
1

Multi-bit Distributed Detection of Sparse Stochastic
Signals over Error-Prone Reporting Channels

Linlin Mao, Member, IEEE, Shefeng Yan, Senior Member, IEEE, Zeping Sui, Member, IEEE,
and Hongbin Li, Fellow, IEEE

Abstract—We consider a distributed detection problem within
a wireless sensor network (WSN), where a substantial number
of sensors cooperate to detect the existence of sparse stochastic
signals. To achieve a trade-off between detection performance
and system constraints, multi-bit quantizers are employed at
local sensors. Then, two quantization strategies, namely raw
quantization (RQ) and likelihood ratio quantization (LQ), are
examined. The multi-bit quantized signals undergo encoding into
binary codewords and are subsequently transmitted to the fusion
center via error-prone reporting channels. Upon exploiting the lo-
cally most powerful test (LMPT) strategy, we devise two multi-bit
LMPT detectors in which quantized raw observations and local
likelihood ratios are fused respectively. Moreover, the asymptotic
detection performance of the proposed quantized detectors is
analyzed, and closed-form expressions for the detection and
false alarm probabilities are derived. Furthermore, the multi-
bit quantizer design criterion, considering both RQ and LQ, is
then proposed to achieve near-optimal asymptotic performance
for our proposed detectors. The normalized Fisher information
and asymptotic relative efficiency are derived, serving as tools to
analyze and compensate for the loss of information introduced
by the quantization. Simulation results validate the effectiveness
of the proposed detectors, especially in scenarios with low signal-
to-noise ratios and poor channel conditions.

Index Terms—Wireless sensor networks, distributed detection,
sparse signal, multi-bit quantizer, error-prone channels.

I. INTRODUCTION

Wireless sensor networks (WSNs) have gained considerable
interest in recent years due to their flexibility and exceptional
performance in several activities such as data collecting [1],
[2], distributed detection [3], signal estimation [4], vehicle
tracking [5], and target localization [6]. Many WSN appli-
cations, such as disaster prevention, appliance monitoring,
and battlefield surveillance, naturally face the challenges of
distributed detection [7]–[10]. Notably, copula-based fusion
models were exploited to attain superior performance in multi-
sensor remote sensing and target detection [11], [12]. A
distributed detection system is usually composed of multiple
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geographically distributed sensor nodes that make noisy ob-
servations over a region of interest. These nodes then transmit
their processed data to a fusion center (FC), which aggregates
the received data to obtain a global decision.
One key characteristic of WSN is that the channel band-

width is restricted and sensor nodes typically have limited
power supplies [13], imposing severe constraints on the
amount of communication data. To minimize communication
data amount, a direct method is to convert the raw observations
from local sensors into one-bit data, which we term as raw
quantization (RQ). Several distributed detection schemes using
one-bit RQ fusion have been studied, such as the generalized
likelihood ratio test (GLRT) [14], Rao [15], locally most
powerful test (LMPT) [16], generalized variants of Rao [17]
and locally optimum detection (LOD) tests [18], sequential
test [19], as well as joint detection and estimation methods
[20], respectively. Likelihood-ratio (LR) based quantization
(LQ), an alternative to RQ fusion compute and quantize the
LRs at local sensors before forwarding them to the FC. It
is worth noting that hard decision fusion can be considered
as an extreme case of transmitting quantized LRs [21]. For
uncooperative targets with sensor-target distance dependent
amplitude attenuation, decision fusion based on GLRT and
generalized LOD have been investigated in [22] and [23],
respectively, whereas decision fusion with adaptive topology
was taken into consideration in [24].
One-bit quantization-based distributed detection provides

the advantages of minimal data transmission and low com-
munication energy consumption; nevertheless, in comparison
to centralized detection, a significant amount of information
is lost, leading to a loss of detection performance. To bridge
the performance gap, researchers have looked into multi-bit
quantization techniques [25]–[31]. The main challenge with
these techniques is high complexity, which arises from a non-
linear multi-dimensional search procedure required by these
methods. In particular, based on multi-bit uniformly quantized
data, the distributed signal detection problem was examined
for cloud MIMO radar [25] and, respectively, underwater
sensing based on a reflection model with aspect and distance-
dependent received signals [26]. The quantification step in the
former can be easily calculated given the fixed quantization
interval and quantization depth, whereas in the latter it is
optimized by maximizing the Kullback-Leibler divergence
between the null and alternative hypotheses. On the other
hand, non-uniform multi-bit RQ fusion has been employed to
detect an unknown signal parameter in three different contexts:
Gaussian noise [27], zero-mean unimodal symmetric noise
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[28], and a model accounting for distance-dependent signal
amplitude decay [29]. Particle swarm optimization algorithms
(PSOA) were employed by all three to optimize multi-bit
quantization threshold designs.

In addition to quantization, compression is another efficient
method for lowering the transmission load. To meet the band-
width constraint, both compression and quantization are per-
formed in [32] for the decentralized detection of an unknown
vector signal using GLRT and Rao tests without the sparse
detected signal assumption. In many applications, the signal
to be detected is usually sparse or has a sparse representation
in a transformed domain. Consequently, compressive sensing
(CS) is capable of attaining compression without significant
performance loss [33]. Distributed detection of an unknown
deterministic sparse vector signal based on one-bit CS mea-
surements was considered in [34], where sparse recovery was
employed to reconstruct the detection statistic. Research on
the distributed detection of sparse stochastic signals without
sparse recovery was carried out in [35]–[44]. In [36] and
[37], distributed detection based on compressive measures was
integrated with censoring and falsified censoring techniques to
address local energy supply restrictions with improved system
secrecy, respectively. The LMPT, Rao and Wald tests for com-
pressive detection of sparse stochastic signals with unknown
sparsity degree were explored in [38] and [39], which we
shall refer to as Clairvoyant detectors in the following. Apart
from Clairvoyant detectors, quantized detectors for distributed
detection of sparse stochastic signals were also investigated
in [40]–[44]. Multi-bit RQ fusion was employed in [40] and
[41] to detect a sparse signal from Gaussian and generalized
Gaussian noise, respectively. In [42], [43] and [44], one-bit LQ
fusion was utilized to improve the detection performance of
RQ detectors, whereby a non-ideal reporting channel was also
considered in [44]. Nevertheless, for the distributed detection
of sparse stochastic signals over error-prone channels – which
is typically the practical case with restricted channel capacity
– how to use multi-bit LQ fusion and multi-bit RQ fusion has
not yet been studied in the literature. Multi-bit quantization is
required, as will be indicated in Section IV, particularly over
imperfect reporting channels since one-bit quantization may
result in a significant loss of Fisher information.

Against this background, we design multi-bit quantizers for
distributed detection of a sparse stochastic signal over error-
prone reporting channels. The contributions of our paper are
explicitly contrasted with the existing literature in Table I,
which is further detailed below.

• Multi-bit quantized detectors based on both raw quanti-
zation and LR quantization are proposed. To strike the
detection performance vs. system constraints trade-off,
we conceive multi-bit quantization on both the raw ob-
servations and the LRs at each local sensor. The multi-bit
quantized signals are encoded as binary codewords and
then sent to the FC via error-prone reporting channels,
which are modeled as binary symmetric channels (BSCs).
We then develop two multi-bit LMPT detectors that can
fuse raw observations and local LRs respectively.

• We then analyze the asymptotic detection performance
of the proposed quantized detectors, and derive closed-

form expressions for the detection and false alarm prob-
abilities. The results demonstrate that the asymptotic
distribution of the LMPT test statistics follows a non-
central Normal distribution, characterized by a non-
central parameter that increases monotonically with the
Fisher information (FI) of each detector, which depends
on both the quantization threshold and the crossover
probability of the BSC.

• We further derive the design criteria for multi-bit quan-
tizer that consider both RQ and LQ, aiming to achieve
near-optimal asymptotic performance for the proposed
quantized detectors. To enhance the detection perfor-
mance at the FC, we formulate an optimization problem
concerning the FI to determine the optimum quantization
thresholds. It should be noted that our proposed criteria
are not a trivial extension of [27], since their signal mod-
els and detection strategies are different, and different
quantization methods are invoked in the LQs. Moreover,
the design of multi-bit quantizers based on LQ fusion for
both ideal and practical channels has not yet appeared in
the literature. In this work, the ideal channel scenario
can be regarded as a special case with a zero crossover
probability.

