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ABSTRACT
In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting
material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are
often difficult to find manually. This substantially limits topology optimization’s effectiveness for many mechanism design prob-
lems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input
displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize
a variety of compliant mechanisms with large output displacements, snap-through responses, and prescribed output paths, produc-
ing designs with significantly improved performance in every case tested. Compared to optimal designs generated using manually
designed boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases rang-
ing from 47% to 380%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition
locations and that effective placements can be difficult to find without an automated method.

1 | Introduction

Topology optimization [1] is a computational design method used
to automatically find an optimal distribution of material that
minimizes an objective function while satisfying a set of opti-
mization constraint functions. Originally introduced as a method
for maximizing the stiffness of static structures [2], it required the
user to specify the configuration of applied loads and rigid sup-
ports which would then remain fixed and unchanging during the
optimization process. This feature persisted when topology opti-
mization was later applied to the synthesis of compliant mech-
anisms [3, 4]. Compliant mechanism design has since become a
common use of the method, with a wide variety of applications
ranging from morphing wings [5] to micro-manipulators [6–9],
flexures [10], switching mechanisms [11, 12], and more [13]. Yet
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it still remains standard practice for the boundary conditions to
be predetermined by the user based only on intuition, despite the
fact that in mechanism design the configuration of the boundary
conditions has a significant influence on the resulting optimal
geometry and its motion. Hence, topology optimization’s effec-
tiveness as a tool for designing compliant mechanisms can be
significantly limited by requiring the user to manually choose
boundary conditions.

Up until recently, efforts to incorporate the configuration of
boundary conditions as automatically optimized design variables
in topology optimization have been limited to only the supports,
with the location and direction of the applied load still chosen
by the user of the software. This has mostly been applied to
static structures [14–18], with a few examples of compliant
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mechanism design [19–21] where gains of up to a 77% increase
in mechanism performance were shown in the study by Buhl
[19]. Optimizing the applied load location and direction in
topology optimization to maximize the performance of struc-
tural designs was first accomplished by Alacoque and James
[22], where the material distribution, support locations, load
location, and load orientation were simultaneously optimized to
maximize the output displacement of a compliant displacement
inverter mechanism. A 150% gain in performance was achieved
over the optimal design generated using the conventionally
chosen boundary conditions. Since then, Lee and Xie [23, 24]
have adopted similar methods for optimizing applied loading
conditions, achieving more efficient structural designs.

The results for compliant mechanism design in [22] show sub-
stantial improvements in objective function values when using
variable boundary conditions; however, the linear elastic mod-
eling used in the study has certain limitations when designing
mechanisms which undergo large motions. The assumption of
infinitesimal strain in linear elasticity is invalidated when large
displacements or rotations are present in the deformed configura-
tion of the body, and the theory is only able to model straight-line
motions and linear load–displacement curves. Topology opti-
mization using nonlinear elastic physics accurately models large
deformations and produces different optimal material distribu-
tions than with linear analysis. Buhl et al. [25] modeled large
displacements with small strains and showed that differences in
designs can be large between linear and nonlinear analysis, espe-
cially in some cases with snap-through and buckling responses.
Bruns and Tortorelli [26], who used a hyperelastic material model
to capture geometric and material nonlinearities, produced a dif-
ferent compliant gripper design by using nonlinear modeling
compared to linear. In a more recent study, Wallin et al. [27]
optimized several different measures of stiffness, each producing
different structures when loads levels are high enough to cause
large displacements. Nonlinear elastic topology optimization also
makes it possible to synthesize compliant mechanisms with more
complex nonlinear behaviors such as bistability [28–30], tailored
nonlinear load–displacement curves [31, 32], and nonlinear out-
put paths [33, 34]. These behaviors are typically modeled using
displacement-controlled algorithms, while the linear elastic stud-
ies [22–24] with variable boundary conditions apply the forces
directly. However, none of the aforementioned studies on struc-
tures or compliant mechanisms, using either linear or nonlinear
elasticity, attempt to optimize the location of a prescribed dis-
placement boundary condition. Thus, to perform these interest-
ing nonlinear optimizations with variable boundary conditions,
a new method for a variable input displacement must be devel-
oped in addition to extending the previous methods of variable
boundary conditions to nonlinear elastic physics.

In this work we develop the formulations necessary for opti-
mizing the boundary condition configuration simultaneously
with material distribution in displacement-controlled, nonlinear
elastic topology optimization. This study is the first application
of variable loads and supports to nonlinear elastic physics, and it
includes the following novel contributions: The super-Gaussian
projection function method from [22] is extended to control
the effective locations of the boundary conditions by scaling
the magnitudes of body forces and elastic support spring con-
stants applied to each finite element. For complete control

over the input actuation behavior and to enable the optimiza-
tion of different nonlinear behaviors, we formulate a new
displacement-controlled iterative solver that enables a contin-
uously variable input displacement location and orientation.
Novel adjoint sensitivity equations are derived by adding the
displacement-control solver’s constraint functions to the aug-
mented Lagrangian function, allowing the use of gradient-based
optimizers such as the Method of Moving Asymptotes (MMA)
[35]. We use our method to generate compliant mechanisms
using several different types of objective function and compare
the improved performance of the resulting designs to those
obtained using boundary conditions from other nonlinear topol-
ogy optimization studies in the literature, demonstrating for
the first time the significant advantages of variable boundary
conditions in this setting.

The rest of the paper is organized as follows. Section 2 describes
the density-based topology optimization formulation and the
super-Gaussian projection method used to vary the boundary
condition configuration. Section 3 describes the nonlinear,
hyperelastic finite element formulation and the modifications to
the residual and external load vector formulations that facilitate
the variable-position displacement-control algorithm, which
is outlined in Section 4. The adjoint sensitivity analysis is per-
formed in Section 5 to derive generic derivative formulas that can
be applied to any optimization objective or constraint function.
In Section 6 we present and analyze the optimization results,
and in Section 7 we discuss conclusions and the possibilities for
future research directions.

2 | Topology Optimization With Boundary
Conditions as Design Variables

The topology optimization problem we are considering is illus-
trated in Figure 1, which shows an elastic body in its undeformed
configuration. The material density 𝝆 is distributed within a
design domain and is supported at locations

(
𝑋

(𝑖)

𝑠
, 𝑌

(𝑖)

𝑠

)
. All

degrees of freedom of displacement are set to zero as a boundary
condition in the supported regions to represent fixed fastening
components such as bolts, rivets, or welds. The number of “fas-
teners” is fixed and does not change during an optimization. A
linear guided actuator applies a force to a location

(
𝑋

𝑓
, 𝑌

𝑓

)
to

create a prescribed input displacement 𝑼 in at an angle 𝜃 and with
stroke length ‖‖𝑼 in

‖‖. This input displacement causes an output
displacement 𝑈out at some other point on the body. Circular
fastening components at the load and support locations are rep-
resented by movable, solid, non-designable regions of material.
Other fixed solid or void non-design regions may also be present
in the domain. The goal is to find the material distribution,
support locations, actuator location, and actuator angle which
achieves the desired mechanism motion along with any specified
structural characteristics. The design space is parameterized by a
concatenated vector of the design variables, 𝜻 , consisting of both
the material density distribution and the boundary condition
configuration:

𝜻 =

[
𝝆 𝑿

𝑠
𝒀

𝑠
𝑋

𝑓
𝑌

𝑓
𝜃

]
(1)

The continuous representation of the elasticity problem shown
in Figure 1 is discretized using finite element analysis, creating a
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FIGURE 1 | The general design problem for compliant mechanisms with variable boundary conditions. The goal is to find a material distribution
𝝆 along with support locations 𝑿

𝑠
, 𝒀

𝑠
, actuator location 𝑋

𝑓
, 𝑌

𝑓
, and actuator orientation 𝜃 which minimizes or maximizes a given objective function.

FIGURE 2 | A design domain discretized by finite elements. Forces are applied to each element centroid and spring elements connect the elements
to rigid supports.

mesh of 𝑁
𝑒

elements, shown in Figure 2. Each element 𝑒 in the
mesh is assigned a material density design variable 𝜌

𝑒
which can

vary continuously from 0 to 1, representing an interpolation from
empty space to solid material.

2.1 | Filtering of Density Design Variables

We use the standard density filtering method of topology opti-
mization to avoid checkerboard patterns and mesh dependence
of designs [26]:

𝝆̃ = 𝑾𝝆 (2)

where the vector 𝝆̃ contains the filtered densities, obtained by
multiplying the vector of density design variables with the 𝑁

𝑒
×

𝑁
𝑒

filter matrix 𝑾. The entries of the filter matrix are calcu-
lated as

𝑊ei =
𝑤ei𝑉𝑖∑𝑁

𝑒

𝑖=1𝑤ei𝑉𝑖

(3)

where the weight factors 𝑤ei are computed based on the filter
radius, 𝑟min, and the distance between centroids of elements 𝑒 and
𝑖, Δ(𝑒, 𝑖):

𝑤ei = max (0, 𝑟min − Δ(𝑒, 𝑖)) (4)

In Equation (3), 𝑉
𝑖

is the element volume. Note also that the
repeated indices do not imply summation.

Typically, the filtered densities are taken as the effective physical
densities used to evaluate the element stiffness properties and
solve the elasticity problem. However, in this work we perform
one additional processing step to combine the filtered densities
with the variable non-design regions at the boundary conditions
points. This process is described in subsection 2.3.

