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ABSTRACT
Recent advances in Machine Learning (ML) and Arti�cial Intel-
ligence (AI) follow a familiar structure: A �rm releases a large,
pretrained model. It is designed to be adapted and tweaked by other
entities to perform particular, domain-speci�c functions. The model
is heralded as ‘general-purpose,’ meaning it can be transferred to a
wide range of downstream tasks, in a process known as adaptation
or �ne-tuning. Understanding this process – the strategies, incen-
tives, and interactions involved in the development of AI tools –
is crucial for making conclusions about societal implications and
regulatory responses, and may provide insights beyond AI about
general-purpose technologies. We propose a model of this adapta-
tion process. A Generalist brings the technology to a certain level of
performance, and one or more Domain specialist(s) adapt it for use
in particular domain(s). Players incur costs when they invest in the
technology, so they need to reach a bargaining agreement on how
to share the resulting revenue before making their investment deci-
sions. We �nd that for a broad class of cost and revenue functions,
there exists a set of Pareto-optimal pro�t-sharing arrangements
where the players jointly contribute to the technology. Our analysis,
which utilizes methods based on bargaining solutions and sub-game
perfect equilibria, provides insights into the strategic behaviors of
�rms in these types of interactions. For example, pro�t-sharing can
arise even when one �rm faces signi�cantly higher costs than an-
other. We show that any potential domain specialization will either
contribute, free-ride, or abstain in their uptake of the technology,
and provide conditions yielding these di�erent responses.
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1 INTRODUCTION
Large-scale AI models have garnered a great deal of excitement be-
cause they are considered to be general purpose [11, 18, 22, 40, 41, 55].
Some have referred to these technologies as foundation models
[4, 5, 19] because they are designed as massive, centralized mod-
els that support potentially many downstream uses. For example,
Bommasani et al. [4] write, “a foundation model is itself incomplete
but serves as the common basis from which many task-speci�c
models are built via adaptation.” There is palpable excitement about
these technologies. But to turn their potential into actual use and
impact, one needs to specialize, tweak, and evaluate the technol-
ogy for particular application domains. This process takes various
names, including adaptation [43] and, in some contexts, �ne-tuning
[33, 50, 59].

Notably, the process of adapting a technology involves multi-
ple parties. Technology teams developing ML and AI technologies
rely on outside entities to adapt, tweak, transfer, and integrate the
general-purpose model. This dynamic suggests a latent strategic
interaction between producers of a foundational, general-purpose
technology and specialists considering whether and how to adopt
the technology in a particular context. Understanding this inter-
action is necessary to study the social, economic, and regulatory
consequences of introducing the technology.

This paper employs methods from economic theory to model
and analyze this interaction. We put forward a model of �ne-
tuning where the interaction between two agents, a generalist and a
domain-specialist, determines how they’ll bring a general-purpose
technology to market (Figure 1). The result of this interaction is a
domain-adapted product that o�ers a certain level of performance
to consumers, in exchange for a certain level of surplus revenue
for the producers. Crucially, the producers must decide how to
distribute the surplus, and engage in a bargaining process in ad-
vance of making their investment decisions. An immediate intuition
might be to divide the surplus based on contribution to the technol-
ogy — however, this is one of many potential bargaining solutions,
each with di�erent normative assumptions and implications for the
technology’s performance and the distribution of utility.

Through this analysis, we uncover several general principles that
apply not just to today’s AI technologies, but to a potentially wide
swath of models that exhibit a similar structure — i.e., developed
for general use and adapted to one or more domains to produce
revenue. Thus, even as these technologies improve and develop, our
proposed model of �ne-tuning may continue to describe how they
may be adapted for real-world use(s). Further, some of our �ndings
apply to other general-purpose technologies outside the AI context.
For example, cloud computing infrastructure enables a number of
consumer-facing services that use web hosting, database services,
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Figure 1: An illustration of the �ne-tuning game. In the �rst step, players bargain over the revenue-sharing agreement X . In this
example, they agree that G will receive 80% of the revenue and D will receive 20%. In the second step,⌧ develops the technology
to performance level U0 = 21. In the third step, ⇡ ‘�ne-tunes’ the technology to U1 = 25. If the players collectively receive revenue
of 25, they would share so that ⌧ receives 20 and ⇡ receives 5.

and other on-demand computing resources. Additive manufactur-
ing (e.g., 3D printing) requires the production of a general-purpose
technology that other entities use to create valuable products in
particular domains. Digital marketplaces, too, are general market-
making technologies that enable specialists (vendors) to sell goods,
subject to an agreement over surplus.

Our main conceptual contribution is modeling the adaptation
process as amulti-stage game consisting of (1) a bargaining pro-
cess between a general-purpose technology producer (⌧) and one
or more domain specialists (⇡), and (2) two additional stages for ⌧
and ⇡ to invest in performance, respectively (see Figure 1). Both
players bargain over how to share revenue, and each takes a turn
contributing to the technology’s performance before it reaches the
market. Within the set of Pareto-optimal revenue-sharing agree-
ments, we introduce a number of bargaining solutions that represent
potential arrangements for how entities involved in AI’s develop-
ment should distribute pro�t and e�ort. These bargaining solutions
can be thought of as diverse normative proposals for how to appro-
priately distribute welfare.

Our analysis consists in deriving the sub-game perfect equilib-
rium strategies, identifying the set of Pareto-optimal bargaining
agreements, and then solving for various bargaining solutions. Even
in the presence of signi�cant cost di�erentials, we �nd bargaining
leads to pro�t-sharing agreements because specialists can leverage
their power to exit the deal, reducing the reach of the technology
— or, in the case of one specialist, preventing the technology from
being produced altogether. For �ne-tuning games with a somewhat
general set of cost and revenue functions, we develop a method
for identifying Pareto-optimal bargains. A signi�cant, high-level
take-away from our analysis is a characterization of the specialist
�ne-tuning strategy. We �nd that any potential adaptor of a technol-
ogy falls into one of three groups: contributors, who invest e�ort
before selling the technology; free-riders, who sell the technology
without investing any additional e�ort; and abstainers, who do
not enter any �ne-tuning agreement and opt not to bring the tech-
nology to their particular domain. It turns out, using only marginal
information about a domain (0th- and 1st-order approximations of
cost and revenue), it is possible to reliably determine which strategy
the adaptor will take for a notably broad set of scenarios and cost
and revenue functions (Section 4.1).