• The normalized Fisher information is derived to analyze
the loss of information due to quantization. This pro-
vides a useful method for visually characterizing quan-
tizers under varying channels. Additionally, an analytical
derivation of the asymptotic relative efficiency (ARE)
is provided to assess the loss of information. The ARE
can be employed to determined the number of additional
sensors that a quantized detector requires relative to a
Clairvoyant detector. Comparative analysis between LQ
and RQ is also provided to clarify why the latter performs
worse than the former at low-bit quantization.

• Furthermore, we benchmark the performance of the
proposed quantized detectors with Clairvoyant and uni-
formly quantized solutions across a range of false alarm
probabilities, number of sensors, and signal-to-noise ra-
tios (SNR) under the conditions of different quantization
depths and cross probabilities. It is observed that the
proposed quantizers perform better than the conventional
counterparts, especially in low SNR and poor channel
scenarios.

The rest of the paper is structured as follows. Section II
derives the multi-bit distributed detection problems for sparse
stochastic signals over non-ideal reporting channels, while
Section III details the derivation of the proposed quantized
detectors. In Section IV, we design the corresponding multi-bit
quantization thresholds and evaluate the performance degrada-
tion caused by quantization. Section V presents the simulation
results, followed by the concluding remarks in Section VI.

Notations: Lowercase boldface letters are used to indicate
vectors. RM×N denotes the space of real matrices with di-
mension M×N . Transposition is indicated by the superscript
(·)T . E[·] represents the statistical expectation. I(·) represents
the indicator function. The notation | · | represents the absolute
value of a real number. || · || denotes the Euclidean norm of a
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TABLE I
CONTRASTING OUR CONTRIBUTIONS TO THE EXISTING LITERATURE

Contributions Our work [27] [32] [40] [43] [44]
Multi-bit quantization ✓ ✓ ✓ ✓
Raw quantization (RQ) ✓ ✓ ✓ ✓ ✓
LR quantization (LQ) ✓ ✓ ✓
Sparsity model ✓ ✓ ✓ ✓
Error-prone reporting channel ✓ ✓ ✓ ✓
Examine of the Fisher information loss ✓
Comparative analysis between LQ and RQ ✓
Asymptotic relative efficiency analysis ✓ ✓ ✓

vector. The Dirac delta function is indicated by δ(·). The sym-
bols ∼ and a∼ stand for “distributed as” and “asymptotically
distributed as”, respectively. A Gaussian distribution with a
mean of µ and a variance of σ2 is denoted by N (µ, σ2).
The notation for probability mass functions is P (·), and its
conditional counterpart is denoted as P (·|·).

II. SYSTEM MODEL

A. Signal Model

Consider a distributed detection scheme comprising M
spatially located sensors and a FC. As observed from Fig. 1,
each sensor simultaneously observes a phenomenon of interest
that produces N -dimensional sparse signals, and linearly com-
presses the raw observation data using random measurement
vectors. The task of detecting the presence of sparse signals
based on compressed measurements can be formulated as the
following binary hypothesis testing problem{

H0 : ym = wm,
H1 : ym = hhhT

msssm + wm,
(1)

for m = 1, · · · ,M , where ym ∈ R denotes the compressed
measurement of the mth sensor; wm represents the Gaussian
noise with zero mean and a known variance σ2

w; hhhm ∈ RN×1

is the signal-independent measurement vector; sssm ∈ RN×1

denotes the sparse signal observed by the mth sensor. We
assume that the sparse signals exhibit a joint sparsity structure,
which can be modeled by the Bernoulli-Gaussian distribu-
tion. Denote a N × 1 binary-valued vector, rrr, as the joint
sparsity pattern with its entries assumed to be independent
and identically distributed (i.i.d.) Bernoulli random variables
which take the value 1 with probability p. The elemental
structure of sssm is consistent with that of rrr, and its non-
zero entries follow a Gaussian distribution with a mean of
zero and a variance of σ2

0 . The non-zero entries in sssm are
i.i.d. Bernoulli Gaussian variables adhering to the following
probability distribution [38], [45]

sm,n ∼ pN (0, σ2
0) + (1− p)δ(sm,n), ∀m, ∀n. (2)

with unknown sparsity degree p and signal power σ2
s . Con-

sequently, the probability density function (PDF) of the mea-
surement ym is distributed under H0 as

ym|H0 ∼ N (0, σ2
w). (3)

Based on the central limit theorem, the PDF of ym under H1

can be derived from (1) and (2)

ym|H1
a∼ N (0, pσ2

0 ||hhhm||22 + σ2
w). (4)
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Fig. 1. Illustration of the distributed detection system for sparse signals with
multi-bit quantization and error-prone reporting channels.

B. Multi-bit Quantization at the Local Sensors
To conserve channel bandwidth and system power, a

multi-bit quantizer is employed to quantize the mea-
surement from the m-th sensor. Specifically, for a q-
bit quantizer, the dynamic range of the sensor measure-
ment is divided into 2q non-overlapping quantization in-
tervals, each being assigned with a binary codeword se-
lected from the set {zzzm,1, zzzm,2, · · · , zzzm,2q} where zzzm,i =

[zm,i,q, zm,i,q−1, · · · , zm,i,1]
T with zm,i,k ∈ {0, 1}. The end-

points of each interval are identified by the quantization
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thresholds τττm =
[
τm,1, τm,2, · · · , τm,2q−1

]T
. By compar-

ing the sensor output with the quantization thresholds, the
quantizer determines the quantization interval and assigns the
sensor measurement to the appropriate interval. After that, a
binary codeword that matches the quantization interval is the
output.

C. Error-Prone Reporting Channels

The quantized data may encounter transmission errors when
communicated to the FC. These errors are modeled using a q-
ary discrete memoryless channel (DMC) model [46], [47] as
shown in Fig. 1. We assume that the channels from different
local sensors to the FC are independent, and the transmission
of the q-bit quantized data sent by each sensor operates in-
dependently. Consequently, the transmission channel between
sensors and the FC can be further modeled as q-ary channels,
where the transmission at each bit level is characterized as a
BSC. Let Pe,m denote the crossover probability from the m-th
sensor to the FC in the BSC. Pe,m can then be interpreted
as the channel’s average bit error rate (BER), which can
be calculated using the classic Union bound algorithm [48],
[49]. The FC makes a global decision based on the received
data regarding the presence or absence of the sparse signals.
The problem at hand pertains to the design of the multi-bit
quantizer in each sensor to assist the sparse signal detection
at the FC.

III. TWO PROPOSED QUANTIZED LMPT DETECTORS

In this section, we design and construct two multi-bit LMPT
detectors that fuse raw observations and local likelihood
ratios, respectively. Then we analyze the asymptotic detection
performance of the proposed quantized detectors.

A. LMPT Based on Quantized Raw Observations

The compressed observation at each sensor node, i.e., ym,
is quantized into q bits via raw quantization. Hence, the output
codeword of the q-bit quantizer at the mth sensor can be
expressed as

bbbrqm =


zzzrqm,1 , −∞ < ym < τ rqm,1,
zzzrqm,2 , τ rqm,1 ≤ ym < τ rqm,2,
...

...
zzzrqm,2q , τ rqm,2q−1 ≤ ym < +∞.

(5)

Due to the distortion effect in BSC, the output bbbrqm could be
any binary codeword. The probability of zzzrqm,j being changed
to zzzrqm,i over the BSC can be calculated as

P (dddrqm =zzzrqm,i|bbb
rq
m = zzzrqm,j)

=P
Drq

m,i,j
e,m (1− Pe,m)q−Drq

m,i,j

=G(q, Pe,m, Drq
m,i,j), (6)

where Drq
m,i,j is the Hamming distance between zzzrqm,j and

zzzrqm,i, which can be defined as

Drq
m,i,j ≜ D(zzzrqm,i, zzz

rq
m,j) = q −

q−1∑
k=0

I(zrqm,i,k, z
rq
m,j,k). (7)

The probability mass function (PMF) of the output dddrqm with
the BSC under H1 is given by

P (dddrqm; p) =

2q∑
i=1

2q∑
j=1

P (dddrqm = zzzrqm,i|bbb
rq
m = zzzrqm,j)P (bbbrqm = zzzrqm,j)

=
2q∏
i=1

 2q∑
j=1

G(q, Pe,m, Drq
m,i,j)Q

rq
m,j(p)

I(dddrq
m=zzzrq

m,i)

,

(8)

where

Qrq
m,j(p) ≜ P (bbbrqm = zzzrqm,j ; p) = P (τ rqm,j−1 ≤ ym < τ rqm,j)

= Φ

(
τ rqm,j−1

σm(p, σ2
0)

)
− Φ

(
τ rqm,j

σm(p, σ2
0)

)
, (9)

with Φ(β) = 1/
√
2π
∫ +∞
β

exp(−α2/2) dα being the com-
plementary cumulative density function (CCDF) of wm, and
σ2
m(p, σ2

