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Abstract This work presents a new method for ef-
ficiently designing loads and supports simultaneously
with material distribution in density-based topology
optimization. We use a higher-order or super-Gaussian
function to parameterize the shapes, locations, and ori-
entations of mechanical loads and supports. With a dis-
tance function as an input, the super-Gaussian func-
tion projects smooth geometric shapes which can be
used to model various types of boundary conditions us-
ing minimal numbers of additional design variables. As
examples, we use the proposed formulation to model
both concentrated and distributed loads and supports.
We also model movable non-design regions of prede-
termined solid shapes using the same distance func-
tions and design variables as the variable boundary con-
ditions. Computing the design sensitivities using the
adjoint sensitivity analysis method, we implement the
technique in a 2D topology optimization algorithm with
linear elasticity and demonstrate the improvements that
the super-Gaussian projection method makes to some
common benchmark problems. By allowing the opti-
mizer to move the loads and supports throughout the
design domain, the method produces significant enhance-
ments to structures such as compliant mechanisms where
the locations of the input load and fixed supports have
a large effect on the magnitude of the output displace-
ments.
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1 Introduction

Topology optimization is a computational method used
to automatically generate optimal layouts of material
within a design domain (Bendsoe and Sigmund 2013),
with common design problems including minimization
of compliance for maximally stiff structures (Andreassen
et al. 2011) or maximization of an output displace-
ment for compliant mechanism design (Sigmund 1997;
B. Zhu, X. Zhang, et al. 2020). It is currently standard
practice for the boundary conditions in these problems
to be predetermined by the user based only on intuition,
where the locations of applied loads and rigid supports
remain fixed and unchanging during the optimization
process. In topology optimization studies such as multi-
ple degree-of-freedom compliant mechanisms (Frecker,
Kikuchi, and Kota 1999; Alonso, Ansola, and Querin
2014; B. Zhu, Chen, et al. 2018; Sigmund 2001), several
input loads are applied which can have complex inter-
actions between each other and desired output displace-
ments. This makes it conceivable that the configuration
of the boundary conditions could have a large effect on
the final topology and performance of the optimized de-
signs. In another application of topology optimization
for the design of a bi-stable airfoil compliant mecha-
nism (Bhattacharyya, Conlan-Smith, and James 2019),
the input load and fixed supports were manually placed
at particular locations on the domain which the au-
thors noted required specific user inputs to determine.
In examples such as these it is unlikely that the loads
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and supports have been placed in optimal positions and
orientations, suggesting that a more systematic way of
determining their configuration would be useful. In this
paper we therefore seek to develop an efficient method
of including the boundary conditions as automatically
optimized parameters in the topology optimization for-
mulation.

rent design and are not controlled by a design variable
to find an optimal way of applying them.

In certain scenarios, such as for distributed loads, we
will also need to apply continuously movable non-design
regions to ensure that the varying loads are applied to
completely solid surfaces, while for supports we may
wish to have a predetermined solid shape for manufac-

Optimizing the locations of mechanical (fixed-displacemdmtrpbility reasons. In the paper by Ambrozkiewicz and

supports is not a new idea and has been explored in
other studies. An early work by Thomas Buhl (Buhl
2002) used an additional set of design variables to con-
trol the stiffness of support springs connected to each
element in the finite element mesh of the structure.
With its many design variables representing the sup-
ported areas, the method allowed for arbitrary support
configurations to appear, but also required a penaliza-
tion method to avoid supports with intermediate stiff-
ness and extra constraint functions for the total area
of the domain being supported. In a similar but more
complex method by Zhu and Zhang (J. Zhu and W.
Zhang 2010), supports were modeled using separate
movable components subjected to boundary conditions,
constraints to prevent component overlap, and a finite
element mesh that adapted to the updating compo-
nent locations. For the design of multi-component sys-
tems or assemblies, similar techniques to the mechan-
ical support design methods have been applied. Rako-
tondrainibe et al. (Rakotondrainibe, Allaire, and Orval
2020) optimized rigid and bolted connections using a
type of Robin boundary condition to model the loca-
tions, while using the topological derivative to allow for
introduction of new connections during the optimiza-
tion. Ambrozkiewicz and Kriegesmann (Ambrozkiewicz
and Kriegesmann 2021) simultaneously optimized the
joint locations and topologies of mechanical assemblies
using spring connections to transfer the loads between
parts. In another study for the design of multi-body
mechanisms, Swartz and James (Swartz and James 2019)
used spring connections between components which were
parameterized by a Gaussian function to model the be-
havior of pin joints and to optimize their locations.

