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Abstract This work presents a new method for ef-
ficiently designing loads and supports simultaneously

with material distribution in density-based topology
optimization. We use a higher-order or super-Gaussian
function to parameterize the shapes, locations, and ori-

entations of mechanical loads and supports. With a dis-

tance function as an input, the super-Gaussian func-

tion projects smooth geometric shapes which can be

used to model various types of boundary conditions us-

ing minimal numbers of additional design variables. As
examples, we use the proposed formulation to model
both concentrated and distributed loads and supports.

We also model movable non-design regions of prede-

termined solid shapes using the same distance func-

tions and design variables as the variable boundary con-

ditions. Computing the design sensitivities using the

adjoint sensitivity analysis method, we implement the

technique in a 2D topology optimization algorithm with

linear elasticity and demonstrate the improvements that

the super-Gaussian projection method makes to some

common benchmark problems. By allowing the opti-

mizer to move the loads and supports throughout the

design domain, the method produces significant enhance-
ments to structures such as compliant mechanisms where
the locations of the input load and fixed supports have
a large effect on the magnitude of the output displace-

ments.
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1 Introduction

Topology optimization is a computational method used
to automatically generate optimal layouts of material
within a design domain (Bendsoe and Sigmund 2013),

with common design problems including minimization

of compliance for maximally stiff structures (Andreassen

et al. 2011) or maximization of an output displace-

ment for compliant mechanism design (Sigmund 1997;

B. Zhu, X. Zhang, et al. 2020). It is currently standard

practice for the boundary conditions in these problems

to be predetermined by the user based only on intuition,
where the locations of applied loads and rigid supports
remain fixed and unchanging during the optimization
process. In topology optimization studies such as multi-

ple degree-of-freedom compliant mechanisms (Frecker,

Kikuchi, and Kota 1999; Alonso, Ansola, and Querin

2014; B. Zhu, Chen, et al. 2018; Sigmund 2001), several

input loads are applied which can have complex inter-
actions between each other and desired output displace-
ments. This makes it conceivable that the configuration
of the boundary conditions could have a large effect on

the final topology and performance of the optimized de-

signs. In another application of topology optimization

for the design of a bi-stable airfoil compliant mecha-

nism (Bhattacharyya, Conlan-Smith, and James 2019),

the input load and fixed supports were manually placed

at particular locations on the domain which the au-

thors noted required specific user inputs to determine.

In examples such as these it is unlikely that the loads
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and supports have been placed in optimal positions and

orientations, suggesting that a more systematic way of

determining their configuration would be useful. In this

paper we therefore seek to develop an efficient method

of including the boundary conditions as automatically

optimized parameters in the topology optimization for-

mulation.

Optimizing the locations of mechanical (fixed-displacement)

supports is not a new idea and has been explored in

other studies. An early work by Thomas Buhl (Buhl
2002) used an additional set of design variables to con-
trol the stiffness of support springs connected to each

element in the finite element mesh of the structure.

With its many design variables representing the sup-

ported areas, the method allowed for arbitrary support

configurations to appear, but also required a penaliza-

tion method to avoid supports with intermediate stiff-
ness and extra constraint functions for the total area
of the domain being supported. In a similar but more

complex method by Zhu and Zhang (J. Zhu and W.

Zhang 2010), supports were modeled using separate

movable components subjected to boundary conditions,

constraints to prevent component overlap, and a finite

element mesh that adapted to the updating compo-
nent locations. For the design of multi-component sys-
tems or assemblies, similar techniques to the mechan-

ical support design methods have been applied. Rako-

tondrainibe et al. (Rakotondrainibe, Allaire, and Orval

2020) optimized rigid and bolted connections using a

type of Robin boundary condition to model the loca-

tions, while using the topological derivative to allow for

introduction of new connections during the optimiza-

tion. Ambrozkiewicz and Kriegesmann (Ambrozkiewicz

and Kriegesmann 2021) simultaneously optimized the

joint locations and topologies of mechanical assemblies

using spring connections to transfer the loads between

parts. In another study for the design of multi-body

mechanisms, Swartz and James (Swartz and James 2019)

used spring connections between components which were

parameterized by a Gaussian function to model the be-

havior of pin joints and to optimize their locations.

For applied loads that change during the course of

the optimization, studies such as those by Lee at al.

(Lee and Martins 2012; Lee, James, and Martins 2012)

have implemented design-dependent pressure loads or

self-weights, where the nodal forces were computed by

using detected solid-void material interfaces for pres-

sure or by using the weights of each element based on

their density value. Other problems such as homogenization-

based microstructure design and thermal structure de-

sign (Alacoque, Watkins, and Tamijani 2021) also fea-

ture design-dependent loads, but like with pressure and

self-weight, these loads are calculated based on the cur-

rent design and are not controlled by a design variable

to find an optimal way of applying them.