Some have suggested that scholarship on AI and data-driven
technologies focuses predominantly on the technical developments

without situating these developments in political economy (though
notable exceptions exist) [1, 7, 9, 52, 56]. We propose a model that
accounts for the di�erent interests and interactions involved in the
development of new, general-purpose AI technology. Our model
enables analysis on how these interactions a�ect market outcomes
like performance in practice. Understanding these interactions may
also inform future regulation of harms that can arise from large-
scale ML technologies.

1.1 Related Work
There exists a considerable body of literature on methods for �ne-
tuning and adapting general ML models. Our work leverages eco-
nomic theory to understand the incentives and strategies that de-
termine how these general-purpose technologies develop.
Approaches to �ne-tuning.New applications of ML often involve
leveraging an existing model to a speci�c task, in a process known
as transfer learning [60]. As a result, a variety of broad and �exible
base models have been developed (‘pretrained’) for downstream
adaptation to particular tasks. These include large language mod-
els [8, 12, 28] and visual models [44, 58]. Fine-tuning is an approach
where new data and training methods are applied to a pretrained
base model to improve performance on a domain-speci�c task [13].
Fine-tuning often consists of several steps: (1) gathering, process-
ing and labeling domain-speci�c data, (2) choosing and adjusting
the base model’s architecture (including number of layers [54] and
parameters [48]) and the appropriate objective function [23], (3) Up-
dating the model parameters using techniques like gradient descent,
and (4) evaluating the resulting model and re�ning if necessary.
Economic models of general-purpose technology production.
Several lines of work in growth economics address the development
and di�usion of general-purpose technologies (or GPTs). Bresna-
han [6] provides a general survey of this concept. Jovanovic and
Rousseau [30] o�ers a historic account of technologies such as elec-
tricity and information technology as GPTs with major impacts
on the United States economy. Scholars have examined the e�ects
of factors such as knowledge accumulation, entrepreneurial ac-
tivity, network e�ects, and sectoral interactions on the creation
of GPTs [27]. The model presented here abstracts away the forces
giving rise to the invention of general-purpose technologies, and in-
stead focuses on the later-stage decision of when (or at what perfor-
mance level) to release the GPT to market for domain-specialization.
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Some have suggested that general-purpose technologies create
the need for new business models that describe their impact on
individual sectors [36]. Gambardella and McGahan [21] propose
one such model of domain adaptation for a general-purpose tech-
nology that is based on revenue sharing — however, they do not use
bargaining or multi-stage strategy to describe how the technology
is developed and brought to market. Our notion of performance as
it relates to model technologies is inspired by economic models of
product innovation [10, 53].
Bargaining and joint production. This work draws from a long
line of research on welfare economics and cooperative game theory
devoted to understanding how agents reach agreements when their
interests are intertwined [15]. Methods have been developed for
�nding an optimal set of agreements (e.g., contract curves [17] and
cores [2, 49]) in exchange economies, where agents can trade goods.
When parties must reach an agreement to jointly produce a product,
they often engage in a bargain – we discuss bargaining further in
Section 2.1. Existing empirical work observes how real people or
�rms bargain, and measures how close these agreements are to
those proposed by theorists [20, 51]. A setting with similar models
is the development supply chains where di�erent �rms or entities
negotiate over how much e�ort they each invest and how much
pro�t they each receive [16, 57]. A related body of work is referred
to as the hold-up problem [46]. This work analyzes settings where
two (or more) agents negotiate over an incomplete contract and
distribute surplus [26]. In these models, after an initial agreement,
players are able to re-negotiate and alter parts of the contract,
yielding shifts in strategy.
Game Theory andML. Our paper contributes to a line of work us-
ing game-theoretic methods to describe the development of (and re-
sponses to) MLmodels [25, 32, 37, 42] and their societal implications
[29, 35, 38]. Donahue and Kleinberg [14] explore a game-theoretic
setting where agents may voluntarily take part in a federated learn-
ing arrangement. Their setting is a coalitional game among parties
that all move simultaneously, whereas ours is a sequential game
that involves parties with di�erent roles in the process. Focusing
on digital platforms, Hardt et al. [24] describe interactions between
a �rm implementing an ML algorithm and collectives of users who
manipulate their data to in�uence the algorithm.

2 A MODEL OF FINE-TUNING
In this section, we put forward a model of �ne-tuning a data-driven
technology for use in a domain-speci�c context. The technology is
developed in two steps: First, a general-purpose producer develops
a technology up to a certain level of performance. Then, a domain-
speci�c producer decides whether to adopt the technology, and how
much to invest in the technology to further improve its performance
beyond the general-purpose baseline. After these steps, the two
entities share a payout.
Generalist. Player ⌧ (for General-purpose producer) is the �rst
to invest in the technology’s performance, and brings the perfor-
mance level to U0 2 R+. ⌧ is motivated to invest in the technology
because, ultimately, the technology’s performance level determines
the revenue ⌧ earns.
Domain Specialist. After investing in the technology, ⌧ can o�er
the technology to a domain-specialist, denoted ⇡ , who �ne-tunes

the model to their speci�c use case. If ⇡ and⌧ enter an agreement,
⇡ will invest in improving the technology’s performance from U0
to U1 2 R+ where U1 � U0.
Revenue and costs. The technology’s performance, U1, determines
the total revenue that can be gained from �ne-tuning the technol-
ogy in that domain. In particular, we assume there is a monotonic
function A : R+ ! R+ such that A (U1) is the total revenue generated
by performance level U1. Unless otherwise speci�ed, we assume
A (·) is the identity function, that is, the total revenue brought by the
technology is U1. The cost associated with producing U1 requires
considering the two steps involved with developing the technol-
ogy: general production and �ne-tuning. We say that ⌧ faces cost
function q0 (U0) : R+ ! R+ to produce a general technology at
performance-level U0. ⇡ faces cost function q1 (U1;U0) : R+ ! R+
to bring the technology from performance U0 to performance U1.
We assume these cost functions are publicly known.
The �ne-tuning game. The players are ⌧ and ⇡ . In deciding
whether to purchase the technology, ⇡ negotiates revenue sharing
with ⌧ . ⌧ and ⇡ share revenue A (U1) according to a bargaining
parameter X 2 [0, 1]. At the end of the game, ⌧ receives XA (U1)
in revenue, and ⇡ receives (1 � X)A (U1). The model �ne-tuning
game consists in each player deciding their level of investment and
collectively bargaining to decide X . The game proceeds as follows:

(1) ⌧ and ⇡ negotiate bargaining coe�cient X 2 [0, 1].
(2) ⌧ invests in a general-purpose technology, subject to cost

q0 (U0), yielding performance-level U0.
(3) ⇡ �ne-tunes the technology, subject to cost q1 (U1;U0), yield-

ing performance-level U1.

