°1/d), and then uses the sampled w to com-
pute utilities. Here, w* € R? represents summary feature
weights assigned by the agent and o € R is the noise pa-
rameter varied in our simulations.

Results. The results for this simulation are presented in Fig-
ure 4. As expected, increasing o leads to a decrease in ac-
curacy of all algorithms. However, in the case of response
noise, ACTIVE-BAYES-PE has higher accuracy than the
RANDOM-PE baseline even for high values of . Accuracy
vs number of comparisons plot for o = 2 further shows that
ACTIVE-BAYES-PE starts achieving higher accuracy than
RANDOM-PE with as few as 20 comparisons. Performance
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Figure 4: Performance for the noise models from Section 4.3. ACTIVE-BAYES-PE performs better than the random query
baseline even with response noise. However, it fails to provide a similar improvement in most scenarios of preference noise.

of ACTIVE-VS-PE, on the other hand, is relatively better
than RANDOM-PE for small ¢ values but becomes similar to
that of RANDOM-PE for large o. Hence, in this case, active
learning (especially, ACTIVE-BAYES-PE) can be relatively
more accurate at preference elicitation despite noise.

In the preference noise setting, both active learning ap-
proaches have similar performance as the RANDOM baseline
for almost all non-zero o values. Variation with respect to o
and number of comparisons shows that noise in preference
weights significantly affects the ability of all algorithms to
learn the underlying preferences when o>1. Hence, here ac-
tive learning fails to provide any performance improvement
in comparison to the random query generation baseline.

5 Discussion, Limitations, and Future Work

Through the presented simulations, we highlight how poten-
tial issues associated with moral preferences, such as prefer-
ence instability, response variability, or modeling errors, can
impact the efficacy of active-learning-based preference elic-
itation. In all simulated scenarios, we compare the perfor-
mance of active learning-based preference elicitation against
the baseline method of using random queries at each time
step. Overall, there are positive scenarios where active learn-
ing still performs better than the random query baseline —
e.g., when noise affects utility but not the underlying prefer-
ences, or in the case of small-scale preference instability in
initial iterations. Then, there are neutral scenarios where the
simulated challenge impacts the efficiency of all algorithms
similarly and the performance of active learning and the ran-
dom baseline are comparable — e.g., for large-scale model-
ing errors or when the agent’s underlying preferences are
noisy. In these cases, using active learning does not provide
any added benefit but it also does not cause any harm to the
elicitation framework. Finally, there are negative scenarios,
where using active learning is less effective than the random
baseline — e.g., when the number of features is large and
the agent’s preference changes after they have responded
to a large number of comparisons. Here, since active learn-
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ing uses the agent’s previous responses to construct the next
query, it takes longer to recover from preference changes.

Different real-world challenges have different effects on
active learning for preference elicitation. Deploying these
frameworks without prior understanding of the agent’s
decision-making for the given context can lead to inaccu-
rate representations of their preferences. While using a small
number of queries will almost always provide only an ap-
proximate representation of the underlying preferences, our
simulations call attention to the sources of inaccuracy that
were unappreciated in previous works and could lead to in-
correct interpretations of results if not considered in practice.

In the paragraphs below, we highlight other characteristics
of our assessment as well as future work on this topic.

Algorithmic solutions. One response to the challenges we
simulate is that many of them can be addressed algorithmi-
cally if they are known in advance. If an agent’s preferences
are known to be unstable for initial comparisons, then one
can, say, modify the elicitation approach to disregard a cer-
tain number of initial comparisons or assign sample weights
to each case that are inversely proportional to the duration
since the case was observed by the agent. This way, active
learning can construct queries that are primarily based on the
most recent agent responses. To account for feature interac-
tions, the models in H can allow interactions by default and
use regularization to rule out scenarios where interactions
are not used. Prior work on active learning methods that
are robust to noise or distribution shifts can be potentially
adapted to make elicitation more resilient to noise or mod-
eling errors (Angluin and Laird 1988; Zhao et al. 2021). In
simulations, Bayesian approaches often appear more robust
to certain challenges, e.g., small-scale instability. Hence, one
approach is to use ACTIVE-BAYES-PE with an expanded
hypothesis class H (e.g., combining linear and tree classes)
to counter issues of model misspecification. The main chal-
lenge here is creating an efficient query-selection algorithm
over an expanded H while being robust to instability and
noise, and can be explored as part of future work. Most of



these modifications, however, require prior knowledge of the
nature of the challenge associated with the agent’s decision-
making process. Indeed, the primary goal of our analysis is
to highlight that certain assumptions made when using ac-
tive learning incorrectly rule out these challenges. Knowing
that these assumptions might be violated can help practition-
ers develop modifications that might be better suited for the
given context. Also, some active learning algorithms may be
generally more robust to violated assumptions than others.