2.2 | Variable Loads and Supports

The boundary conditions must also be formulated as smooth and
continuous functions of the design variables. To achieve this, elas-
tic supports are applied everywhere in the domain with the intent
that their stiffness will be varied to control where the structure is
effectively restrained. Areas with supports of high stiffness will
simulate rigid fixtures, and areas with supports of low or zero
stiffness will leave the structure free to deform. To this end, linear
elastic springs are connected from rigid boundaries to the ele-
ments’ centroids to resist deformation in each degree of freedom.
This adds no additional degrees of freedom to the finite element
model. Each element is assigned a corresponding spring constant
for its support, 𝑘

𝑠

𝑒
, the value of which will depend on the sup-

port location design variables. With the same idea for the applied
load, a force magnitude 𝑓

𝑒
is assigned to each element centroid.

The angle the forces are applied at will be determined by the
displacement-control algorithm and is not the same as the input
displacement angle 𝜃, since the actuator is guided and generates
a lateral reaction force.

3 of 20

 10970207, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7613, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The effective locations of the boundary conditions are controlled
using a super-Gaussian projection function [22, 36], which is
a feature-mapping technique [37] based on distance functions.
Given a field of distance to points or lines, the function outputs
a field of a specified value within shapes of given radius that
smoothly transition to zero in the direction of increasing dis-
tance. The function is plotted and labeled in Figure 3 for a simple
one-dimensional distance function to a single point. Its general
form is given by

𝐺 = 𝐴𝑏
−

(
𝑑

2

𝑟2

)𝑃

(5)

where 𝑑 is the distance field, 𝐴 is the value the function takes
within each geometric feature, 𝑃 is a parameter that controls the
sharpness of the transition region, and 𝑟 sets the length from zero
distance to where the function equals the value specified by the
parameter 𝑏:

𝐺(𝑑 = 𝑟) =
𝐴

𝑏
(6)

For this work, we use the smoothed minimum distance from each
element centroid

(
𝑋

𝑒
, 𝑌

𝑒

)
to a number of points (𝑋𝑖

, 𝑌
𝑖) placed

within the design domain:

FIGURE 3 | The super-Gaussian projection function with a 1D dis-
tance function for 𝐴 = 1, 𝑏 = 2, 𝑟 = 0.25, and several values of the expo-
nent 𝑃.

𝑑
𝑒
=

⎛
⎜⎜⎝
∑

𝑖

(√(
𝑋

𝑒
− 𝑋

𝑖

)2
+

(
𝑌

𝑒
− 𝑌

𝑖

)2
)−𝑄⎞

⎟⎟⎠

−
1
𝑄

(7)

where larger values of 𝑄 more closely approximate the true mini-
mum. An example of this distance field, and the circular features
the super-Gaussian projection function creates from it, is shown
in Figure 4.

Now applying the projection function to control the distribution
of elastic support stiffness, the design variables 𝑿

𝑠
and 𝒀

𝑠
are used

in Equation (7) to create the smoothed distance field. The coeffi-
cient 𝐴 from Equation (5) is chosen such that the spring constants
within the support geometry are equivalent to the shear stiffness
of a solid support material with shear modulus 𝐺

𝑠
and thickness

𝑡
𝑠
. Considering an element of area 𝐴

𝑒
with a force 𝑓

𝑒
applied to the

centroid of its cross section, the average shear stress in its support
material is

𝜏
𝑒
=

𝑓
𝑒

𝐴
𝑒

(8)

Using a linear stress–strain relationship and assuming a small
transverse displacement 𝛿

𝑒
gives:

𝛿
𝑒

𝑡
𝑠

𝐺
𝑠
=

𝑓
𝑒

𝐴
𝑒

(9)

The equivalent spring constant for the solid support material of
the element is determined by rearranging and comparing to the
equation for a spring:

𝐺
𝑠

𝑡
𝑠

𝐴
𝑒
𝛿

𝑒
= 𝑓

𝑒
(10)

Substituting the spring constant for the coefficient of the
super-Gaussian function yields:

𝑘
𝑠

𝑒
=

𝐺
𝑠

𝑡
𝑠

𝐴
𝑒
𝑏

−

(
𝑑

2
𝑒

𝑟2

)𝑃

(11)

For the applied load, the design variables 𝑋
𝑓

and 𝑌
𝑓

are used for
the distance function:

𝑑
𝑒
=

√(
𝑋

𝑒
− 𝑋

𝑓

)2
+

(
𝑌

𝑒
− 𝑌

𝑓

)2
(12)

FIGURE 4 | Projecting circular shapes from zero dimensional points. (a) Several points in the domain with their spatial coordinates and distances to
the centroid of an element 𝑒. (b) The smooth distance field for the set of points, using 𝑄 = 10. (c) The super-Gaussian projection of the smooth distance
field, using 𝐴 = 1, 𝑏 = 2, 𝑟 = 1, and 𝑃 = 4.
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The distribution of load magnitude is

𝑓
𝑒
= 𝐴

𝑓
𝑏

−

(
𝑑

2
𝑒

𝑟2

)𝑃

(13)

where the coefficient 𝐴
𝑓

is chosen such that the total load applied
in the design domain is equal to 1:

𝐴
𝑓

=
1

∑𝑁
𝑒

𝑒=1𝑏
−

(
𝑑

2
𝑒

𝑟2

)𝑃

𝑉
𝑒

(14)

The coefficient 𝐴
𝑓

is assumed to be a constant and is
only calculated once before beginning the optimization. The
Newton–Raphson solver is then able to use a load intensity factor
to scale the magnitude of the applied force, which is described in
detail in the following sections.

2.3 | Variable Non-Design Regions

Moveable non-design regions around the boundary condition
points are used to ensure well-defined compliant hinges are
generated at the supports [22], and so that the forces from the
actuator are always applied to solid material. To create them,
a density distribution is projected onto the mesh using the
super-Gaussian function. The distance function is created using
both the support location and load location design variables. The
coefficient 𝐴 is set to 1 for solid material, giving the projected
density distribution as

𝜌
𝑒
= 𝑏

−

(
𝑑

2
𝑒

𝑟2

)𝑃

(15)

The projected densities and the filtered densities are then com-
bined into the physical density field using a smooth maximum
function:

𝜌
𝑒
=

(
𝜌̃

𝑄

𝑒
+ 𝜌

𝑄

𝑒

) 1
𝑄 (16)

The physical densities in each element, 𝜌
𝑒
, define the design that

is analyzed in the finite element analysis and is the density field
that is presented as the results of topology optimization. It is
used to calculate the elastic modulus of each element using the
Solid Isotropic Material with Penalization (SIMP) interpolation
scheme:

𝐸
𝑒
= 𝐸min + 𝜌

𝑝

𝑒
(𝐸0 − 𝐸min) (17)

where 𝐸min is a small value of stiffness given to void elements to
avoid singular stiffness matrices in the finite element analysis, 𝐸0
is the elastic modulus of the solid material, and 𝑝 is the SIMP
penalization factor which reduces the stiffness-to-weight ratio of
intermediate density elements causing the optimizations to con-
verge to structures made up of mostly solid material.

3 | Nonlinear Finite Element Model

In each iteration of the topology optimization process, nonlinear
finite element analysis is used to simulate the deformation of the
current design. The results of the analysis are then used to char-
acterize the performance of the mechanism by calculating the
values of the optimization objective and constraint functions. The

general theory and background of nonlinear finite element anal-
ysis, including the strong form of the nonlinear elastic boundary
value problem, its equivalent weak form, and its discretization
by the finite element method, can be found in references such as
[38–40] and here we only present the equations that are needed
for implementation. We use the total Lagrangian formulation
and a hyperelastic material model to represent compliant mech-
anisms made from a rubber-like flexible material.

3.1 | Equilibrium Equations

Typically, displacement-controlled nonlinear finite element anal-
ysis finds the vector of nodal displacements, 𝑼, and a load inten-
sity factor, 𝜆, describing an equilibrium configuration of the struc-
ture where the externally applied loads are balanced with the
internally generated forces. The balance of forces is represented
by the residual vector:

𝑹 = 𝜆𝑭
ext

− 𝑭
int

= 𝟎 (18)

where 𝑭
ext is a reference vector of external nodal loads and 𝑭

int is
the vector of internal nodal forces. For the work here, considering
the applied element forces 𝑓

𝑒
to be body forces per unit volume,

the reference external load vector is given as an assembly of the
body forces [41]:

𝑭
ext

=

𝑁
𝑒⋀

𝑒=1 ∫𝑉
𝑒

𝑵
𝑇
𝑓

𝑒

[
cos(𝜙)

sin(𝜙)

]
𝑑𝑉

𝑒
(19)

where the symbol
⋀

denotes the finite element assembly opera-
tion, the matrix 𝑵 contains the finite element shape functions,
and 𝜙 is the (unknown) angle the load is applied at. Assum-
ing that the element force 𝑓

𝑒
is evenly distributed to the nodes

results in:

𝑭
ext

=

𝑁
𝑒⋀

𝑒=1

𝑓
𝑒

𝑛
𝑛

𝚽𝑉
𝑒

(20)

where 𝑛
𝑛

is the number of nodes in the element and
𝚽 =

[
cos(𝜙) sin(𝜙) . . .