In certain scenarios, such as for distributed loads, we

will also need to apply continuously movable non-design

regions to ensure that the varying loads are applied to

completely solid surfaces, while for supports we may

wish to have a predetermined solid shape for manufac-

turability reasons. In the paper by Ambrozkiewicz and

Kriegesmann (Ambrozkiewicz and Kriegesmann 2021),

they enforced circular and cylindrical non-design re-

gions at the movable connections between components
using parametric equations and ”mask” vectors, which
were combined with the structural topology. With a

somewhat similar concept, Pollini and Amir (Pollini

and Amir 2020) projected shapes onto the design do-

main from linear segmented profiles using super-Gaussian

functions. They used the projections to control material

properties or local constraints in specific parts of the do-

main that were movable by the optimizer. This method

of geometry projection onto a domain discretized by a

fixed mesh was first introduced by Norato et al. (J. No-

rato, Bell, and Tortorelli 2015), who defined the geom-

etry of bars using distance functions and used design

variables for the spatial locations of their endpoints.
Since then, the geometry projection method has been
used for other problems such as multi-material lattice
structures (Kazemi, Vaziri, and Julián A Norato 2020)

and for problems involving projection of more complex

discrete shapes (S. Zhang, Julián A Norato, et al. 2016;

S. Zhang, Gain, and Julián A Norato 2018; Jessee et al.

2020).

In this paper we take inspiration from and combine

the concepts of spring connections from Buhl (Buhl

2002), distance functions from Norato et al. (J. No-

rato, Bell, and Tortorelli 2015), and projection using

Gaussian functions from Swartz and James (Swartz and

James 2019) and Pollini and Amir (Pollini and Amir

2020) to parameterize and optimize both loads and sup-

ports simultaneously with the structural topology. The

Gaussian function method we develop using these con-
cepts offers several attractive features: 1) Efficient mod-
eling of variable boundary conditions which adds no ad-

ditional degrees of freedom and requires no remeshing,

2) geometry projection characteristics that can be easily

adjusted by choosing the values of a few scalar parame-

ters in the Gaussian function, 3) projection shapes and

topologies that can be changed in a modular way by us-
ing different distance functions as the input to the same
Gaussian function, 4) overlapping of multiple loads or

supports projected by a single Gaussian function which

cause no issues because they merge together seamlessly

without requiring any additional formulations, and 5)

formulations and sensitivities which are simple to de-
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rive and to implement in existing topology optimization

codes.
We begin the paper with a description of the stan-

dard Solid Isotropic Material with Penalization (SIMP)

topology optimization method in section 2. In section

3, we extend the finite element model by augmenting

it with spring connections and nodal forces to allow

for variable load and support boundary conditions. The
general higher-order Gaussian function is introduced in
section 4, and two different distance functions used for

projecting point and line geometries into the domain

are given. Sections 5 and 6 describe the specific Gaus-

sian functions and formulations used to model the vari-

able boundary conditions and the movable non-design

regions, respectively. The main objective and constraint

functions used for the topology optimization example

problems are given in section 7 along with their adjoint

sensitivity analysis formulations. Numerical examples

showing the efficacy of the Gaussian function projec-

tion method are shown in section 8, and conclusions

and potential for future applications of the method are

discussed in section 9.

2 Topology Optimization

We base our method on standard SIMP (Solid Isotropic

Material with Penalization) topology optimization, in

which the linear elasticity problem is discretized into a

uniform grid of rectangular 4-node bilinear finite ele-

ments. Each finite element e is assigned a design vari-

able ρe which represents the density or volume fraction
of material in the element ranging from ρe = 0 (void)

to ρe = 1 (solid). To avoid checkerboard patterns and

enforce a minimum length scale on the optimized de-

signs, we use the density filtering method (Bruns and

Tortorelli 2001). The filtered densities, representing the

actual physical design to be manufactured, are given by

ρ̄e =

∑Ne

i=1 Heiρi
∑Ne

i=1 Hei

, (1)

Hei = max(0, rmin −∆(e, i)), (2)

where Ne is the number of elements in the mesh, rmin is

the filter radius specified by the user, and ∆(e, i) is the
distance between element e and element i. The physi-

cal densities ρ̄e are then used to calculate the Young’s

modulus of each element using the SIMP interpolation

model:

Ee = Emin + ρ̄pe(E0 − Emin), (3)

where Emin is a minimum value of Young’s modulus

given to void elements to avoid singular stiffness ma-

trices in the finite element analyses, p is the SIMP pe-

nalization factor used to avoid intermediate densities

by setting it to a value greater than 1, and E0 is the

Young’s modulus of the solid material. The Poisson’s
ratio, ν, is a constant.

3 Finite Element Formulation

Expanding on the standard SIMP method to allow for

simultaneous optimization of the structural topology,

mechanical supports, and applied forces, the finite ele-

ment mesh is connected to a system of spring elements.

Like in the method introduced by Buhl (Buhl 2002), all

degrees of freedom in the continuum part of the mesh
are connected to rigid fixtures by a spring. The stiffness
of the support springs are based on a value kse assigned

to each element e, making the horizontal and vertical

degrees of freedom of each node equally stiff. Extending
Buhl’s method, we also apply forces to every node of the
continuum mesh at an angle θ with a magnitude based

on a value fe associated with each of the continuum el-
ements. For the design of compliant mechanisms using
the spring model, springs opposing the input forces are

also placed at every node at the same angle θ and with

element stiffness values kine . The general mesh setup is

illustrated in Figure 1. In the following sections of this
paper, we explain how to vary the distributions of the

spring stiffnesses and force magnitudes in order to con-
trol the effective shapes and locations of the boundary
conditions.

