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ABSTRACT

The physical and mechanical characterization of the subsurface under hillslopes is critical for
understanding the distribution of mass wasting by landslides and debris flows, which are two
significant processes that drive topographic change in steep environments. Hillslope
environments are notoriously spatially complex. However, subsurface characterization is rarely
performed on regional scales due to challenges in characterizing highly localized variations.
Common methods for subsurface characterization involve costly site-specific sampling and
testing leading to point measurements or regional remote sensing techniques. Currently, a gap in
scale compatibility exists between site-specific analysis where characterization of the subsurface
is robust but spatially limited and regional hazard analyses where characterization is limited to
regionally broad categories based on lithology, slope, and/or vegetation. This research explores
electromagnetic induction (EM) as a scalable approach to characterize relative differences in
physico-mechanical properties of the subsurface in steep terrain where mass wasting is common.
For this study, EM data was collected in different geologic units across southwest Puerto Rico
(PR), then converted to apparent resistivity values. The apparent resistivity of lithologic groups
and limestone subunits were statistically compared leveraging the large datasets collected. Two
study areas are selected to examine spatial trends and the effects of topographic factors. The
results indicate that EM can detect differences between and within geologic units/subunits and
help estimate subsurface heterogeneity where detailed mapping is unavailable.

INTRODUCTION

As the global population continues to grow, increasing urbanization and population density
exposes more people to natural hazards such as hurricanes, earthquakes, and landslides (Donner
and Rodriguez 2008). Puerto Rico is a Caribbean Island and United States territory located
approximately 1,600 km from the coast of Florida that experiences many of these hazards. In
2017, Hurricane Maria caused tens of thousands of landslides which significantly damaged
infrastructure and killed 64 people (Silva-Tulla et al. 2018, Morales et al. 2022). The 2019-2020
earthquake sequence caused two deaths and at least 800 landslides in a variety of geologic units
(Morales-Velez et al. 2020). In 2022, Hurricane Fiona killed one person, severely damaged
infrastructure, and caused thousands of landslides (Morales et al. 2022). Landslides in these three
events ranged from shallow debris flows and rockfall to deep seated landslides, with some
geologic units experiencing much higher landslide concentrations than others (Silva-Tulla et al.



2018, Morales-Velez et al. 2020, Morales et al. 2022). Characterizing variation within and
between geologic units and subunits is critical for understanding the spatial distribution of
landsliding as well as for landslide modeling and hazard prediction. However, scalable
approaches that can be used to characterize large areas are lacking. In this study, EM is used as a
scalable geophysical method for subsurface characterization of large areas.

EM is a geophysical method used to detect spatial differences in conductive materials of the
subsurface without direct contact (Doolittle and Brevik 2014, Finco et al. 2023). Given EM is a
rapid, non-invasive, and non-contact method, it can be a cost-effective technique to survey larger
areas compared to other geophysical methods such as seismic geophysics or direct contact
electrical resistivity tomography (Doolittle and Brevik 2014, Finco et al. 2023). EM uses an
electrical current run through a transmission coil at preset frequencies to create a magnetic field.
This primary magnetic field then induces eddy currents in conductive materials within the
subsurface. The eddy currents create a secondary magnetic field which is measured in a
secondary receiver coil at the surface. Both the primary and secondary magnetic fields are
received at the receiving coil so some devices (including the one used in this study) have a third
“bucking” coil to remove the signal of the primary field (Won et al. 1996, Finco et al. 2023). The
relative change of impedance between the two coils in parts per million (PPM) is the raw signal
of EM. The difference in phase and amplitude provides information on the subsurface (Won et al.
1996, Allred et al. 2008, Finco et al. 2023). The depth of investigation for EM is dependent on
the subsurface conditions, the frequency of transmitted signal, and separation between the
transmitting and receiving coil (Won et al. 1996, Huang 2005, Allred et al. 2008).