0) ≜ pσ2
0 ||hhhm||22 + σ2

w. Denote the data collected by
the FC as dddrq =

[
dddrq1 , ddd

rq
2 , · · · , ddd

rq
M

]
. The likelihood function

under H1 can be expressed as

P (dddrq|H1; p)

=
M∏

m=1

2q∏
i=1

 2q∑
j=1

G(q,Pe,m, Drq
m,i,j)Q

rq
m,j(p)

I(ddd
rq
m,zzzrq

m,i)

. (10)

Based on the quantized raw observations, the LMPT detector
[50] can be obtained as

T rq
LMPT =

(
∂ lnP (dddrq|H1; p)

∂p

/√
FIrqq (p)

)
p=0

H1

≷
H0

ηrq, (11)

where ηrq is the detection threshold. Taking the derivative of
the logarithm of (10) with respect to p leads to (see Appendix
A for details)

∂ lnP (dddrq|H1; p)

∂p
=

σ2
0

2

M∑
m=1

||hhhm||22
σ3
m(p, σ2

0)

×
2q∑
i=1

[
I(dddrqm, zzzrqm,i)

∑2q

j=1G(q, Pe,m, Drq
m,i,j)F

rq
m,j(p)∑2q

j=1G(q, Pe,m, Drq
m,i,j)Q

rq
m,j(p)

]
,

(12)

where

F rq
m,j(p) = τ rqm,j−1Ψ

(
τ rqm,j−1/σm(p, σ2

0)
)

− τ rqm,jΨ
(
τ rqm,j/σm(p, σ2

0)
)
. (13)

In (11), FIrqq (p) denotes the Fisher information, which can be
formulated as (see Appendix B for details)

FIrqq (p) ≜−E
[
∂2 lnP (dddrq|H1; p)

∂p2

]
=

σ4
0

4

M∑
m=1

||hhhm||42
σ6
m(p, σ2

0)

×
2q∑
i=1

[∑2q

j=1 G(q, Pe,m, Drq
m,i,j)F

rq
m,j(p)

]2
∑2q

j=1 G(q, Pe,m, Drq
m,i,j)Q

rq
m,j(p)

. (14)

Note that although the FI is a scalar that is independent of
measurements and, hence, can be dropped, it is retained in (11)
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as the scaled test variable has a simple asymptotic distribution
as shown in Section III-C.

By substituting p = 0 into (12) and (14), the LMPT detector
based on quantized raw observations is given by

T rq
LMPT ∝

M∑
m=1

||hhhm||22
σ3
w

2q∑
i=1

I(dddrqm, zzzrqm,i)

×
∑2q

j=1 G(q, Pe,m, Drq
m,i,j)F

rq
m,j(0)∑2q

j=1 G(q, Pe,m, Drq
m,i,j)Q

rq
m,j(0)

, (15)

where we have

F rq
m,j(0) = τ rqm,j−1Ψ

(
τ rqm,j−1/σw

)
− τ rqm,jΨ

(
τ rqm,j/σw

)
, (16)

Qrq
m,j(0) = Φ

(
τ rqm,j−1/σw

)
− Φ

(
τ rqm,j/σw

)
. (17)

B. LMPT Based on Quantized Likelihood Ratios

In this subsection, we develop the LMPT detector, which
utilizes q-bit quantizer to fuse local LRs instead of using the
quantized raw observations directly. Specifically, the local LR
can be obtained from (4) as follows:

Lm(ym; p) = P (ym|H1; p)/P (ym|H0)

=

√
σ2
w

σ2
m(p, σ2

0)
exp

(
pσ2

0 ||hhhm||22
2σ2

wσ
2
m(p, σ2

0)
y2m

)
. (18)

Based on (18), Lm(ym; p) is a monotonically increasing
function of y2m or |ym|. Consequently, at the mth sensor, the
q-bit quantizer based on the LR can be expressed as

bbblqm =


zzzlqm,1 , 0 < |ym| < τ lqm,1,

zzzlqm,2 , τ lqm,1 ≤ |ym| < τ lqm,2,
...

...
zzzlqm,2q , τ lqm,2q−1 ≤ |ym| < +∞.

(19)

Similarly, the quantized data is sent to the FC via BSC, and
the probability that zzzlqm,j is changed to zzzlqm,i over the BSC can
be computed as

P (dddlqm =zzzlqm,i|bbb
lq
m = zzzlqm,j)

=P
Dlq

m,i,j
e,m (1− Pe,m)q−Dlq

m,i,j

≜G(q, Pe,m, Dlq
m,i,j), (20)

where Dlq
m,i,j denotes the Hamming distance between zzzlqm,j

and zzzlqm,i, and is defined similarly to that of (7). The PMF of
the received data dddlqm can be derived as

P (dddlqm; p)=
2q∑
i=1

2q∑
j=1

P (dddlqm = zzzlqm,i|bbb
lq
m = zzzlqm,j)P (bbblqm = zzzlqm,j)

=

2q∏
i=1

2 2q∑
j=1

G(q,Pe,m, Dlq
m,i,j)Q

lq
m,j(p)

I(ddd
lq
m=zzz

lq
m,i)

,

(21)

where

Qlq
m,j(p) ≜

1

2
P (bbblqm = zzzlqm,j ; p) =

1

2
P (τ lqm,j−1 ≤ |ym| < τ lqm,j)

= Φ

(
τ lqm,j−1

σm(p, σ2
0)

)
− Φ

(
τ lqm,j

σm(p, σ2
0)

)
. (22)

The likelihood function of the data received by the FC can be
expressed as

P (dddlq|H1; p)

=
M∏

m=1

2q∏
i=1

2 2q∑
j=1

G(q,Pe,m, Dlq
m,i,j)Q

lq
m,j(p)

I(ddd
lq
m,zzzlq

m,i)

.

(23)

Then we take the derivative of the logarithm of (23) with
respect to p, yielding (see Appendix C for details)

∂ lnP (dddlq|H1; p)

∂p
=

σ2
0

2

M∑
m=1

||hhhm||22
σ3
m(p, σ2

0)

×
2q∑
i=1

[
I(dddlqm, zzzlqm,i)

∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)F

lq
m,j(p)∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)Q

lq
m,j(p)

]
,

(24)

where

F lq
m,j(p) = τ lqm,j−1Ψ

(
τ lqm,j−1/σm(p, σ2

0)
)

− τ lqm,jΨ
(
τ lqm,j/σm(p, σ2

0)
)
. (25)

The Fisher information is formulated as (see Appendix D for
details)

FIlqq (p) ≜E

[(
∂ lnP (dddlq|H1; p)

∂p

)2
]
=

σ4
0

2

M∑
m=1

||hhhm||42
σ6
m(p, σ2

0)

×
2q∑
i=1

[∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)F

lq
m,j(p)

]2
∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)Q

lq
m,j(p)

. (26)

Upon substituting p = 0 into (24) and (26), the LMPT detector
based on quantized raw observations is given by

T lq
LMPT ∝

M∑
m=1

||hhhm||22
σ3
w

2q∑
i=1

I(dddlqm, zzzlqm,i)

×
∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)F

lq
m,j(0)∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)Q

lq
m,j(0)

, (27)

where

F lq
m,j(0) = τ lqm,j−1Ψ

(
τ lqm,j−1/σw

)
− τ lqm,jΨ

(
τ lqm,j/σw

)
, (28)

Qlq
m,j(0) = Φ

(
τ lqm,j−1/σw

)
− Φ

(
τ lqm,j/σw

)
. (29)

C. Asymptotic Detection Performance

According to [50], the asymptotic distribution of the LMPT
test statics TLMPT in (15) and (27) can be obtained as

TLMPT
a∼
{

N (0, 1), under H0

N (λq, 1), under H1
, (30)

where

λq = p
√
FIq(0) (31)
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denotes the non-centrality parameter. For the sake of sim-
plicity, the superscripts “rq” and “lq” are omitted whenever
there is no confusion. It is readily observed from (30) that
for a given threshold η, the probability of false alarm can be
expressed as

PFA = P (TLMPT > η|H0) = Φ(η). (32)

Similarly, the probability of detection can be written as

PD = P (TLMPT > η|H1) = Φλq (η), (33)

where Φλq (β) = 1/
√
2π
∫ +∞
β

exp(−(α−λq)
2/2) dα denotes

the CCDF for a non-central normal distribution with non-
centrality parameter λq .

