
Derailed: Arbitrarily Controlling DNN Outputs with
Targeted Fault Injection Attacks

Jhon Ordoñez and Chengmo Yang
Department of Electrical & Computer Engineering

University of Delaware
Newark, USA

{jordonez,chengmo}@udel.edu

Abstract—Hardware accelerators have been widely deployed
to improve the efficiency of DNN execution in terms of perfor-
mance, power, and time predictability. Yet recent studies have
shown that DNN accelerators are vulnerable to fault injection
attacks, compromising their integrity and reliability. Classic
fault injection attacks are capable of causing a high overall
accuracy drop. However, one limitation is that they are difficult
to control, as faults affect the computation across random classes.
In comparison, this paper presents a controlled fault injection
attack, capable of derailing arbitrary inputs to a targeted range
of classes. Our observation is that the fully connected (FC) layers
greatly impact inference results, whereas the computation in the
FC layer is typically performed in order. Leveraging this fact, an
adversary can perform a controlled fault injection attack even to
a black-box DNN model. Specifically, this attack adopts a two-
step search process that first identifies the time window during
which the FC layer is computed and then pinpoints the targeted
classes. This attack is implemented with clock glitching, and the
target DNN accelerator is a DPU implemented in the FPGA.
The attack is tested on three popular DNN models, namely,
ResNet50, InceptionV1, and MobileNetV2. Results show that up
to 93% of inputs are derailed to the attacker-specified classes,
demonstrating its effectiveness.

Index Terms—Fault injection, DNN accelerator, Clock glitching

I. INTRODUCTION

Deep neural networks (DNNs) are widely used in many
applications, such as face recognition, object detection, seg-
mentation, and natural language processing. To facilitate the
execution of DNNs on resource-constrained devices, vari-
ous hardware accelerators have been developed, including
Graphics Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs), and Application Specific Integrated Circuits
(ASICs). Unfortunately, the advances in DNN deployment
also expose them to various security threats [1]. One threat
is faults which can disturb the circuit functionality to either
produce malicious/meaningless model outputs or leak DNN
model information [2], [3]. The devastating effect on the DNN
outputs could lead to serious consequences in safety-critical
systems such as smart medical devices or self-driving vehicles.

In general, faults can be injected into a DNN accelerator
through different means such as clock glitching [4], [5],
voltage glitching [6], dynamic voltage and frequency scaling

This work is partially supported by National Science Foundation grant
#1909854.

(DVFS) [7], [8], and Rowhammer [9]. Depending on the
type of knowledge required, these attacks can be classified
into two groups, those targeting the DNN model and those
targeting the underlying hardware. The first group causes
misclassification by manipulating some parameters through
adversarial attacks or Bit-Flip Attacks [10]–[12]. However,
they require complete knowledge of the model (i.e., white-
box) to identify the most vulnerable weights or inputs with the
highest gradients to attack, which requires a complex search
process. In comparison, the second group of attacks, such as
clock/voltage glitching, target the hardware accelerators and
require very limited information on the model parameters (i.e.,
black-box). However, faults injected with these methods have
limited controllability such that they affect the computation
across many classes and hence cause unpredictable faulty
outputs.

In this work, we exploit the possibility of performing a
controlled fault injection attack that derails DNN inputs to a
targeted range of classes. More specifically, our study shows
that faults injected into different DNN layers have quite
diverse impacts. In particular, the fully connected (FC) layers
greatly impact inference results, whereas the computation
in the FC layers is typically performed in order. Based on
this observation, we develop a framework that injects faults
via clock glitching and adopts a two-step search process,
namely, a coarse-grain search that identifies the time win-
dow during which the FC layers are computed, and a fine-
grained search to pinpoint the exact classes to attack. This
framework is deployed on an FPGA, configured to implement
a Deep-learning Processing Unit (DPU) to accelerate three
popular DNN models, namely, ResNet50, InceptionV1, and
MobileNetV2. To the best of our knowledge, this is the first
work that demonstrates a controlled fault injection attack on
a black-box DNN.