]𝑇 is a direction vector that applies
the force components to the appropriate degrees of freedom.
Since the load angle 𝜙 that causes the given input displacement
angle is unknown, it must be found by the displacement-control
algorithm. To facilitate this, the external load vector is split into
𝑥 and 𝑦 components and the residual vector is rewritten as

𝑹 = 𝜆
𝑥
𝑭

ext
𝑥

+ 𝜆
𝑦
𝑭

ext
𝑦

− 𝑭
int

= 𝟎 (21)

where

𝑭
ext
𝑥

=

𝑁
𝑒⋀

𝑒=1

𝑓
𝑒√

2𝑛
𝑛

𝚽
𝑥
𝑉

𝑒
(22)

𝑭
ext
𝑦

=

𝑁
𝑒⋀

𝑒=1

𝑓
𝑒√

2𝑛
𝑛

𝚽
𝑦
𝑉

𝑒
(23)

with the direction vectors as 𝚽
𝑥

=

[
1 0 . . .

]𝑇 and 𝚽
𝑦

=[
0 1 . . .

]𝑇 . The two load intensity factors 𝜆
𝑥

and 𝜆
𝑦

are then
determined by the displacement-control algorithm such that the
specified input displacement 𝑼 in is achieved. This algorithm is
described in the next section.
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3.2 | Strain Energy Interpolation
and Hyperelastic Material Model

In topology optimization with nonlinear finite element analysis,
a numerical issue occurs where elements with low stiffness
can distort excessively and prevent convergence of the iterative
Newton–Raphson solver. Earlier works circumvented this issue
by ignoring nodes surrounded by void elements in the solver’s
convergence criteria [25, 33], by removing elements with low
densities from the mesh [42], or by optimizing the connectivity
of completely solid elements [43]. More recent methods include
interpolating to linear elastic modeling at low densities [44],
adding an extra hyperelastic stiffness term to unstable elements
[45, 46], and stabilizing low-density elements in a way that is
also able to simulate contact between solid regions [47]. Here,
we use the linear-nonlinear strain energy interpolation scheme
by Wang et al. [44] since it is relatively simple to implement and
is able to converge for adequately large deformations in most
cases. The interpolation function in this method is a smoothed
Heaviside step function that is dependent on the physical density
of each element:

𝛾
𝑒
=

tanh(𝛽𝜌0) + tanh
(
𝜌

𝑝

𝑒
− 𝜌0

)

tanh(𝛽𝜌0) + tanh(𝛽(1 − 𝜌0))
(24)

where the parameter 𝛽 affects the sharpness of the step function
and 𝜌0 controls the location of the threshold. The deformation
gradient in each element is computed as:

𝑭 = 𝑰 + 𝛾
𝑒
∇𝑼

𝑒
(25)

where 𝑰 is the identity matrix and ∇ is the gradient operator.
Like in the original implementation of the method [44], we use a
modified Neo-Hookean hyperelastic material model [48] where
the second Piola-Kirchhoff stress is implemented as:

𝑺 = 𝜆0
(
2𝐽

2
− 𝐽

)
𝑪

−1
+ 𝜇0

(
𝑰 − 𝑪

−1) (26)

and the entries of the constitutive matrix are implemented using
index notation as:

𝐷ijkl = 𝜆0
(
2𝐽

2
− 𝐽

)
𝐶

−1
ij 𝐶

−1
kl +

(
𝜇0 − 𝜆0

(
2𝐽

2
− 𝐽

))(
𝐶

−1
ik 𝐶

−1
jl + 𝐶

−1
il 𝐶

−1
jk

)

(27)

The constants 𝜆0 and 𝜇0 are the Lamé parameters for a unit elastic
modulus, 𝐽 is the determinant of the deformation gradient, and
𝑪 = 𝑭

𝑇
𝑭 is the right Cauchy-Green deformation tensor.

This interpolation method allows the Newton–Raphson itera-
tions to converge in many cases. However, intermediate density
elements may still become unstable if displacements are too large
which limits the size of actuator strokes that can be applied in the
framework of this paper. Low-stiffness elements may also become
unstable if external loads are applied to them, but this is pre-
vented by the moveable solid non-design region placed under the
input point.

3.3 | Internal Force Vector

The internal force vector is an assembly of the element force vec-
tors for the continuum part of the mesh, interpolated between

nonlinear and linear modeling, plus the internal forces of the
support springs. Writing the nonlinear element force vectors as
𝒇

NL
𝑒

and the linear counterparts as 𝒇
𝐿

𝑒
, the global internal force

vector is assembled as:

𝑭
int

=

𝑁
𝑒⋀

𝑒=1

(
𝛾

𝑒
𝒇

NL
𝑒

+

(
1 − 𝛾

2
𝑒

)
𝒇

𝐿

𝑒

)
+ 𝑲

𝑠
𝑼 (28)

where the interpolation formulation between the nonlinear and
linear element force vectors has been adopted from [11, 49, 50]
where it was successfully implemented for nonlinear problems.
𝑲

𝑠
is the global stiffness matrix of the supports, assembled as:

𝑲
𝑠
=

𝑁
𝑒⋀

𝑒=1

𝑘
𝑠

𝑒

𝑛
𝑛

𝑰

The size of the identity matrix 𝑰 is equal to the number of degrees
of freedom in the element. The nonlinear element force vector is
given by the integration

𝒇
NL
𝑒

= 𝐸
𝑒 ∫

𝑉
𝑒

𝑩
𝑇

𝑁
𝑺𝑑𝑉

𝑒
(29)

where 𝑩
𝑁

is the nonlinear strain–displacement matrix. The lin-
ear element force vector is given by

𝒇
𝐿

𝑒
= 𝐸

𝑒 ∫
𝑉

𝑒

𝑩
𝑇
𝑫0𝜺𝑑𝑉

𝑒
(30)

where 𝑩 is the linear strain–displacement matrix, 𝑫0 is the linear
constitutive matrix for unit stiffness, and 𝜺 is the linear strain in
the element.

3.4 | Tangent Stiffness Matrix

The tangent stiffness matrix is also an interpolation between
nonlinear and linear modeling for the continuum part of the
mesh [11, 49, 50], with the contribution from the linear elastic
supports added to it:

𝑲
𝑇

=

𝑁
𝑒⋀

𝑒=1

(
𝛾

2
𝑒
𝒌

NL
𝑒

+

(
1 − 𝛾

2
𝑒

)
𝒌

𝐿

𝑒

)
+ 𝑲

𝑠
(31)

The nonlinear element stiffness matrix is

𝒌
NL
𝑒

= 𝐸
𝑒 ∫

𝑉
𝑒

(
𝑩

𝑇

𝑁
𝑫𝑩

𝑁
+ 𝑩

𝑇

𝐺
𝚺𝑩

𝐺

)
𝑑𝑉

𝑒
(32)

where 𝚺 is a matrix of second Piola-Kirchhoff stresses and 𝑩
𝐺

is another strain–displacement matrix [38]. The linear element
stiffness matrix is integrated using

𝒌
𝐿

𝑒
= 𝐸

𝑒 ∫
𝑉

𝑒

𝑩
𝑇
𝑫0𝑩𝑑𝑉

𝑒
(33)

4 | Variable-Position Displacement-Control
Algorithm

The displacement-control algorithm is an incremental-iterative
(predictor–corrector) method [51, 52], where the input
displacement is incremented in steps to obtain points along
the load–displacement curve. For each increment, an iterative
cycle solves for the unknown state variables 𝑼, 𝜆

𝑥
, and 𝜆

𝑦
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to restore static equilibrium to within a given tolerance. The
residual, Equation (21), provides the solver constraint functions
necessary to find the unknown nodal displacements, 𝑼. How-
ever, an additional two are needed to solve for the load intensity
factors, 𝜆

𝑥
and 𝜆

𝑦
. Since the input displacement location is

continuously variable and can be applied anywhere within the
mesh, including at the interior of elements, this provides an
additional two data points in the displacement field that can be
used to define the extra solver constraint functions. The 𝑥 and 𝑦

components of displacement at the input actuation point can be
obtained by using the finite element shape functions:

[
𝑈

in
𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)

𝑈
in
𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
]

= 𝑵

(
𝑋

𝑓
, 𝑌

𝑓

)
𝑼 (34)

Then, the solver constraints can be defined as the difference
between the displacement field at the input actuation point and
the given input displacement, the two of which will be equal to
each other at equilibrium:

𝒄 = 𝑵

(
𝑋

𝑓
, 𝑌

𝑓

)
𝑼 − 𝑼 in =

[
𝑈

in
𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)
− ‖‖𝑼 in

‖‖ cos(𝜃)

𝑈
in
𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
− ‖‖𝑼 in

‖‖ sin(𝜃)

]
=

[
0
0

]

(35)

The ability to control displacement at any position in the domain,
rather than only displacements at discrete nodal locations like in
previous methods such as [51, 52], is the key modification of the
existing algorithm that allows for the optimization of a continu-
ously variable input displacement location.