The steps of the game are illustrated in Figure 1. Players earn the
following utilities, de�ned as revenue share minus cost:

*⌧ (X) := XA (U1)�q0 (U0), *⇡ (X) := (1�X)A (U1)�q1 (U1;U0). (1)

If the players do not agree to a feasible bargain X 2 [0, 1], then
the bargaining outcome is referred to as disagreement. In this sce-
nario, the generalist receives 30 and the specialist receives 31. We
assume, unless otherwise speci�ed, that the disagreement scenario
is described by 30 = 31 = 0.

2.1 Primer on Bargaining Games
Bargaining games are a potentially useful method for computer sci-
ence research. In this section we include a primer on these methods
before demonstrating their use in our model.

A bargain is a process for identifying joint agreements between
two or more agents on how to share payo�. The Bargaining Prob-
lem, formalized by [39], consists of two players that must jointly
decide how to share surplus pro�t. The problem consists of a set of
feasible agreements and a ‘disagreement’ alternative, which speci-
�es the utilities players receive if they do not come to an agreement.

Bargaining solutions are established ways to select among candi-
date agreements on how to share surplus. Di�erent bargaining solu-
tions, proposed over the years by mathematicians and economists,
aim to satisfy certain desiderata like fairness, Pareto optimality,
and utility-maximization. Typically, solving for bargaining solu-
tions consists in de�ning some measure of joint utility between
players (e.g. take the sum, product, or minimum of the players’
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utilities). The feasible, Pareto-optimal solution that maximizes this
joint utility is known as a bargaining solution.

Bargaining solutions are normative: they provide guidelines for
how surplus payo�s should be distributed. Solutions are inspired
by moral theories like utilitarianism (which aims to maximize the
sum of utilities) and egalitarianism (which aims to maximize the
worst-o� agent). We demonstrate the use of bargaining solutions
in the subsequent sections.

2.2 Pareto-Optimal Bargains
Our model of the �ne-tuning process unfolds in two stages: the
�rst stage is a bargain where the players must jointly agree on
X , and the second stage is a sequential game where the players
make decisions individually in order (i.e., ⌧ moves �rst and ⇡
moves second). Our analysis will identify the players’ equilibrium
strategies and a variety of bargaining solutions X with di�erent
welfare implications. In order to derive solutions, it is important
to de�ne Pareto dominance and Pareto e�ciency. Since our analysis
relies on these concepts, in this section, we state our �rst result
deriving the set of Pareto-optimal solutions for a general set of cost
and revenue functions. We begin by de�ning relevant concepts.

D��������� 2.1 (P�������������� ����������). A bargaining
agreement X0 Pareto-dominates an alternative agreement X1 < X0
i� at least one player gains utility by switching from X1 to X0 , and no
players lose utility.

D��������� 2.2 (P������������� ����������). A Pareto-op-
timal agreement is one where no alternative agreement would im-
prove the utility of one player without decreasing the utility of the
other player. In other words, it is an agreement that is not Pareto-
dominated by any other agreement.

D��������� 2.3 (S������� U������� F�������). A function
5 : R ! R is called a strictly unimodal function over a real
domain G 2 D if there exists some value< 2 D such that 5 is strictly
increasing 8G  < and 5 is strictly decreasing 8G � <.

When reasoning about how two agents can jointly reach an
agreement, it is useful to start by considering the scenario where
one player is all-powerful, meaning the bargain is determined solely
to maximize one player’s utility. The formal de�nition of this sort
of bargaining arrangement is provided below.

D��������� 2.4 (P��������P ��������). For a given �ne-tuning
game player % 2 {⌧,⇡}, the powerful-P solution is the revenue-
sharing agreement XPowerful % 2 [0, 1] that maximizes % ’s utility:

XPowerful % = argmaxX2 [0,1]*% (X) .

2.3 Focus on Unimodal Utilities
We are now in a position to state our �rst theorem, which charac-
terizes the Pareto-optimal solutions to any �ne-tuning game with
strictly unimodal utility functions.

T������ 2.1. Consider a �ne-tuning game where players bargain
over a parameter X . If the players’ utilities are strictly unimodal
functions of X , the set of Pareto-optimal agreements is the interval
between their optima {XPowerful ⇡ , XPowerful⌧ }, where both players’
utilities are greater than the disagreement scenario. If no such interval
exists, then disagreement is Pareto-optimal.

𝛿

U(𝛿)

UD UG

𝛿Pareto-optimal

�

Figure 2: Example to illustrate Theorem 2.1. For two strictly
unimodal, positive utility functions over bargaining parame-
ter X , the Pareto set is the interval between their optima.

The proof is provided in Appendix 7. To provide some intuition
for the proof, consider the range of agreements X between the point
which maximizes one player’s utility (say, XPowerful ⇡ ) and the point
which maximizes the other (XPowerful⌧ ). Agreements within this
range exhibit a trade-o� between the two utilities. Agreements
outside this range, however, leave both players worse-o� than, e.g.,
the nearest powerful-P solution, so they are Pareto-dominated. This
intuition is illustrated in Figure 2.

Theorem 2.1 applies to a notably broad set of utility functions.
For example, any strictly increasing, strictly decreasing, or strictly
concave function on the interval X 2 [0, 1] is also strictly unimodal.

Equipped with the theorem above, solving the �ne-tuning game
consists of the following steps: (1) Use backward induction to solve
for ⇡ and ⌧ ’s strategies, represented by U⇤1 and U⇤0 , in terms of X .
(2) Find the set of Pareto-optimal bargaining agreements X between
the powerful-D and powerful-G solutions. (3) Within the Pareto set,
solve for bargaining agreements that maximize some joint function
of the players’ utilities.