Overall, the main contributions of this work include:
• The development of a two-step search framework to

pinpoint the most vulnerable layers in black-box DNN
models;

• Reverse engineering a DNN accelerator to characterize
its execution and increase the controllability of fault
injection attacks;

• The design and implementation of a controlled fault
injection attack that derails arbitrary inputs to a targeted

range of classes.
The rest of this paper is structured as follows: Section II

briefly reviews existing fault injection attacks on DNN models.
Section III analyzes the vulnerabilities of DNN models and the
DPU accelerator, which provides a theoretical foundation for
the fault injection framework presented in Section IV. Section
V presents our case study on the DPU. Finally, Section VI
concludes this work.

II. BACKGROUND

Fault injection attacks are a class of physical attacks that
aim to actively modify the intended behavior of a device
to bypass its security or compromise its integrity [13], [14].
These attacks typically target computing architectures that
combine CPUs, GPUs, and/or FPGAs by exposing electrical-
level security risks [15]. While conventional fault injection
attacks target crypto engines, recent work started examining
vulnerabilities of DNN hardware accelerators, given their wide
usage.

One set of previous works focused on injecting faults into
the memory that stores the weights of the DNN model. Givaki
et al. [16] developed an attack that undervoltes FPGA on-
chip memories. The attack achieved a 30% fault rate in caus-
ing memory bit-flips, yet the degradation in model accuracy
was only 4.92% because faults were injected randomly into
the block RAM, considering the DNN model as a black-
box. In comparison, another attack, called DeepHammer [17],
leveraged Rowhammer [9] to precisely flip a small set of
targeted bits (3 to 24 bits) in memory to degrade the prediction
accuracy to random guesses. However, this attack requires
complete knowledge of the DNN model (i.e., a white-box
attack) so as to apply a gradient-based search to identify a
chain of memory bits to flip.

Prior work has also exposed the vulnerability of DNN
accelerators by causing timing violations and, consequently,
computation errors. The work in [6] proposes a power striker
that aggressively overloads the shared Power Distribution
Network (PDN) to incur voltage glitches, which in turn induce
computation errors or data loading faults. A maximum accu-
racy drop of 14% on a quantized DNN model was reported.
It is worth mentioning that the scheme is a gray-box attack
as it requires knowledge of the DNN architecture. Another
technique for inducing timing violations is DVFS attack. The
attack in [7] sets the working voltage of Nvidia GPUs to a
deficient value with software instructions performed on CPU.
While this attack is able to degrade inference accuracy by
around 70%, it requires complete knowledge of models (white-
box) to search for the most sensitive targets.

The work most related to this work is [4], which implements
clock glitching on an FPGA that runs a DNN accelerator
and uses DSPs for MAC operations. The attack glitches the
DSP clock and defines a parameter called glitch intensity as
the percentage of the total inference time glitched. However,
it requires an intensity as high as 10% to achieve 98%
misclassification rate on DNN models such as MobileNet,
DenseNet, ResNet50, among others. In comparison, the attack

TABLE I
SUMMARY OF DIFFERENT FAULT INJECTION ATTACKS

Work Fault injection Platform Model Targeted
approach knowledge attack?

[16] Undervolting FPGA black-box No
[17] Rowhammer CPU white-box Yes
[6] Voltage glitching FPGA gray-box No
[7] DVFS GPU white-box Yes
[4] Clock glitching FPGA black-box No

This work Clock glitching FPGA black-box Yes

presented in this work only needs to glitch a few clock cycles
to cause a high misclassification rate. More importantly, the
proposed attack is capable of triggering misclassifications in
a small set of target classes.

Table I summarizes related work and highlights the differ-
ence from this work. Overall, to achieve a targeted attack,
previous work all requires complete model knowledge, regard-
less of the platform or the applied fault injection technique. In
contrast, this work presents a targeted fault injection attack
without knowledge of the model architecture, weights, or
hyperparameters.

III. FAULT VULNERABILITY ANALYSIS

A. Vulnerabilities of Different DNN layers

A DNN model typically contains various types of layers,
including convolutional layers (CONV), activation (typically
ReLU), pooling (POOL), fully connected layers (FC), and
softmax. These layers are not equally vulnerable to faults. In
particular, our analysis shows that the FC layers are much
more vulnerable to faults than others.