For applied loads that change during the course of
the optimization, studies such as those by Lee at al.
(Lee and Martins 2012; Lee, James, and Martins 2012)
have implemented design-dependent pressure loads or
self-weights, where the nodal forces were computed by
using detected solid-void material interfaces for pres-
sure or by using the weights of each element based on

Kriegesmann (Ambrozkiewicz and Kriegesmann 2021),
they enforced circular and cylindrical non-design re-
gions at the movable connections between components
using parametric equations and ”mask” vectors, which
were combined with the structural topology. With a
somewhat similar concept, Pollini and Amir (Pollini
and Amir 2020) projected shapes onto the design do-
main from linear segmented profiles using super-Gaussian
functions. They used the projections to control material
properties or local constraints in specific parts of the do-
main that were movable by the optimizer. This method
of geometry projection onto a domain discretized by a
fixed mesh was first introduced by Norato et al. (J. No-
rato, Bell, and Tortorelli 2015), who defined the geom-
etry of bars using distance functions and used design
variables for the spatial locations of their endpoints.
Since then, the geometry projection method has been
used for other problems such as multi-material lattice
structures (Kazemi, Vaziri, and Julidn A Norato 2020)
and for problems involving projection of more complex
discrete shapes (S. Zhang, Julidén A Norato, et al. 2016;
S. Zhang, Gain, and Julidn A Norato 2018; Jessee et al.
2020).

In this paper we take inspiration from and combine
the concepts of spring connections from Buhl (Buhl
2002), distance functions from Norato et al. (J. No-
rato, Bell, and Tortorelli 2015), and projection using
Gaussian functions from Swartz and James (Swartz and
James 2019) and Pollini and Amir (Pollini and Amir
2020) to parameterize and optimize both loads and sup-
ports simultaneously with the structural topology. The
Gaussian function method we develop using these con-
cepts offers several attractive features: 1) Efficient mod-
eling of variable boundary conditions which adds no ad-
ditional degrees of freedom and requires no remeshing,
2) geometry projection characteristics that can be easily
adjusted by choosing the values of a few scalar parame-
ters in the Gaussian function, 3) projection shapes and
topologies that can be changed in a modular way by us-
ing different distance functions as the input to the same

their density value. Other problems such as homogenization-Gaussian function, 4) overlapping of multiple loads or

based microstructure design and thermal structure de-
sign (Alacoque, Watkins, and Tamijani 2021) also fea-
ture design-dependent loads, but like with pressure and
self-weight, these loads are calculated based on the cur-

supports projected by a single Gaussian function which
cause no issues because they merge together seamlessly
without requiring any additional formulations, and 5)
formulations and sensitivities which are simple to de-
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rive and to implement in existing topology optimization
codes.

We begin the paper with a description of the stan-
dard Solid Isotropic Material with Penalization (SIMP)
topology optimization method in section 2. In section
3, we extend the finite element model by augmenting
it with spring connections and nodal forces to allow
for variable load and support boundary conditions. The
general higher-order Gaussian function is introduced in
section 4, and two different distance functions used for
projecting point and line geometries into the domain
are given. Sections 5 and 6 describe the specific Gaus-
sian functions and formulations used to model the vari-
able boundary conditions and the movable non-design
regions, respectively. The main objective and constraint
functions used for the topology optimization example
problems are given in section 7 along with their adjoint
sensitivity analysis formulations. Numerical examples
showing the efficacy of the Gaussian function projec-
tion method are shown in section 8, and conclusions
and potential for future applications of the method are
discussed in section 9.

2 Topology Optimization

We base our method on standard SIMP (Solid Isotropic
Material with Penalization) topology optimization, in
which the linear elasticity problem is discretized into a
uniform grid of rectangular 4-node bilinear finite ele-
ments. Each finite element e is assigned a design vari-
able p. which represents the density or volume fraction
of material in the element ranging from p. = 0 (void)
to pe = 1 (solid). To avoid checkerboard patterns and
enforce a minimum length scale on the optimized de-
signs, we use the density filtering method (Bruns and
Tortorelli 2001). The filtered densities, representing the
actual physical design to be manufactured, are given by

= — e ———
Z?I:Cl He;

H; = max(O, T'min —

Y (1)
Ale, 1)), (2)

where N, is the number of elements in the mesh, r,,;, is
the filter radius specified by the user, and A(e, ) is the
distance between element e and element 7. The physi-
cal densities p, are then used to calculate the Young’s
modulus of each element using the SIMP interpolation
model:

Ee = Emin + ﬁg(EO - Emin)7 (3>

where E,,;, is a minimum value of Young’s modulus
given to void elements to avoid singular stiffness ma-
trices in the finite element analyses, p is the SIMP pe-
nalization factor used to avoid intermediate densities

by setting it to a value greater than 1, and Fj is the
Young’s modulus of the solid material. The Poisson’s
ratio, v, is a constant.

