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2.1 Sensor Data from an Autonomous Vehicle

As shown in Fig 1, a typical AV generates three types of data:

1) safety-related data that monitor vehicle status and envi-

ronment, 2) car’s interior data like doors, seats, windows, etc,

and 3) media, communication, and entertainment data. Prior

research demonstrates that the safety-related Electrical Con-

trol Unit (ECU) is usually connected with the Controller Area

Network (CAN) bus and FlexRay to achieve high-speed and

stable communication. The car’s interior control only needs

serial communication, so it is usually connected with the Lo-

cal Interconnect Network (LIN) bus. Infotainment units use

Media Oriented Systems Transport (MOST) bus to achieve

communication [1, 18]. The di�erences between these com-

munication protocols are summarized in Table.1.

2.2 Related Works

Data storage for autonomous vehicles has only been dis-

cussed in the past few years. In 2020, Wang et al. intro-

duced the �rst conceptual storage framework for AVs, which,

while insightful, lacked a detailed storage solution tailored

to address the substantial volumes of data generated in real-

time [13]. Subsequently, in 2022, Kim embarked on research

focused on the data storage needs of AVs, estimating the

volume of data produced hourly by utilizing an open dataset.

However, this study did not o�er a granular analysis of data

rates for individual sensors, nor did it validate the proposed

data through practical assessments [9]. Kim’s further explo-

ration into AV sensors’ data provided a general estimation

of data volume contingent on the level of vehicle autonomy

but fell short of delivering a precise analysis or recommen-

dations [8].

It’s important to di�erentiate existing works on au-

tonomous vehicle storage and retrieval systems, which pre-

dominantly address indoor warehouse or parking lot man-

agement, from our focus. Our work is dedicated to analyzing

the on-board data storage requirements speci�cally tailored

for autonomous vehicles.

3 Data Analysis and Modeling

This section is dedicated to delivering an in-depth exami-

nation of the sensor array commonly found in autonomous

vehicles, coupled with the presentation of a mathematical

model designed to estimate the volume of data these sensors

generate.

3.1 Sensors Data Approximation

RGB Camera: The data generated by the RGB camera is in

the format of images or frames in video. Each frame or image

consists of pixels, and the value of each pixel is determined

by the value of the RGB channel.

The math model for the data rate of RGB Camera is pre-

sented below:

�0C0'0C4'�� (1~C4B/B) =
11~C4

818C
× � ×+ × �%% × �%( (1)

� represents the horizontal number of pixels and + rep-

resents the vertical number of pixels in an image. �%% rep-

resents the pixel bit depth - the number of bits to represent

each pixel. The larger the �%% , the more colorful the image.

�%( represents the frame rate per second.

3D LiDAR: The LAS (LIDAR Aerial Survey) �le format

is a widely used binary �le format designed to store 3D

point cloud data collected by LiDAR. LAS �les contain a

collection of individual LiDAR points, each with a set of

attributes such as X, Y, and Z coordinates, intensity values,

return numbers, and classi�cation codes. There are 5 point-

data-record formats according to the LAS SPECIFICATION

VERSION 1.3 1, the data depth of each point could be further

calculated through these data formats.

The math model for the data rate of 3D LiDAR is presented

below:

�0C0'0C4!8��' (1~C4B/B) = # × �(1~C4B) (2)

# represents the number of returned points. � denotes the

bit depth per point, a parameter determined by the data

format.

Radar: The data generated by radar is represented using

the PointCloud2 Message in ROS2. and the math model for

the data rate of Radar is presented as:

�0C0'0C4'030A (1~C4B/B) = 5 × #? × �(1~C4B) (3)

The parameter of 5 and #? could be calculate through the

following equation:

5 =

1

�~2;4)8<4

#? =

�$+ �I8<DCℎ

�I8<DCℎ '4B>;DC8>=
×

�$+ �;4E0C8>=

�;4E0C8>= '4B>;DC8>=
(4)

#? represents the number of points that can be resolved

within the radar’s �eld of view (FOV) based on its azimuth

and elevation resolution. 5 is the scanning rate which repre-

sents the number of scans per second. � is the bit depth per

point. The number of points re�ected from each pulse varies

with the complexity of the environment. So �0C0'0C4'030A
can only approximate the upper limit of the data generated

by the Radar sensor per second.

GNSS: The messaging protocol used to send GNSS data is

NMEA-0183 [11]. NMEA2 and has di�erent sentence formats

that could be used in di�erent applications. For example,

GPGLL stands for Geographic Position, Latitude / Longitude,

and Time, and it will provide this speci�c information. No

matter which sentence is used, the maximum length of an

NMEA message is 82 characters or 82 Bytes if the data bits

1LAS SPECIFICATION VERSION 1.3 – R11. 2010. [online] Available: h�ps:

//www.asprs.org/wp-content/uploads/2010/12/LAS_1_3_r11.pdf
2NMEA 0183 is a combined electrical and data speci�cation for communica-

tion between marine electronics like GPS receivers, and many other types

of instruments. It has been de�ned and is controlled by the National Marine

Electronics Association (NMEA)
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Table 1. Communication protocols comparison in AVs.