Faults injected into a CONV layer, even if they effectively
corrupt the result of a convolution, still have a large chance
to be masked, as ReLU removes negative values from an
activation map by setting them to zero, while POOL performs
downsampling along the spatial dimensions. Moreover, the
CONV-ReLU-POOL sequence is typically repeated several
times, thus further increasing the chance of dispersing a faulty
activation in later layers. In comparison, the FC layer directly
computes the scores of different classes, and is typically
followed by softmax that transforms the raw outputs into a
vector of probabilities. As softmax does not alter the relative
importance of each class, fault injected in the FC layer directly
affects the prediction outcome. In particular, if faults can be
injected in a way that significantly elevates the score of one
specific class, that class will become the predicted class.

B. Vulnerabilities of DPU

Hardware accelerators speed up DNN model execution
by increasing the number of computation units running in
parallel. Without loss of generality, this work selects the Deep-
learning Processing Unit (DPU) [18] as the target architecture.
DPU offers three dimensions of parallelism, namely, pixel
parallelism (PP), input channel parallelism (ICP), and out-
put channel parallelism (OCP). As illustrated in Fig. 1, PP
defines the number of pixels from the feature map that are

Input feature map Kernels

PP=2

ICP=3

OCP=3

Fig. 1. DPU dimensions of parallelism.

processed simultaneously (red cuboids for PP=2). The ICP
and OCP respectively represent the input feature depth and
the number of kernels executed in parallel in a convolution
operation, and ICP is always equal to the OCP (blue cuboids
for ICP=3). The number of operations in a single cycle is
defined by 2×PP×ICP×OCP. Since the DPU allows a maxi-
mum parallelism with OCP=ICP=16 and PP=8, at most 4096
intermediate results can be computed at a time. Therefore,
glitching a few clock cycles can affect a significant amount of
intermediate results.

According to DPU specifications, if the FC layer is con-
nected with a flatten layer, the compiler will combine Flat-
ten+FC to a CONV2D layer, and the kernel size is equal to the
input feature map size of the flatten layer. Therefore, one can
conclude that a short clock glitching injected in the FC layer
can potentially affect 2×PP×ICP×OCP intermediate results
that contribute to the outputs of OCP classes, thus enabling a
targeted attack on the FC layer.

IV. ATTACK METHODOLOGY

A. Threat Model

As mentioned before, the attack presented in this work is a
targeted fault injection attack on a black-box DNN model. It is
assumed that an adversary can access the hardware accelerator
through an interface or share resources, which allows the
adversary to inject faults as clock/voltage glitches similar to
[4], [6], violating timing constraints. The adversary can control
and configure fault injection by setting different parameters
via software. Regarding the DNN model, the adversary has no
prior knowledge of its architecture or parameters. For example,
the adversary can monitor the accelerator via power side-
channel to detect when the inference starts. The adversary can
also inspect the DNN outputs to choose certain parameters to
cause misclassification to specific classes.

B. Fault Injection Method

The proposed fault injection framework works with any
method that can cause timing violations in the target ac-
celerator. Without loss of generality, this work adopts clock
glitching, similar to [4]. Specifically, our approach includes
two different clock sources at the same frequency but differ in
phase (0◦/360◦ and 270◦/360◦). The computation unit works
correctly when only one clock source is used. However, if
the clock signal is switched from one source to the other, a
glitch is generated. To control the glitch, it is necessary to
specify when and how long it should occur. This is illustrated

Trigger

offset
width

clk_a

clk_b

glitch_clk

Glitch
Enable

Fig. 2. Clock glitching produced by switching from clk a to clk b

in Fig. 2. Specifically, the proposed setup uses a trigger signal
to reference the injection. At a specific time point (offset), the
clock signal is switched from clk a to clk b, generating the
glitch (highlighted in red circle) that lasts for a short period
(width). Therefore, computation errors are expected to occur
at the beginning (red circle) and end (blue circle).