EM is sensitive to factors that affect electrical conductivity such as moisture, clay content,
mineralogy, soil texture, salinity, organics, gradation, density, weathering, induration, and
silification (Allred et al. 2008, Doolittle and Brevik 2014, Hubbard et al. 2021, Mohammed
2022). EM has been used in the mining industry for mineral prospecting (Smith 2013) and for
soil studies to map clay content such as Triantafilis and Lesch (2005). Other studies such as
Hubbard et al. (2021) used EM to map soil classes for wine vineyards and Mohammed et al.
(2022) used EM to look at soil texture and salinity. However, most of these studies use near
surface EM with a focus on environmental, ecological, petrological, and hydrological
applications. In geotechnical applications, Godio and Bottino (2001) and McCann and Forster
(1990) used EM for site-specific landslide characterization, recognizing its value in identifying
landslide geometry, hydrogeological regime, and clay content, but did not apply the method at
large scales. A gap in existing literature exists between using EM for site-specific and regional
applications. Although handheld electromagnetic devices are commonly employed in
environmental applications, the field of geologic mapping predominantly utilizes airborne EM.
In this paper, we present an innovative application of handheld EM technology as a versatile
multiscale geotechnical assessment tool for discerning variability in subsurface properties. This
novel methodology entails the application of a well-established approach, harnessing handheld
EM instruments across varying scales. This expansion broadens its potential utilization and
amalgamates prior applications, thereby enhancing its efficacy within the realm of geotechnical
analysis.

DATA AND METHODS

Data Collection. EM data was collected using a GEM2 frequency domain
electromagnetic sensor (FDEM) produced by Geophex Ltd. that utilizes continuous energy



transmission of multiple frequencies simultaneously (Won et al. 1996). The device has a fixed
spacing of 1.66m and was operated at a target height between 0.92 m and 1.0 m with minor
variations due to surface conditions. The frequencies used were 450 Hz, 1530 Hz, 5310 Hz,
18330 Hz, and 63030 Hz with concurrent data collection of all frequencies. These frequencies
were selected to provide a range of depths as frequency is inversely related to depth of
investigation. The GEM2 sampling rate was set to 10 Hz and was operated in horizontal coplanar
mode. Two Emlid RS2 multi-band GPS receivers were deployed in real-time kinematic (RTK)
mode to achieve precise GPS positioning for EM data acquisition.

Data collection occurred between May 26, 2022 - May 31, 2022. Approximately 156,000 EM
data points were collected around the southwest quadrant of the island totaling approximately
22.5 km of survey transects (Figure 1). Data was collected in a variety of different geologic units,
topographic conditions, and climatic environments.

Figure 1. Maps and pictures of data collection: (a) spatial extent of EM data collected, (b)
overview map of EM data collected, (c) enlarged map of Ponce Limestone survey, (d) photo

of data collection in arid region, (e) photo of data collection in humid region.

Processing. EM data was processed using ArcGIS Pro for geospatial analysis and filtered
using Python via Jupyter Notebooks. The raw EM signature for each frequency was converted to
apparent conductivity using relationships developed by Won et al. (1996). These apparent
conductivity values were converted to apparent resistivity values as conductivity and resistivity
are inversely related. Apparent resistivity is a derived indirect measurement useful for spatial
comparison but distinct from a material's intrinsic true resistivity. Data filtering was also
conducted including removal of spatially abrupt high resistivity values through a 500 ohm-meter
cutoff that was considered indicative of non-geologic subsurface features. Different lithologies
were also considered using a United States Geologic Survey map (Bawiec 1998). Data in eight
mapped limestone subunits was identified for comparison. These groups and subunits can be
found in Table 1 and Table 2 respectively.

RESULTS AND DISCUSSION
Lithologic Units and Subunits. The statistical median and distribution of apparent

resistivities may potentially distinguish (sub) units of differing mineralogy, grain size, and



weathering degree. Here we show the medians and standard deviations of apparent resistivities
for the mapped lithologic groups (Bawiec 2018) are shown in Table 1 for all frequencies used. In
addition, Figure 2 illustrates box plots representing quantiles for the 63030 Hz frequency, which
is the highest frequency used in the study. To mitigate outlier effects from anthropogenic sources,
the median (as opposed to mean) was chosen for comparison. The metamorphic and plutonic
batholith groups have higher median values and higher standard deviations while the alluvium
group has lower median values and higher standard deviations compared to the other groups
(Table 1 and Figure 2). The greater range in the alluvium data is not surprising given the
expected variability of that unit. The other five groups have intermediate median values with
different standard deviations. Similar trends are also observed for the remaining EM frequencies
as shown in Table 1. Note that the standard deviations get progressively higher at lower
frequencies indicating a lower signal to noise ratio with decreasing frequency and increasing
depth. Nevertheless, the results indicate that there are differences between the various lithologic
units that can be observed in the EM data.