The finite element equations for the mesh setup are

assembled as follows, where the symbol Λ is used to
denote the finite element assembly operator. The global
stiffness matrix K of the continuum mesh is assembled

in the usual way as

K =
Ne

Λ
e=1

Ee

∫

Ve

BT
e C0BedVe =

Ne

Λ
e=1

Eek
0
e, (4)

where e is the element number, Ve is the element vol-

ume,Be is the element strain-displacement matrix, and

C0 is the constitutive matrix for a unit Young’s mod-

ulus. The integral in equation (4) is the element stiff-
ness matrix for a unit Young’s modulus and is written
more simply as k0

e. The support and input load springs

add no additional degrees of freedom to the model, so

their contributions to the global stiffness matrix can be

simply added to K. The contribution of the support

springs, Ks, is the assembly of spring element stiffness

matrices

Ks =
Ne

Λ
e=1

kseI8, (5)

where I8 is the 8x8 (8 degrees of freedom per element)

identity matrix. For the global force vector, the applied
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Fig. 1: The general finite element mesh setup with forces, input force springs, and support springs applied to each
node

forces at each element are assembled as

F =
Ne

Λ
e=1

feΘ, (6)

where Θ is an 8x1 rotation vector that converts the

nodal force magnitudes into their corresponding com-

ponents in the x and y directions based on the global
reference frame:

Θ =
[

cos θ sin θ · · ·
]T

. (7)

The contribution of the input springs to the global stiff-

ness matrix is assembled in a similar way to the force

vector:

K in =
Ne

Λ
e=1

kine I 8〈Θ〉. (8)

Here, the vector 〈Θ〉 is a smooth approximation of the

absolute values of Θ in order to avoid negative values of

spring stiffness while keeping the function differentiable

at all values of θ:

〈Θ〉 =
[√

cos2 θ + ε
√

sin2 θ + ε · · ·
]T

, (9)

where ε is a small positive number. The output spring

for compliant mechanism problems is modeled by adding

a single spring of stiffness kout to the output degree of
freedom on the main diagonal of the total global stiff-

ness matrix. The global vector of nodal displacements

U is then found by solving the finite element equilib-

rium equations, where the spring stiffness matrices are

added to the continuum stiffness matrix:

(K +K s +K in)U = F . (10)

4 Gaussian Function Parameterization

To control the distributions of force magnitude and sup-

port stiffness using only a small number of parameters,
we use a super-Gaussian function of the form

G(x, y) = Ab
−

(

d(x,y)2

r2

)P

. (11)

The super-Gaussian function has a flat plateau-shaped

top with a smooth Gaussian fall-off in the directions of
increasing distance represented by the function d(x, y).

The parameter P controls the sharpness of the plateau,

the coefficient A is the height, and the radius parameter

r determines the length from the center of the plateau

to a point in the fall-off region with height A divided
by the base parameter b:

G(d = r) =
A

b
. (12)

The properties of the super-Gaussian function are illus-

trated in Figure 2, where we use a simple one-dimensional

distance function describing the distance to the origin

point.

In two dimensions, we have made use of two different

types of distance functions. The first is used to model

concentrated loads and small circular supports and is

the minimum distance to a number of zero dimensional

points, where the positions of the N points are described

by the sets of design variables xD and yD, where xD =
[

x
(1)
D x

(2)
D · · · x(N)

D

]

and yD =
[

y
(1)
D y

(2)
D · · · y(N)

D

]

. The
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Fig. 2: Super-Gaussian function with a 1D distance function for several values of the exponent P

(a) Points ci and their positions rela-
tive to a point in the domain pe

(b) Minimum distance function to
points ci

(c) Super-Gaussian function with A =
1, b = 2, r = 1, and P = 4

Fig. 3: Using the Gaussian function to project circular shapes from zero dimensional points

subscript D indicates the coordinate is a design vari-

able and not just a spatial point in the domain. The

minimum distance from an element centroid coordinate

pe =
[

x(e) y(e)
]

to the N points ci =
[

x(i) y(i)
]

is

de = min(‖d1‖, ‖d2‖, · · · , ‖dN‖), (13)

where d i = pe − ci. An example of the minimum dis-

tance function to five different points and the resulting
circular shapes with radius r projected into the domain

by using the Gaussian function is shown in Figure 3.
Notice that as the circular regions overlap, the value of
the Gaussian function is always as if we took the max-
imum value of separate Gaussian functions applied to

each point individually. Although this produces sharp

transitions, the function is still fully differentiable with

respect to each individual design variable and no nu-

merical issues are caused in the optimization. If mul-

tiple points occupy identical coordinates, the Gaussian

function produces a distribution exactly as though a

single point were at that position.