3 Finite Element Formulation

Expanding on the standard SIMP method to allow for
simultaneous optimization of the structural topology,
mechanical supports, and applied forces, the finite ele-
ment mesh is connected to a system of spring elements.
Like in the method introduced by Buhl (Buhl 2002), all
degrees of freedom in the continuum part of the mesh
are connected to rigid fixtures by a spring. The stiffness
of the support springs are based on a value kJ assigned
to each element e, making the horizontal and vertical
degrees of freedom of each node equally stiff. Extending
Buhl’s method, we also apply forces to every node of the
continuum mesh at an angle  with a magnitude based
on a value f, associated with each of the continuum el-
ements. For the design of compliant mechanisms using
the spring model, springs opposing the input forces are
also placed at every node at the same angle # and with
element stiffness values k2. The general mesh setup is
illustrated in Figure 1. In the following sections of this
paper, we explain how to vary the distributions of the
spring stiffnesses and force magnitudes in order to con-
trol the effective shapes and locations of the boundary
conditions.

The finite element equations for the mesh setup are
assembled as follows, where the symbol A is used to
denote the finite element assembly operator. The global
stiffness matrix K of the continuum mesh is assembled
in the usual way as

Ne
K= A E,

e=

BTcyB.dV, = N K° (4)
v e e e =1 elve,

where e is the element number, V, is the element vol-
ume, B, is the element strain-displacement matrix, and
C) is the constitutive matrix for a unit Young’s mod-
ulus. The integral in equation (4) is the element stiff-
ness matrix for a unit Young’s modulus and is written
more simply as kg. The support and input load springs
add no additional degrees of freedom to the model, so
their contributions to the global stiffness matrix can be
simply added to K. The contribution of the support
springs, K?, is the assembly of spring element stiffness
matrices

Ne
K° = A ks, (5)

where Ig is the 8x8 (8 degrees of freedom per element)
identity matrix. For the global force vector, the applied
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Fig. 1: The general finite element mesh setup with forces, input force springs, and support springs applied to each

node

forces at each element are assembled as
Ne
F = /}1 feO, (6)

where @ is an 8x1 rotation vector that converts the
nodal force magnitudes into their corresponding com-
ponents in the z and y directions based on the global
reference frame:

@z[cosﬁsinﬁ---]T. (7)

The contribution of the input springs to the global stiff-
ness matrix is assembled in a similar way to the force
vector:

. Ne .
K" = X K'Ig(O). (8)

Here, the vector (@) is a smooth approximation of the
absolute values of @ in order to avoid negative values of
spring stiffness while keeping the function differentiable
at all values of 6:

(®) = [\/m Vsin? 0 + e ] (9)

where € is a small positive number. The output spring
for compliant mechanism problems is modeled by adding
a single spring of stiffness k°%! to the output degree of
freedom on the main diagonal of the total global stiff-
ness matrix. The global vector of nodal displacements
U is then found by solving the finite element equilib-
rium equations, where the spring stiffness matrices are
added to the continuum stiffness matrix:

(K+K°+K™U-=F. (10)

T
)

4 Gaussian Function Parameterization

To control the distributions of force magnitude and sup-
port stiffness using only a small number of parameters,
we use a super-Gaussian function of the form

Glay) = A 2)

(11)

The super-Gaussian function has a flat plateau-shaped
top with a smooth Gaussian fall-off in the directions of
increasing distance represented by the function d(z, y).
The parameter P controls the sharpness of the plateau,
the coefficient A is the height, and the radius parameter
r determines the length from the center of the plateau
to a point in the fall-off region with height A divided
by the base parameter b:

(12)

The properties of the super-Gaussian function are illus-
trated in Figure 2, where we use a simple one-dimensional
distance function describing the distance to the origin
point.