The displacement-control algorithm then proceeds as follows.
For each displacement step 𝑖, the predictor phase begins by cal-
culating reference displacement increment vectors from the two
reference load vectors. These are solved for simultaneously using:

[𝑲𝑇]
𝑖−1

[
Δ𝑼

𝑎
Δ𝑼

𝑏

]
=

[
𝑭

ext
𝑥

𝑭
ext
𝑦

]
(36)

where the state at increment 𝑖 − 1 is from the previously con-
verged displacement step, or else is the unloaded and unde-
formed state of the structure. With a given displacement step size
Δ𝑈, which is some fraction of the final input displacement length
‖‖𝑼 in

‖‖, the solver constraint functions of Equation (35) can be
rewritten using the reference displacement increment vectors of
Equation (36) as

[
Δ𝑈

𝑎

𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)
Δ𝑈

𝑏

𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)

Δ𝑈
𝑎

𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
Δ𝑈

𝑏

𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
][

Δ𝜆
𝑥

Δ𝜆
𝑦

]
=

[
Δ𝑈 cos(𝜃)

Δ𝑈 sin(𝜃)

]
(37)

where the coefficient matrix contains the 𝑥 and 𝑦 components of
the displacement increment vectors taken at the input actuation
location. These are found by using the finite element shape func-
tions, similar to Equation (34). After solving Equation (37) for the
load step increments Δ𝜆

𝑥
and Δ𝜆

𝑦
, the last step in the predictor

phase is to update the state variables as:

𝑼
𝑖
= 𝑼

𝑖−1
+ Δ𝜆

𝑥
Δ𝑼

𝑎
+ Δ𝜆

𝑦
Δ𝑼

𝑏 (38)

𝜆
𝑖

𝑥
= 𝜆

𝑖−1
𝑥

+ Δ𝜆
𝑥

(39)

𝜆
𝑖

𝑦
= 𝜆

𝑖−1
𝑦

+ Δ𝜆
𝑦

(40)

The tangent stiffness matrix, internal force vector, and residual
vector are also updated at this point using the state of the struc-
ture predicted in Equations (38–40).

If the norm of the residual is greater than a given tolerance, the
algorithm moves into an inner loop. This is the corrector phase.
For corrector iteration 𝑗, three reference displacement increment
vectors are calculated using:

[𝑲𝑇]
𝑗

[
Δ𝑼

𝑎
Δ𝑼

𝑏
Δ𝑼

𝑐

]𝑗

=

[
𝑭

ext
𝑥

𝑭
ext
𝑦

𝑹
𝑗

]
(41)

Using the shape functions to get the values of the reference dis-
placement increment vectors at the input load location, they are
used in the solver constraint functions of Equation (35) to solve
for the load intensity increments:

[
Δ𝑈

𝑎

𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)
Δ𝑈

𝑏

𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)

Δ𝑈
𝑎

𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
Δ𝑈

𝑏

𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
]𝑗[

Δ𝜆
𝑥

Δ𝜆
𝑦

]𝑗

=

[
−Δ𝑈

𝑐

𝑥

(
𝑋

𝑓
, 𝑌

𝑓

)

−Δ𝑈
𝑐

𝑦

(
𝑋

𝑓
, 𝑌

𝑓

)
]𝑗

(42)
The total displacement increment vector is then given by

Δ𝑼
𝑗
= Δ𝜆

𝑗

𝑥
Δ𝑼

𝑎

𝑗
+ Δ𝜆

𝑗

𝑦
Δ𝑼

𝑏

𝑗
+ Δ𝑼

𝑐

𝑗
(43)

and the state variables are updated as:

𝑼
𝑖,𝑗+1

= 𝑼
𝑖,𝑗

+ Δ𝑼
𝑗 (44)

𝜆
𝑖,𝑗+1
𝑥

= 𝜆
𝑖,𝑗

𝑥
+ Δ𝜆

𝑗

𝑥
(45)

𝜆
𝑖,𝑗+1
𝑦

= 𝜆
𝑖,𝑗

𝑦
+ Δ𝜆

𝑗

𝑦
(46)

The tangent stiffness matrix and internal force vector are
reassembled again here, and the residual vector is recalculated.
The corrector phase continues to iterate until the residual norm
convergence criterion is satisfied, meaning the displacement step
is converged, and the algorithm then moves to increment 𝑖 + 1.
Once the algorithm converges at the given final displacement
𝑼 in, it ends and outputs the results.

The corrector can fail to converge for various reasons. Possible
causes include that the chosen step size is too large, that defor-
mations larger than the interpolation scheme [44] is able handle
have caused intermediate density elements to become unstable,
or that a displacement limit point in the load–displacement
curve has been encountered. To avoid these issues as much as
possible, the algorithm is written to automatically try again with
a bisected step length if the corrector passes a given maximum
number of iterations. Resolving these issues would require better
methods for stabilizing low-density elements, and a different
solver such as an arc-length method [53] that can trace the
load–displacement curve through limit points. These problems
are left for future research.

5 | Adjoint Sensitivity Analysis

Gradient-based methods of optimization require the derivatives
of the optimization objective and constraint functions with
respect to each design variable. In topology optimization, the
large number of design variables and the computational expense
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of finite element analysis means that the gradient computations
must be performed efficiently. The adjoint sensitivity analysis
method is used here to derive analytical sensitivity formulas that
are inexpensive to evaluate. We employ a novel approach where
we add the displacement-control solver’s constraint functions to
the augmented Lagrangian function, rather than a residual vec-
tor for prescribed degrees of freedom which does not exist in the
current method.

For any optimization objective or constraint function 𝑓(𝜻 , 𝜼(𝜻 )),
which is considered to be an explicit function of the design vari-
ables 𝜻 and the state variables 𝜼, and where the state variables
are considered implicit functions of the design variables, an aug-
mented Lagrangian function 𝑔(𝜻 , 𝜼(𝜻 )) is formed by multiply-
ing the governing equations by Lagrange multipliers and adding
these terms to the function 𝑓. Since the governing equations are
equal to zero at equilibrium, the augmented Lagrangian function
𝑔 is equivalent to the original function 𝑓.

In conventional displacement-controlled topology optimization
with constant boundary conditions applied to discrete nodes, the
residual vector contains all of the governing equations. These
include the equations for the free degrees of freedom, where the
displacements are unknown and are solved for, and the equations
for the prescribed degrees of freedom, where the displacements
are given while the external loads are the unknowns [26]. How-
ever, in the context of variable boundary conditions (the subject
of this work), all degrees of freedom in the mesh are “free” with
unknown displacements. Thus, only adding the residual vector in
the augmented Lagrangian function is not enough to capture the
total derivative, and another term is needed. This missing term
of governing equations is the displacement-control solver’s con-
straint functions, 𝒄, that were defined in Equation (35).

With the state variables 𝜼(𝜻 ) =

[
𝑼(𝜻 ) 𝝀(𝜻 )

]𝑇 , where 𝝀(𝜻 ) =[
𝜆

𝑥
(𝜻 ) 𝜆

𝑦
(𝜻 )

]𝑇 , the augmented Lagrangian function is formed
by multiplying the residual and the solver constraint functions
with Lagrange multipliers 𝝍

𝑅
and 𝝍

𝑐
, respectively, and adding the

terms to the original function:

𝑔(𝜻 ,𝑼(𝜻 ), 𝝀(𝜻 )) = 𝑓(𝜻 ,𝑼(𝜻 ), 𝝀(𝜻 )) + 𝝍
𝑇

𝑅
𝑹(𝜻 ,𝑼(𝜻 ), 𝝀(𝜻 ))

+ 𝝍
𝑇

𝑐
c(𝜻 , 𝑼(𝜻 ), 𝝀(𝜻 ))

(47)

Denoting total or implicit derivatives by the operator 𝑑∕d𝜁, and
partial or explicit derivatives by the operator 𝜕∕𝜕𝜁, the total
derivative is taken with respect to an arbitrary design variable
using the multivariable chain rule of calculus:

dg
d𝜁

=
𝜕𝑓

𝜕𝜁
+

𝜕𝑓

𝜕𝑼

𝑑𝑼

d𝜁
+

𝜕𝑓

𝜕𝝀

𝑑𝝀

d𝜁
+ 𝝍

𝑇

𝑅

(
𝜕𝑹

𝜕𝜁
+

𝜕𝑹

𝜕𝑼

𝑑𝑼

d𝜁
+

𝜕𝑹

𝜕𝝀

𝑑𝝀

d𝜁

)

+ 𝝍
𝑇

𝑐

(
𝜕c
𝜕𝜁

+
𝜕c
𝜕𝑼

𝑑𝑼

d𝜁
+

𝜕c
𝜕𝝀

𝑑𝝀

d𝜁

)

(48)
This expression is rearranged to isolate the implicit derivatives of
the state variables:

dg
d𝜁

=
𝜕𝑓

𝜕𝜁
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝜁
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝜁

+

(
𝜕𝑓

𝜕𝑼
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝑼
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝑼

)
𝑑𝑼

d𝜁

+

(
𝜕𝑓

𝜕𝝀
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝝀
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝝀

)
𝑑𝝀

d𝜁

(49)

Since the residual vector and solver constraint functions are equal
to zero, the values of the Lagrange multipliers are arbitrary and
can be chosen freely without affecting the value of the sensitivity.
The terms with the implicit derivatives can be eliminated by find-
ing Lagrange multipliers that cause the sum of the terms inside
the brackets to vanish:

𝜕𝑓

𝜕𝑼
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝑼
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝑼

= 𝟎 (50)

𝜕𝑓

𝜕𝝀
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝝀
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝝀

= 𝟎 (51)

Solving Equations (50) and (51) simultaneously leads to the fol-
lowing systems of linear equations that yield the values of the
Lagrange multipliers:

𝝍
𝑇

𝑐

(
𝜕c
𝜕𝝀

−

(
𝜕c
𝜕𝑼

𝜕𝑹

𝜕𝑼

−1)
𝜕𝑹

𝜕𝝀

)
= −

(
𝜕𝑓

𝜕𝝀
−

(
𝜕𝑓

𝜕𝑼

𝜕𝑹

𝜕𝑼

−1)
𝜕𝑹

𝜕𝝀

)