The second distance function we use is to model dis-
tributed loads and supports. This function is the min-

imum distance to a one-dimensional line, defined by
two endpoints c1 and c2 as shown in Figure 4 and de-

scribed by the piecewise function (J. Norato, Bell, and
Tortorelli 2015)

de =











‖h‖ if a · h ≤ 0,

‖g‖ if 0 < a · h < a · a ,
‖e‖ if a · h ≥ a · a ,

(14)
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(a) Geometry of a line a defined by
two points c1 and c2 with positions
relative to a point p in the domain

(b) Minimum distance function to line
a

(c) Super-Gaussian function with A =
1, b = 2, r = 1, and P = 4

Fig. 4: Using the Gaussian function to project a bar shape from a one dimensional line

where

a = c2 − c1, (15)

h = pe − c1, (16)

e = pe − c2, (17)

g =

[

I − 1

‖a‖2a⊗ a

]

h. (18)

After passing the line distance function through the
Gaussian function, a rounded bar shape of radius r is

projected onto the domain.

5 Variable Loads and Supports

The locations of the supports are allowed to vary by

assigning point coordinates as design variables for the

optimizer. We define the vector of all design variables,

z, by concatenating the vector of element densities ρ

with the vectors of support point coordinates xs and

ys:

z =
[

ρ xs ys

]

. (19)

The support points are then used to define a distance

function using either of equations (13) or (14). Using

the Gaussian function to define the projection based

on the distance function, we obtain the distribution of

support spring stiffness throughout the design domain.

In the Gaussian function (equation 11), the coefficient

A is assigned a value of spring stiffness, k0, chosen by

the user which should be large enough to adequately

simulate rigid supports but low enough to avoid nu-

merical problems:

kse = k0b
−

(

d2e
r2

)P

. (20)

The location and orientation of loads are optimized by

including the coordinates xf and yf and the orientation

of the forces θ in the design variable vector. Appending

these parameters to the vector of design variables gives

z =
[

ρ xs ys xf yf θ
]

. (21)

The design variables for the forces are used to define

another distance function, which is passed to the Gaus-

sian function to obtain a force value in each element:

fe = Afb
−

(

d2e
r2

)P

. (22)

We define the coefficient Af such that the user can spec-
ify the approximate total load applied in the design do-

main as a single constant f0. As the Gaussian function
superscript P approaches infinity, the total load in the

domain becomes equal to the total load under the pro-

jected shape of radius r. For concentrated loads, this is

written as

Af =
f0Ve

nnπr2
, (23)

while for distributed loads it is written as a function of

the line length ‖a‖, given by

Af =
f0Ve

nn(πr2 + 2r‖a‖) . (24)

where nn is the number of overlapping nodes between
elements (four in the case of 2D rectangular bilinear

elements). For the design of compliant mechanisms us-

ing the spring model, we scale the stiffness of the input

springs proportionally to the force magnitudes using a

user-specified constant kin0 :

kine =
kin0
Af

fe. (25)
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6 Variable Non-Design Regions

To create movable non-design regions that follow the

locations of the variable boundary conditions, we use

the Gaussian function to project a density distribution

onto the domain which is then combined with the fil-

tered densities in a smooth and differentiable way. The
filtered element densities are calculated from the den-
sity design variables in the same way as before:

ρ̃e =

∑Ne

i=1 Heiρi
∑Ne

i=1 Hei

. (26)

The projected density distribution is given by the Gaus-
sian function of unit height (A = 1) with a distance

function based on load and support point variables:

ρ̂e = b
−

(

d2e
r2

)P

. (27)

The filtered densities ρ̃e and the projected densities ρ̂e
are then combined into a physical density field using
a generalized mean to take the maximum of the two
fields:

ρ̄e =

(

ρ̃Qe + ρ̂Qe
2

)

1
Q

. (28)

With Q = 1, ρ̄e is the average of ρ̃e and ρ̂e, and as Q

approaches infinity, ρ̄e approaches the maximum of the

two values from below. Thus, we can set Q to a finite

value to approximate the maximum of the filtered and

projected density fields in a smooth and differentiable

way.

7 Optimization Problems and Sensitivity

Analysis

The optimization problem considered in this paper is
a minimization of an objective function fobj subjected

to constraints on the design variable upper and lower

limits (denoted by the subscripts U and L, respectively,

with ns representing the number of support design vari-

ables and nf representing the number of load variables),

the amount of material in the domain or overall volume

fraction Vf , and any additional number, nc, of functions

hi(z) that may be desired in particular problem setups:

min
z

fobj(z)

s.t. 0 ≤ ρe ≤ 1, e = 1, . . . , Ne,

x
(i)
sL ≤ x(i)

s ≤ x
(i)
sU , i = 1, . . . , ns,

y
(i)
sL ≤ y(i)s ≤ y

(i)
sU , i = 1, . . . , ns,

x
(i)
fL ≤ x

(i)
f ≤ x

(i)
fU , i = 1, . . . , nf ,

y
(i)
fL ≤ y

(i)
f ≤ y

(i)
fU , i = 1, . . . , nf ,

θL ≤ θ ≤ θU ,
∑Ne

e=1 ρ̄e

Ne

≤ Vf ,

hi(z) ≤ 0, i = 1, . . . , nc.