Table 1. Lithologic groupings for comparison based on mapped geologic units.

Figure 2. Violin plots for resistivity distribution of different lithologic groups. Blue dot
indicates median value.

One of the units of particular interest in this study is the limestone unit. The limestone unit
has a median value of 25.9 Ohm-meters and a standard deviation of 20.3 Ohm-meters at 63030
Hz and lower resistivities at lower frequencies. Landslides occurring during the 2019-2020
earthquake sequence were limited to the limestone units (Morales-Velez 2020), which have an
intermediate variation compared to the remaining lithologic units (Table 1 and Figure 2). The
limestone units consist of several subunits and analyses were conducted to observe any
systematic differences in the EM signal between the subunits. The medians and standard



deviations of the limestone subunits can be seen in Table 2 and visualized with box plots
representing quantiles of apparent resistivity for the 63030 Hz frequency in Figure 3. The Ponce
Limestone, the Lower Member of the Parguera Limestone, and the Limestone Member of the
Juana Diaz Formation have higher median values and standard deviations for apparent resistivity
at the 63030 Hz frequency (Table 2 and Figure 3). The other five groups have lower median
values and lower standard deviations. Similar trends are observed for the lower frequencies as
shown in Table 2.

The results indicate that EM can detect systematic differences in physical properties between
the various subunits that are likely correlated with mechanical properties. For example, higher
resistivities are observed for units observed to be more intact and of lower porosity. The
limestone units vary in geologic age where the Cotui formation is the oldest geologic unit (Mid
to upper Cretaceous), followed by the Parguera formation (Upper Cretaceous) and Sabana
Grande formation (Upper Cretaceous), the Juana Diaz formation (Mid Miocene) and the Ponce
formation (upper Miocene) (Monroe 1980). In general, increasing resistivities are observed for
the limestone sub-units with decreasing age. During the 2017 Hurricane Maria, the 2022
Hurricane Fiona, and the 2019-2020 Puerto Rico earthquake sequence, the Juana Diaz formation
was found to have a much higher number of landslides than the Ponce or the Parguera formation
(Silva-Tulla et al. 2018, Morales-Velez et al., 2020, Morales et al. 2022). While the median
values of apparent resistivity for the Parguera, the Juana Diaz, and the Ponce were similar, the
distribution of the data gives a better sense of the variability between and within these units. The
Ponce has a large spread and higher resistivities while the Parguera also has a large spread but
with lower quantiles. The Juana Diaz has a smaller spread and standard deviation, indicating less
variability.

Table 2. Limestone subunits used for comparison based on mapped geologic units.



Figure 3. Violin plots for resistivity distribution of different limestone subunits. Blue dot
indicates median value.

Geospatial Analysis of the Parguera Limestone Data. Spatial variability was also
considered as an additional factor. One of the limestone subunits considered was the Lower
Member of the Parguera Limestone. The spatial distribution of the EM data and the apparent
resistivities at 63030 Hz and 5310 Hz are shown in Figure 4 on satellite imagery basemap.
Systematic differences in resistivity are observed within the same geologic subunit with higher
resistivities observed on the southwestern slopes compared to northeastern slopes. Although EM
cannot provide a definitive reason for these differences, lower resistivities are generally
associated with higher porosity (if saturated) and wetter materials. Observed trends may indicate
a difference in rock structure, degree of fracturing, saturation/water content, mineralogy, clay
content, porosity, or other factors.

Figure 4. Map illustrating geospatial distribution of EM data collected in the Paguera
Limestone Lower Member for (a) 5310 Hz and (b) 63030 Hz.

Additional analyses were conducted to assess the sources of spatial variability including the
influence of topography. Figure 5 illustrates a stacked histogram of apparent resistivity, with
coloration denoting elevation levels. For the Parguera Limestone, low elevation areas have lower
resistivity as shown in Figure 5 and Figure 6. The trimodal distribution of apparent resistivity as
shown in Figure 5 is attributed to the saline water of the ocean and variable water table. Areas
near zero elevation are practically submerged in saline water, whereas areas at higher elevation
are visibly drier.



Figure 5. Stacked histogram of apparent resistivity colored by binned elevation for 63030
Hz apparent resistivity in the Paguera Limestone.