C. Attack Framework

As mentioned before, our attack requires no prior knowl-
edge of the DNN model. To pinpoint the exact classes to
attack, the attack framework adopts a two-step search process,
namely, a coarse-grain search that identifies the time period
corresponding to the FC layer, and a fine-grained search that
sets the parameters to attack the targeted classes.

1) Coarse-grained search: In this process, faults are in-
jected along the entire inference. The goal is to observe the
variation in the overall accuracy so as to identify the start
and end of executing the FC layer. A small set of images
is randomly selected from the original test dataset to speed
up the search. In each run, the width parameter is set to
a few clock cycles, while the offset parameter varies from
the beginning to the end of the inference, given a step that
determines the search granularity. The outcome of this process
is two estimated values: TFCstart and TFCend, which are fed
to the second search process.

2) Fine-grained study: Compared to coarse-grained search,
this stage requires a much larger number of images per
class to identify the correlation between the glitch offset and
the exact classes affected by the injected faults. The offset
parameter varies between TFCstart and TFCend (calculated in
the previous stage), whereas the width parameter is set to a
few clock cycles. For each offset, the classes with the highest
prediction frequency are recorded.

As discussed in Section III-B, the FC layer is calculated
sequentially. Therefore, the following equation can be used to
calculate the glitch offset given a target class to attack:

offset = TFCstart +
Ctarget

Ctotal
× (TFCend − TFCstart) (1)

where Ctarget is the index of the target class, Ctotal is the total
number of classes, and TFCstart and TFCend are the start
time and end time of computing the FC layer in the DPU,
respectively. Moreover, since multiple classes are processed
at the same time, the range of affected classes Rtarget is
determined by:

Rtarget =

(
⌊Ctarget

OCP
⌋, ⌊Ctarget

OCP
⌋+OCP

)
(2)

Trigger

Offset

Width

EMIO

Programmable Logic (PL)

DPU

PE PE PE PE
Clock

Glitching
circuit

Processing
System (PS)

offset

xmodel

Image

KRIA KV260

AXI

A
X

I Lite

width

Computing Engine

E
M

IO

Petalinux

Tr
ig

g
e
r

DSP_clk

Clock
Multiplexer

sel

Clock Generator

clk_a500MHz

0° phase

clk_b

en

min

max
out

Glitch
Counter

rst

(BUFGCTRL)

500MHz

270° phase

Clock Generator

DSP_clk

Fig. 3. Experimental setup that implements the DPU and clock glitching
circuit on an AMD FPGA board.

where OCP is the number of kernels processed in parallel.

V. CASE STUDY

This section presents a case study implementing the pro-
posed attack on a Deep-learning Processing Unit (DPU).

A. Experimental Setup

The DPU is implemented on an AMD KRIA KV260 board,
which features a Zynq Ultrascale+ MPSoC device compromis-
ing a quad-core ARM Cortex-A53 processor, 256K logic cells,
and 1200 DSPs. The DPU has a control unit and a computing
engine unit. The latter consists of an array of Processing
Engines (PE) that perform MAC operations. Each PE contains
DSPs that runs at twice the frequency of the control unit. This
frequency is represented as DSP clk, which equals 500MHz
in our implementation.

The board combines a Processing System (PS) for software
implementations and the Programmable Logic (PL) for hard-
ware implementations. As shown in Fig. 3, the PL is used
to implement the DPU and the clock glitching circuit, while
the PS communicates with PL through Advanced eXtensible
Interface (AXI) protocol, sending the model and input images
and receiving the inference outputs. Another AXI interconnect
is instantiated to set the width and offset for the clock
glitching circuit, which also receives an EMIO (Extended
multiplexed I/O) signal from the PS and a trigger signal from
the DPU. The clock glitching circuit switches between two
clock generators configured with different phases. The clock
multiplexer is instantiated using the primitive BUFGCTRL. The
glitch counter takes four inputs: EMIO, offset, width, and
trigger. Once an attacker enables the glitching circuit by setting
the EMIO signal, the trigger signal is automatically activated
at the moment when the DPU initiates an inference process.
The circuit waits for a certain amount of time (offset) and
switches the clock source for a short period (width).