(29)

This problem is solved using the method of moving

asymptotes (MMA) (Svanberg 1987), which as a gradient-

based numerical optimization method requires the ob-

jective and constraint function values along with their

first derivatives as inputs. For compliance minimization
problems, the objective function fobj(z) takes the form

fobj(z) = C(z) = F (z)TU(z). (30)

In the case of compliant mechanism design, the objec-

tive is the specified output displacement

fobj(z) = Uout(z) = LTU(z), (31)

where LT is a constant vector of all zeros except at the

output degree of freedom, where it has a value of one.

To determine the derivative of the compliance with

respect to each of the design variables, we use adjoint

sensitivity analysis to find:

∂C(z)

∂zi
=

∂F T

∂zi
U +UT

·
(

∂F

∂zi
−
(

∂K

∂zi
+

∂Ks

∂zi
+

∂Kin

∂zi

)

U

)

. (32)

Similarly for the output displacement objective func-

tion, we find the following form:

∂Uout(z)

∂zi
= λT

·
(

∂F

∂zi
−
(

∂K

∂zi
+

∂Ks

∂zi
+

∂Kin

∂zi

)

U

)

. (33)

where the adjoint vector is first computed as:

λ =
(

K +Ks +Kin
)−1

L. (34)

The adjoint sensitivity equations then take on dif-

ferent forms for each design variable type ρ, xs or ys,

xf or yf , and θ. For the sensitivity with respect to the
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Table 1: Adjoint sensitivity equations for the derivative of the compliance and output displacement functions with

respect to each design variable

zi
∂C(z)

∂zi

∂Uout(z)

∂zi

ρ̄i −UT
e

∂Ke

∂ρ̄e
Ue −λT

e
∂Ke

∂ρ̄e
Ue

z
(i)
s −UT ( ∂K

∂z(i)
s

+ ∂K
s

∂z(i)
s

)U −λT ( ∂K

∂z(i)
s

+ ∂K
s

∂z(i)
s

)U

z
(i)
f

∂F
T

∂z
(i)
f

U +UT

(

∂F

∂z
(i)
f

−

(

∂K

∂z
(i)
f

+ ∂K
in

∂z
(i)
f

)

U

)

λT

(

∂F

∂z
(i)
f

−

(

∂K

∂z
(i)
f

+ ∂K
in

∂z
(i)
f

)

U

)

θ ∂F
T

∂θ
U +UT

(

∂F

∂θ
−

∂K
in

∂θ
U
)

λT
(

∂F

∂θ
−

∂K
in

∂θ
U
)

density variable at each element e (zi = ρi), the deriva-

tive with respect to the physical density ρ̄e is taken
first and the chain rule is subsequently used to find the

sensitivity with respect to the base design variable:

∂fobj(z)

∂ρi
=

Ne
∑

e=1

∂fobj(z)

∂ρ̄e

∂ρ̄e

∂ρ̃e

∂ρ̃e

∂ρi
, (35)

where:

∂ρ̄e

∂ρ̃e
=

1

2

(

ρ̃Qe + ρ̂Qe
2

)

1
Q
−1

ρ̃Q−1
e , (36)

∂ρ̃e

∂ρi
=

Hie
∑Ne

j=1 Hij

. (37)

The final adjoint sensitivity equations are summarized
in Table 1.

We now list the partial derivatives of the stiffness
matrices and force vectors. The sensitivity of the global

stiffness matrix with respect to the physical densities is
given by

∂Ke

∂ρ̄e
= pρ̄p−1

e (E0 − Emin)k
0
e. (38)

where the subscript e on the global matrix indicates

that we only consider entries within the global stiffness
matrix that correspond to degrees of freedom associated

with the element e, since the derivatives of all other
entries vanish.

For the derivative of the stiffness matrix of the con-
tinuum structure with respect to each support variable

zi = x
(i)
s or zi = y

(i)
s (and similarly with respect to the

force location variables), the derivative is:

∂K

∂z
(i)
s

=
Ne

Λ
e=1

pρ̄p−1
e

∂ρ̄e

∂z
(i)
s

(E0 − Emin)k
0
e, (39)

where

∂ρ̄e

∂z
(i)
s

=
1

2

(

ρ̃Qe + ρ̂Qe
2

)

1
Q
−1

ρ̃Q−1
e

∂ρ̂e

∂z
(i)
s

, (40)

and

∂ρ̂e

∂z
(i)
s

= −2P

r2
b
−

(

d2e
r2

)P

ln(b)

(

d2e
r2

)P−1

de
∂de

∂z
(i)
s

. (41)

For the support spring component of the global stiffness

matrix, it is:

∂Ks

∂z
(i)
s

=
Ne

Λ
e=1

∂kse

∂z
(i)
s

I 8, (42)

where

∂kse

∂z
(i)
s

=

− 2k0P

r2
b
−

(

d2e
r2

)P

ln(b)