Remarks: Referring to (31), we can obtain the detection
threshold η given a specific probability of false alarm PFA.
Then, the probability of detection PD can be calculated by
substituting η into (33). As demonstrated in (32) and (33),
the detection performance improves with higher λq , while
(31) suggests that λq increases monotonically with FIq , which
is a function of the quantization threshold and the crossover
probability. Therefore, by maximizing FIq , we can determine a
set of quantization thresholds that allow the quantized LMPT
detectors to achieve near-optimal detection performance for a
given Pe,m.

IV. DESIGN OF QUANTIZATION THRESHOLD AND
PERFORMANCE ANALYSIS

In this section, we first design quantization thresholds for
the proposed quantized LMPT detectors to achieve near-
optimal asymptotic performance. The normalized Fisher in-
formation and asymptotic relative efficiency are then derived
analytically to analyze and compensate for the loss of infor-
mation resulting from quantization. A comparative analysis
between RQ and LQ is also provided to account for their
differences.

A. Multi-bit Quantization Threshold Design

Inspired by the analysis in Section III-C, the quantization
threshold design can be turned into an optimization problem
with regard to FI as shown below

max
{τττm}M

m=1

M∑
m=1

||hhhm||42
σ6
w

2q∑
i=1

[∑2q

j=1G(q,Pe,m,Dm,i,j)Fm,j(0)
]2∑2q

j=1G(q,Pe,m,Dm,i,j)Qm,j(0)
.

(34)

Assuming that the reporting channels between each local
sensor and the FC are independent, the optimization issue
indicated in (34) can be divided into M separate problems,
yielding

max
{τττm}M

m=1

2q∑
i=1

[∑2q

j=1G(q,Pe,m,Dm,i,j)Fm,j(0)
]2∑2q

j=1G(q,Pe,m,Dm,i,j)Qm,j(0)

s.t. τm,0 < τm,1 < · · · < τm,2q−1 < +∞, (35)

where τ rqm,0 = −∞ and τ lqm,0 = 0. The objective function
of the optimization problem described by (35) is a nonlinear
non-convex function whose closed form solution is difficult to

obtain. While a gradient search method can be used to solve
the problem, it still relies on the selection of stochastic initial
points and has a high complexity. As a result, a particle swarm
optimization approach with low computing cost is used in this
research to solve (35).
Complexity requirements: similar to that of [32], it is

assumed that all pre-computations not dependent on yyy have
been previously carried out and stored in memory at the
FC. The overall complexity of the optimization problem in
(35) is primarily determined by the number of iterations and
the complexity in the numerator and denominator. Given a
specific value of m, the complexity for a singular computation
of the objective function as depicted in (35) is O(4q). The
complexity associated with solving the optimization problem
via PSOA is primarily contingent on the fitness evaluation
during the initialization of the swarm and throughout the iter-
ative procedure [51]. Let Q represent the number of particles
generated during the initialization phase, and T denote the
total number of iterations. Then the complexity for addressing
(35) using PSOA is roughly O(Q4q) +O(TQ4q).

B. Derivation of the Clairvoyant LMPT Detector

Based on raw observations without quantization, the Clair-
voyant LMPT detector can be expressed as

T̃ (yyy) =

(
∂ lnP (yyy|H1; p)

∂p

/√
FI(p)

)
p=0

H1

≷
H0

η̃, (36)

where yyy ≜ [y1, y2, · · · , yM ]
T denotes the raw observations

received by the FC via a perfect channel, FI(p) denotes the
Fisher information, and η̃ is the detection threshold. According
to (1), the likelihood function under H1 is given by

P (yyy|H1; p)=
M∏

m=1

1√
2πσ2

m(p, σ2
0)

exp

{
− y2m
2σ2

m(p, σ2
0)

}
.

(37)

Then we can obtain the derivative of the logarithm of (37)
with respect to p, yielding

∂ lnP (yyy|H1; p)

∂p
=

σ2
0

2

M∑
m=1

||hhhm||22
[
y2m − σ2

m(p, σ2
0)
]

σ4
m(p, σ2

0)
. (38)

The Fisher information is calculated as

FI(p)≜E

[(
∂ lnP (yyy|H1; p)

∂p

)2
]
=

σ4
0

2

M∑
m=1

||hhhm||42
σ4
m(p, σ2

0)
. (39)

Substituting p = 0 into (38) and (39), the LMPT detector
based on unquantized raw observations is given by

T̃ (yyy) ∝
M∑

m=1

||hhhm||22(y2m − σ2
w)√∑M

m=1 ||hhhm||42
. (40)

Similarly, the asymptotic distribution of the LMPT test statis-
tics T̃ (yyy) in (40) can be obtained as follows

T̃ (yyy)
a∼
{

N (0, 1), under H0

N (λ̃, 1), under H1
, (41)
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where

λ̃ = p
√
FI(0) (42)

denotes the non-centrality parameter.

C. Analysis of the Fisher Information Loss
We then examine the Fisher information loss caused by

quantization. By assuming a homogeneous environment, the
sensors are supposed to share the same observation qualities
with ||hhhm||22 = ||hhh||22 and Pe,m = Pe, ∀m. In this context, we
can observe from (14) and (39) that the normalized Fisher
information

FIrqq (0)
FI(0)

=
1

2

2q∑
i=1

[∑2q

j=1 G(q, Pe,m, Drq
m,i,j)F̄

rq
m,j(0)

]2
∑2q

j=1 G(q, Pe,m, Drq
m,i,j)Q

rq
m,j(0)

, (43)

where F̄ rq
m,j(0) = F rq

m,j(0)/σw. Similarly, from (26) and (39),
we can conclude that

FIlqq (0)
FI(0)

=
2q∑
i=1

[∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)F̄

lq
m,j(0)

]2
∑2q

j=1 G(q, Pe,m, Dlq
m,i,j)Q

lq
m,j(0)

. (44)

Figure 2 illustrates the Fisher information under various
channel conditions. In the figure, “1b”, “2b” and “3b” de-
note the quantization depth, while “RQ”, “LQU” and “LQ”
represent the raw quantizer with optimized thresholds, LR
quantizer with uniform thresholds, and the LR quantizers
with optimized thresholds, respectively. As shown in Fig. 2,
when employing the optimized threshold, LQ is capable of
striking highest normalized FI in all scenarios, while the
normalized FI of 1b-RQ is approximately half of 1b-LQ. This
can be readily verified by referring to (43) and (44), as their
quantization thresholds are close to one another at this point.
Additionally, it was found that the normalized FI of LQU
declines dramatically as the cross probability Pe increases.
This suggests that a set threshold, which does not adjust
in response to the channel state, cannot provide sufficient
information for FC to make decisions.

Fig. 2. Normalized Fisher information of RQ, LQU, and LQ with different
values of q and Pe.

In Fig. 3, we plot the normalized Fisher information of
1b-LQ versus normalized threshold τ̄m,1 ≜ τm,1/σw with

Fig. 3. Normalized Fisher information of 1b-LQ versus normalized threshold
τm,1/σw with different values of Pe.

different values of Pe. It is seen that the optimal threshold that
corresponds to the maximum normalized Fisher information
decreases as the increase of Pe (when Pe < 0.5), indicat-
ing that for 1b-LQ each sensor must lower its quantization
threshold under more challenging channel circumstances in
order to provide FC with more information. This also gives
us a means to find quantization thresholds for 1b-LQ when
solving the optimization problem in (35) is not practical.

D. Asymptotic Relative Efficiency

In order to compensate for the information loss caused
by quantization, the quantized detectors require more sensors
to attain the same detection performance as the Clairvoyant
detector. The ratio between the number of sensors needed to
attain the same performance for a quantized detector and a
clairvoyant detector is known as the ARE. Let M̃ and M
be the number of sensors used in the T̃ (yyy) and TLMPT tests,
respectively. To ensure that both have the same detection
performance, it is required that

λ̃ = λq. (45)

By substituting (16) for RQ or (28) for LQ into (31) and
combining (42) and (45), it is clear that the ARE of the two
in a homogeneous environment can be expressed as

rrq =2


2q∑
i=1

[∑2q

j=1 G(q, Pe, D
rq
m,i,j)F̄

rq
m,j(0)

]2
∑2q

j=1 G(q, Pe, D
rq
m,i,j)Q

rq
m,j(0)


−1

, (46)

rlq =


2q∑
i=1

[∑2q

j=1 G(q, Pe, D
lq
m,i,j)F̄

lq
m,j(0)

]2
∑2q

j=1 G(q, Pe, D
lq
m,i,j)Q

lq
m,j(0)


−1

, (47)

where rrq and rlq stand for the ARE of RQ and LQ, respec-
tively. Table II displays the ARE for RQ, LQU, and LQ under
various q and Pe conditions. From Table II we can conclude
that the number of sensors needed to attain the same detection
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TABLE II
THE ARE FOR RQ, LQ, AND LQU UNDER VARIOUS q AND Pe CONDITIONS.

q 1 2 3

Pe 0 0.01 0.1 0.2 0 0.01 0.1 0.2 0 0.01 0.1 0.2
rrq 3.29 3.84 8.91 19.53 1.36 1.62 2.65 4.76 1.10 1.24 1.87 3.06
rlqu 3.19 5.88 39.84 119.05 1.35 1.64 3.85 8.09 1.07 1.37 3.26 7.01
rlq 1.53 1.66 2.92 5.59 1.12 1.21 1.91 3.28 1.03 1.13 1.63 2.53

performance gradually drops as q grows. It is also observed
that LQ requires the fewest sensors for the same q and Pe
compared to other counterparts.

