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The invention of the wheel is widely credited as a pivotal
moment in human history, yet the details surrounding
its discovery are shrouded in mystery. There remains no
scholarly consensus on key questions such as where, how
and by whom this technology was originally invented.
In this study, we employ state-of-the-art techniques from
computational structural mechanics to shed light on this
long-standing puzzle. Based on this analysis, we propose a
probable path along which the wheel evolved via a sequence
of three major innovations. We also introduce an original
computational design algorithm that autonomously generates
a wheel-and-axle system using an evolutionary process that
offers insight into the way in which the first wheels likely
evolved nearly 6000 years ago. Our analysis provides new
supporting evidence for the recently advanced theory that the
wheel was invented by Neolithic miners harvesting copper
ore from the Carpathian Mountains as early as 3900 BC.
Moreover, we show how the discovery of the wheel was
made possible by the unique physical features of the mine
environment, whose impact was analogous to the selective
environmental pressures that drive biological evolution.

1. Introduction
Over the course of human history, the details surrounding many
seminal events have been lost to time. The invention of the
wheel is an example of one such episode about which we know
very little. The wheel has been described as the most important
mechanical invention of all time [1] and has been credited with
creating seismic social and economic shifts in the trajectory of
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human history [2]. Yet, surprisingly little is known about the origin of this revolutionary technology.
Conventional tools, such as carbon dating, have provided an approximate time frame for the discovery,
and identified several candidate civilizations as potential inventors [3], but thus far there remains
no scholarly consensus on key questions like where, how and by whom the wheel was originally
discovered.

In this study, we use techniques from computational analysis and design to provide insights into
these questions. Design science seeks to uncover connections between the structure and function of
engineered systems. Typically, the designer’s role is to create a system that is best suited to facilitate
a prescribed task. In the case of mechanical systems, we use physics-based computational models to
analyse and design structures and mechanisms [4]. Here, we turn this process on its head. We begin
with a known description of the structure of an engineered system—in this case, ancient wheel systems
taken from the archaeological record—and using the techniques of computational solid mechanics and
computational design, we deduce new knowledge about the precise function of the system, including
specific advantages and disadvantages conferred by its unique physical attributes. In this way, our
methods serve as a forensic tool that can be used alongside established approaches like carbon dating
and palaeolinguistics [2,5] to learn about the circumstances from which this ancient technology arose.

Our physics-based analysis uses computational mechanics to model the elastic response and stress
distribution of the wheel structure. This analysis framework is then used to power an original
design algorithm, which is based on the topology optimization method [6]. The algorithm contains
a mathematical description of the mechanical function that the design must ultimately perform,
along with a mathematical model describing the physics that governs the structure and its constitu-
ent materials. Based on this information, the algorithm automatically synthesizes a wheel-and-axle
structure despite being given little prior information about the system’s geometry. In this way, we
simulate a plausible path along which the evolution of a wheel-and-axle can proceed naturally. Along
this evolutionary pathway, each new design yields incrementally improved performance over its
predecessor. To achieve this capability, our algorithm contains several novel features and mathematical
formulations. These include a design-dependent contact loading formulation to model the forces acting
on the axle. The algorithm is able to generate designs of axisymmetric structures with an orthotropic
material model. This choice of material model reflects the fact that the original inventors of the wheel
probably used wood as a primary design material [3].

2. A new theory of how the wheel evolved
Some scholars and antiquarians have long suspected that the wheel evolved from free rollers [1,7–9],
while others have expressed scepticism about this theory [10,11]. Here, we propose a step-by-step
path and physics-based rationale for how and why this evolution took place. We use the term free
rollers to refer to a series of untethered cylinders, poles or tree trunks that are placed on the ground
evenly spaced and perpendicular to the direction of transport. The cargo being transported would rest
upon this array of rollers and be pushed or pulled forward as the rollers rolled along the ground.
This process is illustrated in figure 1a. When used successfully, rollers could eliminate sliding, thereby
reducing friction losses.

Despite the reduced friction, rollers have a major disadvantage in that they become useless once
the cargo passes over them. One must either place rollers along the full length of the path to be
travelled (which is unrealistic for most distances), or one must replenish the spent rollers by bringing
them around to the front of the rolling path. Both approaches would have been impractical within a
mine, which is generally accessed via a narrow, human-made trench or tunnel. Instead, it appears the
miners found a way to adapt the roller concept to suit their specific circumstances. Adding sockets to
the bottom of the vessel containing the cargo allowed the rollers to sit inside the sockets, forming a
rudimentary cart. In this way, as the container was pulled forward, the rollers would be pulled along
with it (see figure 1b). Hereafter, we refer to this process as unilateral (one-sided) rolling, since the
rollers undergo rolling on only one side of their circumference, while sliding occurs at the roller-socket
interface. By contrast, standard bilateral rollers have two rolling surfaces, and experience little or
no sliding. The use of unilateral rolling represented a trade-off. It introduced some friction due to
the presence of the sliding surface but there was no need to replenish spent rollers. This was an
essential advantage since it allowed the cargo to span the full width of the mine tunnel, thereby
demanding fewer trips to and from the source of the ore. Also, passageways could remain narrow,
thus requiring less labour to build. Unilateral rolling also meant that the rollers were less likely to slip

2

royalsocietypublishing.org/journal/rsos 
R. Soc. Open Sci. 