3 ANALYSIS FOR POLYNOMIAL COSTS
Our model applies to general cost and revenue functions, and in
Section 4 we provide results at this general level. But to understand
how the central parameters of the model interact in closed form,
it is also useful to study instantiations of the model with speci�c
functional forms. Accordingly, we show in this section how to solve
the model with a set of polynomial cost functions as a paradigmatic
instance of convex cost functions, where themarginal costs increase
as the technology is improved. Following this, we show how to draw
conclusions about the model with general costs. In this section, cost
functions take the following polynomial function forms:

q0 (U0) := 20U
:0
0 , q1 (U1;U0) := 21 (U1 � U0):1 . (2)

Here, 20, 21 > 0 since costs should increase with investment, and
:0,:1 > 1, meaning that an incremental improvement grows costlier
at higher levels of performance. We will continue to assume that
A (U1) = U1 throughout this section’s analysis.

First (3.1), we derive the subgame perfect equilibrium strate-
gies U⇤0 ,U

⇤
1 for �xed X . Second (3.2), we �nd the set of Pareto-

optimal revenue-sharing schemes X%0A4C> . Reaching a revenue-
sharing agreement X⇤ 2 X%0A4C> is modeled as a bargaining prob-
lem because the players must decide how to share surplus utility.
So, third (3.3), we de�ne �ve potential bargaining solutions: Best-
performing-model, VerticalMonopoly, Egalitarian, Nash Bargaining
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Solution, and Kalai-Smorodinsky. Where possible, we derive closed-
form expressions for these solutions. We end by discussing the
implications of these di�erent revenue-sharing schemes.

3.1 Subgame Perfect Equilibrium for a Given X
We use backward induction to determine the �ne-tuning game’s
subgame perfect equilibrium (which we will refer to as a ‘solution’
or ‘equilibrium’). Fixing the outcome of the initial negotiation, X , it
is possible establish the following closed-form solution:

T������ 3.1. For a �xed X , the sub-game perfect equilibrium
of the �ne-tuning game with polynomial costs yields the following
best-response strategies:

U⇤0 =
✓

X

:020

◆ 1
:0�1

, U⇤1 =
✓

X

:020

◆ 1
:0�1 +

✓
1 � X

:121

◆ 1
:1�1

.

A proof of the above result is provided in Appendix 8. Notice
that the domain-speci�c performance, U⇤1 , is equal to the general-

purpose performance, U⇤0 , plus a term, ( 1�X:121
)

1
:1�1 , independent

of the ⌧ ’s choice over U⇤0 . This is because the cost of marginal
improvements for ⇡ only depends on the di�erence (U1 � U0), and
is not a�ected by a large or small initial investment by ⌧ . Though
we assume, in this section, that ⇡’s cost is de�ned solely in terms of
marginal improvement, Section 4 contains �ndings that generalize
beyond this assumption, and further results are provided in the full
version of this paper [34].

In order to determine the set of Pareto-optimal agreements, we
�rst �nd that the utility functions are strictly unimodal functions
of X for all 20, 21 and :0,:1 � 2.

P���������� 3.1. In the �ne-tuning gamewith polynomial costs, if
:0,:1 � 2, then*⌧ ,*⇡ are strictly unimodal functions of X 2 [0, 1].

The proof for the �nding above, as well as all subsequent stated
results other than theorems, is available in the full version of this
paper [34]. The above �nding suggest that the family of polynomial
cost functions yield strictly unimodal utility curves. The set of
Pareto-optimal solutions to these games can therefore be identi�ed
using Theorem 2.1. It is easy to show that the strict unimodality
�nding further generalizes to linear combinations of polynomial
terms of the form provided in Equations (2), so long as all exponents
are greater than or equal to 2. However, when the condition is not
met and :0,:1 < 2, numerical simulations suggest that there are
counter-examples to the strict unimodality property. When the
strict unimodality property does not hold, it is still possible to
analyze players’ strategies—for example, our analysis in Section 4
stands even in cases where utility functions are not unimodal in X .

Solving the powerful-⌧ , powerful-⇡ , vertical monopoly or other
bargaining solutions consists in maximizing players’ utilities either
separately or combined into a joint utility. This is possible once
parameters are speci�ed; however, we cannot produce a closed-
form expression for the general polynomial case because doing so
would require solving for the zeroes of a polynomial of high degree.
Therefore, for the remainder of this section, we will demonstrate
the solution steps using parameter values :0,:1 = 2. We call this
the case of quadratic costs. We choose the quadratic case for clarity
and exposition, though we note that other solutions with other
parameter values can be calculated using analogous steps.

3.2 Pareto-optimal Agreements on X
We’ve derived both players’ optimal strategies for �xed X . Now,
we consider the process where players agree on a particular value
of X . Since both players must enter an agreement in order for the
technology to be viable, the determination of X is a two-player
bargaining game. We start by solving for the set of Pareto-optimal
bargaining agreements, which is the interval between the ‘powerful-
player’ solutions, de�ned below.

3.2.1 Powerful-Player Solutions. As we showed in Theorem 2.1,
identifying the ‘powerful-player’ agreements is important for char-
acterizing the set of Pareto-optimal bargaining solutions. Thus, we
begin this section of analysis by solving for the powerful-⌧ and
powerful-⇡ solutions (as de�ned in De�nition 2.4).

P���������� 3.2 (P��������⌧ S�������). The Powerful-⌧ solu-
tion to the model �ne-tuning game with quadratic costs is as follows:

XPowerful⌧ =

(
20

220�21 for 21 < 20,

1 for 21 � 20 .

P���������� 3.3 (P��������⇡ S�������). The Powerful-⇡ solu-
tion to the model �ne-tuning game with quadratic costs is as follows:

XPowerful ⇡ =

(
0 for 21 < 20,
21�20
221�20 for 21 � 20 .

Now, using Theorem 2.1 and Proposition 3.1, we can de�ne the
set of Pareto-optimal solutions as: XPareto 2 {X : X  XPowerful⌧ \
X � XPowerful ⇡ }. A visual representation of these solutions for the
�ne-tuning game with quadratic costs is provided in Figure 4.