(52)

𝝍
𝑇

𝑅

𝜕𝑹

𝜕𝑼
= −

(
𝜕𝑓

𝜕𝑼
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝑼

)
(53)

where
𝜕𝑹

𝜕𝑼
= −𝑲

𝑇
(54)

𝜕𝑹

𝜕𝝀
=

[
𝑭

ext
𝑥

𝑭
ext
𝑦

]
(55)

𝜕c
𝜕𝝀

= 𝟎 (56)

𝜕c
𝜕𝑼

= 𝑵

(
𝑋

𝑓
, 𝑌

𝑓

)
(57)

Now, without ever having had to derive expressions for the
implicit derivatives of the iteratively computed state variables, the
total derivative of any function 𝑓 is given by Equations (52–57)
and the following formula:

dg
d𝜁

=
𝜕𝑓

𝜕𝜁
+ 𝝍

𝑇

𝑅

𝜕𝑹

𝜕𝜁
+ 𝝍

𝑇

𝑐

𝜕c
𝜕𝜁

(58)

Depending on the specific function 𝑓 being implemented, only
the three explicit derivatives 𝜕𝑓∕𝜕𝜁, 𝜕𝑓∕𝜕𝑼, and 𝜕𝑓∕𝜕𝝀 need to
be found and plugged into Equations (52), (53), and (58), which
is typically simple to do.

We note that the derivatives of the shape functions with respect to
the input displacement coordinates, which appear in the deriva-
tive 𝜕c∕𝜕𝜁, are discontinuous for shape functions that are not
smooth across element boundaries. However, for our implemen-
tation using first-order elements with piecewise linear shape
functions, we did not encounter any oscillations or other prob-
lems in the convergence of the topology optimization process that
could be attributable to this.

6 | Numerical Examples

In this section, the framework described in Sections 2 through
5 is implemented in MATLAB and is used to generate several
types of compliant mechanisms based on examples from nonlin-
ear topology optimization in the literature. Three types of design
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problems are investigated: displacement maximization, bistabil-
ity, and path generation. We run each example twice: once with
the boundary conditions fixed at the initial locations chosen by
the other studies, which represent the boundary conditions good
designers might use based on their intuition or other conven-
tional methods, and the second time allowing our algorithm to
automatically adjust the boundary conditions to find optimal
placements. The starting distribution of material is uniform in
both cases. The performance of the designs obtained using vari-
able boundary conditions is compared to those obtained using
fixed boundary conditions to quantify the advantages of the
method over conventional topology optimization. The results
shown in this section may not be globally optimal solutions,
because different local minima may be obtained by using differ-
ent starting positions of the boundary conditions. For practical
design problems, multiple optimizations should be performed
using different starting configurations and the best results can
then be chosen from the set.

Several quantities of interest are used to define the various opti-
mization objective and constraint functions in the following
example problems. The displacements at the output points of the
mechanisms, at any point 𝑚 on the load–displacement curve
where the state variables have been solved for, are found using

𝑈
(𝑚)

out = 𝑳
𝑇
𝑼

(𝑚) (59)

where 𝑳 is a vector of all zeros, except for a value of one at the
degrees of freedom that are selected by the user. The input force
applied by the actuator is in-line with the input displacement and
is found from the applied force’s 𝑥 and 𝑦 components as

𝐹
(𝑚)

in =

√(
𝜆

(𝑚)

𝑥

)2
+

(
𝜆

(𝑚)

𝑦

)2
sin

(
𝜃 + tan−1

(
𝜆

(𝑚)

𝑥

𝜆
(𝑚)

𝑦

))
(60)

and the reaction force generated by the guide structure is the force
perpendicular to the input displacement, given by

𝐹
(𝑚)

𝑝
=

√(
𝜆

(𝑚)

𝑥

)2
+

(
𝜆

(𝑚)

𝑦

)2
cos

(
𝜃 + tan−1

(
𝜆

(𝑚)

𝑥

𝜆
(𝑚)

𝑦

))
(61)

The volume fraction of material distributed in the domain is
found from the physical densities:

𝑉
𝑓

=

∑𝑁
𝑒

𝑒=1𝜌𝑒
𝑉

𝑒∑𝑁
𝑒

𝑒=1𝑉𝑒

(62)

These quantities can be used in many different ways to control
the characteristics of the mechanisms that are generated. The
output displacements can be used in objective functions to cre-
ate large geometric advantages, or to define specific output paths.
Used in optimization constraint functions, they can control any
unwanted motions of the mechanism. Similarly, the input forces
can be used to control the shape of the load–displacement curve,
or to limit the amount of force that can be applied. Real mechan-
ical actuators and their guide structures have finite strength, and
the optimizer will often attempt to use extremely large input loads
if it is allowed to. To prevent this, we place upper-bound con-
straints on the magnitudes of 𝐹in and 𝐹

𝑝
in each example. The

volume fraction is used as an upper-bound constraint to limit the
mass of the resulting designs.

In some cases, particularly in those with snap-through behav-
ior or longer structural members loaded in compression, we
have encountered oscillations in the optimization objective func-
tion caused by buckling bifurcations in the load–displacement
curves, which prevent convergence. Having multiple stable con-
figurations of a structure is a discontinuity in the design space
and can prevent convergence if a different solution is found in
each iteration, such as if a member has no strong preference for
buckling to one side compared to the other. The same buckling
problem is reported by Bruns and Sigmund [54] as a tendency
for the optimization to oscillate between structures that do and
do not have the buckling response. Li et al. [31] also mention
that non-unique solutions are a challenge for considering slen-
der structures with local and global instability. Thus, this issue
is not unique to the variable boundary condition formulation
of this work. However, the decision to use the guided actua-
tor formulation was partially motivated by the problem since it
adds resistance to buckling by preventing lateral deflection, and
this appreciably alleviated the issue of oscillating objective func-
tions caused by different buckling modes occurring in consecu-
tive optimization iterations. In some of the following examples,
other strategies to avoid unwanted buckling behaviors have been
used as well, such as by placing optimization constraints on the
load–displacement curve or by using a larger density filter radius
to avoid slender features.

All examples are generated on a desktop computer with unstruc-
tured meshes of planar 3-node triangular finite elements under
plane stress conditions. Unstructured meshes, as opposed to
structured grids of 4-node rectangular elements, are used so that
design domains of any shape can be meshed easily. The Method
of Moving Asymptotes (MMA) [35] is used as the optimizer with
its default settings. Objective and constraint functions are scaled
so that values of less than 100 are sent to the MMA function [55].
The physical scale of the examples we use ensure that the val-
ues of position design variables are on the order of one or less.
The input displacement angle design variable is implemented in
radians with bounds equal to the starting angle plus and minus
𝜋, so that its numerical value is appropriately scaled for MMA as
well. Depending on the problem, bounds on the positional design
variables are either set to a distance of 2𝑟 greater than the maxi-
mum or less than the minimum coordinates of the design domain
(to allow the optimizer to effectively remove supports by mov-
ing them outside of the design domain), or to a distance of 𝑟 less
than the maximum and greater than the minimum (to prevent
the optimizer from removing supports). The specific choice of
bounds used for the positional variables are noted in the following
subsections for each example. Table 1 shows the common param-
eters used in all of the following examples. For the structure of the
compliant mechanisms, we model a flexible rubber-like material
by using an elastic modulus of 𝐸0 = 10 MPa and a Poisson’s ratio
of 𝜈 = 0.49. A much stiffer material is used for the support struc-
ture with elastic modulus 𝐸

𝑠
= 2000 MPa and Poisson’s ratio 𝜈

𝑠
=

0.3, giving the shear modulus as 𝐺
𝑠
= 𝐸

𝑠
∕(2(1 + 𝜈

𝑠)). The SIMP
stiffness penalty parameter is set to a constant of 𝑝 = 3. For the
strain energy interpolation between linear and nonlinear model-
ing, we use values for 𝛽 ranging from 500 to 2000 depending on
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TABLE 1 | Optimization Parameters: Common.

Parameter Symbol Value

Design Material Elastic Modulus 𝐸0 10 MPa
Design Material Minimum Elastic
Modulus

𝐸min 𝐸0 × 10−9

Design Material Poisson’s Ratio 𝜈 0.49
Support Material Elastic Modulus 𝐸

𝑠
2000 MPa

Support Material Poisson’s Ratio 𝜈
𝑠

0.3
SIMP Penalty 𝑝 3
Energy Interpolation Threshold 𝜌0 0
Super-Gaussian Base 𝑏 2
Super-Gaussian Superscript 𝑃 4
Smooth Min/Max Superscript 𝑄 12

the problem. We use 𝜌0 = 0 in all problems, as this resulted in bet-
ter convergence to solid-void solutions compared with the higher
values of this parameter used in the original paper for the method
[44], which tended to leave more gray areas in some problems. In
the super-Gaussian projection function, we use 𝑏 = 2 so that the
radius 𝑟 corresponds to the contour of 50% density, and a super-
script of 𝑃 = 4 to create flat-topped projections with sufficiently
smooth edges. The parameter for the smooth minimum and max-
imum functions is set to 𝑄 = 12. In the displacement-control
algorithm, the convergence tolerance for the residual norm in
the corrector loop is set to 1 × 10−6 and the maximum number
of corrector iterations is set to 20. The topology optimization is
considered converged when all constraint functions are satisfied
and the average change in the density design variables compared
to the previous iteration is less than 1 × 10−4 [56].