11: 
240373

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

9
 J

an
u

ar
y
 2

0
2
5
 



out of alignment, which necessitated periodic manual readjustment, as has been reported with the use
of bilateral rollers [12]. So while the adoption of unilateral rollers imposed some cost in the form of
increased friction, this strategy conferred significant advantages over free rollers, since it eliminated
the need for periodic realignment and replenishing of rollers. Note also that when operating inside a
tunnel, spent rollers could not simply be rolled around to the front of the cart but rather they would
have to be lifted and carried or dragged, which would require additional energy expenditure.

Since unilateral rolling reintroduces a friction surface, it may appear as though this would be the
mechanical equivalent of simply dragging the cart on skids, which was a commonly used method
of transport throughout the ancient world [10,13]. However, bilateral rolling offers two significant
advantages over dragging. First, by transferring the friction surface from the roller–ground interface
to the roller–cart interface, one would have control over both frictional surfaces. While cart operators
would have been limited in their ability to process the surface of the ground to reduce roughness
and friction, they could easily process the surfaces of both the roller and the cart in order to reduce
the coefficient of friction. The second advantage of limiting friction to the wheel–cart interface is that
the cart operators could now apply lubricant to the friction surface, thereby significantly reducing
the friction force. For this reason, the presence of grooves on the roller surface is highly significant.
Grooves would have provided a channel in which to apply lubricant where it could remain free from
contact with the ground. Whereas grooveless rollers would summarily deposit most of their lubricant
on the ground after a few revolutions, a grooved roller could retain its lubricant for a much longer
duration.

Wheel historians have long theorized about the use of grooved rollers [1,14]. In his 2011 treatise on
the history of rotating machinery, Rao surmises that grooves initially formed inadvertently from the
indentation of the rollers caused by narrow sledges that sat between the rollers and the heavy cargo
being transported [1]. In his 2016 book on the history of the wheel, Bulliet observes that this theory is
ubiquitous, but as yet unsubstantiated by archaeological evidence [14]. Whether their introduction
was incidental or deliberate, these grooves set in motion the next stage of the evolution, which
ultimately led to the familiar wheel-and-axle configuration. We propose that following the introduction
of grooved unilateral rolling, there was an expansion and coalescing of the roller’s grooves to form a

Bilateral rollers

Grooved unilateral rollers

Wheelset

Multi-body wheel & axle(d)

(c)

(b)

(a)

Figure 1. Evolution of the wheel-and-axle system. (a) Frictionless bilateral rolling with two spent rollers shown on the left of the

image, (b) unilateral rolling with grooved rollers held in place by semi-circular sockets, and blue arrows indicating sliding at the friction

surface, (c) a wheelset with two spokeless wheels fixed to the ends of a slender axle forming a monolithic structure and (d) a partially

assembled multi-body wheel-and-axle system in which the wheels rotate independently of the axle.
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single channel in the centre of the roller (see figure 1c). It is possible that this shape change was initially
motivated by the desire for clearance so that the cart could easily pass over small objects obstructing its
path.

By creating this large channel in the centre of the roller, designers effectively forged a central axle.
In addition to providing clearance, this modification yielded a lighter more portable roller, while
preserving structural stiffness. But the most significant benefit of the narrow axle was mechanical
advantage. Because of this principle, an axle whose diameter was one-tenth that of the wheel would
require roughly one-tenth the pushing force needed for a prismatic roller with no axle. Our theory
differs from earlier theories in that previous authors did not address the transition to unilateral rolling,
nor did they relate the evolution of the axle to mechanical advantage.

In §4, we derive an equation that quantifies mechanical advantage and describes the required
pushing force as a function of the axle radius. Next, we simulate the evolution of the wheel-and-axle
structure from a unilateral roller using a structural optimization algorithm in which the objective
function (also known as the cost function) is the mechanical advantage formula we previously derived.
In keeping with the forensic nature of our study, the investigation begins with the wheel-and-axle
geometry as the starting point. We then attempt to identify a set of boundary conditions, a design
objective and an initial baseline design (i.e. the initial roller design from which the wheel evolved)
that would cause the algorithm to independently arrive at the wheel-and-axle geometry. Therefore,
the algorithm, which comprises just one part within our broader investigation, has no explicit prior
knowledge of the wheel-and-axle concept. Instead, it is provided only with a mathematical model
with which to calculate how each candidate design would perform in terms of effort required to push
the cart. From this information, the algorithm converges upon the familiar wheel-and-axle design, as
shown in figure 2. The algorithm is iterative in that it makes a series of incremental updates to the
design with each iteration. This result illustrates how the wheel-and-axle could have gradually evolved
through a series of successive incremental improvements.