3.3 Bargaining Solutions to Specify X
If neither player dominates in a bargain, how do they decide how
to share surplus pro�t? Solutions to bargaining problems identify
an agreement that maximizes some joint utility function or satis�es
certain desirable properties. In this section, we de�ne the various
bargaining solutions that the two players could plausibly arrive at
within the set of Pareto-optimal solutions. These solutions mostly
use a joint utility function to guide the bargaining agreement, as
depicted in Figure 3. A visual representation of the bargaining solu-
tions is provided in Figure 4. De�nitions and closed-form solutions
are provided below, and the proofs and steps yielding the solutions
are included in Appendix 8.
Solution that maximizes the technology’s performance. The
�rst solution we propose presumes the joint goal of the two players
is to collectively produce a technology with maximum performance
U⇤1 . There are a few ways to think of this quantity: It is the perfor-
mance of the technology, and, equivalently, it is also the amount of
revenue the two players collect. Though we do not formally specify
a social welfare function, the technological performance can be
thought of as the total utility o�ered to society by �rms ⌧ and ⇡ .

D��������� 3.1 (M������������������ ��������). For the
�ne-tuning game, the maximum-performance bargaining solution is
the feasible revenue-sharing agreement Xmax-U⇤

1 2 [0, 1] that maxi-
mizes the technology’s performance U⇤1 : X

max-U⇤
1 = argmaxX2 [0,1]U

⇤
1 .
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Figure 3: Various joint-utility functions for �nding bargaining solutions. Gray regions are X values that are not Pareto-optimal
and therefore not candidate bargaining solutions. Color bar scales are de�ned assuming 20 = 1.

P���������� 3.4 (M�������U⇤1 S�������). A bargaining solu-
tion that maximizes the technology’s performance is given by:

XMax-U⇤
1 =

(
0 for 21 < 20,

1 for 21 � 20 .

Vertical Monopoly Solution. A perhaps intuitive approach to
bargaining is to choose a revenue-sharing agreement that maxi-
mizes the sum of utilities*⌧ +*⇡ . This solution imagines that the
two players are jointly controlled by a single entity who simply
wishes to maximize the sum of utility. This solution is known as
either the ‘vertical monopoly’ solution or the ‘utilitarian’ solution.

D��������� 3.2 (V�������M������� S�������). For the �ne-
tuning game, the Vertical Monopoly (or ‘Utilitarian’) Solution is the
feasible revenue-sharing agreement XVM 2 [0, 1] that maximizes the
sum of the players’ utilities: XVM = argmaxX2 [0,1] (*⌧ (X) +*⇡ (X)).

P���������� 3.5 (V������� M������� S�������). The Vertical
Monopoly Bargaining Solution to the �ne-tuning game with quadratic
costs is as follows:

XVertical Monopoly =
21

21 + 20
.

Egalitarian Bargaining Solution. An alternative bargaining ap-
proach tries to help the worst-o� player. This bargaining solutions
is known as the ‘egalitarian’ solution.

D��������� 3.3 (E���������� B��������� S�������). For the
�ne-tuning game, the Egalitarian Bargaining Solution is the feasible
agreement XEgal. 2 [0, 1] that maximizes the minimum of players’
utilities: XEgal. = argmaxX2 [0,1] (min%2{⌧,⇡ } (*% (X))) .

P���������� 3.6 (E���������� B��������� S������� �� ���
����������� ���� ���� �������� �����). The Egalitarian Bar-
gaining Solution to the �ne-tuning game with quadratic costs is:

XEgal. =
�
q
220 � 2021 + 221 � 21 + 220

3(20 � 21)
.

Nash Bargaining Solution. The Nash Bargaining solution maxi-
mizes the product between the two players’ utilities. This arrange-
ment satis�es a number of desiderata, originally laid out by [39].

D��������� 3.4 (N��� B��������� S�������). For the �ne-
tuning game, the Nash Bargaining Solution is the feasible revenue-
sharing agreement XNBS 2 [0, 1] that maximizes the product of the
players’ utilities: XNBS = argmaxX2 [0,1] (*⌧ (X) ⇤*⇡ (X)).

Though a closed-form solution for quadratic functions is possi-
ble, it involves solving the roots of a cubic function and yields a
solution that is clunky and uninterpretable. We refer the reader to
our numerical �ndings on this solution, depicted in Figures 3 and 4.
Kalai-Smorodinsky Bargaining Solution. Another solution sug-
gested in economic literature, known as the Kalai-Smorodinsky
bargaining solution, equalizes the ratio of maximal gains. Formally:

D��������� 3.5 (K�����S���������� B��������� S�������
[31]). For the �ne-tuning game, the Kalai-Smorodinsky Bargaining
Solution (KSBS) is the feasible revenue-sharing agreement XKSBS 2
[0, 1] that satis�es the following relation:

*⌧ (XKSBS)
maxX2XPareto *⌧ (X) =

*⇡ (XKSBS)
maxX2XPareto *⇡ (X) .

Notice the denominators in the above equation are simply the
utilities associated with the powerful-G and powerful-D solutions.
Despite this simplifying step, the closed form Kalai-Smorodinsky
solution is clunky and uninterpretable, so we omit it from this paper.
Our numerical �ndings on this solution are depicted in Figure 4.

3.4 Discussion on Bargaining Solutions
Above we solve for a number of bargaining solutions revealing
di�erent possible con�gurations of �ne-tuning arrangements. The
general technology-producer and the domain specialist each have
di�erent optimal arrangements, between which any agreement is
Pareto-optimal in the case of polynomial costs.

The �rst notable take-away is that players do not necessarily opt
to maximize their own proportion of the pro�t. Even if one player
has full control over the bargaining solution, depending on the
relative cost of production, they may bene�t from a pro�t-sharing
agreement in order to encourage investment by the other player. If
bargaining is conceptualized as splitting a pie, one player prefers
to cede some portion of the pie if it means the entire pie grows to a
size that justi�es pro�t-sharing. This phenomenon arises in real-
world settings. For instance, Apple allows third party developers
to build software on iPhones. Opening up the tasks of application
development to third parties improves consumer experience such
that consumers are willing to purchase apps or other capabilities
within apps. This additional revenue is then shared between Apple
and the developer, leaving Apple with higher pro�ts and a better
product. Revenue sharing arises, often, because doing so is lucrative.

Pro�t-sharing is present even when both players have exceed-
ingly di�erent costs of production (i.e., when 21/20 approaches 0
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Figure 4: Bargaining agreements for the �ne-tuning game
with quadratic costs. Most bargaining solutions involve rev-
enue sharing, even when one player faces much higher costs.

or1). In these limiting instances, we �nd that the Nash bargaining
solution, Kalai-Smorodinski, and Egalitarian solutions all suggest
pro�t-sharing. Only the Utilitarian solution—which models the two
players as a vertical monopoly that is centrally controlled—yields
the intuitively performance-optimal bargain, where the player with
lower costs receives the entire pro�t. However, the vertical monop-
oly solution is not always performance-optimal. It underperforms
the KSBS when the players face similar costs (⇠ 0.5 < 21

20
< 2.5).