In two dimensions, we have made use of two different
types of distance functions. The first is used to model
concentrated loads and small circular supports and is
the minimum distance to a number of zero dimensional
points, where the positions of the N points are described
by the sets of design variables zp and y,, where xp =

N N
xg) xg)~-~ xs:) )] and yp = {yg) yg)... y})) . The
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Fig. 2: Super-Gaussian function with a 1D distance function for several values of the exponent P
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Fig. 3: Using the Gaussian function to project circular shapes from zero dimensional points

subscript D indicates the coordinate is a design vari-
able and not just a spatial point in the domain. The
minimum distance from an element centroid coordinate
p, = [m(e) y(e)] to the N points ¢; = [.%‘(i) y(i)} is

de = min(||d1 ], [|da],- -, | dn]), (13)

where d; = p, — ¢;. An example of the minimum dis-
tance function to five different points and the resulting
circular shapes with radius r projected into the domain
by using the Gaussian function is shown in Figure 3.
Notice that as the circular regions overlap, the value of
the Gaussian function is always as if we took the max-
imum value of separate Gaussian functions applied to
each point individually. Although this produces sharp
transitions, the function is still fully differentiable with

respect to each individual design variable and no nu-
merical issues are caused in the optimization. If mul-
tiple points occupy identical coordinates, the Gaussian
function produces a distribution exactly as though a
single point were at that position.

The second distance function we use is to model dis-
tributed loads and supports. This function is the min-
imum distance to a one-dimensional line, defined by
two endpoints ¢; and ¢ as shown in Figure 4 and de-
scribed by the piecewise function (J. Norato, Bell, and
Tortorelli 2015)

Ih| ifa-h<o,
de=<lg| if0O<a-h<a-a, (14)
le]]| ifa-h>a-a,
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(a) Geometry of a line a defined by
two points ¢1 and cg with positions a
relative to a point p in the domain
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Fig. 4: Using the Gaussian function to project a bar shape from a one dimensional line

where
a=cy—c, (15)
h’ = pe - Cl, (16)
€ =p, — Cg, (17)
1
g= I—a®a}h. (18)
[ all®

After passing the line distance function through the
Gaussian function, a rounded bar shape of radius r is
projected onto the domain.

5 Variable Loads and Supports

The locations of the supports are allowed to vary by
assigning point coordinates as design variables for the
optimizer. We define the vector of all design variables,
z, by concatenating the vector of element densities p
with the vectors of support point coordinates x; and

yS:
z= [p Ts ys} . (19)

The support points are then used to define a distance
function using either of equations (13) or (14). Using
the Gaussian function to define the projection based
on the distance function, we obtain the distribution of
support spring stiffness throughout the design domain.
In the Gaussian function (equation 11), the coefficient
A is assigned a value of spring stiffness, kg, chosen by
the user which should be large enough to adequately
simulate rigid supports but low enough to avoid nu-
merical problems:

kS = kob_<%>P. (20)

The location and orientation of loads are optimized by
including the coordinates ¢y and y; and the orientation
of the forces 6 in the design variable vector. Appending
these parameters to the vector of design variables gives

z=[pxsy, x5y, 0. (21)

The design variables for the forces are used to define

another distance function, which is passed to the Gaus-

sian function to obtain a force value in each element:
dz

fo= Afb_(ﬁ)P. (22)

We define the coefficient Ay such that the user can spec-
ify the approximate total load applied in the design do-
main as a single constant fy. As the Gaussian function
superscript P approaches infinity, the total load in the
domain becomes equal to the total load under the pro-
jected shape of radius r. For concentrated loads, this is
written as

_ foVe

b)
Ny, T2

Ay

(23)

while for distributed loads it is written as a function of
the line length |la||, given by

foVe

Ar = .
! np(7r2 + 2r||a)

(24)

where n,, is the number of overlapping nodes between
elements (four in the case of 2D rectangular bilinear
elements). For the design of compliant mechanisms us-
ing the spring model, we scale the stiffness of the input
springs proportionally to the force magnitudes using a
user-specified constant ki:

ki
e

n __
k=

(25)
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6 Variable Non-Design Regions

To create movable non-design regions that follow the
locations of the variable boundary conditions, we use
the Gaussian function to project a density distribution
onto the domain which is then combined with the fil-
tered densities in a smooth and differentiable way. The
filtered element densities are calculated from the den-
sity design variables in the same way as before:

_ 1 Heipi
pe ZZ £ (26)
l:l et

The projected density distribution is given by the Gaus-
sian function of unit height (A = 1) with a distance
function based on load and support point variables:

- () &

The filtered densities p. and the projected densities pe
are then combined into a physical density field using
a generalized mean to take the maximum of the two

fields:

1
(P42
= (P575)" (29)

With @ = 1, p. is the average of p. and p, and as @
approaches infinity, p. approaches the maximum of the
two values from below. Thus, we can set @) to a finite
value to approximate the maximum of the filtered and
projected density fields in a smooth and differentiable
way.