Sensitivity of moral preferences. As discussed, moral
preferences can be different from generic preferences for
self-benefit and, hence, assuming moral preferences to have
a similar structure as other preferences will hurt the accu-
racy of the elicitation framework. Based on prior insights
from the literature on moral preferences, our work discusses
specific mechanisms via which these inaccuracies can occur.
With the highlighted challenges and considering the emer-
gent nature of moral psychology research, the task of elic-
iting moral preferences can be tricky. Nevertheless, build-
ing elicitation methods specifically for moral preferences is
a worthwhile direction for future research, given their role
in creating ethical Al tools. At the same time, moral pref-
erence elicitation is just one (albeit complex) part of ethical
Al development. Mechanisms to incorporate learned moral
preferences within Al systems involve additional work and
should be similarly subjected to technical analyses of feasi-
bility under various real-world challenges.

On utility functions. Our framework employs utility
functions to model people’s preferences over actions in
moral dilemmas, as is standard practice in this literature. De-
spite the overlap in naming conventions, it is important to
clarify that modeling moral preferences using utility func-
tions does not presuppose a reliance on utilitarian or con-
sequentialist moral theories (as long as consequentialism
isn’t used generically to cover all possible theories (Port-
more 2022)). The justifications people have for considering
features that contribute to their utility function do not have
to draw on consequentialist principles, and the features peo-
ple consider may not impact future consequences directly,
such as when people think patients’ past criminal behavior
is important for determining who should receive an avail-
able kidney. Adherence to many different moral theories (in-
cluding non-consequentialist theories) can be modeled us-
ing utility functions, and our analysis aims to call attention
to challenges that can arise when using active learning to
obtain accurate representations of various utility functions.
Nevertheless, future work is needed to assess the effective-
ness and challenges of using active learning to predict moral
judgments under other modeling frameworks or conditions,
e.g., when using explicit moral constraints (Black 2020),
harm-based utilities (Beckers, Chockler, and Halpern 2022),
or modified utility-based frameworks that explicitly account
for deontological values (Lazar 2017).

On non-moral preferences. Issues of instability, noise,
or model misspecification can arise with non-moral prefer-
ences as well. Yet, we focus on moral preferences because
the specific challenges we simulate are inspired by the liter-
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ature on moral philosophy and psychology. Al applications
that would rely on moral preference elicitation often involve
high stakes and errors in preference elicitation can cause
undue harm to users and impacted individuals (e.g., in au-
tonomous vehicles and kidney allocation settings), requiring
high levels of elicitation accuracy and reliability.

Other analyses/baselines. Future assessments of active
learning can also simulate violations of multiple assump-
tions; e.g., the presence of both preference instability and
model errors. These combinations can be reflective of more
complex decision-making settings. Additionally, in applica-
tions where data from past agents is available, other base-
lines (beyond simple random query baseline) can be consid-
ered. For instance, one could create elicitation using a cu-
rated set of queries that were informative of the preferences
of past agents. All or random subsets of this curated set can
be used to elicit preferences. Evaluation of active learning
against such baselines can provide insight into whether it is
better than methods that use prior information.

Limitations of our analysis. Our simulations demonstrate
the need for improved modeling of human moral preferences
and developing active learning approaches that are more ro-
bust to the simulated challenges. Along with this direction
for future work, additional analyses can be conducted to fur-
ther discover other failure points of quantitative preference
elicitation frameworks. Note that all of our analysis simu-
lates agents with linear or tree-based utility functions. Hu-
man moral preferences can be more complex and analyz-
ing active learning performance through real-world data can
provide more robust results. In particular, this will require
human-subject studies where participants respond to com-
parisons generated using active learning and random com-
parisons. As expected, collecting this data will be expensive
and time-consuming. In that regard, our simulation provides
a starting point on the kind of data that can be gathered us-
ing active learning and raises challenges that need to be ac-
counted for when analyzing this data.

6 Conclusion

The results of our simulations highlight the challenges as-
sociated with extracting accurate representations of agents’
moral preferences while using as few queries as possible. In
cases of large-scale instability or noise in agent preferences
or responses, active learning has similar or worse perfor-
mance than the random baseline. The assumptions made by
the elicitation framework regarding the agent’s moral pref-
erences also impact the effectiveness of active learning. The
use of active learning for moral preference elicitation there-
fore requires careful evaluation of modelling assumptions
and the scale of expected variability in agent preferences
and responses for the relevant context. If large-scale insta-
bility, noise, and/or violation of modeling assumptions are
expected, then appropriate alternatives or modifications to
active learning should be considered to counter such issues.
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