The output of the optimization algorithm is a monolithic structure in which the axle and wheels
turn in unison. This version of the wheel-and-axle is referred to as a wheelset, and it is believed that
this design preceded multi-body wheel-and-axle systems in which the wheels turn independently of
the axle (see figure 1d) [15]. The monolithic nature of wheelsets meant that, compared with their

Z

Y
X

Z

Y X

Z

YX

Figure 2. Geometry of the computationally generated wheelset structure.
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multi-body counterparts, they performed poorly during turns, making it difficult to change direction.
Whereas a multi-body design would allow one wheel to rotate faster than the other to cover more
ground during the turn, turning on a wheelset would cause one wheel to drag along the ground,
producing additional friction. A four-wheeled wagon using two wheelsets would have an even harder
time negotiating turns. Here again, the context of the mine plays a crucial role. Since the mine passages
were not natural geographic features, they could be made straight, thereby significantly reducing the
need to turn and accommodating the use of four-wheeled carts.

Another disadvantage of the wheelset is its increased susceptibility to damage and failure. Using
computer simulations, we show that in a wheelset, the wheel–axle junction experiences high stresses
due in part to the torsional loads transmitted from the wheel to the axle. These loads are reduced in the
multi-body wheel–axle system, which can make it more robust to damage. This factor combined with
its improved manoeuverability likely led to the invention of the multi-body wheel-and-axle some 500
years after the initial invention of the wheelset [14]. This development marks the third innovation in
the sequence that defines the early evolution of the wheel.

3. Historical and archaeological evidence for the Carpathian-roller
hypothesis

Archaeologists excavating sites in the Carpathian Mountain region of eastern Europe have unearthed
more than 150 clay models of four-wheeled wagons, all of them, judging from a big loop handle at one
end, designed for use as drinking mugs (see figure 3a). Carbon-14 analysis dates the formation of the
Boleráz culture that produced the mugs to no later than 3600 BC [15]. This makes the mugs the world’s
earliest known representations of wheeled transport. But it leaves a key question unanswered: why did
the Boleráz people enjoy drinking out of square mugs on wheels?

Ceremonial, even iconic, the mugs must reflect an important aspect of Boleráz culture, though one
that had no apparent precursor or successor, at least in the area of tableware. Several particulars point
to the inspiration for the mugs being small, wheeled baskets used to carry ore in the trenches or
tunnels of copper mines. First, the mugs have wheelsets rather than wheels that revolve independently
at either end of a non-revolving axle. This is consistent with a mine environment which, unlike
a farmer’s field, facilitates digging and smoothing pathways that are straight and level. Second,
pre-modern miners ordinarily pushed minecarts along pathways that were too constricted for draft
animals, and the mugs do not show traces of yokes or other harnessing. Third, some mugs feature
grooved side panels (see figure 3b) suggestive of the basketry shown in depictions of ancient mining
[14].

The Copper Age began in the Balkan Mountains, south of the Carpathians, before the formation of
the Boleráz culture. The Boleráz people had less of the metal than their southern precursors, indicating
perhaps, poorer ores [14]. However, if poorer ores meant that a greater weight had to be transported
from the mine to the smelter, then the invention of a wheeled basket could have been a technological
breakthrough well worth celebrating with a round of drinks, at least until the wheel idea found
copycats outside the mine. Notably, the earliest known transport wheels come from slightly later sites
bordering the Carpathians (see figure 3c) where larger, more steerable carts equipped with a single
wheelset were pulled by draft animals [14].

While there is no direct evidence for the use of rollers in the Carpathian region, the historical
record contains multiple reports of roller-based transport being used by various civilizations that span
vast distances of space and time from pre-colonial Fiji [17] to Assyria [8]. Furthermore, experimental
archaeologists have successfully replicated the process of transporting megaliths using rollers in order
to test their viability as an ancient method of transport [18–21]. Included among these studies is the
2001 investigation by Osenton, who showed that rollers could be fabricated using axe-based technol-
ogy, and the resulting contraption enabled small groups of skilled workers to transport massive objects
[21] (figure 4).

4. Computational analysis and design methodology
Here, we present the methods used for the analysis and generation of the optimized wheelset design.
We developed several novel topology optimization methods for this purpose, the first of which is an
original formulation for design-dependent variable loads in three dimensions. A variable void region,
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i.e. a region of empty space that is movable by the optimization algorithm, prevents the load from
being applied inside the three-dimensional structure while also allowing the optimizer to place it at
any location in the design domain. This enabled us to solve the wheelset design problem, which was
not previously possible using any currently available topology optimization methods. Another novelty
of the work is our method for achieving an axisymmetric geometry on a fixed, rectangular grid of finite
elements. We use a ‘turning’ filter method which replaces the density filter matrix of standard topology
optimization. Additionally, we model the orthotropic wood material in the same cylindrical coordinate
system as the axisymmetric geometry filter.

(a) (b)

(c)

(d)

0 5 cm

0 5 cm

Figure 3. Artefacts depicting ancient wheel designs. (a) Sketch of a four-wheeled clay mug from the Boleráz culture [15]. (b) Drawing

depicting a clay model of a mine cart from the Boleráz culture. A wickerwork pattern can be seen on the side panel of the cart,

suggesting basketry as the likely manufacturing technique [14]. (c) The Ljubljana Marshes Wheel, the oldest known transport wheel,

discovered in Slovenia and estimated to be between 5100 and 5350 years old [3]. The square hole in the middle of the wheel indicates

that this was a wheelset in which the wheels were fixed to the axle. (d) A wheeled dog figurine from pre-Columbian Mesoamerica

created in the eighth century AD [16].