(

d2e
r2

)P−1

de
∂de

∂z
(i)
s

. (43)

For the derivative with respect to each force variable

zi = x
(i)
f or zi = y

(i)
f , The derivative of the input spring

stiffness matrix is:

∂K in

∂z
(i)
f

= −kin0
A2

f

∂Af

∂z
(i)
f

Ne

Λ
e=1

feI 8〈Θ〉

+
kin0
Af

Ne

Λ
e=1

∂fe

∂z
(i)
f

I 8〈Θ〉. (44)

The force vector is also a function of the force design
variables and its derivative is given by:

∂F

∂z
(i)
f

=
Ne

Λ
e=1

∂fe

∂z
(i)
f

Θ, (45)

where, for the case where the coefficient Af is a function

of the line length:

∂fe

∂z
(i)
f

=
∂Af

∂z
(i)
f

b
−

(

d2e
r2

)P

− 2AfP

r2
b
−

(

d2e
r2

)P

ln(b)

(

d2e
r2

)P−1

de
∂de

∂z
(i)
f

. (46)
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The derivative of the coefficient is given by

∂Af

∂z
(i)
f

=
2f0Ver

nn(πr2 + 2r‖a‖)2
a(i)

‖a‖ , (47)

for the case of a line load or else is equal to zero for the

case of a point load.

For the derivative of the global stiffness matrix with

respect to the force angle variable θ, the input spring
stiffness matrix has dependence:

∂K in

∂θ
=

kin0
Af

Ne

Λ
e=1

feI 8
∂〈Θ〉
∂θ

, (48)

where

∂〈Θ〉
∂θ

=
[

− sin θ cos θ√
cos2(θ)+ε

sin θ cos θ√
sin2(θ)+ε

· · ·
]T

. (49)

Finally, the derivative of the global force vector with

respect to the load orientation is given by:

∂F

∂θ
=

Ne

Λ
e=1

fe
∂Θ

∂θ
, (50)

where

∂Θ

∂θ
=

[

− sin θ cos θ · · ·
]T

. (51)

When zero dimensional points are being used to con-

struct the minimum distance function, the derivative of

the distance function is:

∂de

∂
[

x
(i)
D y

(i)
D

]T
=

{

− di

‖di‖
if ‖di‖ = min(‖d1‖, ‖d2‖, · · · , ‖dN‖),

0 if ‖di‖ 6= min(‖d1‖, ‖d2‖, · · · , ‖dN‖),
(52)

and when one dimensional lines are being used, it is:

∂de

∂
[

x
(1)
D y

(1)
D

]T
=











































− h
‖h‖

if a · h ≤ 0,
1

‖g‖

[

1
‖a‖2

(

(a ⊗ h)T + (a · h)I
)

− I
]

g

if 0 < a · h < a · a ,
0

if a · h ≥ a · a .

(53)

for the first point of the line and

∂de

∂
[

x
(2)
D y

(2)
D

]T
=











































0

if a · h ≤ 0,

− 1
‖g‖‖a‖2

(

(a ⊗ h)T + (a · h)I
)

g

if 0 < a · h < a · a ,
− e

‖e‖

if a · h ≥ a · a .

(54)

for the second point of the line.

8 Numerical Examples

In this section we demonstrate the performance of the
algorithm for several benchmark problems. To avoid

having the loads and supports settle into local minima
too early, we use a continuation strategy on the SIMP
penalty parameter p where the optimization runs with

p = 1 until the average change in the density design

variables from the previous iteration is less than 10−3,

after which p is increased by 0.5. This process repeats
until p = 3, and at this point the optimization contin-

ues until the average change in density variables is less
than 10−4, at which point we consider the optimization

fully converged and stop the program. We use the av-

erage change, rather than the maximum change that is

often used in topology optimization (Andreassen et al.

2011), since it is less sensitive to localized changes in

the density caused by small oscillations in the load and

support design variables (Ferrari and Sigmund 2020).

Table 2: Optimization parameters common to all exam-

ple problems

E0 1 Pa
Emin E0 × 1e−9 Pa

ν 0.3
rmin 2.5 Elements
ε 0.1
k0 E0 × 1e−3 N/m
f0 1 N
kin
0 E0 × 1e−3 N/m

kout E0 × 1e−3 N/m
b 2
r 5 mm
P 4
Q 10

In the design plots shown in the following sections,

red contour lines represent the support geometry pro-

jected by the Gaussian function at a radius r. Loads
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are similarly shown by blue contour lines, with an ar-

row pointing in the direction θ and originating at the
design variable coordinates (xf , yf ).

The common parameters used for all of the following

examples are summarized in Table 2. The MMA move

limits are set to plus or minus 20% of the current values

for the densities, 2r for the load and support locations,

and 2 degrees for the load orientation.