Protocols Data Rate Topoogy Determinism

LIN Up to 19.2Kbps Single-wire serial bus Non-deterministic

CAN Up to 1Mbps (Classical CAN) Multi-master serial bus Non-deterministic (Classical CAN)

FlexRay Up to 10Mbps Dual-channel bus Highly deterministic

MOST Up to 150Mbps (MOST150) Ring or star Deterministic

Ethernet Up to 10Gbps (10 Gigabit Ethernet) Bus or star Non-deterministic

are 8. The math model for the data rate of GNSS is conducted

below:

�0C0'0C4�#(( (1~C4B/B) = AD?30C4 × � (1~C4B) (5)

AD?30C4 represents the number of messages it generates per

second.� is a constant data size for each message. If the mes-

saging protocol follows NMEA and only sends one NMEA

sentence, then the maximum value of � is 82 Bytes.

3.2 CAN Bus Data

The Controller Area Network (CAN) bus operates as a so-

phisticated network system allowing multiple masters to

broadcast messages at a signaling rate of up to 1 million bits

per second [6]. This system’s broadcast capability ensures

that all nodes within the network can simultaneously receive

messages, giving them the autonomy to either process or dis-

card these messages as needed. Such a mechanism facilitates

the swift exchange of data among the Electronic Control

Units (ECUs) without requiring direct addressing, signif-

icantly boosting the network’s communication e�ciency.

Moreover, the CAN bus employs a deterministic approach

to message transmission, prioritizing messages through a

unique identi�er system where messages with lower identi-

�ers are given precedence. This prioritization is crucial for

the timely delivery of vital information, especially for the

vehicle’s safety-critical systems [3, 7]. Sensors that track fun-

damental vehicle metrics such as wheel speed, brake status,

and steering angle typically utilize the CAN bus for their data

communication needs, characterized by compact message

sizes and the necessity for rapid transmission.

4 Pro�le and Evaluation

This section showcases our research framework and validates

the mathematical model we proposed with data collected

from real-world scenarios. It features a comparative analysis,

including the theoretical data rates predicted by our model

with the empirical data gathered during our experiments.

It is important to note that the math model approximation

is purely based on the datasheet provided by the manufac-

turers, and we also include an adjusted approximation to

compensate for this discrepancy between the datasheet and

the physical sensor.

The autonomous vehicle, a 2018 Lincoln MKZ, is used as

our research platform, shown in Fig 2. It is retro�tted with a

range of sensors: one Hesai Pandar64 LiDAR positioned on

Figure 2. Hardware setup for AV data collection.

the top, two VLP-16 LiDARs on the side, seven Basler ace

cameras on the top facing various directions, and two Nova-

tel OEM7 GNSS units. CAN bus data are collected through

the drive-by-wire system, including metrics like wheel speed,

position, brake status, throttle information, turn signals, and

control messages. Due to the absence of radar sensors on the

Lincoln, the radar math model will not be validated in this

experiment.

The evaluation encompasses four distinct scenarios: 1)

traversing rural terrain at speeds of 15 miles per hour (MPH),

2) 25 MPH in rural terrain, 3) urban environments, and 4)

highway driving with varying speeds. These scenarios serve

as a means to investigate the impact of velocity and environ-

mental factors on sensor data acquisition rates.

The data rate for each sensor is shown in Fig 4, and the

mathmodel approximation error is shown in Fig 5. The �gure

for each sensor includes 13 trial points along with 1 model

point or adjusted point. ’math model’ is the results calculated

using a built equationwith the data sheet givingmessage rate.

’adjusted’ shows the results using the built equation with

actual message rate. Each point gives us information about

the data size generated per second and the message rate

which is decided by the sensor con�guration. For example,

the frequency of GPS data published is set to 50Hz by the

Novatel OEM7 GNSS kit, which means it will send 50 GPS

messages per second.

CAN Bus Data: As shown in Fig 3, the CAN bus data rate

varies little when the vehicle is in constant motion. This is

expected because the CAN bus publishes information about

the vehicle’s status. It is also interesting to note that the

driving mode does not in�uence the CAN bus publishing
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Fig 6 illustrates the storage system architecture for au-

tonomous vehicles, and the details of the AVStore will be

designed in the future. In autonomous vehicles, data from

sensors, CAN bus, or infotainment sources is continuously

published and processed in real-time before being stored

in the storage system. Alternatively, algorithms can access

raw data directly when needed. For AVStore, data writing

involves two key strategies: �rstly, the storage system can re-

tain raw data for a limited time without any processing, akin

to a BlackBox functionality, and the authenticity will be ap-

plied to the data writing protocols to keep the data integrity.