P

(mc + 2mw)g

w(a) (b)

h

Fgx1

Fgy1 Fgy2

Fgx2

Fgy

Fgx

Fgx

N

Ff

mwg

Fgy – mwg
P
–

rwheel

raxle

Figure 4. Free body diagrams for a cart with wheelsets. (a) A cart with a pair of wheelsets. (b) A single wheelset in a sliding friction

bearing.
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4.1. Physics of a wheelset

Before we can perform topology optimization, we need an objective function to minimize. For this, the
expression for the force required to achieve the rolling of a wheelset in a plain sliding contact bearing
is derived using statics. A free-body diagram of a cart with two wheelsets is shown in figure 4a, where
P is the applied pushing force, mc is the mass of the cart excluding the wheelsets, mw is the mass of one
wheelset, g is the acceleration due to gravity and Fgx and Fgy are the reaction forces with the ground on
each wheelset. Summing the horizontal forces gives

(4.1)P = Fgx1 + Fgx2.

Summing the moments about the front wheelset’s contact point with the ground leads to

(4.2)Fgy1 = 1
2 mc + 2mw g −

Pℎ
w ,

and summing moments about the rear wheelset’s contact point yields

(4.3)Fgy2 = 1
2 mc + 2mw g + Pℎ

w .

Now, we consider one wheelset in its plain bearing by itself. The diameter of the bearing is slightly
larger than the axle so that they only come into contact at a single point. Initially, with no external load
applied, the bearing’s surface rests on the top of the axle. Then, as the pushing force is applied slowly,
the contact point moves to the left along the axle’s surface until the friction between the bearing and
axle is overcome and rolling begins [22]. In the analysis that follows, we assume the wheelsets have
constant angular velocity, and therefore, they are in rotational and translational equilibrium such that
all external forces and moments sum to zero.

The free body diagram for a wheelset at equilibrium is shown in figure 4b, where the overall force
applied to the axle, P‾, consists of an unknown horizontal and vertical component written in terms
of the mass of the wheelset, mw, and the reaction forces with the ground, Fgx and Fgy. P‾ can also be
decomposed into the components normal and tangent to the axle surface. The tangent component
is the force of friction, Ff, which depends on the normal component N as Ff = μN, where μ is the
coefficient of friction. We sum the moments about the centre of the axle, giving

(4.4)Fgx = Ff
raxle
rwheel

.

Using Pythagoras’ theorem to find an expression for N, we write the force of friction as

(4.5)Ff = μ
Fgx

2 + Fgy −mwg
2

μ2 + 1

and substitute it into equation (4.4). Solving for Fgx leads to

(4.6)Fgx =
Fgy −mwg μ

raxle
rwheel

1 + μ2 1 − raxle
rwheel

2
.

Now, with an expression for the horizontal reaction force, we insert this identity into equation (4.1),
eliminating Fgx and resulting in

(4.7)P =
Fgy1 + Fgy2 − 2mwg μ

raxle
rwheel

1 + μ2 1 − raxle
rwheel

2
.

Substituting equations (4.2) and (4.3) into equation (4.7) for the vertical reaction forces leads to our final
expression for the force required to push the cart,

(4.8)P =
mcgμ

raxle
rwheel

1 + μ2 1 − raxle
rwheel

2
.
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The equation is plotted in figure 5. Note that this equation holds for both the wheelset and the
multi-body wheel-and-axle, provided the sliding surface contains a plain bearing, as was the case for
early wheels.

4.2. Topology optimization with a variable load

We use a three-dimensional density-based topology optimization method with a variable load location
based on our previous work [23]. The variable load location is used in this problem to model the
contact force between the wheelset and the cart that rests upon it. In contrast, other works modelling
contact between components of a structural assembly use techniques such as spring, bar or beam
element connections between coupled design domains [24–26].

A rectangular design domain of dimensions Lx × Ly × Lz is discretized into a regular grid of voxels,
which each contain a continuously variable density of material that can range from nearly empty
space to completely solid. These densities are controlled indirectly through a vector of density design
variables, ρ, while the location of the applied force representing the weight of the cart is controlled
directly by three variables xf, yf and zf representing its coordinates in space. All quantities used for
the topology optimization are formulated to be continuously differentiable with respect to the design
variables in order to allow for gradient-based optimization using the method of moving asymptotes
(MMA) [27].