E. Comparison of RQ and LQ

The primary distinction between the raw quantizer in (5)
and the LR quantizer in (19) is that the latter quantizes
the absolute value of the observed measurement. The above
distinction results in differences in the division of the quantiza-
tion interval and the encoding of the intervals into binary code
words. Specifically, LQ divides intervals more finely, resulting
in a larger Hamming distance between the binary codewords
corresponding to the low and high-probability regions. These
characteristics make it less likely for LQ to transmit informa-
tion erroneously under the same Pe in error-prone channels.
Taking q = 2 as an example, the aforementioned variances
will be further elucidated.

Fig. 4. The (a) 2b-RQ, (b) 2b-LQU, and (c) 2b-LQ quantizer at Pe = 0.01,
along with the PDF for the raw data.

Figure 4 depicts the 2b-RQ, 2b-LQU and 2b-LQ quantizer
at Pe = 0.01. The blue curve in the figure represents the PDF
of the raw data ym, while the black dashed line indicates
the position of the quantization threshold. We can observe
from Fig. 4 that RQ is more probable with a probability of
2Pe(1− Pe) to transmit the data with the highest probability
of event encoded as the binary code “10” to the data with
the lowest likelihood of occurrence encoded as “00” or “11”.
For LQ, the high-probability region is encoded as “00”, while
the low-probability region is encoded as “11”, resulting in
a significantly greater Hamming distance between them. As

Fig. 5. Raw data distribution after quantization with 2b-RQ and 2b-LQ
respectively and following passing through a BSC with Pe ∈ {0.01, 0.2}.

a consequence, the probability of a communication error
occurring is P 2

e which is notably smaller than that of RQ
for any Pe < 2/3.
Figure 5 illustrates the distribution of the raw data following

quantization with 2b-RQ and 2b-LQ, respectively, and subse-
quent transmission through a BSC with Pe ∈ {0.01, 0.2}. To
enable comparison, the data is restructured into four uniform
intervals (defined by 2b-LQU) after passing through the BSC,
based on their binary codes. From Fig. 5, it is evident that low
Pe values can strike low erroneous data transfer probability
for both LQ and RQ. However, when Pe = 0.2, a greater
amount of data is transferred from the high-probability region
(encoded as “10”) to the low-probability region (encoded as
“00” or “11”) of RQ.

V. SIMULATION RESULTS

The length of sparse signals is fixed at N = 1000 in all
runs. Following the procedure described in [40], the elements
in the linear compression operators hhhm for m = 1, 2, ...,M
are sampled from an i.i.d. standard normal distribution and
then normalized to 1. The SNR at each local sensor is given
by

SNR ≜
1
NE

[
||sssl||22

]
E [w2

l ]
=

pσ2
0

σ2
w

. (48)

The receiver operating characteristic (ROC) curves of the
proposed detectors with varied q and Pe values are shown in
Fig. 6, where M = 300, σ2

0 = 4, σ2
w = 1, p = 0.03, and
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(a) (b) (c)

Fig. 6. ROC curves of the proposed q-bit detectors and the Clairvoyant detector, where q ∈ {1, 3}, M = 300, σ2
s = 4, σ2

w = 1, p = 0.03, and
Pe ∈ {0.01, 0.2}. (a) RQ, (b) LQU, (c) LQ.

Pe ∈ {0.01, 0.2}. As a result, the corresponding SNR equals
to −9.2 dB. The lines in Fig. 6 reflect theoretical performance,
whereas the markers represent the performance through 5000
Monte Carlo (MC) trials. Figure 6 also demonstrates the
performance of the Clairvoyant detector as a benchmark. As
seen in Fig. 6, the MC results are in accordance with the the-
oretical performance, and the detection performance improves
as the bit depth increases. When the crossover probability is
relatively small, the detection performance of a 3-bit quantizer
is similar to that of the Clairvoyant detector. However, as Pe
increases, the performance of all quantized detectors degrades.
It can also be observed that LQ consistently performs better
than RQ and LQU, which is in accordance with the FI
results in Fig. 3. This is because the LQ approach (illustrated
in Figs. 4 and 5) is less likely to incorrectly transfer data
from high occurrence probability regions to low occurrence
probability regions, resulting in less information loss, which
is particularly evident when q is small.

Fig. 7. Detection probability versus the number of sensors for the proposed
q-bit detectors and the Clairvoyant detector, where q ∈ {1, 3}, σ2

0 = 8,
σ2
w = 1, p = 0.03, PFA = 0.1 and Pe = 0.1.

In Fig. 7, we plot the detection probabilities versus the
number of sensors for the proposed q-bit detectors and the
Clairvoyant detector, where q ∈ {1, 3}, σ2

s = 8, σ2
w = 1,

(a)

(b)

Fig. 8. Detection probability versus the SNR for the proposed q-bit detectors
and the Clairvoyant detector, where q ∈ {1, 3}, M = 300, σ2

w = 1, p =
0.03, and PFA = 0.1.(a) Pe = 0.1, (b) Pe = 0.2.

p = 0.03, PFA = 0.1 and Pe = 0.1, while the SNR
is −6.2 dB. The performance of each detector increases by
invoking more sensors, as shown in Fig. 7. When M = 300,
the detection probabilities of 3b-RQ and 3b-LQ are 0.7404 and
0.795, respectively, while the detection probabilities of 1b-RQ
and 1b-LQ are 0.3262 and 0.5788, respectively. This further
supports the superiority of LQ. On the other hand, when the
quantization depth is small, particularly for RQ, the detection
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probability grows slowly with increasing M , even though
adding more sensors can enhance the detection performance.
This demonstrates the importance of raising the quantization
depth in order to improve the detection performance of WSN
systems.

The detection performance of the proposed q-bit detectors
and the Clairvoyant detector with different values of SNR are
investigated in Fig. 8, where q ∈ {1, 3}, M = 300, σ2

w = 1,
p = 0.03, PFA = 0.1, and Pe ∈ {0.01, 0.2}. Bearing in
mind that the SNR described in (48) takes both the sparsity
degree and the SNR of each non-zero component of the sparse
signal into consideration. As shown in Fig. 8, all detectors
perform better as SNR rises. When Pe = 0.1, 3b-RQ and
3b-LQ may obtain a near-Clairvoyant detection probability at
SNR = −4 dB. The performance of each quantized detector
diminishes as Pe grows, as shown by Fig. 8. Nevertheless,
under the scenario of Pe = 0.2, both 3b-RQ and 3b-LQ
can attain the same detection probability (PD = 1) as the
clairvoyant detector at SNR = 0 dB. Although the detection
probability of 1b-LQ is 0.9812 at 0 dB, in the SNR interval of
[−10,−2] dB, its detection probability is lower by 0.1 ∼ 0.2
than that of 3b-LQ, while the detection probability of 1b-RQ is
only 0.6952. Based on the aforementioned findings, it is clear
that multi-bit detectors are required in non-ideal channels.

We subsequently evaluate the impact of inaccurate Pe on the
detection performance of the proposed q-bit detectors. Figure 9
illustrates the detection probability curves across various sen-
sor counts, using a 3-bit LQ detector as a representative case,
with an actual crossover probability Pe = 0.2 and estimated
crossover probabilities P̂e ∈ {0, 0.01, 0.1, 0.2}. From Fig. 9,
it is evident that reduction in the precision of crossover
probability estimates can lead to significant degradation in
detection performance: the greater the estimation error, the
more substantial the loss in performance.

Fig. 9. Detection probability versus the number of sensors for the proposed
3-bit LQ detector, with an actual crossover probability Pe = 0.2, estimated
crossover probabilities P̂e ∈ {0, 0.01, 0.1, 0.2}, σ2

0 = 8, σ2
w = 1, p = 0.03,

and PFA = 0.1.