7 Optimization Problems and Sensitivity
Analysis

The optimization problem considered in this paper is
a minimization of an objective function f,; subjected
to constraints on the design variable upper and lower
limits (denoted by the subscripts U and L, respectively,
with ng representing the number of support design vari-
ables and ny representing the number of load variables),
the amount of material in the domain or overall volume
fraction V¢, and any additional number, n., of functions

h;(z) that may be desired in particular problem setups:

min - fop; (2)

s.t. 0<p. <1, e=1,..., N,
(i)<x(i)<mgi&, t=1,...,ns,
()<y() (l) 7’:17' y Ms,
i) (1) (Z) S
fo<x <gch, 1=1,...,ny, (29)
ygfl), (l) < ny7 1= ]-7 7nf7
GLSQSGU,
o0 e
N, — P
hi(z) <0, t=1,...,n.

This problem is solved using the method of moving
asymptotes (MMA) (Svanberg 1987), which as a gradient-
based numerical optimization method requires the ob-
jective and constraint function values along with their
first derivatives as inputs. For compliance minimization
problems, the objective function fo;(2z) takes the form

fovi(2) =

In the case of compliant mechanism design, the objec-
tive is the specified output displacement

fobj (z> == Uout (Z)

where LT is a constant vector of all zeros except at the
output degree of freedom, where it has a value of one.

To determine the derivative of the compliance with
respect to each of the design variables, we use adjoint
sensitivity analysis to find:

C(z) = F(2)'U(2). (30)

=L"U(2), (31)

9C(z) OFT T
oF 0K 0K°® OK™

Similarly for the output displacement objective func-
tion, we find the following form:

Upur(2) 7
azi =A
_(aF (8K 0K?®

o - +8Km) U>. (33)

0z; T on 0z; 0z;

where the adjoint vector is first computed as:

1

A=(K+K°* +K") L. (34)

The adjoint sensitivity equations then take on dif-
ferent forms for each design variable type p, x, or y,,
xy or Yy, and 6. For the sensitivity with respect to the
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Table 1: Adjoint sensitivity equations for the derivative of the compliance and output displacement functions with

respect to each design variable

2 agz(z) aUaO?(@
pi —UTGeU. —AL GoeUe

2" “UT(555 + 555U A + 55U

o s (g (2 o5 )u) N (25 - (85 + 457 ) v)
0 a;eTU+UT<%F aK U) AT (%_a?g U)

density variable at each element e (z; = p;), the deriva-
tive with respect to the physical density p. is taken
first and the chain rule is subsequently used to find the
sensitivity with respect to the base design variable:

0 fonj(2) _ i Ofobj(2) Ope Ope

35

8pi p— 8;38 8[38 api’ ( )

where:
L1

pe 1 (P2+02\T oo
o3 (55 o, (36)
aA’e Hie

Pe — (37)

o Ne ’
Ip; Zj:l H;;

The final adjoint sensitivity equations are summarized
in Table 1.

We now list the partial derivatives of the stiffness
matrices and force vectors. The sensitivity of the global
stiffness matrix with respect to the physical densities is
given by

0K,

“YEy — Epmin)kL.
aﬁe ( 0 mln)ke (38)

= ppy
where the subscript e on the global matrix indicates
that we only consider entries within the global stiffness
matrix that correspond to degrees of freedom associated
with the element e, since the derivatives of all other
entries vanish.