In the design plots, the elements are shaded according to their
physical density values, 𝜌

𝑒
. The optimized designs will always

have intermediate density (gray) elements present due to the den-
sity filtering of Section 2.1, which enforces a minimum length
scale over which the physical density can transition from solid
to void. Larger density filter radii leave more gray elements in
the final designs. The support locations are shown by red dots
and the load location is shown by a blue dot. The input displace-
ment direction is shown by the blue arrow. The mesh has been
colored red and blue for the supports and load, respectively, and
the opacity of the colored meshes represents the relative magni-
tude of the spring stiffness or load magnitude to visually display
how the boundary conditions are applied.

6.1 | Maximum Displacement

Maximizing the displacement at specified output points given a
fixed input force or displacement is a common design objective
in topology optimization of compliant mechanisms. A frequently
used benchmark problem is a gripper mechanism with a single
input force and two supports. In the majority of cases in the liter-
ature, a square design domain is used with the load applied at the
middle of the left edge and the supports applied at the upper left
and lower left corners [4, 33, 34, 46, 57, 58]. We use this configu-
ration for the starting condition, which is illustrated in Figure 5.

FIGURE 5 | The initial conditions for the maximum displacement
gripper problem.

TABLE 2 | Optimization parameters: Gripper.

Parameter Symbol Value

Element Size ℎ 1.5 mm
Number of Elements 𝑁

𝑒
9,812

Domain Thickness 𝑡 1 cm
Support Thickness 𝑡

𝑠
1 cm

Density Filter Radius 𝑟min 3 mm
Super-Gaussian Radius 𝑟 2.5 mm
Input Displacement Length ‖‖𝑼 in

‖‖ 5 mm
Output Spring Stiffness 𝑘out 300 N∕m
Energy Interpolation Sharpness 𝛽 500
Move limits: 𝝆 0.2
Move limits: 𝑿

𝑠
, 𝒀

𝑠
2.5 mm

Move limits: 𝑋
𝑓
, 𝑌

𝑓
2.5 mm

Move limit: 𝜃 5˚

The design domain is a 10 × 10 cm square with a 2 × 2 cm square
cut away from the center of the right edge to form the jaws of
the gripper. The output points are at the upper and lower right
corners of the cut-out, and maximizing the output displacement
causes these two points to move together as shown by the black
arrows. Spring elements of stiffness 𝑘out are attached to the out-
put points to simulate the stiffness of a workpiece, which ensures
the mechanism can transfer a reasonable amount of load from the
input. Fixed non-design regions of solid material are placed along
the jaws to guarantee that the entire gripping surface is present
in the final design.

The optimization parameters specific to this example are listed in
Table 2. A mesh of approximately 10,000 elements is used, with
the design and support material thicknesses both set to 1 cm. The
radius of the density filter is set to 3 mm, the radii of the boundary
condition points are each set to 2.5 mm, the actuator stroke is set
to 5 mm, and the output springs are given a stiffness of 300 N∕m.
The move limits, which set the maximum allowed change in the
design variables in a single iteration of the optimization, are set
to 0.2 for the densities, 2.5 mm for the boundary condition loca-
tions, and 5 degrees for the input displacement angle.

10 of 20 International Journal for Numerical Methods in Engineering, 2025
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FIGURE 6 | Results of the maximum displacement gripper problem. The undeformed and deformed configurations are shown for each design. (a)
The design generated with the boundary conditions fixed in their initial configuration. (b) The design generated when allowing the boundary conditions
to move from their starting positions.

Solving for four displacement steps in the nonlinear finite ele-
ment analysis, the optimization problem consists of maximizing
the displacement at the final step. The volume fraction of mate-
rial is limited to 30%, and the input forces are constrained at
each of the four steps such that the upper limit of actuator force
increases linearly with input displacement, helping to prevent
the optimization from attempting to take advantage of buckling
responses. At the maximum stroke length, the maximum allowed
input forces are set to 30 N and 7.5 N for the in-line and lateral
components, respectively. Mathematically, this optimization
problem is given by the statement:

maximize ∶
𝜻

𝑈
(4)

out

subject to ∶ 𝑉
𝑓

< 0.3
𝐹

(𝑚)

in <
30
4
𝑚 N, 𝑚 = 1, 2, 3, 4

−
7.5
4

𝑚 N < 𝐹
(𝑚)

𝑝
<

7.5
4

𝑚 N, 𝑚 = 1, 2, 3, 4 (63)

where the output displacement objective function has been cal-
culated using two non-zero degrees of freedom in the selector
vector of Equation (59), making it a sum of the two output dis-
placements. The minimum and maximum allowed values for the
load and support location design variables are set to keep them
inside the design domain, at least a distance of 𝑟 from the edges
of the square.

The optimization is performed once with the boundary
conditions constrained to remain in their initial conditions,
resulting in the design shown in the first row of Figure 6 which
achieves an objective function value of 𝑈

(4)

out = 1.09 cm. This is
a typical outcome for the gripper problem and similar designs
can be seen in many other papers [4, 33, 46, 57, 58]. The second
row of Figure 6 shows the results after running the optimization
with unconstrained boundary conditions. A much different,
asymmetrical design is produced where the boundary conditions
have moved further inside the domain with the actuator at an
angle. For the same input stroke length, the variable bound-
ary condition design achieves an objective function value of
𝑈

(4)

out = 1.71 cm, a 57% improvement over the fixed boundary
condition design. The force-displacement curves are plotted in
Figure 7, showing that many of the constraints on the force
have become active with variable boundary conditions, but none
have in the case of fixed boundary conditions due to the more
restricted design space. The optimization converges in 511 iter-
ations with fixed boundary conditions, and in 623 with variable
boundary conditions. Although not all problems have required
more iterations with variable boundary conditions, this may be
happening in some cases because a larger design space is being
traversed with small move limits on the positional variables.

We also observe that despite using a symmetrical initial design
with symmetrical boundary conditions, the optimizer was able
to find a higher-performing asymmetrical design. As noted by
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FIGURE 7 | Force-displacement curves for the maximum displacement gripper designs. (a) Force applied by the actuator, 𝐹in. (b) Lateral reaction
force on the actuator’s guide structure, 𝐹p.

Bruns et al. [53], this may be because of physically asymmetric
deformation modes or numerical round-off errors that introduce
asymmetry in the design. It is not clear exactly where the asym-
metry is being introduced, however we also experienced loss
of symmetry in our previous study using linear elasticity [22],
which makes it seem likely that the cause is at least partly due to
numerical round-off errors and not entirely due to asymmetrical
nonlinear deformation modes.

6.2 | Bistability

For the bistable structure design problem, we base our test case
on the example of a bistable morphing airfoil by Bhattacharyya
et al. [30]. The idea of the design problem is to generate a mono-
lithic aileron structure and mechanism that, once actuated, snaps
through and passively maintains a high-camber configuration
with no additional load input.

Topology optimization of snap-through or bistable structures
performs best when using a finite element analysis solution
method that is capable of tracing load–displacement curves
with snap-back trajectories, such as the arc-length method by
Bruns et al. [53]. However, the arc length method as presented
in reference [53] is load-controlled and is not able to solve
for multiple displacement components, which we need for the
guided actuator formulation of this work. Instead, we use our
displacement-control algorithm while placing optimization con-
straints on the load–displacement curve to avoid snap-back
behaviors that would otherwise cause the solver to diverge.

The design domain for the problem is a NACA 0012 airfoil with
a chord length of 20 cm, shown in Figure 8. The output point is
at the trailing edge, with the goal of making it move downwards
a distance of 5 mm against the resistance of a spring. The initial
boundary conditions are those selected by Bhattacharyya et al.
[30], which represent the best configuration the authors were able
to find by manual trial and error. Two supports are placed at the
top and bottom edges, at a distance of 6 cm from the leading edge

FIGURE 8 | The initial conditions for the bistable airfoil problem.

TABLE 3 | Optimization parameters: Bistable airfoil.

Parameter Symbol Value

Element Size ℎ 1 mm
Number of Elements 𝑁

𝑒
7,680

Domain Thickness 𝑡 1 cm
Support Thickness 𝑡

𝑠
1 cm

Density Filter Radius 𝑟min 4 mm
Super-Gaussian Radius 𝑟 2 mm
Input Displacement Length ‖‖𝑼 in

‖‖ 2.5 mm
Output Spring Stiffness 𝑘out 100 N∕m
Energy Interpolation Sharpness 𝛽 2000
Move limits: 𝝆 0.05
Move limits: 𝑿

𝑠
, 𝒀

𝑠
0.5 mm

Move limits: 𝑋
𝑓
, 𝑌

𝑓
0.5 mm

Move limit: 𝜃 1˚

of the airfoil. The actuator is placed on the chord line between
the supports and is pointed directly to the right. A third support
functions as the aileron hinge and is placed at the bottom edge,
6 cm away from the trailing edge.

The parameters used for the optimization are shown in Table 3.
A larger density filter radius is used to avoid slender structures
and reduce buckling-related oscillations. The move limits are

12 of 20 International Journal for Numerical Methods in Engineering, 2025
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also reduced to obtain smoother convergence with less severe
oscillations.