8.1 Minimum Compliance Design

We begin by validating the framework for a simple min-

imum compliance cantilever beam problem which has a

well known solution with obvious optimal locations for

the loads and supports. A rectangular design domain

of dimensions 30x7.5 centimeters and discretized by a

grid of 200x50 elements is initialized with a uniform dis-

tribution of 20% density, a distributed line support at

the left side with both endpoints at the same position,

and a concentrated load at the right side. We note that

although the structure is initially supported by only a

single point, the Gaussian function projects a circle of

finite radius r which provides rotational stiffness. The

design variables included are the densities, support line

endpoint coordinates, and load point coordinates:

z =
[

ρ xs ys xf yf

]

. (55)

The load orientation is set to a constant value of θ =
−90◦ (pointing straight downwards). The design do-

mains for the support and load coordinates are restricted
to one fourth of the length of domain from the left and
right ends as shown in Figure 5a. Minimum and max-
imum values of the points are set such that they must

remain at least a distance of the Gaussian function ra-

dius, r, from the overall domain boundaries.

Running the optimization, we get the design we

would expect with fast convergence. The loads and sup-

ports move horizontally as close together as possible to

minimize the moment arm, and the two endpoints of

the distributed support move vertically as far apart as

possible to maximize the second moment of area. The

density resolves to a cantilever beam design that is typi-

cal with the standard SIMP method. The optimized de-

sign is shown in Figure 5b and the convergence history

is shown in Figure 5c. The sharp kinks in the objective

function history starting near 25 iterations correspond

to the point where the loads and supports reach their

vertical and horizontal limits, and the small upward

jumps afterwards are caused by the the continuation

scheme when the SIMP penalty parameter p increases

by 0.5.

As a second compliance minimization problem we

optimize a bridge structure. We initialize a 20x20 cen-
timeter design domain with 200x200 elements and 15%
uniform density as shown in Figure 6a. One point sup-

port is placed in each of the top corners of the domain,

and two overlapping supports are placed at each of the

two bottom corners for a total of six support points.

A distributed line load with a solid non-design region
projected underneath is placed across the width of the
center of the domain with the orientation initially point-
ing downwards. These parameters are represented by

the following vector of design variables:

z =
[

ρ xs ys xf yf θ
]

. (56)

The upper bound of the material volume fraction is

constrained to 15%, and the supports are allowed to

move only along the edges of the domain as shown in

Figure 6a by the red dashed lines. The distributed load
is allowed to move in the middle third of the domain as
shown in Figure 6a by the blue dashed region.

The results of the optimization are shown in 6b.
As would be expected, the distributed load moves as
close as possible to the supports along the bottom edge,

which distribute themselves underneath it. The load

also remains distributed across the entire domain and

the orientation does not change from its initial down-

ward direction. The supports allowed to move along the

vertical edges place themselves at the ends of the bridge
to directly support it.

8.2 Compliant Mechanism Design

While for the simple compliance minimization prob-

lems in the previous section the optimal locations of the

loads and supports were somewhat obvious and could

be guessed intuitively, typically the same cannot be said
for compliant mechanism design problems. The posi-
tions and orientations of the boundary conditions have

a significant effect on the motion of the output degrees

of freedom and initial guesses based on intuition are

likely suboptimal.

To demonstrate this, we use the standard bench-

mark compliant mechanism problem of a displacement

inverter. The domain is initialized as a 20x20 centimeter

square with a grid of 200x200 elements, with a uniform

20% material density. This same 20% value was used

for the constraint on the volume fraction upper bound,

and the load and support locations are placed in the
positions shown in 7a, which are the typical locations
in the inverter mechanism problem. A spring of stiffness
kout is placed on the degree of freedom for the horizon-

tal displacement at the center of the right edge, which
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(a) Initial design with allowable load (blue) and
support (red) regions

(b) Final optimized design

(c) Convergence history of a scaled value of the
compliance

Fig. 5: Results of the cantilever beam problem

(a) Initial design with allowable load (blue) and
support (red) regions

(b) Final optimized design

Fig. 6: Results for the bridge design problem

is the displacement being minimized as the objective

function (to maximize the displacement in the leftward

direction). This initial design and volume constraint is

the same for each of the following examples. First, we

set only the material densities as the design variables:

z =
[

ρ
]

. (57)

The results of this optimization gives a familiar dis-

placement inverter design, shown in Figure 7b.

As a second problem, we add the positions of the

load and supports as design variables:

z =
[

ρ xs ys xf yf

]

. (58)

These positions are unconstrained and can move any-
where in the design domain, with the exception that
they must remain at least a distance of r from the edges

of the domain. Since asymmetry in the design was ob-

served, we also include an additional constraint func-

tion to prevent the output displacement from deviating
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(a) Initial design

(b) Optimized design for load and sup-
port locations fixed at their conven-
tional locations at the edge of the do-
main

(c) Optimized design for freely mov-
able load and support locations

(d) Optimized design for freely mov-
ing boundary condition locations with
rotating load orientation

Fig. 7: Results for the displacement inverter design problem

significantly in the vertical direction:

(Uy
out)

2 ≤ (0.05Ux
out)

2. (59)

The problem results in a different design, shown in Fig-

ure 7c, where the supports have moved very close to

the input load, which shifts to a position further inside

the domain. As a result of this change in the boundary

condition locations, the output displacement increases

by 123% compared to the conventional design that had

predetermined boundary conditions.