The bargaining solutions are neither binding rules nor descrip-
tive observations; instead, they can be thought of as normative
prescriptions. Identifying joint utility functions can help guide
agents towards decisions that serve collective interests. For exam-
ple, utilitarian and egalitarian solutions o�er di�erent visions for
the appropriate distribution of welfare. In the same vein, one could
specify and commit to a social welfare function in order to identify
a bargaining solution that might be referred to as ‘socially opti-
mal.’ Unsurprisingly, however, specifying social interests in a single
function is an ambitious undertaking. In our present case, a social
welfare function would need to balance the interests of (at least) 1)
the technology’s producers 2) consumers who value performance
and 3) other external stakeholders. The procedure demonstrated
in this section provides a road map for a social welfare analysis
of the deployment of general-purpose models. Such an analysis
might uncover how �ne-tuning processes can be con�gured to
serve collective, societal interests.

4 MULTIPLE DOMAIN SPECIALISTS
So far, we have modeled the �ne-tuning process as a two-player
game between a generalist and a single specialist. However, an
important feature of general-purpose AI models is that they can be
developed without fully anticipating the set of possible downstream
use-cases. To capture the possibly many use-cases for general-
purpose models, in this section, we generalize our model to the
case where = � 1 domain specialists adapt the technology.
The multi-specialist �ne-tuning game. Consider a game with
= � 1 specialists. The players are ⌧ , ⇡1, ⇡2, ... ⇡= and we use 8 to
index the specialists. ⌧ develops a technology to general perfor-
mance U0, after which every domain specialist ⇡8 invests in the
technology, bringing it to performance U8 in their domain.⌧ and⇡8

share revenue A8 (U8 ) according to bargaining parameter X8 2 [0, 1].
At the end of the game, ⌧ receives

Õ
8 X8A8 (U8 ) and each specialist

⇡8 receives (1 � X8 )A8 (U8 ). The game involves the following steps:
(1) Players bargain to decide X8 for every domain 8 .
(2) ⌧ invests in a general-purpose technology yielding perfor-

mance level U0 and subject to cost q0 (U0).
(3) Each specialist ⇡8 may �ne-tune the technology by choosing

a performance level U8 subject to cost q8 (U8 ;U0).
Players’ utilities are de�ned as their revenue share minus cost:

*⌧ (X) :=
’
8

X8A8 (U8 )�q0 (U0),*⇡8 (X) := (1�X8 )A8 (U8 )�q8 (U8 ;U0) .

If ⌧ does not agree to a feasible bargain, she can instead opt for
disagreement, where ⌧ receives utility 30 and every specialist ⇡8
receives utility 38 . If any particular domain specialist ⇡8 does not
agree to a feasible bargain, they may opt to receive 38 . However,
this does not preclude other specialists from reaching a deal or
adapting the technology. We assume, unless otherwise speci�ed,
that the disagreement scenario is described by 30 = 38 = 0 for all 8 .

In the full version of the paper, we analyze all three steps of the
game de�ned above, beginning with bargaining over X8 [34]. Here,
for brevity, we focus on step (3), in which the X8 values have been
determined and⌧ has made an investment, and each specialist must
now decide how much to spend on increasing the performance
within their domain. In the full version [34], we also analyze a
di�erent form of the multi-specialist game where there is a single
bargaining parameter shared by all domain specialists. This might
describe, for example, app stores, where all applications follow the
same revenue-sharing agreement [47].

4.1 Domain Specialists’ Equilibrium Strategies
When there are potentially many domains where a technology may
prove useful or marketable, di�erent strategies around investment
levels and �ne-tuning can arise. In some domains, a technology
may be adopted ‘as-is’ without signi�cant additional investment or
specialization. In other domains, it might be in everyone’s interest
for a technology to receive signi�cant investment and specialization.
Of course, in other domains, a technology might not be viable for
any use at all. In this section, we explore the di�erent sorts of
cooperation (or non-cooperation) that can arise in domains with
di�erent characteristics. Our next general �nding is a theorem on
the various regimes of domain specialist strategies, depending on
certain attributes of revenue and cost functions.

First, wewill o�er a set of relevant de�nitions to help characterize
the di�erent possible regimes of strategies for the specialist. Then,
we will state the formal theorem.

D��������� 4.1 (C����������). A domain specialist ⇡8 is a con-
tributor at the pro�t-sharing agreement X8 if, given the generalist’s
optimal investment U0 at X8 , ⇡8 ’s optimal strategy is to bring the
technology to performance U⇤8 > U0.

D��������� 4.2 (F���������). A domain specialist ⇡8 is a free-
rider at the pro�t-sharing agreement X8 if, given the generalist’s
optimal investment U0 at X8 , ⇡8 ’s optimal strategy is to enter the deal
without improving the technology’s performance, so U⇤8 = U0.

D��������� 4.3 (A��������). A domain specialist ⇡8 is an ab-
stainer at the pro�t-sharing agreement X if, given the generalist’s
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optimal investment U0 at X , ⇡8 ’s optimal strategy is to exit the deal
and opt for disagreement.

Notice that any specialist is inevitably either a contributor, a
free-rider, or an abstainer. These three regimes span the possible
strategies for ⇡8 . Below, we outline conditions that characterize
⇡8 ’s strategy depending on their domain’s cost and revenue {A8 ,q8 }.

T������ 4.1. Suppose ⌧ has produced a general-purpose tech-
nology operating at performance U0 and available at pro�t-sharing
parameter X8 . For any specialist with utility unimodal in U8 , the fol-
lowing conditions characterize their strategy, as shown in Table 1.

• “Fixed Costs Under Control” (FCUC): At zero investment (U8 =
U0), the domain specialist 8’s cost is less than its share of the
revenue. Formally, A8 (U0) > 1

1�X8 q8 (U0;U0).
• “Marginally Pro�table Investment” (MPI): At zero investment
(U8 = U0), a marginal investment from the domain specialist
8 increases its revenue share more than its costs. Formally,
A 08 (U0) >

1
1�X8 q

0
8 (U0;U0).