The optimization problem consists of solving for multiple points
along the load–displacement curve and minimizing the force
of the last point, with the goal of achieving a negative value.
Other input forces are constrained to tailor the rest of the
force-displacement curve to avoid snap-back, and a constraint is
used on the output displacement to cause the deflection of the
aileron. Solving for eight evenly distributed displacement points,
the formulation we use is written as:

minimize ∶
𝜻

𝐹
(8)

in

subject to ∶ 𝑉
𝑓

< 0.4
𝑈

(8)

out > 5 mm
𝐹

(1)

in > 2 N
𝐹

(𝑚)

in < 15 sin
(
𝜋

𝑚

6

)
+ 5 N, 𝑚 = 1, 2, . . . , 6

−5 N < 𝐹
(𝑚)

𝑝
< 5 N, 𝑚 = 1, 2, . . . , 8 (64)

The upper and lower limits on the load and support loca-
tions are set such that they may move outside of the design
domain if doing so improves the objective function. This allows
the optimizer to completely remove unnecessary supports. The
sine wave upper-bound on the input forces 𝐹

(𝑚)

in causes the
load–displacement curve to turn downwards earlier than it oth-
erwise would, eliminating a snap-back behavior that caused the
displacement-control algorithm to fail.

The resulting designs and their convergence plots are shown in
Figure 9. The number of iterations to convergence is 470 for
fixed boundary conditions, but only 380 for variable boundary
conditions. The rate of convergence in the first 100 iterations
also appears to be significantly faster, showing that allowing
the algorithm to adjust the boundary conditions can improve

convergence in some cases. Since a snap-through response is
itself a buckling behavior, we encountered oscillations in the
objective functions of both cases. In the study on topology
optimization for snap-through mechanisms by Bruns and Sig-
mund [54], they also report these oscillations and attribute them
to the optimization switching between designs that do have a
snap-through response and designs that do not. Since the stop-
ping criteria is based on average changes in element density, the
optimization is still able to converge with these small objective
function oscillations.

The load–displacement curves of each design are shown in
Figure 10, which were obtained in a post-analysis where the input
displacement was solved in small increments up to a longer stroke
length of 4 mm. The applied actuator load–displacement curve
for the fixed boundary condition design shows that it fails to
achieve bistability, with a positive force of 1.0 N at the eighth dis-
placement control point, while the variable boundary condition
design successfully reaches a negative force of −4.6 N. With the
ability to adjust the load and support positions, the optimization
increased the geometric advantage of the mechanism by mov-
ing the actuator closer to the upper support. With the shorter
moment arm around the support, the actuator also must apply
a greater force to create the given input displacement, result-
ing in a stronger snap-through effect. The center point of the
upper support also moves slightly outside of the design domain,
reducing the size of the supported area and allowing the link to
rotate about it more easily. Again, for this design problem more
constraints on force have become active with variable boundary
conditions compared to fixed boundary conditions.

The results of this problem show that a relatively minor change
in boundary conditions can mean the difference between a failed
and a successful design. In the previous work of Bhattacharyya
et al. [30], the thickness-to-chord ratio of the airfoil had been dou-
bled to give a larger design domain. Here, we used the true NACA

FIGURE 9 | Results of the bistable airfoil problem. Undeformed configurations, deformed configurations, and optimization convergence plots are
shown for each design. (a) The design generated with the boundary conditions fixed in their initial configuration. (b) The design generated when
allowing the boundary conditions to move from their starting positions.
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FIGURE 10 | The force-displacement curves of the bistable airfoil
designs. The circular markers show the original eight displacement con-
trol points that were solved for in the optimization process. (a) Force
applied by the actuator, 𝐹in. (b) Lateral reaction force on the actuator’s
guide structure, 𝐹p.

0012 airfoil which is a more difficult optimization problem. Using
the configuration that had been successful in the previous designs
of [30] did not work, and it was necessary to optimize the bound-
ary conditions to achieve bistability.

6.3 | Path Generation

In path generation problems, the entire path of the output point is
specified and the mechanism is optimized to follow that motion
as closely as possible. We investigate two test cases based on
the horizontal line generation problem from the work of Ped-
erson et al. [33] and the morphing wing design problem from
the research of Reinisch et al. [34]. The path generation formula-
tions in these studies work by defining a set of 𝑚 precision points
that the output location of the mechanism should move through
at each of the 𝑚 input displacement states. An error function
is used for the objective function which minimizes the differ-
ence between the actual path and the desired path. Instead of
using springs attached to the output points to achieve structurally
stiff mechanisms, the path generation problems use multiple load
cases where, in each additional load case 𝑖, counter forces are
applied to the output point to resist its motion. By simultaneously
minimizing the output path error in all load cases, fully solid and
structurally stiff mechanisms are generated which can perform
useful work against external forces.

6.3.1 | Line Generator

The design domain and initial conditions for the horizontal line
generator problem are shown in Figure 11. A rectangular design

FIGURE 11 | The initial conditions for the horizontal line generator
path generation problem. The precision points are shown by the green
dots.

TABLE 4 | Optimization parameters: Line generator.

Parameter Symbol Value

Element Size ℎ 1.2 mm
Number of Elements 𝑁

𝑒
20,290

Domain Thickness 𝑡 1 cm
Support Thickness 𝑡

𝑠
1 cm

Density Filter Radius 𝑟min 2.4 mm
Super-Gaussian Radius 𝑟 3 mm
Energy Interpolation Sharpness 𝛽 500
Input Displacement Length ‖‖𝑼 in

‖‖ 1 cm
Horizontal Counter Force 𝑓1 5 N
Vertical Counter Force 𝑓2 5 N
Move limits: 𝝆 0.2
Move limits: 𝑿

𝑠
, 𝒀

𝑠
3 mm

Move limits: 𝑋
𝑓
, 𝑌

𝑓
3 mm

Move limit: 𝜃 2˚

domain is used with the output point at the upper-right corner.
Four precision points are used to define a straight output path
moving 2 cm to the right. Two counter load cases are used, where
the first applies a horizontal force 𝑓1 pointing to the left and
the second applies a vertical force 𝑓2 pointing downwards. The
boundary conditions are initialized at the bottom edge with the
configuration used in [33]. Solid non-design regions are placed
around the output point to avoid placing the counter forces on
low-density elements, which would cause the nonlinear analysis
to diverge. The specific parameters for the problem are listed in
Table 4.

The optimization problem formulation for the horizontal line
generator is

minimize ∶
𝜻

3∑
𝑖=1

4∑
𝑚=1

[(
𝑋

(𝑚,𝑖)

out − 𝑋
∗(𝑚)

out

)2
+

(
𝑌

(𝑚,𝑖)

out − 𝑌
∗(𝑚)

out

)2
]

subject to ∶ 𝑉
𝑓

< 0.2
𝐹

(𝑚)

in < 20 N, 𝑚 = 1, 2, 3, 4

−5 N < 𝐹
(𝑚)

𝑝
< 5 N, 𝑚 = 1, 2, 3, 4 (65)

14 of 20 International Journal for Numerical Methods in Engineering, 2025

 10970207, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7613, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 12 | Results of the horizontal line generator problem. The undeformed and deformed configurations are shown for each design. (a) The
design generated with the boundary conditions fixed in their initial configuration. (b) The design generated when allowing the boundary conditions to
move from their starting positions.

where 𝑋
(𝑚,𝑖)

out , 𝑌
(𝑚,𝑖)

out are the positions of the output point at each
input displacement 𝑚, for each load case 𝑖, and 𝑋

∗(𝑚)

out , 𝑌
∗(𝑚)

out are
the corresponding coordinates of the precision points. The load
and support locations are also constrained to stay within the
design domain, at least a distance 𝑟 from the edges.

Running the problem for the fixed and variable boundary
condition cases results in the designs shown in Figure 12. The
number of iterations to convergence is 442 and 155 for fixed and
variable boundary conditions, respectively, again showing that
in some cases fewer design iterations may be required. The fixed
boundary condition problem generates a design similar to the
line generator in the study this problem is based on [33]. For
the variable boundary condition design, the actuator and each
support move upwards by several centimeters, the actuator and
the nearby support move closer to one another horizontally,
and the actuator rotates clockwise by 35˚. These changes in the
boundary conditions lead to a design which more closely follows
the straight path of the precision points, giving a value of the
path error objective function that is only 43% the value of the
fixed boundary condition design’s. Using the average distance
of the output point from the precision points as a performance
metric, the variable boundary condition design’s path compared
to the fixed boundary condition design’s is, on average for all
three load cases, only 68% of the distance to the precision points,
or 1.47 times closer.

To show the improvement visually, the actual output paths of the
mechanisms are plotted next to the precision points in Figure 13
by running the finite element analysis on the final designs using
small displacement steps. The path of the variable boundary
condition design is closer to the straight line of the precision
points in the second and third load cases, but is slightly farther
for the first load case where the average distance of the output

FIGURE 13 | The actual output paths of the horizontal line generator
mechanisms. The units of the axes are in meters. (a) The first load case
with no counter forces applied. (b) The second load case with the hori-
zontal counter force 𝑓1 applied at the output. (c) The third load case with
the vertical counter force 𝑓2 applied at the output.

point along the path from the four precision points is 0.55 mm for
the fixed boundary condition design and 0.63 mm for the variable
boundary condition design. For the second load case, these aver-
age distances are 3.1 and 1.9 mm, and for the third load case they
are 2.2 and 1.5 mm. The load–displacement curves are shown in
Figure 14.
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FIGURE 14 | Force-displacement curves for the horizontal line generator designs. (a) Force applied by the actuator, 𝐹in. (b) Lateral reaction force
on the actuator’s guide structure, 𝐹p.