VI. SUMMARY AND CONCLUSIONS

This paper examined the problem of multi-bit distributed
detection over error-prone channels for sparse stochastic sig-
nals. We developed two multi-bit LMPT detectors at the FC
that fuse the quantized raw observations and local likelihood
ratios, respectively. The asymptotic detection performance of
the proposed quantized detectors was analyzed. Closed-form
expressions for the detection and false alarm probabilities
were derived, and then confirmed by Monte Carlo simulations.
We further optimized the quantization thresholds for both
RQ and LQ by maximizing their associated FI. A compre-
hensive performance analysis was conducted to characterize
and compensate for the quantization-induced information loss
of proposed detectors. A comparison was also provided to
explain the performance difference between RQ and LQ. The
theoretical analysis was validated by simulation findings, con-
firming the importance of increasing the quantization depth to
improve WSN detection performance in error-prone channels.

APPENDIX A
PROOF OF (12)

The logarithm of (10) can be calculated as:

lnP (dddrq|H1; p) =
M∑

m=1

2q∑
i=1

I(dddrqm, zzzrqm,i) ln ξ
rq
m,i, (49)

where

ξrqm,i ≜
2q∑
j=1

G(q, Pe, D
rq
m,i,j)Q

rq
m,j(p). (50)

Taking the derivative of (49) with respect to p results in

∂ lnP (dddrq|H1; p)

∂p
=

M∑
m=1

2q∑
i=1

I(dddrqm, zzzrqm,i)
ξ̇rqm,i

ξrqm,i

, (51)

where ξ̇rqm,i represents the first derivative of ξrqm,i, which can
be further derived as

ξ̇rqm,i =
σ2
0

2

||hhhm||22
σ2
m(p, σ2

0)

{
−G(q,Pe,D

rq
m,i,1)τ̄

rq
m,1Ψ

(
τ̄ rqm,1

)
+G(q, Pe, D

rq
m,i,2)

[
τ̄ rqm,1Ψ

(
τ̄ rqm,1

)
− τ̄ rqm,2Ψ

(
τ̄ rqm,2

)]
+ · · ·+G(q, Pe, D

rq
m,i,2q )

[
τ̄ rqm,2q−1Ψ

(
τ̄ rqm,2q−1

)] }
=

σ2
0

2

||hhhm||22
σ3
m(p, σ2

0)

2q∑
j=1

G(q, Pe, D
rq
m,i,j)F

rq
m,j(p), (52)

where

τ̄ rqm,2q−1≜ τ rqm,2q−1/σm(p, σ2
0), (53)

and

Ψ(x) = 1/
√
2π exp(−x2/2). (54)

Substituting (50) and (52) into (51) yields (12). This completes
the proof of (12). ■
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APPENDIX B
PROOF OF (14)

Taking the second derivative of the logarithm in (10) with
respect to p leads to

∂2 lnP (dddrq|H1; p)

∂p2

=
M∑

m=1

2q∑
i=1

I(dddrqm, zzzrqm,i)

 ξ̈rqm,i

ξrqm,i

−

(
ξ̇rqm,i

ξrqm,i

)2
 , (55)

with ξ̈rqm,i being the second derivative of ξrqm,i, which we divide
into two terms, i.e.,

ν1 = −3σ4
0

4

||hhhm||42
σ5
m(p, σ2

0)

2q∑
j=1

G(q, Pe, D
rq
m,i,j)F

rq
m,j(p), (56)

and

ν2 =
σ4
0

4

||hhhm||42
σ4
m(p, σ2

0)

{
−G(q,Pe,D

rq
m,i,1)(τ̄

rq
m,1)

2Ω
(
τ̄ rqm,1

)
+G(q,Pe,D

rq
m,i,2)

[
(τ̄ rqm,1)

2Ω
(
τ̄ rqm,1

)
− (τ̄ rqm,2)

2Ω
(
τ̄ rqm,2

)]
+· · ·+G(q,Pe,D

rq
m,i,2q )

[
(τ̄ rqm,2q−1)

2Ω
(
τ̄ rqm,2q−1

)] }
, (57)

where

Ω(x) = −x/
√
2π exp(−x2/2). (58)

Define

J(dddrqm; p) ≜
2q∑
i=1

I(dddrqm, zzzrqm,i)

 ξ̈rqm,i

ξrqm,i

−

(
ξ̇rqm,i

ξrqm,i

)2
 . (59)

The Fisher information in (11) can be calculated as

FIrqq (p) ≜−E

[
∂2 lnP (dddrq|H1; p)

∂p2

]
= −

M∑
m=1

2q∑
i=1

J(dddrqm = zzzrqm,i; p)ξ
rq
m,i

= −
M∑

m=1

2q∑
i=1

[
ξ̈rqm,i −

(
ξ̇rqm,i

)2
ξrqm,i

]
. (60)

Given
∑2q

i=1 G(q,Pe,D
rq
m,i,j) = 1, we can deduce that

2q∑
i=1

ν1 = −3σ4
0

4

||hhhm||42
σ4
m(p, σ2

0)

[
− τ̄ rqm,1Ψ

(
τ̄ rqm,1

)
+ τ̄ rqm,1Ψ

(
τ̄ rqm,1

)
− τ̄ rqm,2Ψ

(
τ̄ rqm,2

)
+ · · ·+ τ̄ rqm,2q−1Ψ

(
τ̄ rqm,2q−1

) ]
= 0, (61)

and
2q∑
i=1

ν2 =
σ4
0

4

||hhhm||42
σ4
m(p, σ2

0)

[
− (τ̄ rqm,1)

2Ω
(
τ̄ rqm,1

)
+ (τ̄ rqm,1)

2Ω
(
τ̄ rqm,1

)
− (τ̄ rqm,2)

2Ω
(
τ̄ rqm,2

)
+· · ·+(τ̄ rqm,2q−1)

2Ω
(
τ̄ rqm,2q−1

) ]
= 0. (62)

Combining (61) and (62), we can conclude that

2q∑
i=1

ξ̈rqm,i = 0. (63)

Substituting (50) (52) and (63) into (60) yields (14). This
completes the proof of (14). ■

APPENDIX C
PROOF OF (24)

The logarithm of (24) can be calculated as:

lnP (dddlq|H1; p) =
M∑

m=1

2q∑
i=1

I(dddlqm, zzzrqm,i) ln ξ
lq
m,i, (64)

where

ξlqm,i ≜
2q∑
j=1

2G(q, Pe, D
lq
m,i,j)Q

lq
m,j(p). (65)

Taking the derivative of (64) with respect to p results in

∂ lnP (dddlq|H1; p)

∂p
=

M∑
m=1

2q∑
i=1

I(dddlqm, zzzlqm,i)
ξ̇lqm,i

ξlqm,i

, (66)

where ξ̇lqm,i represents the first derivative of ξlqm,i, which can
be further derived as

ξ̇lqm,i =
σ2
0 ||hhhm||22

σ2
m(p, σ2

0)

{
−G(q,Pe,D

lq
m,i,1)τ̄

lq
m,1Ψ

(
τ̄ lqm,1

)
+G(q, Pe, D

lq
m,i,2)

[
τ̄ lqm,1Ψ

(
τ̄ lqm,1

)
− τ̄ lqm,2Ψ

(
τ̄ lqm,2

)]
+ · · ·+G(q, Pe, D

lq
m,i,2q )

[
τ̄ lqm,2q−1Ψ

(
τ̄ lqm,2q−1

)]}
=

σ2
0 ||hhhm||22

σ3
m(p, σ2

0)

2q∑
j=1

G(q, Pe, D
lq
m,i,j)F

lq
m,j(p). (67)

Substituting (65) and (67) into (66) yields (24). This completes
the proof of (24). ■

APPENDIX D
PROOF OF (26)

Taking the second derivative of the logarithm in (21) with
respect to p leads to

∂2 lnP (dddlq|H1; p)

∂p2

=
M∑

m=1

2q∑
i=1

I(dddlqm, zzzlqm,i)

 ξ̈lqm,i

ξlqm,i

−

(
ξ̇lqm,i

ξlqm,i

)2
 , (68)

where ξ̈lqm,i represents the second derivative of ξ
lq
m,i. The Fisher

information for LQ fusion can be calculated as

FIlqq (p) ≜−E

[
∂2 lnP (dddlq|H1; p)

∂p2

]
= −

M∑
m=1

2q∑
i=1

J(dddlqm = zzzlqm,i; p)ξ
lq
m,i

= −
M∑

m=1

2q∑
i=1

[
ξ̈lqm,i −

(
ξ̇lqm,i

)2
ξlqm,i

]
. (69)
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By employing a similar derivation approach to (56)∼(62), we
can conclude that

2q∑
i=1

ξ̈lqm,i = 0. (70)

Substituting (65) (67) and (70) into (69) yields (26). This
completes the proof of (26). ■

REFERENCES

[1] X. Wei, H. Guo, X. Wang, X. Wang, and M. Qiu, “Reliable data
collection techniques in underwater wireless sensor networks: A survey,”
IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 404–431,
2021.