Secondly, data can undergo various processing steps such

as compression, �ltering, fusion, or abnormality detection

and only store the computational results. The storing way

depends on speci�c application requirements. The choice of

storage medium, whether Cache, SSD, or HDD, is determined

by data usage frequency. For instance, data critical for life

support, small in size, and frequently accessed may be stored

directly in Cache.

On the data read side, we have developed a Vehicle Pro-

gramming Interface (VPI) [16] abstraction to bridge the

lower-level operating system and hardware with upper-level

user applications. A preliminary implementation of VPI is

built on Ubuntu, Robotic Operating System (ROS), and Au-

toware 4, leveraging these lower-layer modules to retrieve

real-time or stored data and deliver computing results to

upper-layer applications. To elucidate the data �ow, consider

the LiDAR Simultaneous Localization and Mapping (SLAM)

algorithm in autonomous driving (AD) as an example. This

algorithm utilizes VPI to access computed results from the

Autoware localization module. The raw 3D data points gen-

erated by the LiDAR sensor undergo �ltering by a voxel grid

�lter before being stored in the storage system. Subsequently,

they are retrieved and processed by the Autoware module.

For this preliminary storage system design, the data storing

location and content are decided by the data type and using

requirements.

As shown in the previous sections, the amount of data an

autonomous vehicle generates over a one-day period can be

summarized as follows.)BC>A064 = 86400B42>=3B/30~×(#2×

�0C0'0C4'�� +#; ×�0C0'0C4!8��' +#A ×�0C0'0C4'030A +

#6 × �0C0'0C4�#(( + �0C0'0C4��# ).

The speci�c results for each sensor are further calculated.

And the memory and storage requirements are summarized

in Table 2 accordingly.

Interestingly, even with such a complex sensor stack, com-

mercially available DDR4 RAM, with a read/write speed of

up to 26 GB/s, is su�cient to store, read, and write all sensor

data. On the data storage side, if we measure the storage

size in 24 hours per day, the autonomous vehicle generates

3Short-terms used in the �gure: Advanced driver-assistance system (ADAS);

Autonomous Driving (AD); Robotic Operating System (ROS); Global Posi-

tioning System (GPS)
4Autoware: An open-source software project for autonomous driving.

Table 2. Storage requirements for our platform.

Type
Memory Access

Requirements

Storage Size

(collected)

Storage Size

(math model)

RGB Camera

(Basler ace)
11.530MB/s 1.001TB/day 0.996TB/day

3D LiDAR

(VLP16)
12.788MB/s 1.105TB/day 1.131TB/day

3D LiDAR

(Pandar64)
60.009MB/s 5.185TB/day 5.176TB/day

GNSS

(Novatel OEM7)
19.624KB/s 1.696GB/day 1.702GB/day

CAN 217.833KB/s 18.821GB/day -

Total 166.915MB/s 14.424TB/day 14.432TB/day

up to 14.424 TB of daily data. According to the latest report

from the American Automobile Association(AAA), the aver-

age driving time in the US is 60.2 mins/day. So, the storage

size will �uctuate from one TB to hundreds of TB as driving

time, sensor numbers, and sensor data quality increase. This

prompts us to rethink what data should be stored and how

data is stored.

6 Discussion

In this paper, we presented some preliminary �ndings on

a comprehensive analysis of storage requirements for au-

tonomous vehicles. At the heart of our work, we built a

mathematical model for on-board sensors and evaluated

them with an actual autonomous vehicle. This combination

of theoretical modeling and empirical data analysis will fur-

ther assist in the development of storage system designs

for autonomous vehicles. However, a notable concern is the

limited experimental data available. With a dataset encom-

passing merely 13 test groups for each sensor, expanding the

breadth of our experiments could facilitate a more accurate

determination of standard deviations and variances, o�er-

ing a deeper insight into data size �uctuations. To this end,

we also plan to incorporate additional radar sensors into

our research platform to assess the accuracy of the radar

mathematical model.

Furthermore, our study has mainly focused on analyzing

the output characteristics of the data collected. Understand-

ing the dynamics of data retrieval frequency and identifying

the algorithms or applications that predominantly access this

data is crucial for tailoring storage solutions to meet user

demands. Consequently, future endeavors will aim to decode

these data usage patterns, thereby re�ning the architecture

of data storage schedulers for autonomous vehicles.