FIGURE 15 | The initial conditions for the morphing wing path gen-
eration problem. The precision point is shown by the green dot.

6.3.2 | Morphing Wing

The setup of the morphing wing problem is shown in Figure 15.
We use the leading 30% of a 20 cm long NACA 0012 airfoil as the
design domain. The output point and boundary conditions are
placed based on the configuration chosen in [34], where two sup-
ports represent the wing spar and the guided actuator is placed
near the bottom surface of the wing pointing towards the rear. A
solid non-design region is placed around the upper part of the
domain to create the skin that will bend as the wing changes
shape. To keep the skin attached to the spar, a third support
is placed slightly above the upper-right corner and kept fixed,
even in the variable boundary condition case. A void non-design
region is placed between the skin and the interior of the wing to
ensure the internal mechanism remains separate from the skin,
except at the attachment to the output point. A single precision
point is placed 2.5 mm behind and 5 mm below the output point,
which represents the position this point on the wing should move
to in its morphed state. Two counter load cases are used, with a
horizontal force pointing to the right to represent a drag force,
and a vertical force pointing upwards representing a lifting force.
A solid non-design region is placed around the output point. The
parameters for this problem are listed in Table 5.

The optimization problem formulation for the morphing wing is
written as

TABLE 5 | Optimization parameters: Morphing wing.

Parameter Symbol Value

Element Size ℎ 0.5 mm
Number of Elements 𝑁

𝑒
10,828

Domain Thickness 𝑡 1 cm
Support Thickness 𝑡

𝑠
1 cm

Density Filter Radius 𝑟min 1 mm
Super-Gaussian Radius 𝑟 2 mm
Energy Interpolation Sharpness 𝛽 500
Input Displacement Length ‖‖𝑼 in

‖‖ 2 mm
Horizontal Counter Force 𝑓1 1 N
Vertical Counter Force 𝑓2 1 N
Move limits: 𝝆 0.2
Move limits: 𝑿

𝑠
, 𝒀

𝑠
1 mm

Move limits: 𝑋
𝑓
, 𝑌

𝑓
1 mm

Move limit: 𝜃 5˚

minimize ∶
𝜻

3∑
𝑖=1

[(
𝑋

(𝑖)

out − 𝑋
∗

out

)2
+

(
𝑌

(𝑖)

out − 𝑌
∗

out

)2
]

subject to ∶ 𝑉
𝑓

< 0.3
𝐹in < 20 N

−5 N < 𝐹
𝑝

< 5 N (66)

In this problem, the load and support locations are completely
unconstrained and may move outside of the design domain if the
optimizer finds it advantageous.

The results of the optimization for fixed and variable bound-
ary conditions are shown in Figure 16, and the output paths of
the optimal designs for each load case are shown in Figure 17.
Load–displacement curves are shown in Figure 18. Once again,
the fixed boundary condition design is similar to the result
of the study the problem is based on [34]. For the variable
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FIGURE 16 | Results of the morphing wing leading edge problem. (a) The design generated with the boundary conditions fixed in their initial
configuration. (b) The design generated when allowing the boundary conditions to move from their starting positions.

FIGURE 17 | The actual output paths of the morphing wing leading
edge mechanisms. The units of the axes are in meters. (a) The first load
case with no counter forces applied. (b) The second load case with the
horizontal counter force 𝑓1 applied at the output. (c) The third load case
with the vertical counter force 𝑓2 applied at the output.

boundary condition design, the actuator and one of the two
supports move closer to the output point, while the other sup-
port is moved out of the domain allowing its material to be
used in the mechanism’s structure instead. The output path
passes 4.8 times closer to the precision point, at 21% the dis-
tance of the fixed boundary condition design averaged across
the three load cases. The paths plotted in Figure 17 show that

in the first load case with no counter force the variable bound-
ary condition design morphs to a distance of only 0.11 mm
from the target position, while the fixed boundary condition
design misses it by eight times that distance, at 0.91 mm from
the precision point. In the counter-loaded cases, the variable
boundary condition design still comes close to the target posi-
tion at distances of 0.31 mm for load case two and 0.45 mm
for load case three, while the fixed boundary condition design
is pushed further away by the counter forces and only comes
to 1.4 mm (4.5 times further) and 1.9 mm (4.2 times further)
from the precision point in the second and third load cases,
respectively.

In this case, a significantly higher number of iterations are
required for variable boundary conditions, at 1660 compared
to 569 for fixed boundary conditions which may be due to the
boundary condition points traveling a large distance across the
design domain with small move limits.

For both the line generator and morphing wing variable bound-
ary condition examples, the increases in performance under
minimal external loading are due to the better placement of
the supports and actuator for achieving the target motions.
Comparing the counter-loaded cases to the first load case,
the larger increases in distance from the precision points for
the fixed boundary condition designs show that the changes
in the load and support layouts have also allowed for stiffer
optimal structures. These results thus clearly demonstrate the
importance of boundary condition placement for both the
kinematic and structural aspects of compliant mechanism
performance.

17 of 20

 10970207, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7613, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 18 | Force-displacement curves for the morphing wing designs. (a) Force applied by the actuator, 𝐹in. (b) Lateral reaction force on the
actuator’s guide structure, 𝐹p.

7 | Conclusions

In this work, we presented a nonlinear elastic, displacement-
controlled topology optimization framework that incorporates
the spatial configuration of the boundary conditions as design
variables. Expanding on work done for variable loads and sup-
ports in linear elasticity [22], we formulated the hyperelastic
finite element model, nonlinear governing equations, iterative
Newton–Raphson solution algorithm, and adjoint sensitivity
equations necessary to achieve a continuously variable input
displacement location and orientation. Coupling this capability
with variable support locations, we tested the method on sev-
eral types of nonlinear compliant mechanism synthesis prob-
lems. In an effort to make an unbiased comparison of the designs
our algorithm produced to those that typical topology optimiza-
tion might generate in the hands of a skilled engineer, we ran
each of our test problems both with and without variable bound-
ary conditions. The initial locations of the boundary conditions
were set as the configurations chosen by other researchers in
previous compliant mechanism optimization studies, which rep-
resent what a good engineer might choose using their intuition
or trial-and-error based methods. In all examples, using variable
boundary conditions produced large improvements over designs
obtained using fixed boundary conditions. In the bistable mor-
phing airfoil problem, the fixed boundary condition design failed
outright to achieve the design goal, while the variable bound-
ary condition design achieved bistability with a relatively small
change to the actuator and support positions. These results high-
light the difficulty in relying on human intuition for selecting
effective boundary conditions and underscore the need for auto-
mated methods like the one developed in this work.

Despite the positive results showing the effectiveness of variable
boundary conditions, the framework nevertheless has several
limitations that should be addressed in future research. The use of
a pure displacement-control algorithm prevented us from effec-
tively solving bistable structural optimizations where snap-back
behaviors occurred. A different algorithm that is able to trace
load–displacement paths through limit points should be devel-
oped or extended to be compatible with a variable actuator posi-
tion. Another issue is that in some cases the number of itera-
tions to convergence can be computationally limiting, such as for
the morphing wing of section 6.3.2 where the optimization com-
pleted after 1660 iterations. A worthwhile task for future research

would be to find effective ways of reducing the required num-
ber of iterations. The combination of position and density design
variables in a single optimization formulation may contribute to
slow convergence since their sensitivities can span many orders
of magnitude. However, the exact cause requires further investi-
gation. There are also issues associated with nonlinear topology
optimization in general. The divergence of unstable low-density
elements in the Newton–Raphson iterations is not solved com-
pletely by the linear-nonlinear interpolation method [44], which
limits the size of displacements and forces that can be applied.
We also experienced oscillations in the convergence of optimiza-
tions where buckling occurs in the structure. A robust method
for avoiding these buckling oscillations would be very useful for
nonlinear topology optimization methods in general.

The possibilities for new research directions using variable
boundary conditions in topology optimization are numerous.
In compliant mechanism design, more complex and counter-
intuitive mechanisms such as those with multiple degrees of
freedom [59, 60] would likely see similar, or potentially greater,
benefits than we demonstrated here. Koppen [61] describes these
problems as relatively complex, even in some minimum working
examples, due to crossing load paths that make different degrees
of freedom inherently coupled. It is also discussed by Koppen
[61] that these problems are highly constrained, significantly
restricting the space of possible optimized designs and the pos-
sible design changes that can happen during optimizations.
We hypothesize that if the boundary conditions were included
as design variables, the expanded design space would free the
optimizer to take additional routes on the way to the same,
or likely better, optimized designs. Different types of movable
mechanical boundary conditions, such as roller supports, have
not been attempted yet, which could be applied to design mech-
anisms with sliding joints. Alternative methods of determining
the optimal layouts of the boundary conditions, such as by using
free-form design methods instead of the feature-mapping method
used here, could be investigated as well. Greater control over
positional design variables could be implemented, such as by con-
straining points to remain a certain distance away from the edges
of non-rectangular design domains. Lastly, optimizing variable
boundary conditions for each physics discipline in multiphysics
problems holds much potential, for example, in the design of
electrothermal actuators [6, 7]. If optimal placements of all six
types of boundary conditions including elastic supports, applied
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forces, applied temperatures, prescribed heat fluxes, applied volt-
ages, and prescribed currents were all simultaneously optimized
along with material distribution, it would greatly expand the
design space and much better optimal designs may be discovered.
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