[2] M. Cheng, Q. Guan, F. Ji, J. Cheng, and Y. Chen, “Dynamic-detection-
based trajectory planning for autonomous underwater vehicle to collect
data from underwater sensors,” IEEE Internet of Things Journal, vol. 9,
no. 15, pp. 13 168–13 178, Aug. 2022.

[3] S. A. Aldalahmeh, S. O. Al-Jazzar, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Fusion rules for distributed detection in clustered wireless
sensor networks with imperfect channels,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 5, no. 3, pp. 585–597,
Sep. 2019.

[4] R. Van Rompaey and M. Moonen, “Distributed adaptive signal esti-
mation in wireless sensor networks with partial prior knowledge of
the desired sources steering matrix,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 7, pp. 478–492, 2021.

[5] T. Liang, Y. Lin, L. Shi, J. Li, Y. Zhang, and Y. Qian, “Distributed
vehicle tracking in wireless sensor network: A fully decentralized
multiagent reinforcement learning approach,” IEEE Sensors Letters,
vol. 5, no. 1, pp. 1–4, Jan. 2020.

[6] J. Yan, Z. Xu, X. Luo, C. Chen, and X. Guan, “Feedback-based
target localization in underwater sensor networks: A multisensor fusion
approach,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 5, no. 1, pp. 168–180, Mar. 2018.

[7] P. Braca, R. Goldhahn, G. Ferri, and K. D. LePage, “Distributed
information fusion in multistatic sensor networks for underwater surveil-
lance,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4003–4014, Jun. 2016.

[8] J. A. Maya and L. R. Vega, “On fully-distributed composite tests
with general parametric data distributions in sensor networks,” IEEE
Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 509–521, 2021.

[9] F. Zhu, J. H. Park, and L. Peng, “Adaptive event-triggered quantized
communication-based distributed estimation over sensor networks with
Semi-Markovian switching topologies,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 8, pp. 258–272, 2022.

[10] G. Tabella, D. Ciuonzo, Y. Yilmaz, X. Wang, and P. S. Rossi, “Time-
aware distributed sequential detection of gas dispersion via wireless
sensor networks,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 9, pp. 721–735, 2023.

[11] X. Wang, D. Zhu, G. Li, X.-P. Zhang, and Y. He, “Proposal-copula-
based fusion of spaceborne and airborne SAR images for ship target
detection,” Information Fusion, vol. 77, pp. 247–260, 2022.

[12] C. Li, G. Li, Z. Wang, X. Wang, and P. K. Varshney, “COMIC: An
unsupervised change detection method for heterogeneous remote sens-
ing images based on copula mixtures and cycle-consistent adversarial
networks,” Information Fusion, vol. 106, p. 102240, 2024.

[13] S. Zhang, P. Khanduri, and P. K. Varshney, “Distributed sequential
detection: Dependent observations and imperfect communication,” IEEE
Transactions on Signal Processing, vol. 68, pp. 830–842, 2020.

[14] J. Fang, Y. Liu, H. Li, and S. Li, “One-bit quantizer design for
multisensor GLRT fusion,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 257–260, Mar. 2013.

[15] D. Ciuonzo, G. Papa, G. Romano, P. S. Rossi, and P. Willett, “One-bit
decentralized detection with a Rao test for multisensor fusion,” IEEE
Signal Processing Letters, vol. 20, no. 9, pp. 861–864, Sep. 2013.

[16] X. Wang, G. Li, and P. K. Varshney, “Distributed detection of weak
signals from one-bit measurements under observation model uncertain-
ties,” IEEE Signal Processing Letters, vol. 26, no. 3, pp. 415–419, Mar.
2019.

[17] D. Ciuonzo, P. S. Rossi, and P. Willett, “Generalized Rao test for decen-
tralized detection of an uncooperative target,” IEEE Signal Processing
Letters, vol. 24, no. 5, pp. 678–682, May 2017.

[18] D. Ciuonzo, P. S. Rossi, and P. K. Varshney, “Distributed detection in
wireless sensor networks under multiplicative fading via generalized
score tests,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9059–
9071, Jun 2021.

[19] L. Hu, J. Zhang, X. Wang, S. Wang, and E. Zhang, “Decentralized
truncated one-sided sequential detection of a noncooperative moving
target,” IEEE Signal Processing Letters, vol. 25, no. 10, pp. 1490–1494,
Oct. 2018.

[20] Y. Zang and H. Zhu, “Fast and optimal joint decision and estimation
by quantized data via noisy channels of sensor networks,” Signal
Processing, vol. 195, p. 108481, 2022.

[21] S. H. Javadi, “Detection over sensor networks: a tutorial,” IEEE
Aerospace and Electronic Systems Magazine, vol. 31, no. 3, pp. 2–18,
Mar. 2016.

[22] D. Ciuonzo and P. S. Rossi, “Distributed detection of a non-cooperative
target via generalized locally-optimum approaches,” Information Fu-
sion, vol. 36, pp. 261–274, 2017.

[23] ——, “Quantizer design for generalized locally optimum detectors
in wireless sensor networks,” IEEE Wireless Communications Letters,
vol. 7, no. 2, pp. 162–165, Apr. 2017.

[24] J. Luo, J. Ni, and Z. Liu, “Distributed decision fusion under nonideal
communication channels with adaptive topology,” Information Fusion,
vol. 45, pp. 190–201, 2019.

[25] Z. Wang, Q. He, and R. S. Blum, “Target detection using quantized
cloud MIMO radar measurements,” IEEE Transactions on Signal Pro-
cessing, vol. 70, pp. 1–16, 2021.

[26] L. Hu, X. Wang, and S. Wang, “Decentralized underwater target
detection and localization,” IEEE Sensors Journal, vol. 21, no. 2, pp.
2385–2399, 2020.

[27] F. Gao, L. Guo, H. Li, J. Liu, and J. Fang, “Quantizer design for
distributed GLRT detection of weak signal in wireless sensor networks,”
IEEE Transactions on Wireless Communications, vol. 14, no. 4, pp.
2032–2042, Apr. 2015.

[28] X. Cheng, D. Ciuonzo, and P. S. Rossi, “Multibit decentralized detection
through fusing smart and dumb sensors based on Rao test,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 56, no. 2, pp.
1391–1405, Apr. 2020.

[29] X. Cheng, D. Ciuonzo, P. S. Rossi, X. Wang, and W. Wang, “Multi-
bit & sequential decentralized detection of a noncooperative moving
target through a generalized Rao test,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 7, pp. 740–753, 2021.

[30] G. Zhang, W. Yi, P. K. Varshney, and L. Kong, “Direct target localization
with quantized measurements in non-coherent distributed MIMO radar
systems,” IEEE Transactions on Geoscience and Remote Sensing, early
access, 2023, doi:10.1109/TGRS.2023.3267499.

[31] S. Yang, Y. Lai, A. Jakobsson, and W. Yi, “Hybrid quantized signal
detection with a bandwidth-constrained distributed radar system,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 59, no. 6, pp.
7835–7850, Dec. 2023.

[32] D. Ciuonzo, S. H. Javadi, A. Mohammadi, and P. S. Rossi, “Bandwidth-
constrained decentralized detection of an unknown vector signal via
multisensor fusion,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 6, pp. 744–758, 2020.

[33] D. L. Donoho, “Compressed sensing,” IEEE Transactions on informa-
tion theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[34] H. Zayyani, F. Haddadi, and M. Korki, “Double detector for sparse
signal detection from one-bit compressed sensing measurements,” IEEE
Signal Processing Letters, vol. 23, no. 11, pp. 1637–1641, Nov. 2016.

[35] C. Li, G. Li, B. Kailkhura, and P. K. Varshney, “Secure distributed
detection of sparse signals via falsification of local compressive mea-
surements,” IEEE Transactions on Signal Processing, vol. 67, no. 18,
pp. 4696–4706, Sep. 2019.

[36] C. Li, G. Li, and P. K. Varshney, “Distributed detection of sparse signals
with censoring sensors via locally most powerful test,” IEEE Signal
Processing Letters, vol. 27, pp. 346–350, 2020.