Fig. 4. Overall accuracy drop at different offsets, with maximum drop
highlighted.

B. Models and Dataset

To evaluate the effectiveness of the proposed attack, we
have conducted fault injection experiments on three popular
DNN models: InceptionV1 [19], ResNet50 [20], and Mo-
bileNetV2 [21], all trained on the ImageNet [22] dataset and
quantized to 8 bits by Xilinx Vitis AI framework. This tool
configures DNN models to run on AMD devices. The experi-
ments use different portions of the test dataset to evaluate the
accuracy under the influence of fault injection. Details of the
images used in different experiments are provided later.

C. Coarse-grained Search

Our first set of experiments aims to pinpoint the location of
the highest accuracy drop (i.e., where FC layer is) in execution.
In this study, thousands of experimental runs were conducted,
each injecting a single glitch of 4ns (i.e., 2 clock cycles) at a
different offset of the inference process. The offset parameter
was set to cover the entire inference process. To speed up the
search process, 300 images were randomly selected, of which
the Top-1 accuracy was calculated for each offset.

Fig. 4 presents the obtained accuracy variation across the
entire inference period. The straight line at the end of each
model shows that there is no impact on accuracy if the attack
is activated after the inference finishes. As can be seen, fault
injection causes observable accuracy degradation on all three
models. Specifically, the injected faults drop the inference
accuracy to 15% on MobileNetV2, 10% on ResNet50, and
20% on InceptionV1 (highlighted by dashed red circles). In
all three models, the highest accuracy drop appears towards
the end of the inference, confirming that the FC layer is most
vulnerable in all three models.

D. Fine-grained Search

Our fine-grained study is carried out to examine the impact
of fault on different classes. As an example, Fig. 4 shows that
the highest accuracy drop for InceptionV1 occurs when the
glitch offset is set to 3.72ms. Accordingly, in the fine-grained
study, the glitch offset is set to a small range covering the
highest accuracy drop (e.g., 3.71–3.73ms for InceptionV1),

3.712ms 3.720ms 3.728ms No glitch

(a) InceptionV1 width=4 ns

3.712ms 3.720ms 3.728ms No glitch

(b) InceptionV1 width=2 µs

8.488ms 8.502ms 8.516ms No glitch

(c) ResNet50 width=4 ns

8.488ms 8.502ms 8.516ms No glitch

(d) ResNet50 width=2 µs

2.796ms 2.808ms 2.820ms No glitch

(e) MobileNetV2 width=4 ns

2.796ms 2.808ms 2.820ms No glitch

(f) MobileNetV2 width=2 µs

Fig. 5. Distribution of predicted classes. The no-glitch case is flat, while
glitches at different offsets shift the output to targeted classes.

TABLE II
PARAMETERS (IN ms) FOR TARGETED ATTACK

Model Inference End TFCstart TFCend

InceptionV1 3.73045 3.70904 3.72844
ResNet50 8.52280 8.48526 8.52270
MobileNetV2 2.82536 2.79188 2.82532

and the search progresses in much finer steps. The number of
test images is increased to 30K (about 30 images per class),
while the width ranges from 4ns to 2µs, to examine its impact.

1) Targeted attack: Fig. 5 plots the distribution of predicted
classes for all the 30K test images, with and without clock
glitching. As shown, the original (no-glitch) distribution is flat,
while glitches at different offsets shift the output to targeted
classes. For example, on the InceptionV1 model (Fig. 5(a)),
glitches were generated at three different offsets: 3.712, 3.720,
and 3.728ms, which all shift the prediction to a specific
range of target classes. A similar trend can be observed for
ResNet50 and MobileNetV2 as well. These results confirm,
for all three models, the existence of a linear relationship
between the glitch offset and the elevated prediction
distribution in certain classes. As discussed before, this
linear relationship is expected since the DPU computes the
FC layer in order. A targeted fault injection attack can derive
the glitch offset with Eq. (1) for a targeted class. For each
model, the (TFCstart, TFCend) parameters are calculated and
listed in Table II.