For the derivative of the stiffness matrix of the con-
tinuum structure with respect to each support variable
zZi = xg Y or zi = ygi) (and similarly with respect to the
force location variables), the derivative is:

oK Ne _p— 3ﬁe 0
— = A ppP! —(Eo — Enin) ke, (39)
gD~ emTPe o o T e
where

0pe 1 /99 4+ p@\ @ 0pe

p. - (pe +pe ) ~§—1 p , (40)
82'31) 2 2 azf:)

and

~ dg P 2 P—-1
0. _ 2P~ (%) In(b) <d€> 4, 2% ()

0l 7 2)

For the support spring component of the global stiffness
matrix, it is:

OK?®
82@

N. s
8ke) ISa (42)
e=1 32

where

oks
8zsi)

()" 2\ P—1
_ 2kl <) In(b) (de> d, 9% (43)

r2 72 € 8z§l)

For the derivative with respect to each force variable
zZi = mgf) or z; = y; ), The derivative of the input spring

stiffness matrix is:

OK™ i 0Ay e

W_ A f feIS< >

6zf 8,2
in N,
ko A Ofe I3(®). (44)
Af e= 0z 929

The force vector is also a function of the force design
variables and its derivative is given by:

Ne
81:‘) = A a{?) (45)
82'; e=1 8sz

where, for the case where the coefficient Ay is a function
of the line length:

of. aAfb ()

(2)
Oz Bzf
2\ P _
AP (% 2\ !
_2 JQP b (,,,2) In(b) (%) de%~ (46)
r r 9\
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The derivative of the coefficient is given by

0A; 2foVor a® (47)

92~ na(m? +2r[a)? lall

for the case of a line load or else is equal to zero for the
case of a point load.

For the derivative of the global stiffness matrix with
respect to the force angle variable 6, the input spring
stiffness matrix has dependence:

OK™ ki Ne 0(®)
= A I (48)
where
8(@) _ _sinfcosf sinfcosf . T
a6 = \/C032(9)+6 \/sin2(9)+e :| (49)

Finally, the derivative of the global force vector with
respect to the load orientation is given by:

OF Ne 00O

o0~ Mg (50)
where

88—?;: [—Sin90089-~-]T. (51)

When zero dimensional points are being used to con-
struct the minimum distance function, the derivative of
the distance function is:

{—ﬁm if (|| = min(]|da ], [ dall,- - | dw]).
0 if [dill # min(|du, | dall. - . [ dn ),
(52)

and when one dimensional lines are being used, it is:

od, B

= =
1) (1
024 4|
__h_

lIR]]
ifa-h <0,

1 1 T
e (@@ B)T + (a h)I)—I]g 53)
if0<a-h<a-a,
0
ifa-h>a-a

for the first point of the line and

od,
S
2 2
0+ 4]
0
ifa-h <0,

~famta (@ @A) + (a-
if0<a-h<a-a,

__e_
llell

ifa-h>a-a.

for the second point of the line.

8 Numerical Examples

In this section we demonstrate the performance of the
algorithm for several benchmark problems. To avoid
having the loads and supports settle into local minima
too early, we use a continuation strategy on the SIMP
penalty parameter p where the optimization runs with
p = 1 until the average change in the density design
variables from the previous iteration is less than 1073,
after which p is increased by 0.5. This process repeats
until p = 3, and at this point the optimization contin-
ues until the average change in density variables is less
than 10~%, at which point we consider the optimization
fully converged and stop the program. We use the av-
erage change, rather than the maximum change that is
often used in topology optimization (Andreassen et al.
2011), since it is less sensitive to localized changes in
the density caused by small oscillations in the load and
support design variables (Ferrari and Sigmund 2020).

Table 2: Optimization parameters common to all exam-
ple problems

Eo 1 Pa
Emin Eo x 1le=9 Pa
v 0.3
Tmin 2.5 Elements
€ 0.1
ko FEqy x le—3 N/m
fo 1N

kir Ep x 1e73 N/m

kvt Eg x le™2 N/m
b 2
r 5 mm
P 4
Q 10

In the design plots shown in the following sections,
red contour lines represent the support geometry pro-
jected by the Gaussian function at a radius r. Loads
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are similarly shown by blue contour lines, with an ar-
row pointing in the direction 6 and originating at the
design variable coordinates (xf,yy).

The common parameters used for all of the following
examples are summarized in Table 2. The MMA move
limits are set to plus or minus 20% of the current values
for the densities, 2r for the load and support locations,
and 2 degrees for the load orientation.

8.1 Minimum Compliance Design

We begin by validating the framework for a simple min-
imum compliance cantilever beam problem which has a
well known solution with obvious optimal locations for
the loads and supports. A rectangular design domain
of dimensions 30x7.5 centimeters and discretized by a
grid of 200x50 elements is initialized with a uniform dis-
tribution of 20% density, a distributed line support at
the left side with both endpoints at the same position,
and a concentrated load at the right side. We note that
although the structure is initially supported by only a
single point, the Gaussian function projects a circle of
finite radius r which provides rotational stiffness. The
design variables included are the densities, support line
endpoint coordinates, and load point coordinates:
z=[pzsy, x5y, (55)
The load orientation is set to a constant value of 8 =
—90° (pointing straight downwards). The design do-
mains for the support and load coordinates are restricted
to one fourth of the length of domain from the left and
right ends as shown in Figure 5a. Minimum and max-
imum values of the points are set such that they must
remain at least a distance of the Gaussian function ra-
dius, r, from the overall domain boundaries.