“FCUC” “MPI” Type of Specialist
T T Contributor
T F Free-rider
F T Contributor or Abstainer*
F F Abstainer

Table 1: Types of specialists. In the third case (*), marginal
conditions alone do not determine whether the specialist
contributes or abstains.

A proof of the above theorem is provided in Appendix 9. The
requirement that specialist utility is unimodal in U8 is, in our view,
quite natural and broad. It covers three possible scenarios: 1) utility
is increasing with investment, 2) utility is decreasing with invest-
ment, or 3) utility increases with investment up to a certain point,
beyond which any further investment is not cost-justi�ed.

It is important to note that the three regimes de�ned in this
section can describe a specialist’s strategy in either the 1-specialist
or multi-specialist �ne-tuning game. In the 1-specialist case, the
potential strategies describe counterfactual outcomes that depend
on the particular cost and revenue functions of the specialist. In
the multi-specialist game, the strategies are ways of grouping the
domains and all can exist simultaneously.

One scenario portrayed in Table 1 does not determine cleanly
which regime the specialist falls into. In the scenario labeled with
an asterisk (*), �xed costs are not under control but it is marginally
pro�table to invest in the technology. At zero investment, the tech-
nology is not ready to bring to market pro�tably, and it is unclear
only from the marginal return on an initial investment whether it is
worthwhile for the specialist to invest. In this case, the technology
is potentially viable with some non-zero e�ort or, alternatively,
not viable for the domain at any level of investment. Though the
marginal conditions do not tell us whether the specialist would
contribute or abstain, we can identify their strategy as follows: If
(1�X8 )A8 (U8 )�q8 (U8 ) has positive real roots (for values of U8 greater
than U0), then ⇡8 would contribute. Otherwise, ⇡8 would abstain.

An illustration of Theorem 4.1 is provided in Figure 5. A note-
worthy feature of this result is that it allows us to identify particular
adaptation strategies using only the attributes about the domain 8

(or)
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Figure 5: Examples illustrating Theorem 4.1. Depending on
the characteristics of the cost and revenue curves, a domain
specialist might engage in di�erent types of strategy. For
instance, when �xed costs are under control but investment
is not marginally pro�table (upper right quadrant), the �rm
will free-ride. When �xed costs are too high but investment
yields marginal returns (lower left), the �rm either abstains,
or contributes if revenue exceeds cost at any point.

around U8 = U0. In this setting, much of the information about the
viability of a technology can be learned from only the 0th- and 1st-
order approximations of*⇡8

��
U8=U0

, when the domain has invested
minimal e�ort in the technology. This result perhaps coheres with
the belief that a ‘minimum viable product’ (MVP) can provide an
important signal about the pro�tability of a technology [3, 45].

Our analysis helps explain why technologies see signi�cant up-
take in some domains and not others. It characterizes domains that
are particularly suitable or unsuitable to adopt a general-purpose
technology. It also may explain why some technologies are re-sold
without additional investment while others require �ne-tuning.

5 CONCLUSION
Our model provides a starting point for considering the di�erent in-
terests and choices involved in the development of general-purpose
models. By putting forward this model, we attempt to invoke the
political economy of the development of AI technologies. These
technologies are produced by a number of entities with di�erent
interests, and may potentially a�ect many individuals. This paper
models agents’ di�erent interests explicitly, and proposes methods
for weighing between them in light of societal values.

The work suggests a number of interesting directions for further
research. One direction is to identify further general existence re-
sults for bargaining solutions with general functions in this model.
More broadly, we also believe that formalizing the societal interests
involved in AI regulation is an important direction. Such a formal-
ism would need to build on an underlying model that contains the
economic interests of the �rms producing the AI technology. Our
model may therefore help form the foundation for such work.
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6 OVERVIEW OF DEFERRED PROOFS
Proofs for all theorems contained in this paper are provided in this
appendix. Other stated results (e.g., propositions) are proven in the
full version of this paper. See Laufer et al. [34].

7 SECTION 2 MATERIALS
Pareto set characterization and Theorem 2.1

P���� �� T������ 2.1. Consider three non-overlapping inter-
vals that collectively span the feasible set X 2 [0, 1]. These intervals
are:

(1) 0  X < min(XPowerful ⇡ , XPowerful⌧ )
(2) min(XPowerful ⇡ , XPowerful⌧ )  X  max(XPowerful ⇡ , XPowerful⌧ )
(3) max(XPowerful ⇡ , XPowerful⌧ ) < X  1

We will characterize each of these intervals in turn, �nding that
intervals (1) and (3) are always Pareto dominated, and interval (2)
is characterized by a trade-o� in utilities.

(1) Within interval (1), the domain is characterized by X <
min(XPowerful ⇡ , XPowerful⌧ ) ) X < XPowerful ⇡ and X <
XPowerful⌧ . By the de�nition of a strictly unimodal function
(2.3), this means that both utility functions {*⇡ ,*⌧ } are
strictly increasing over interval 1. Thus, there exists some
quantity n > 0 such that, for any value X in interval (1),
*⇡ (X + n) > *⇡ (X) and *⌧ (X + n) > *⌧ (X). Thus, every
potential agreement in interval (1) is Pareto-dominated.

(2) Within interval (2), the domain is characterized by
min(XPowerful ⇡ , XPowerful⌧ )  X , and also
X  max(XPowerful ⇡ , XPowerful⌧ ). IfXPowerful ⇡ = XPowerful⌧ ,
then the value X = XPowerful ⇡ = XPowerful⌧ is the unique
Pareto-optimal agreement because it is optimal for both play-
ers. Otherwise if XPowerful ⇡ < XPowerful⌧ , then interval (2)
can be characterized as follows: For one player % 2 {⌧,⇡},
the utility *% one utility function is strictly decreasing be-
cause X � XPowerful % and*% (X) is a strictly unimodal func-
tion. For the other player {⌧,⇡} \ % , the utility *{⌧,⇡ }\%
is strictly increasing because X  XPowerful {⌧,⇡ }\% and
*{⌧,⇡ }\% (X) is a strictly unimodal function. Since one player’s
utility is strictly increasing and the other’s is strictly decreas-
ing, any perturbation of X within interval (2) constitutes a
utility gain for one player and a utility loss for the other. For
any value of X within this interval, if both players’ utilities
exceed the disagreement payo� (i.e., positive utility), then X
is Pareto-optimal.