Affected
Unaffected

Affected
Unaffected

Affected
Unaffected

(a) Difference between faulty and fault-free outputs

Faulty
No glitch

Faulty
No glitch

Faulty
No glitch

(b) Distribution of predicted classes

Fig. 6. Impact of OCP on FC outputs, tested for ResNet-50 with glitch
offset=8.502ms and width=20ns

2) Impact of Glitch Width: As illustrated in Fig. 2, clock
glitching is expected to cause computation errors at the be-
ginning and the end of the glitch period. When the glitch
width is short (e.g., 4ns), the DPU is computing the same
set of classes during this period. As a result, only one peak is
observed in Fig. 5(a), (c), and (e). In contrast, when the glitch
width is increased to 2µs, the DPU is computing different sets
of classes at the beginning and end of the glitch. Therefore,
two peaks can be observed in Fig. 5(b), (d), and (f).

3) Impact of OCP: As discussed in Section III-B, the DPU
computes multiple (=OCP) classes in the FC layer simultane-
ously. To evaluate its impact, the DPU was configured with
three different OCP values: 8, 12, and 16. This study was
conducted on ResNet50, while the glitch offset and width are
8.502ms and 20ns, respectively.

Fig. 6(a) plots the difference between w/ and w/o glitch
in the outputs of the FC layer (before applying softmax).
Since the model is quantized to 8-bit, the outputs are in the
range of [-128,127]. As expected, OPC defines the number of
classes affected by the attack. More importantly, the results
show that the difference can be both positive and negative,
indicating that clock glitching affects the computation output
in both directions. High positive differences typically lead
to misclassification into the target classes, whereas negative
differences do not alter prediction outcomes in most cases.
Overall, OCP=16 is most prone to misclassification, as con-
firmed in Fig. 6(b).

4) Success rate: To demonstrate the effectiveness of the
targeted attack, our experiments evaluate its success rate,
defined as follows:

Success rate =
predictions in Rtarget

total images
× 100 (3)

Su
cc

ess
 ra

te(
%)

Fig. 7. Success rate of targeted attack.

The ideal success rate of a targeted attack is 100%. That is,
any arbitrary image should be predicted as a class in Rtarget.

Fig. 7 plots the success rate under different glitch widths:
2ns, 4ns, 20ns, and 0.6µs. These data are the average of the
three distinct offset values reported in Fig. 5. As can be seen,
a width as short as 20ns is sufficient to cause a high success
rate (>75%) on the three models. When the glitch width is
small, increasing it leads to a higher success rate. Once it
reaches 20ns, increasing it does not affect the success rate
much since computation errors are expected to appear only
at the glitch’s beginning and end. The results also show that
ResNet50 and MobileNetV2 are very vulnerable to the attack,
which reaches success rates of 93% and 92%, respectively.
InceptionV1 is slightly more fault resilient, yet our attack still
achieves a 81% success rate. Overall, these data confirm the
effectiveness of the proposed attack.

E. Potential countermeasures

The proposed targeted attack relies on the fact that the
FC layer is executed sequentially. One potential mitigation
mechanism is partitioning the computation into blocks/tiles,
enlarging the range of classes that may have computation
errors. This broadens the attack target, however, by making
more classes vulnerable. Another possible countermeasure is
to add an extra step to check the outputs of the FC layer
for error detection and correction. However, standard double
and triple modular redundancy methods incur high timing or
resource overhead. A method that selectively recomputes FC
outputs is desirable.

The proposed targeted attack leverages clock/voltage
glitches to cause computation errors. One potential mitigation
is the isolation of different voltage/clock domains. A circuit
that detects timing violations dynamically could also be added
along with the DPU.

VI. CONCLUSIONS

This work demonstrated that DNN hardware accelerators are
vulnerable to a targeted fault injection attack, which requires
no prior knowledge of the DNN model. The attack is based on
the fact that the faults in the FC layer significantly affect DNN
outputs, while the computation in the FC layer is performed
sequentially. Through a two-step search process, a linear
relationship between the clock glitch offset and the targeted
set of classes can be established. This attack was implemented
in an FPGA and examined for three different DNN models.
Experimental results demonstrated a high success rate: 81%,

93%, and 92% for InceptionV1, ResNet50, and MobileNetV2,
respectively, achieved with a short glitch of 10 clock cycles.
Given its severeness, future work should focus on developing
efficient software/hardware countermeasures.