Another challenge highlighted by our study involves de-

termining the optimal duration for data retention and es-

tablishing criteria for data retrieval within AV storage sys-

tems. Our present model operates under the assumption

of a one-day data retention period. As we advance, our re-

search intends to leverage an AV benchmark [14] to explore
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storage scheduling methodologies. This exploration will in-

clude identifying e�cient mechanisms for the loading and

unloading of data, which could encompass both wired and

cloud-based approaches. Regarding the choice of storage

mediums, it’s also crucial to broaden our consideration be-

yond Solid State Drives (SSDs). Hard Disk Drives (HDDs),

for example, may o�er a more suitable option for storing

long-term data, which is vital for running failure detection

models. Addressing these strategic considerations is impera-

tive for advancing toward more e�ective storage solutions

designed for autonomous vehicles.
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Appendix5

Appendix Table 1: CAN BUS data

scenarios Duration(s) Size(MB) # Message Data Rate(KB/s) Message Rate(#/s)

Rural 15 MPH

282 61.4 443849 217.730 1573.933

264 57.5 415614 217.803 1574.295

274 59.6 431310 217.518 1574.124

Rural 25 MPH

199 43.3 313250 217.588 1574.121

181 39.4 284570 217.680 1572.210

184 40.2 290496 218.478 1578.783

City

314 68.6 495588 218.471 1578.306

395 86.0 621594 217.722 1573.656

521 113.6 820624 218.042 1575.094

369 80.4 581395 217.886 1575.596

246 53.6 387164 217.886 1573.837

Highway
229 50.0 361414 218.341 1578.227

230 50.0 361728 217.391 1572.730

Appendix Table 2: RGB camera (Balser ace) data

scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH

253.389 2.7 1268 11.441 5.004

220.997 2.4 1106 11.661 5.005

246.697 2.7 1235 11.752 5.006

Rural 25 MPH

163.593 1.8 819 11.814 5.006

159.794 1.7 800 11.423 5.006

184.396 2.0 923 11.646 5.006

City

333.797 3.6 1670 11.580 5.003

379.797 4.1 1900 11.591 5.003

516.400 5.5 2583 11.436 5.002

364.395 3.9 1823 11.492 5.003

241.597 2.6 1209 11.555 5.004

Highway
237.794 2.6 1190 11.740 5.004

278.896 3.0 1396 11.550 5.005

5In all appendix tables, ’Duration(s)’, ’Size(xx)’, and ’#Message’ represent the original numbers from rosbag information. The calculated results for ’Data

Rate(xx)’ and ’Message Rate(#/s)’ are displayed with precision up to three decimal places.
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Appendix Table 3: 3D LiDAR (VLP16) data

scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH

258.462 3.1 5126 12.878 19.832

218.769 2.6 4338 12.761 19.829

247.106 2.9 4901 12.601 19.834

Rural 25 MPH

161.174 1.9 3197 12.658 19.836

157.493 1.9 3124 12.954 19.836

184.787 2.2 3665 12.784 19.834

City

334.296 4.0 6630 12.847 19.833

387.76 4.6 7690 12.737 19.832

525.977 6.2 10431 12.656 19.832

373.163 4.4 7401 12.661 19.833

249.781 3.0 4954 12.896 19.833

Highway
224.974 2.7 4462 12.886 19.833

249.125 3.0 4941 12.930 19.833

Appendix Table 4: 3D LiDAR (Hesai Pandar64) data

scenarios Duration(s) Size(GiB) # Message Data Rate(MB/s) Message Rate(#/s)

Rural 15 MPH

225.987 12.6 2261 59.867 10.005

238.188 13.3 2383 59.956 10.005

230.892 12.9 2310 59.990 10.005

Rural 25 MPH

207.305 11.6 2074 60.083 10.005

149.995 8.4 1501 60.132 10.007

209.983 11.7 2101 59.827 10.006

City

334.895 18.7 3350 59.956 10.003

384.288 21.5 3844 60.073 10.003

521.770 29.1 5217 59.884 9.999

368.695 20.6 3688 59.993 10.003

245.958 13.8 2463 60.245 10.014

Highway
273.202 15.3 2733 60.132 10.004

245.462 13.7 2456 59.929 10.006

Appendix Table 5: GNSS (Novatel OEM7) data

scenarios Duration(s) Size(MiB) # Message Data Rate(KB/s) Message Rate(#/s)

Rural 15 MPH

262.498 4.9 13126 19.574 50.004

220.780 4.1 11036 19.473 49.986

246.579 4.6 12330 19.561 50.004

Rural 25 MPH

166.421 3.1 8322 19.532 50.006

159.301 3.0 7966 19.747 50.006

184.339 3.5 9218 19.909 50.006

City

334.198 6.3 16711 19.766 50.003

390.617 7.3 19532 19.596 50.003

535.417 10.0 26773 19.584 50.004

377.198 7.1 18861 19.737 50.003

252.798 4.7 12641 19.495 50.004

Highway
227.895 4.3 11394 19.785 49.997

140.241 2.6 7013 19.440 50.007
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