The finite element method is used to evaluate the structure defined by the design variables, treating
each voxel as an eight-node hexahedral finite element. Using linear elastic physics, the finite element
problem consists of solving the following linear system for the vector of nodal displacements, U :

(4.9)KU = F,

where K is the global stiffness matrix and F is the vector of nodal forces. We use the standard solid
isotropic material with penalization (SIMP) method, which interpolates the element’s stiffness between
solid and void while penalizing the stiffness-to-weight ratio of intermediate densities. The assembly of
the global stiffness matrix is then given by

(4.10)K = ⋀
e

Ne

ke
0(ρmin + ρ̄e

p(1 − ρmin),

where Ne is the number of elements, ke0 is the element stiffness matrix of a fully solid element, ρ‾e
is the physical density of the element (determined from ρ through filtering, described in §4.3), p is
the penalization factor, and ρmin is the minimum allowable value for the densities (here chosen to be

1 × 10−6) to avoid singular global stiffness matrices. The element stiffness matrix is given by

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

1.4

1.2

1

0.8

0.6

0.4

0.2

0.1 1

raxle / rwheel

P
m
cg

µ = 0.2

µ = 0.4

µ = 0.6

µ = 0.8

µ = 1.0

µ = 1.2

Figure 5. A plot showing the non-dimensionalized pushing force as a function of the axle-to-wheel diameter ratio, for several values

of the coefficient of friction, μ.
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(4.11)k =
ve

Be
TCe

0BedVe,

where Ve is the volume of the element, Be is the strain–displacement matrix and Ce
0 is the constitutive

matrix for the solid material.
A continuously differentiable variable load is achieved by applying forces to every element

centroid, as illustrated in figure 6, and controlling the magnitudes of those forces through the design
variables xf, yf and zf to change the effective location of a single applied load. The shape of the applied
load is defined using a super-Gaussian projection function [23], which takes a distance function as
input, and outputs a geometric shape of a given radius. In this case, we use the distance function for a
single point to model a concentrated load, where the distance from each element centroid to the load
coordinate is given by

(4.12)de = (xf − xe)2 + (yf − ye)
2 + (zf − ze)2.

The distance function is passed to the super-Gaussian function, which projects it into a spherical
shape of radius r defining the distribution of force magnitudes,

(4.13)fe = Afb
− de

2

r2

S

.

Here, fe is the force applied to the element centroid, Af is the maximum magnitude of the distributed
force and S controls the sharpness of the transition of the force magnitude from Af to 0. The radius
parameter r determines the length from the load coordinate to a point in the transition region with
magnitude Af divided by the base parameter b. The maximum distribution magnitude, Af, is chosen to
give a total load equivalent to a specified number,

(4.14)Af = Ptotal

∑e = 1
Ne b−

de
2

r2

S
.

This is assumed to be a constant and is calculated only once before the optimization begins to make it
easy for the user to directly specify how much load is applied.

With the spatial distribution of element centroid forces defined, the global vector of nodal forces in
the finite element problem is assembled as follows:

(4.15)F = ⋀
e

Ne fe
nn
eΘ,

where the force at the centroid is evenly distributed to the nodes by dividing it by the number of
nodes in the element, nne. The vector Θ assigns a direction to the nodal forces by applying them to the
appropriate degrees of freedom, which in this case is straight downwards,

Figure 6. A finite element mesh with forces applied to the element centroids, which are evenly distributed to the nodes. The

magnitudes (and orientations [23]) of the element forces can be varied to smoothly control the effective location of an applied load in

a differentiable way.
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(4.16)Θ = 0, 0, −1 ⋯ T.

4.3. Axisymmetric geometry

To limit the design space to only axisymmetric structures, a two-stage density filter is used to constrain
the possible geometries to only those that can be made using a turning manufacturing process, such
as a lathe. Vatanabe et al. have previously implemented a turning manufacturing constraint using a
mapping approach [28]; however, our turning filter is an extension and modification of the casting and
milling restriction filter proposed by Guest & Zhu [29]. Filtering-based manufacturing constraints have
also been used for overhang limits in additive manufacturing [30,31]. In the first stage of our method,
the base density design variables are mapped to an axisymmetric configuration using an Ne × Ne filter
matrix W ,

(4.17)ρ~ = Wρ,

where the entries of W  are calculated as

(4.18)Wei = wei

max
e

(∑i = 1
Ne wei)

.

The weight factor wei is non-zero only when element e is closer to the axis of symmetry than element
i, and its magnitude is inversely proportional to the area of the circle centred on the axis of symmetry
and intersecting the centroid of element e,

(4.19)
wei = 1/re2 if re ≤ ri,

0 if re > ri .

These circular regions are illustrated graphically in figure 7. The effect of applying the filter matrix
is to project each unfiltered density ρi to every element within the circular projection domain of
that element. Each unfiltered density adds to the densities of the filtered variables, so the weight is
increased closer to the axis of symmetry to compensate for fewer unfiltered variables contributing to
the density of the filtered ones.

The second stage of the turning filter consists of a smoothed Heaviside step function.

(4.20)ρ
≈ =

tanh(βρ~)
tanh(β) ,

where the parameter β affects the sharpness of the step function.
To avoid having the variable load penetrate the solid structure, we create an axisymmetric region of

empty space that follows the location of the load. The void region begins just beyond the radius of the
load application zone and extends radially outward, such that the edge of the loading zone is always

Z

y

re

ri

i

e

Figure 7. Projection domain for the turning filter for one yz layer of the three-dimensional mesh. Filtered element e is inside the

unfiltered element i’s region of influence (blue), and therefore, the filter matrix is assigned a weight at entry (e, i) that is inversely

proportional to the area of the circle intersecting element e (red).
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applied at the solid-void interface. We use the super-Gaussian projection function to create this void
space, using the minimum distance function for a yz plane with a circular hole centred on the axis of
symmetry, as shown in figure 8. Defining a vector a, which points from the centre of the void region to
the point that is a distance 2r above the load coordinate,

(4.21)a = 0, yf −
Ly
2 , zf −

Lz
2 + 2r ,

and a vector h = ℎx, ℎy, ℎz , which points from the centre of the void region to an element e’s centroid,

(4.22)h = xe − xf, ye −
Ly
2 , ze −

Lz
2

,

the minimum distance from the centre of the void region geometry to that element’s centroid is given
by

(4.23)
de =

|ℎx| if ℎy
2 + ℎz2 ≥ ‖a‖,

‖a‖ − ℎy
2 + ℎz2

2
+ ℎx2 if ℎy

2 + ℎz2 < ‖a‖ .