For a third problem, we include the orientation of

the load as a design variable:

z =
[

ρ xs ys xf yf θ
]

. (60)

Keeping the constraint function for controlling the un-

wanted vertical output displacement, equation (59), this

results in an asymmetrical design, shown in Figure 7d,

where the load is applied at an oblique angle relative

to the direction of the output displacement. A displace-

ment 151% larger than the conventional fixed boundary

condition design is achieved for the same input force

magnitude, which shows that the optimizer is able to

exploit the additional design freedom to obtain better

objective function values. The increase in performance

and the counterintuitive, asymmetrical design when the
boundary conditions are included as design variables
shows the effectiveness of allowing them to be deter-

mined automatically by the optimizer.

The asymmetrical design of Figure 7d performs well

based on the finite element analysis, however the sup-

port closest to the applied load is somewhat difficult

to interpret as a manufacturable structure. It is sur-

rounded by solid material with a region of soft interme-
diate density in the middle, making the support rotate
and act more like a pin joint than a compliant hinge. To

get a fully compliant mechanism design with no need

for bearings or significant post-processing, we run the

asymmetrical inverter problem once more and include

variable non-design solid regions projected on both the

load and the supports. We implement this by defining a



Topology Optimization with Variable Loads and Supports Using a Super-Gaussian Projection Function 13

(a) Initial design (b) Optimized design

Fig. 8: Results for the asymmetric displacement inverter problem with variable non-design regions included

Fig. 9: Deformation of the asymmetrical inverter design

superimposed on the undeformed design

new distance function of three points, d(xs,ys, xf , yf ),

and using it in the equations of section 6. The initial de-

sign and optimized results are shown in Figure 8, where

there are now clearly formed compliant hinges for each

boundary condition point. By forcing the material to be
solid at the load and support locations, the optimizer

was no longer able to take advantage of the soft interme-

diate density material to make a pin joint. This came
at a small cost to the overall performance, with the
design achieving 1.7% less displacement at the output

point compared to the asymmetrical inverter without

the non-design regions. The deformation is visualized

in Figure 9, where the bending of compliant hinges and

a substantial geometric advantage can be seen. The lo-

cations of the supports translate very little in relation
to the input load and the output point, showing that
the stiffness of the support springs is adequately high.

To validate our methodology, we manufactured a

half-scale model of the design of Figure 8 on an Ob-
jet260 Connex3 3D printer using the digital material
FLX9885-DM, a blend of VeroWhite and TangoBlack+

polymers. The mechanism’s supports were inserted into
a base plate, 3D printed from VeroWhite, with a cutout
included to guide the input actuation handle at the cor-

rect angle. Figure 10 shows the 3D printed model as it

is actuated through a large displacement. While the nu-

merical modeling was only based on linear elasticity, the

physical prototype is still able to maintain a small ver-

tical output displacement through the large actuation
shown in Figure 10. In both the partially actuated and
fully actuated states shown in Figure 10, the vertical

displacement of the output point is about 8% the mag-

nitude of the horizontal displacement based on mea-

surements of the image. This can be compared to the

5% constraint imposed on the design in the topology

optimization by equation (59).
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Fig. 10: 3D printed model of the displacement inverter design

9 Conclusions

In this paper, we introduced a framework for including

variable load and support boundary conditions in topol-

ogy optimization. Starting with the standard SIMPmethod

with linear elasticity, we extended it to use a system

of spring elements to model elastic supports and loads.
The stiffness of the springs and the magnitudes of input
forces applied to every structural element were parame-
terized and controlled by a higher-order Gaussian func-

tion. By using the distance functions of simple points

and lines, the Gaussian function was used to model the

effective location and orientation of different boundary

conditions in a smooth, differentiable, and optimizable
way with minimal numbers of additional design vari-
ables.

Two examples of compliance minimization problems
were shown, demonstrating the effectiveness and effi-

ciency of the Gaussian function approach in automati-

cally finding optimal placements of the boundary condi-

tions. Several examples of compliant mechanism prob-

lems were then presented, resulting in significantly in-

creased performance over designs in which the bound-

ary conditions were defined a priori. Using our method

to design displacement inverters, we produced several
designs with more than double the performance of the
design with conventionally predetermined boundary con-
ditions. The relatively counterintuitive design of these

mechanisms shows the usefulness of allowing a numeri-

cal optimizer to automatically find the optimal bound-

ary conditions, rather than relying only on experience

or trial and error methods.

The super-Gaussian projection method proposed here

was applied to linear elasticity problems with the bound-

ary conditions modeled by simple points and straight

lines. However, it should be extendable to more com-

plex problems such as those that include geometric non-

linearity, multiple physics disciplines, or more complex

boundary condition geometries. Extension to three di-

mensions may present some challenges with maintain-

ing manufacturable supports that do not become en-

tirely enclosed in material, but otherwise should be

straightforward. Future work will utilize the Gaussian
function method developed in this paper for some of
these more complex problems.
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