To quantify the relationship between elevation and apparent resistivity, ordinary least squares
(OLS) multivariate regressions were performed using various topographic parameters (elevation,
aspect (defined as the azimuth of a slope), slope, and geographic position) that were derived
from a 1/3 arc-second resolution DEM (USGS 2020). The model regression has an R-squared of
0.847 (Figure 6). A single variable regression against elevation has an R-squared of 0.748, which
is indicative of the importance of elevation, but also the influence of other parameters.

Figure 6. Apparent resistivity for the Parguera Limestone plotted with elevation and
colored by aspect with an OLS multivariate regression.

Geospatial Analysis of the Rio Blanco Mountain Data. In the context of the Parguera
limestone, elevation emerged as the dominant parameter, displaying the strongest correlation
with the observed spatial distribution of apparent resistivity. Analysis was also conducted at the
Rio Blanco Mountain, located in the predominantly breccia and tuff Milagros Formation. Figure
7 shows the EM data plotted geospatially for 63030 Hz and 18330 Hz using a 1/3 arc-second
resolution DEM for the basemap (USGS 2020). As depicted in Figures 7 and 8, a discernible
pattern emerges, revealing higher resistivity values in the southwestern region compared to the
northeast. Geospatial and multivariate regression analysis confirms aspect as the parameter with
the most substantial observed correlation.



Figure 7. Geospatial distribution of EM data collected around Rio Blanco Mountain for:
(a) 18330 Hz data and (b) 63030 Hz data.

Figure 8. Apparent resistivity related to aspect and elevation visualized on (a & c) a
cartesian plot, and (b) a polar plot where distance from the origin represents apparent

resistivity.

Figure 8 presents apparent resistivity in color-coded form, emphasizing its correlations with
aspect and elevation. Specifically, Figure 8c depicts apparent resistivity in relation to elevation
but color-coded by aspect, revealing that aspect overwhelmingly influences the signal,
potentially overshadowing any elevation-related patterns. Notably, the results unveil a distinct
non-linear trend with aspect, as depicted in Figures 8a and 8b, diverging from observations in the
Parguera Limestone (Figures 8 and 6, respectively).

Figure 9. Apparent resistivity with an OLS multivariate regression in Parguera Limestone
based on all DEM parameters plotted against aspect.

Figure 9 shows the 63030 Hz apparent resistivity with aspect and the results of an OLS
regression model. The regression model incorporates elevation, aspect, slope, geographic
position, and NDVI as parameters, resulting in an R-squared value of 0.779. Performing the OLS
regression solely with aspect yields a lower R-squared value of 0.585 indicating aspect has a
strong relationship to apparent resistivity but that other parameters such as elevation also have a
substantial influence on the model.

While variations in mineralogy, porosity, clay content, and other factors may exist and are
likely to cause some of the observed differences, it is probable that the observed localized
differences in apparent resistivity primarily stem from moisture variations, akin to the earlier
example seen in the Parguera Limestone. Factors such as microscale orographic effects,
impacting precipitation patterns, or differential solar radiation across aspects, affecting moisture
retention in the shallow subsurface, warrant further exploration. This topic requires additional



investigation but has implications for geotechnical and regional hazard analysis as subsurface
materials may have different mechanical properties and weathering rates.
CONCLUSIONS

Characterizing the subsurface across various scales in steep geologic environments is
essential for accurate regional subsurface modeling and natural hazard risk assessment. This
study demonstrates the capability of electromagnetic (EM) technology to create geospatial
datasets that describe the shallow subsurface across scales, from meters to kilometers, providing
an opportunity to integrate site-specific and regional estimates of subsurface variability. The
spatial variation captured by the data offers valuable insights into influential topographic factors.
EM's cost-effectiveness and scalability make it valuable for site-specific and regional hazard
analysis. Further research is needed to validate and correlate EM data with traditional
geotechnical tests.

This paper presents an innovative approach that employs handheld electromagnetic (EM)
technology as a versatile and adaptable tool for investigating multiscale subsurface variability in
geotechnical contexts. By merging and applying well-established methods to novel applications,
the utilization of EM instruments is expanded. This integration underscores the tool's efficacy in
advancing geotechnical engineering and illuminates new avenues for gaining a deeper
understanding of subsurface dynamics and potential hazards.
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