The distance function is then projected to a density field of the same radius as the load application
region before being subtracted from a uniform field of 100% density,

(4.24)ρ̂e = 1 − (1 − ρmin)b−
de

2

r2

S

,

where the coefficient (1 − ρmin) is used to maintain the minimum density value. Finally, using a smooth
minimum function, the void region is combined with the filtered densities to give the physical density
field that represents the actual design on which the finite element simulations are based,

(4.25)ρ̄e = ρ≈e
Q + ρ̂e

Q

2

1
Q

.

Here, Q is a negative number such that the smooth minimum function approaches the true minimum
as the magnitude of Q increases.

4.4. Orthotropic material properties

We use orthotropic material properties in a cylindrical coordinate system about the axis of symmetry.
Topology optimization using orthotropic materials is not new and has been used for applications such
as continuous fibre composites [32]. In our application of a structure made from a single piece of wood,

Z

x

y

xf

a
h

hy

hx

hz

(xe , ye , ze)

(xf , yf , zf + 2r)

Figure 8. Geometry of a plane with a circular hole centred on the axis of symmetry. Used to construct the distance function for the

variable void region. The location of the plane along the x direction and the radius of the circle depend on the coordinates of the

variable load.
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the material coordinates only need to be defined once before the optimization begins. Wood’s three
mutually perpendicular axes are the longitudinal, radial and tangential directions. The longitudinal
direction runs parallel to the axis of symmetry, the radial direction is normal to the log’s growth rings,
and the tangential direction is parallel to the rings [33]. We use the approximate material properties of
spruce trees obtained from data in [33] and shown in table 1. The remaining Poisson’s ratios ν23, ν31 and
ν21 are calculated as

(4.26)νij = νji
Ei
Ej

.

The constitutive matrix for a solid element in a local coordinate system is

(4.27)

C0 =

1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 1/G31

−1

,

where the subscript 1 is the longitudinal direction, 2 is tangential and 3 is radial. Now, for each element
in the mesh, the constitutive matrix is rotated an angle θ so that the radial direction points away from
the axis of symmetry,

(4.28)Ce
0(θ) = R(θ)C0RT(θ).

The rotation matrix R(θ) is

(4.29)

R(θ) =

1 0 0 0 0 0

0 c2 s2 2cs 0 0

0 s2 c2 −2cs 0 0

0 −cs cs c2 − s2 0 0
0 0 0 0 c −s
0 0 0 0 s c

,

where c = cos θ and s = sin θ. The rotated material property orientations in a yz layer of the mesh are
shown in figure 9.

4.5. Numerical implementation

The optimization task is formulated as a multi-objective problem where we seek to minimize the force
required to move the cart as well as the structural compliance, given a fixed amount of material to

Table 1. Material properties.

E1 10 GPa

E2 0.5 GPa

E3 1.0 GPa

G12 0.9 GPa

G31 0.9 GPa

G23 0.07 GPa

ν12 0.46

ν13 0.40

ν32 0.48

density 400 kg m−3
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work with. The pushing force is given by equation (4.8), and the compliance, C, is the dot product of
the load and displacement vectors,

(4.30)C = FTU .

The amount of material is constrained using the volume fraction,

(4.31)Vf =
∑e = 1
Ne ρ‾eVe
LxLyLz

.

Our optimization problem is then written as aC

(4.32)

minimize
ρ,xf, yf, zf

P(yf, zf) + aC(ρ,xf, yf, zf)

subject to: Vf(ρ,xf, yf, zf) ≤ Vf
∗,

ρmin ≤ ρe ≤ 1, e = 1, …,Ne,
r ≤ xf ≤ Lx − r,
r ≤ yf ≤ Ly − r,
Lz
2 ≤ zf ≤ Lz − r,

where P is the pushing force evaluated using equation (4.8) with the axle radius calculated as the

distance from the point of load application to the axis of symmetry, raxle = (yf − Ly/2)2 + (zf − Lz/2)2,
and the coefficient a = 1 m−1, which ensures dimensional consistency across terms within the objective
function. Bounds on the design variables are set such that the densities can vary between nearly void
and solid, and the applied load can move anywhere in the upper half of the domain.