Running the optimization, we get the design we
would expect with fast convergence. The loads and sup-
ports move horizontally as close together as possible to
minimize the moment arm, and the two endpoints of
the distributed support move vertically as far apart as
possible to maximize the second moment of area. The
density resolves to a cantilever beam design that is typi-
cal with the standard SIMP method. The optimized de-
sign is shown in Figure 5b and the convergence history
is shown in Figure 5c. The sharp kinks in the objective
function history starting near 25 iterations correspond
to the point where the loads and supports reach their
vertical and horizontal limits, and the small upward
jumps afterwards are caused by the the continuation
scheme when the SIMP penalty parameter p increases
by 0.5.

As a second compliance minimization problem we
optimize a bridge structure. We initialize a 20x20 cen-
timeter design domain with 200x200 elements and 15%
uniform density as shown in Figure 6a. One point sup-
port is placed in each of the top corners of the domain,
and two overlapping supports are placed at each of the
two bottom corners for a total of six support points.
A distributed line load with a solid non-design region
projected underneath is placed across the width of the
center of the domain with the orientation initially point-
ing downwards. These parameters are represented by
the following vector of design variables:
z=[pxsy, x5y 0. (56)
The upper bound of the material volume fraction is
constrained to 15%, and the supports are allowed to
move only along the edges of the domain as shown in
Figure 6a by the red dashed lines. The distributed load
is allowed to move in the middle third of the domain as
shown in Figure 6a by the blue dashed region.

The results of the optimization are shown in 6b.
As would be expected, the distributed load moves as
close as possible to the supports along the bottom edge,
which distribute themselves underneath it. The load
also remains distributed across the entire domain and
the orientation does not change from its initial down-
ward direction. The supports allowed to move along the
vertical edges place themselves at the ends of the bridge
to directly support it.

8.2 Compliant Mechanism Design

While for the simple compliance minimization prob-
lems in the previous section the optimal locations of the
loads and supports were somewhat obvious and could
be guessed intuitively, typically the same cannot be said
for compliant mechanism design problems. The posi-
tions and orientations of the boundary conditions have
a significant effect on the motion of the output degrees
of freedom and initial guesses based on intuition are
likely suboptimal.

To demonstrate this, we use the standard bench-
mark compliant mechanism problem of a displacement
inverter. The domain is initialized as a 20x20 centimeter
square with a grid of 200x200 elements, with a uniform
20% material density. This same 20% value was used
for the constraint on the volume fraction upper bound,
and the load and support locations are placed in the
positions shown in 7a, which are the typical locations
in the inverter mechanism problem. A spring of stiffness
k°“ is placed on the degree of freedom for the horizon-
tal displacement at the center of the right edge, which
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Fig. 6: Results for the bridge design problem

is the displacement being minimized as the objective
function (to maximize the displacement in the leftward
direction). This initial design and volume constraint is
the same for each of the following examples. First, we
set only the material densities as the design variables:

z=[p]. (57)

The results of this optimization gives a familiar dis-
placement inverter design, shown in Figure 7b.

As a second problem, we add the positions of the
load and supports as design variables:
z=[pasy, xyyy]. (58)
These positions are unconstrained and can move any-
where in the design domain, with the exception that
they must remain at least a distance of r from the edges
of the domain. Since asymmetry in the design was ob-

served, we also include an additional constraint func-
tion to prevent the output displacement from deviating
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Fig. 7: Results for the displacement inverter design problem

significantly in the vertical direction:

(UY,)? < (0.05U%,,)%. (59)

out out

The problem results in a different design, shown in Fig-
ure 7c, where the supports have moved very close to
the input load, which shifts to a position further inside
the domain. As a result of this change in the boundary
condition locations, the output displacement increases
by 123% compared to the conventional design that had
predetermined boundary conditions.