REFERENCES

[1] S. Mittal, H. Gupta, and S. Srivastava, “A survey on hardware security of
DNN models and accelerators,” Journal of Systems Architecture, 2021.

[2] F. S. Hosseini, F. Meng, C. Yang, W. Wen, and R. Cammarota, “Tolerat-
ing defects in low-power neural network accelerators via retraining-free
weight approximation,” ACM Trans. on Embedded Computing Systems,
2021.

[3] F. Meng, F. S. Hosseini, and C. Yang, “Exploring image selection for
self-testing in neural network accelerators,” in ASP-DAC, 2021.

[4] W. Liu, C.-H. Chang, F. Zhang, and X. Lou, “Imperceptible Misclassi-
fication Attack on Deep Learning Accelerator by Glitch Injection,” in
DAC, 2020.

[5] Y. Fukuda, K. Yoshida, and T. Fujino, “Fault Injection Attacks Utilizing
Waveform Pattern Matching against Neural Networks Processing on
Microcontroller,” IEICE Trans. on Fundamentals of Electronics, Com-
munications and Computer Sciences, 2022.

[6] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “DeepStrike: Remotely-Guided
Fault Injection Attacks on DNN Accelerator in Cloud-FPGA,” in DAC,
2021.

[7] R. Sun, P. Qiu, Y. Lyu, D. Wang, J. Dong, and G. Qu, “Lightning:
Striking the Secure Isolation on GPU Clouds with Transient Hardware
Faults,” in arXiv, 2021.

[8] J. Xu, B. Xuan, A. Liu, M. Sun, F. Zhang, Z. Wang, and K. Ren,
“Terminator on SkyNet: a practical DVFS attack on DNN hardware IP
for UAV object detection,” in DAC, 2022.

[9] X. Lou, F. Zhang, Z. L. Chua, Z. Liang, Y. Cheng, and Y. Zhou,
“Understanding Rowhammer Attacks through the Lens of a Unified
Reference Framework,” in arXiv, 2019.

[10] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan, “T-BFA:
Targeted Bit- Flip Adversarial Weight Attack,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2022.

[11] Q. Liu, J. Yin, W. Wen, C. Yang, and S. Sha, “NeuroPots: Realtime
proactive defense against Bit-Flip attacks in neural networks,” in 32nd
USENIX Security, 2023.

[12] F. S. Hosseini, Q. Liu, F. Meng, C. Yang, and W. Wen, “Safeguarding
the intelligence of neural networks with built-in light-weight integrity
marks (LIMA),” in IEEE HOST, 2021.

[13] S. Koffas and P. K. Vadnala, “On the Effect of Clock Frequency on
Voltage and Electromagnetic Fault Injection,” in Applied Cryptography
and Network Security Workshops, 2022.

[14] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
Sorcerer’s Apprentice Guide to Fault Attacks,” Proceedings of the IEEE,
2006.

[15] D. G. Mahmoud, V. Lenders, and M. Stojilović, “Electrical-Level
Attacks on CPUs, FPGAs, and GPUs: Survey and Implications in the
Heterogeneous Era,” ACM Computing Surveys, 2023.

[16] K. Givaki, B. Salami, R. Hojabr, S. M. Reza Tayaranian, A. Khonsari,
D. Rahmati, S. Gorgin, A. Cristal, and O. S. Unsal, “On the Resilience
of Deep Learning for Reduced-voltage FPGAs,” in 28th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP). IEEE, 2020.

[17] F. Yao, A. S. Rakin, and D. Fan, “DeepHammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
29th USENIX Security, 2020.

[18] AMD, “DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide,”
2022.

[19] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE CVPR, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE CVPR, 2016.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in IEEE
CVPR, 2018.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in IEEE CVPR,
2009.