Taking advantage of the symmetry of the problem, only one-half of the wheelset is modelled and
optimized. The symmetry is modelled using roller boundary conditions by fixing the displacements in
the x direction on the face of the domain at x = 0. Boundary conditions representing the ground that
the wheel rests on are placed at 10% of the domain’s width above the lower face and away from the
side faces so that the wheel can be supported by more than a single point by sinking into the ground
slightly. The ground extends 20% the width of the domain from the face at x = Lx, and the x and z
displacements are fixed on this area. A single node at the middle of the inner edge is also fixed in the
y direction to fully constrain the problem by preventing rigid body translation. The variable load is
initialized at the top face and near the x = 0 face, with a magnitude equivalent to one-quarter of the

Radial

Tangential

Z

y

Figure 9. Local coordinates of each element in one layer of the three-dimensional finite element mesh. Each element’s orthotropic

material properties are oriented in a cylindrical coordinate system about the axis of symmetry.
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weight of a 100 kg cart. The domain and boundary condition set-up described here is illustrated in
figure 10.

The program is implemented in C++ using the PETSc library [34,35], based on the code originally
written by Aage et al. [36]. Using a mesh of 104 × 104 × 104 (1,124,864) eight-node hexahedral (cube)
elements and the parameters shown in table 2, we ran the problem on the Illinois Campus Cluster
using 32 nodes and 640 processes. The optimization search was considered to have converged when
the maximum change in the density design variables was less than 0.001. The optimization completed
in 9 h and 38 min after 776 iterations, with the final design shown in figure 2.

4.6. Failure analysis

Failure of orthotropic materials, like wood, can be predicted by performing a stress analysis and
computing a failure index. Many different failure criteria for orthotropic materials exist, such as the
Tsai–Hill [37], Hoffman [38] or Tsai–Wu [39] failure criteria. The Tsai–Hill index has been found to
work adequately well for predicting wood failure [40,41]. We use the approximate strength properties

Z

Lx

Lz

Ly

x

y

2rwheel

(xf , yf , zf)

Figure 10. The wheelset optimization problem’s domain and boundary condition set-up. Only half of the domain is simulated by

taking advantage of the plane of symmetry at the wheelset’s centre. The ground the wheel rests on is modelled by a rectangular

region of boundary conditions within the domain. The variable load is initialized in an arbitrary position away from where it is

expected to move to in the optimal design.

Table 2. Optimization parameters.

Lx 37.5 cm

Ly 37.5 cm

Lz 37.5 cm

Ptotal 245 N

Vf* 3%

p 3

β 8000

b 2

r 1.875 cm

S 4

Q −8

ρmin 1 × 10−6

Move Limits: ρ 0.05

Move Limits: xf, yf, zf 0.9375 cm
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of spruce wood [33], shown in table 1, to analyse the wheelset design. The Tsai–Hill failure index is
given by

(4.33)
σ1

σ1
f

2

− σ1σ2

σ1
f 2 + σ2

σ2
f

2

+ τ12

τ12
f

2

< 1,

where the superscript f denotes a failure stress material property. Violation of the inequality indicates
that failure has occured.

Linear elastic finite element analysis was performed in Ansys using the orthotropic material
properties from tables 1 and 3 in a cylindrical coordinate system about the axis of symmetry. Two
models were created: one as a single solid component, and a second where the axle is separated
from the wheel to create a wheel-and-axle assembly. Only half of the wheelset was modelled to save
on computational cost, and a portion of the bottom of wheel was cut off to apply a fixed boundary
condition simulating a contact patch. A vertical downward load of 2000 N was applied to the face
of the axle next to the wheel where the load application zone was applied in the topology-optimized
design. Using equation (4.8) with the dimensions of the model (raxle = 0.037 m and rwheel = 0.17 m) gives
a corresponding pushing force of 986.5 N, which was applied as a horizontal load on the same face
of the axle. In the wheel-and-axle assembly model, a frictionless contact condition was applied to the
bearing surface. Each model was meshed with approximately 60,000 quadratic tetrahedral elements,
with increased refinement in the axle.

5. Results
Figure 11 shows the progression of the wheelset structure during the execution of the topology
optimization algorithm. The design search begins with a solid prismatic roller. From this starting point,
two grooves appear and grow progressively deeper. This is followed be the narrowing of the central
portion of the roller to form an axle, and the expansion of the outer discs to form wheels. The resulting
wheelset design maximizes mechanical advantage and structural stiffness.

Figure 12 shows the optimization convergence history for the result shown in figure 11. The first
plot shows the convergence of the combined objective function, which is defined as the sum of the
pushing force plus the structural compliance. The second plot contains the convergence history of
the spatial coordinates of the point of load application. There is a noticeable dip in the objective

1 10 19

433925

52 72 125

777323314

Figure 11. Progression of the wheelset design during execution of the topology optimization algorithm. The iteration numbers are

given in the bottom left corner of each image.
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function beginning around iteration 300, when the optimizer pushes the contact point outward
towards the wheels, causing a reduction in structural compliance. Note also that both convergence
plots contain regions where the objective and constraint function values oscillate. These regions reflect
the inherent difficulty of numerically solving a mixed topology optimization problem that combines
density variables with explicit variables representing the load coordinates. This combination negatively
impacts the convergence of the algorithm. Here, we mitigate this effect by imposing move limits on the
design variables.