For a third problem, we include the orientation of
the load as a design variable:

z=[pxsy, zry; 0. (60)

Keeping the constraint function for controlling the un-
wanted vertical output displacement, equation (59), this
results in an asymmetrical design, shown in Figure 7d,
where the load is applied at an oblique angle relative
to the direction of the output displacement. A displace-
ment 151% larger than the conventional fixed boundary

condition design is achieved for the same input force
magnitude, which shows that the optimizer is able to
exploit the additional design freedom to obtain better
objective function values. The increase in performance
and the counterintuitive, asymmetrical design when the
boundary conditions are included as design variables
shows the effectiveness of allowing them to be deter-
mined automatically by the optimizer.

The asymmetrical design of Figure 7d performs well
based on the finite element analysis, however the sup-
port closest to the applied load is somewhat difficult
to interpret as a manufacturable structure. It is sur-
rounded by solid material with a region of soft interme-
diate density in the middle, making the support rotate
and act more like a pin joint than a compliant hinge. To
get a fully compliant mechanism design with no need
for bearings or significant post-processing, we run the
asymmetrical inverter problem once more and include
variable non-design solid regions projected on both the
load and the supports. We implement this by defining a
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new distance function of three points, d(zs, y,, s, ys),
and using it in the equations of section 6. The initial de-
sign and optimized results are shown in Figure 8, where
there are now clearly formed compliant hinges for each
boundary condition point. By forcing the material to be
solid at the load and support locations, the optimizer

was no longer able to take advantage of the soft interme-
diate density material to make a pin joint. This came
at a small cost to the overall performance, with the
design achieving 1.7% less displacement at the output
point compared to the asymmetrical inverter without
the non-design regions. The deformation is visualized
in Figure 9, where the bending of compliant hinges and
a substantial geometric advantage can be seen. The lo-
cations of the supports translate very little in relation
to the input load and the output point, showing that
the stiffness of the support springs is adequately high.

To validate our methodology, we manufactured a
half-scale model of the design of Figure 8 on an Ob-
jet260 Connex3 3D printer using the digital material
FLX9885-DM, a blend of VeroWhite and TangoBlack+
polymers. The mechanism’s supports were inserted into
a base plate, 3D printed from VeroWhite, with a cutout
included to guide the input actuation handle at the cor-
rect angle. Figure 10 shows the 3D printed model as it
is actuated through a large displacement. While the nu-
merical modeling was only based on linear elasticity, the
physical prototype is still able to maintain a small ver-
tical output displacement through the large actuation
shown in Figure 10. In both the partially actuated and
fully actuated states shown in Figure 10, the vertical
displacement of the output point is about 8% the mag-
nitude of the horizontal displacement based on mea-
surements of the image. This can be compared to the
5% constraint imposed on the design in the topology
optimization by equation (59).
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Fig. 10: 3D printed model of the displacement inverter design

9 Conclusions

In this paper, we introduced a framework for including
variable load and support boundary conditions in topol-

ary conditions modeled by simple points and straight
lines. However, it should be extendable to more com-
plex problems such as those that include geometric non-
linearity, multiple physics disciplines, or more complex

ogy optimization. Starting with the standard SIMP method boundary condition geometries. Extension to three di-

with linear elasticity, we extended it to use a system
of spring elements to model elastic supports and loads.
The stiffness of the springs and the magnitudes of input
forces applied to every structural element were parame-
terized and controlled by a higher-order Gaussian func-
tion. By using the distance functions of simple points
and lines, the Gaussian function was used to model the
effective location and orientation of different boundary
conditions in a smooth, differentiable, and optimizable
way with minimal numbers of additional design vari-
ables.

Two examples of compliance minimization problems
were shown, demonstrating the effectiveness and effi-
ciency of the Gaussian function approach in automati-
cally finding optimal placements of the boundary condi-
tions. Several examples of compliant mechanism prob-
lems were then presented, resulting in significantly in-
creased performance over designs in which the bound-
ary conditions were defined a priori. Using our method
to design displacement inverters, we produced several
designs with more than double the performance of the
design with conventionally predetermined boundary con-
ditions. The relatively counterintuitive design of these
mechanisms shows the usefulness of allowing a numeri-
cal optimizer to automatically find the optimal bound-
ary conditions, rather than relying only on experience
or trial and error methods.

The super-Gaussian projection method proposed here

was applied to linear elasticity problems with the bound-

mensions may present some challenges with maintain-
ing manufacturable supports that do not become en-
tirely enclosed in material, but otherwise should be
straightforward. Future work will utilize the Gaussian
function method developed in this paper for some of
these more complex problems.
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