(3) Within interval (3), the domain is characterized by X >
max(XPowerful ⇡ , XPowerful⌧ ) ) X > XPowerful ⇡ and X >
XPowerful⌧ . By the de�nition of a strictly unimodal function
(2.3), this means that both utility functions {*⇡ ,*⌧ } are
strictly decreasing over interval (3). Thus, there exists some
quantity n > 0 such that, for any value X in interval (3),
*⇡ (X � n) > *⇡ (X) and *⌧ (X � n) > *⌧ (X). Thus, every
potential agreement in interval (3) is Pareto-dominated.

Thus interval (2) is Pareto-e�cient among the set of feasible bar-
gaining agreements. ⇤
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8 SECTION 3 MATERIALS
Subgame perfect equilibrium �ndings

P���� �� T������ 3.1. We solve the game using backward in-
duction as follows:

First, starting with the last stage (3), we solve for U⇤1 given
U0, X, 21:

U⇤1 = argmaxU1*⇡ (U1,U, X)

) m*⇡

mU1

����
U1=U⇤

1

= 0

) m

mU1

⇣
(1 � X)U1 � 21 (U1 � U0):1

⌘ ����
U1=U⇤

1

= 0

) (1 � X) � :121 (U⇤1 � U0):1�1 = 0

) U⇤1 = U0 +
✓
1 � X

:121

◆ 1
:1�1

. (3)

Note that m2*⇡

mU2
1

= �:1 (:1 � 1)21 (U1 � U0):1�2. This quantity is
negative as long as : > 1, which is assumed. Thus, the U⇤1 derived
above yields a global maximum of *⇡ .

Second, knowing ⇡’s choice of U⇤1 above, we solve for U⇤0 as
follows:

U⇤0 = argmaxU0*⌧ (U0, X)

) m*⌧
mU0

����
U0=U⇤

0

= 0

) m

mU0

⇣
XU⇤1 � 20U

:0
0

⌘ ����
U0=U⇤

0

= 0

) m

mU0

 
X

 
U0 +

✓
1 � X

:121

◆ 1
:1�1

!
� 20U

:0
0

! ����
U0=U⇤

0

= 0

) m

mU0

⇣
XU0 + [const] � 20U

:0
0

⌘ ����
U0=U⇤

0

= 0

) X � :020 (U⇤0 ):0�1 = 0

) U⇤0 =
✓

X

:020

◆ 1
:0�1

.

The second derivative m2*⌧
mU2 = �:0 (:0�1)20 (U0):0�2. This quantity

is negative as long as : > 1, which is assumed. Thus, the value of
U⇤0 derived above yields a global maximum of *⌧ .

Finally, plugging in U⇤0 =
⇣

X
:020

⌘ 1
:0�1 into Equation 3, we obtain

the following expression for U⇤1 as a function of X only:

U⇤1 =
✓

X

:020

◆ 1
:0�1 +

✓
1 � X

:121

◆ 1
:1�1

.

This �nishes the proof. ⇤

9 SECTION 4 MATERIALS
Theorem on the three specialist regimes

P���� �� T������ 4.1. We prove this theorem in a sequence of
Lemmas. The proof follows for any given specialist ⇡8 and revenue-
sharing parameter X8 .

L���� 9.1. If �xed costs are under control, meaning A8 (U0) >
1

1�X8 q8 (U0), then ⇡8 will not abstain – instead, ⇡8 would always
prefer to free-ride.

If A8 (U0) > 1
1�X8 q8 (U0), then*⇡8

��
U8=U0

= A8 (U0) � 1
1�X8 q8 (U0) is

simply the RHS minus the LHS of the inequality. This means *⇡8

must be positive at U8 = U0. Thus, as long as �xed costs are under
control, the specialist prefers free-riding to abstaining.

L���� 9.2. If �xed costs are not under control, meaning A8 (U0) <
1

1�X8 q8 (U0), then ⇡8 will not free-ride – instead, ⇡8 would always
prefer to abstain.

If A8 (U0) < 1
1�X8 q8 (U0), then*⇡8

��
U8=U0

= A8 (U0) � 1
1�X8 q8 (U0) is

simply the RHS minus the LHS of the inequality. This means *⇡8

must be negative at U8 = U0. Thus, as long as �xed costs are not
under control, the specialist prefers abstaining to free-riding.

L���� 9.3. If it is marginally pro�table to invest in the technology,
meaning A 08 (U0) >

1
1�X8 q

0
8 (U0), then ⇡8 will not free-ride – instead,

⇡8 would always prefer to contribute.

If A 08 (U0) >
1

1�X8 q
0
8 (U0), then

m*⇡8
mU8

��
U8=U0

= A 08 (U0) �
1

1�X8 q
0
8 (U0)

is simply the RHS minus the LHS of the inequality. This means*⇡8

is increasing at U8 = U0. Thus, as long as it is marginally pro�table
to improve the technology, the specialist prefers contributing to
free-riding.

L���� 9.4. If it is marginally costly to invest in the technology,
meaning A 08 (U0) <

1
1�X8 q

0
8 (U0), then ⇡8 will not contribute – instead,

⇡8 would always prefer to free-ride.

If A 08 (U0) <
1

1�X8 q
0
8 (U0), then

m*⇡8
mU8

��
U8=U0

= A 08 (U0) �
1

1�X8 q
0
8 (U0)

is simply the RHS minus the LHS of the inequality. This means
*⇡8 is decreasing at U8 = U0. Thus, as long as it is marginally
costly to improve the technology, the specialist prefers free-riding
to contributing.

Taken together, we can conclude the following about combina-
tions of conditions:

• Fixed costs under control, marginally pro�table investment:
A<F, F<C (Lemmas 9.1 and 9.3). Thus the specialist would
contribute.

• Fixed costs under control, marginally costly: A<F, C<F (Lem-
mas 9.1 and 9.4). Thus the specialist would free-ride.

• Fixed costs not under control, marginally pro�table: F<A,
F<C (Lemmas 9.2 and 9.3). Thus the specialist would either
abstain or contribute.

• Fixed costs not under control, marginally costly: F<A, C<F
(Lemmas 9.2 and 9.4). Thus the specialist would abstain.

Above, the short-hand notation ‘A,’ ‘F,’ and ‘C’ refer to the strate-
gies of abstaining, free-riding, and contributing, respectively. The
optimal strategies follow from the two marginal conditions. This
completes the proof. ⇤
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