The pushing force and structural stiffness objectives are in conflict. This can be shown by plotting
a Pareto front [42,43] of the optimization problem described in equation (5.1). The objective function is
modified by multiplying the pushing force (P) and the compliance (C) terms by a variable weighting
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Figure 12. Convergence histories for the optimization of the wheelset shown in figure 11.

Table 3. Strength properties.

σ1
f 35.7 MPa

σ2
f 3 MPa

σ3
f 3 MPa

τ12
f 6.7 MPa

τ23
f 6.7 MPa

τ13
f 6.7 MPa
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factor, α. The compliance term is also multiplied by a scaling factor of 106 m−1 so that the two terms
are similar in magnitude and have consistent units. Note that each point on the resulting Pareto
front represents a separate optimization in which we have minimized the objective function given in
equation (5.1), while enforcing all the previous optimization constraints described in (4.32)

(5.1)minimize
ρ,xf, yf, zf

αP + (1 − α)C × 106m−1.

Using a resolution of 80 × 80 × 80 elements and a volume fraction limit of 10%, we solved the opti-
mization for several values of α ranging from 0 to 0.999. When α = 0, the optimization is purely
a compliance minimization problem. As α approaches 1, the pushing force becomes more heavily
weighted. In this case, the optimizer drives the pushing force to its minimum possible value of zero.
The values of the pushing force P and the structural compliance C are recorded for each solution, and
the Pareto front is plotted in figure 13 along with images of some of the optimal designs. It can be seen
from the Pareto plot that if one objective decreases, the other increases, hence the trade-off.

450

400

350

300

250

200

150

100

50

0

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

C
× 10

–3

P

α = 0

α = 0.2

α = 0.9

α = 0.999

Figure 13. The Pareto front of the weighted-objective optimization problem (equation 5.1). The x- and y-axes are expressed in

standard SI units of N and N m, respectively. In the wheelset images, the blue dots indicate the contact points (i.e. the location of load

application), and the black dots indicate the location of the axis of rotation, therefore the distance between these two dots is inversely

proportional to the mechanical advantage.

0.5

0.475

0.45

0.425

0.4

0.375

0.35
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0.3

0.275

0.25
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0.2
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0.1

0.075
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0.025

0

Figure 14. Finite element simulation of the wheelset (top row) versus the multi-body wheel-and-axle (bottom row). The contours

show the Tsai–Hill stress distribution within the volume of the structure. The results show that the multi-body wheel-and-axle system

experiences reduced stress and is therefore less likely to sustain material damage and structural failure.
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Figure 14 shows a comparison of the stress distributions in wheelset and multi-body mechanisms
with identical geometries and loading conditions. In the monolithic wheelset, the peak Tsai–Hill failure
index on the axle is 0.56, while on the wheel-and-axle assembly, it only reaches 0.43 because of the
frictionless bearing preventing the transfer of a torsional stress between the wheel and axle. This result
supports the hypothesis that a multi-body wheel-and-axle system would have been more robust to
damage than a wheelset structure. Note that the optimization results shown in figures 11–13 did not
account for the Tsai–Hill failure index and that failure analysis was performed as a post-processing
step to analyse the optimized designs.

6. Significance and implications of our findings
These results indicate that our proposed sequence for the progression of the wheel and axle offers a
plausible descent path along which the wheel could have evolved as its users sought more energy-
efficient designs. Our findings also demonstrate the critical role that environmental factors played in
the creation of wheeled technology. The unique features of the mine environment accentuated the
advantages of the wheelset over its predecessor while negating its most significant disadvantage: the
inability to turn. Despite its shortcomings, the wheelset played a crucial role in the evolution of the
wheel due to its conceptual proximity to the roller, which served as a technological bridge.

It should be noted that our investigation does not span the full breadth of the wheel’s historical
development, and the wheel did not stop evolving with the advent of the multi-body wheel-and-axle.
The technology came full circle in 1869 with the invention of radial ball bearings [44], which, ironically,
reintroduced bilateral rolling but solved the issue of spent rollers by enclosing the rollers (i.e. bearings)
within a cage. Nor do we wish to imply that this was the only time in history that the wheel was
independently discovered. The indigenous peoples of the Americas also had knowledge of wheeled
locomotion as evidenced by the presence of wheeled figurines from the eighth century BC in what is
now southern Mexico (see figure 3b) [16,45]. However, the Boleráz wheels represent the earliest known
instance of wheeled transport, and they are a likely source of the wheel’s early proliferation throughout
the Old World.

This chapter in human history runs counter to the popular belief that technologies arise abruptly
from the sudden epiphany of a lone inventor. Consequently, some scholars have embraced the other
extreme, claiming that the wheel had no origin point and no inventor, but rather it developed
gradually across a broad geographical area [5]. A similar theory has also been applied broadly to
technology in general [46]. Our investigation modifies this theory and adds several new insights. The
wheel evolved over a period spanning many centuries, but this evolution was punctuated by discrete
innovations. We also find that, much like biological organisms, the wheel evolved from an earlier
technology from which it inherited certain advantageous traits, and this evolution was fundamentally
linked to the local environment. Lastly, our study is an example of how we can leverage the techniques
of design science and computational mechanics to uncover new knowledge about episodes from our
distant past for which there is no written record, and our only clues are the artefacts left behind by the
designers who came before us.
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