[37] ——, “Distributed detection of sparse signals with physical layer
secrecy constraints: A falsified censoring strategy,” IEEE Transactions
on Signal Processing, vol. 68, pp. 6040–6054, 2020.

[38] X. Wang, G. Li, and P. K. Varshney, “Detection of sparse signals
in sensor networks via locally most powerful tests,” IEEE Signal
Processing Letters, vol. 25, no. 9, pp. 1418–1422, Sep. 2018.

[39] Y. Feng, A. Taya, Y. Nishiyama, K. Sezaki, and J. Liu, “Compressive
detection of stochastic sparse signals with unknown sparsity degree,”
IEEE Signal Processing Letters, vol. 30, pp. 1482–1486, 2023.



13

[40] X. Wang, G. Li, and P. K. Varshney, “Detection of sparse stochastic
signals with quantized measurements in sensor networks,” IEEE Trans-
actions on Signal Processing, vol. 67, no. 8, pp. 2210–2220, Apr. 2019.

[41] X. Wang, G. Li, C. Quan, and P. K. Varshney, “Distributed detection of
sparse stochastic signals with quantized measurements: The generalized
Gaussian case,” IEEE Transactions on Signal Processing, vol. 67,
no. 18, pp. 4886–4898, Sep. 2019.

[42] C. Li, G. Li, and P. K. Varshney, “Distributed detection of sparse
stochastic signals with 1-bit data in tree-structured sensor networks,”
IEEE Transactions on Signal Processing, vol. 68, pp. 2963–2976, 2020.

[43] C. Li, Y. He, X. Wang, G. Li, and P. K. Varshney, “Distributed detection
of sparse stochastic signals via fusion of 1-bit local likelihood ratios,”
IEEE Signal Processing Letters, vol. 26, no. 12, pp. 1738–1742, Dec.
2019.

[44] A. Mohammadi, D. Ciuonzo, A. Khazaee, and P. S. Rossi, “Generalized
locally most powerful tests for distributed sparse signal detection,” IEEE
Transactions on Signal and Information Processing over Networks,
vol. 8, pp. 528–542, 2022.

[45] M. Korki, J. Zhang, C. Zhang, and H. Zayyani, “Iterative Bayesian
reconstruction of non-IID block-sparse signals,” IEEE Transactions on
Signal Processing, vol. 64, no. 13, pp. 3297–3307, Jul. 2016.

[46] I. B. Djordjevic, Physical-layer security and quantum key distribution.
Tucson, AZ: Springer, 2019.

[47] F. Daneshgaran, M. Mondin, and I. Bari, “LDPC coding for QKD at
higher photon flux levels based on spatial entanglement of twin beams
in PDC,” in Journal of Physics: Conference Series, vol. 497, no. 1. IOP
Publishing, 2014, p. 012037.

[48] Z. Sui, H. Zhang, S. Sun, L.-L. Yang, and L. Hanzo, “Space-time shift
keying aided OTFS modulation for orthogonal multiple access,” IEEE
Transactions on Communications, vol. 71, no. 12, pp. 7393–7408, Sep.
2023.

[49] Z. Sui, S. Yan, H. Zhang, S. Sun, Y. Zeng, L.-L. Yang, and L. Hanzo,
“Performance analysis and approximate message passing detection of
orthogonal time sequency multiplexing modulation,” IEEE Transactions
on Wireless Communications, vol. 23, no. 3, pp. 1913–1928, Mar. 2024.

[50] S. M. Kay, Fundamentals of statistical signal processing: Detection
Theory. Upper Saddle River, NJ: Prentice-Hall, 1998.

[51] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm:
an overview,” Soft computing, vol. 22, no. 2, pp. 387–408, 2018.

Linlin Mao (Member, IEEE) received the B.E. and
Ph.D. degrees in electronic information engineering
from Northwestern Polytechnical University, Xi’ an,
China, in 2011 and 2018, respectively.

From 2015 to 2016, she was a visiting student
with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hobo-
ken, NJ, USA. Since 2018, she has been researching
at the Institute of Acoustics, Chinese Academy of
Sciences as a Research Associate. Her research
interests include target detection and localization,

array signal processing, and multi-sensor networks.
She received the Best Paper Award at the 2018 International Conference on

Wireless Communications and Signal Processing, Hangzhou. She was also a
co-recipient of the Best Student Paper Award at the 2020 IEEE International
Conference on Signal Processing, Communications and Computing, Macau.

Shefeng Yan (Senior Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in electrical en-
gineering from Northwestern Polytechnical Univer-
sity, Xi’ an, China, in 1999, 2001, and 2005, respec-
tively.

He was a Postdoctoral Research Associate with
the Institute of Acoustics, Chinese Academy of Sci-
ences (IACAS), Beijing, China, from 2005 to 2007,
and the Department of Electronics and Telecom-
munications, Norwegian University of Science and
Technology, Trondheim, Norway, from 2007 to

2009. He was a Senior Visiting Scholar with the Department of Electrical,
Electronic and Communication Engineering, University of ErlangenNurem-
berg, Erlangen, Germany, from December 2015 to February 2016. Since
2009, he has been a Professor with IACAS and the University of Chinese
Academy of Sciences, Beijing. He has authored the book Broadband Array
Processing (Springer, 2019). His research interests include acoustic signal
processing, statistical and array signal processing, and underwater acoustic
communications.

Prof. Yan is a member of the Acoustical Society of America. He was
a recipient of the 2010 International Congress on Acoustics and Acousti-
cal Society of American (ICA-ASA) Young Scientist Grant for excellent
contributions to acoustics and a co-recipient of the Best Paper Awards at
International Conference on Sensor Technologies and Applications (SEN-
SORCOMM) 2008, IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) 2009, and International Conference on
Wireless Communications and Signal Processing (WCSP) 2018.

Zeping Sui (Member, IEEE) received the B.
Eng. degree in electronic information engineering
from Northwestern Polytechnical University, Xi’ an,
China, in 2017, and the Ph.D. degree in signal
and information processing from the University of
Chinese Academy of Sciences, Beijing, China, in
2023. From March 2022 to Feb 2023, he was a
Research Assistant with the Institute for Infocomm
Research (I2R), Agency for Science, Technology
and Research (A*STAR), Singapore. From Aug
2023 to Aug 2024, he was a Research Fellow with

the Centre for Wireless Innovation (CWI), Queen’s University Belfast, UK.
He is currently a Senior Research Officer with the School of Computer
Science and Electronics Engineering, University of Essex, UK. His research
interests include 6G wireless communication networks, waveform design,
statistical signal processing, system performance analysis and optimization,
and compressed sensing.



14

Hongbin Li (M’99-SM’08-F’19) received the
B.S. and M.S. degrees from the University of Elec-
tronic Science and Technology of China, in 1991
and 1994, respectively, and the Ph.D. degree from
the University of Florida, Gainesville, FL, in 1999,
all in electrical engineering.

From July 1996 to May 1999, he was a Re-
search Assistant in the Department of Electrical and
Computer Engineering at the University of Florida.
Since July 1999, he has been with the Department
of Electrical and Computer Engineering, Stevens

Institute of Technology, Hoboken, NJ, where he is currently the Charles and
Rosanna Batchelor Memorial Chair Professor. He was a Summer Visiting
Faculty Member at the Air Force Research Laboratory in the summers of
2003, 2004 and 2009. His general research interests include statistical signal
processing, wireless communications, and radars.

Dr. Li received a number of awards including the IEEE Jack Neubauer
Memorial Award in 2013, Master of Engineering (Honoris Causa) from
Stevens Institute of Technology in 2024, Provost’s Award for Research
Excellence in 2019, Harvey N. Davis Teaching Award in 2003, and Jess H.
Davis Memorial Research Award in 2001, and Sigma Xi Graduate Research
Award in 1999. He has been a member of the IEEE SPS Signal Processing
Theory and Methods Technical Committee (TC) and the IEEE SPS Sensor
Array and Multichannel TC, an Associate Editor for Signal Processing
(Elsevier), IEEE Transactions on Signal Processing, IEEE Signal Processing
Letters, and IEEE Transactions on Wireless Communications, as well as a
Guest Editor for IEEE Journal of Selected Topics in Signal Processing and
EURASIP Journal on Applied Signal Processing. He has been involved in
various conference organization activities, including serving as a General Co-
Chair for the 7th IEEE Sensor Array and Multichannel Signal Processing
(SAM) Workshop, Hoboken, NJ, June 17-20, 2012. Dr. Li is a member of
Tau Beta Pi and Phi Kappa Phi, and a fellow of the Asia-Pacific Artificial
Intelligence Association (AAIA) and the International Artificial Intelligence
Industry Alliance (AIIA).


