
2862 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

Annealing Optimization for Progressive Learning
With Stochastic Approximation

Christos N. Mavridis , Member, IEEE, and John S. Baras , Life Fellow, IEEE

Abstract—In this work, we introduce a learning model
designed to meet the needs of applications in which com-
putational resources are limited, and robustness and inter-
pretability are prioritized. Learning problems can be formu-
lated as constrained stochastic optimization problems, with
the constraints originating mainly from model assumptions
that define a tradeoff between complexity and performance.
This tradeoff is closely related to overfitting, generalization
capacity, and robustness to noise and adversarial attacks,
and depends on both the structure and complexity of the
model, as well as the properties of the optimization meth-
ods used. We develop an online prototype-based learning
algorithm based on annealing optimization that is formu-
lated as an online gradient-free stochastic approximation
algorithm. The learning model can be viewed as an in-
terpretable and progressively growing competitive-learning
neural network model to be used for supervised, unsuper-
vised, and reinforcement learning. The annealing nature
of the algorithm contributes to minimal hyperparameter
tuning requirements, poor local minima prevention, and
robustness with respect to the initial conditions. At the
same time, it provides online control over the performance–
complexity tradeoff by progressively increasing the com-
plexity of the learning model as needed, through an intu-
itive bifurcation phenomenon. Finally, the use of stochastic
approximation enables the study of the convergence of the
learning algorithm through mathematical tools from dynam-
ical systems and control, and allows for its integration with
reinforcement learning algorithms, constructing an adap-
tive state–action aggregation scheme.

Index Terms—Optimization for machine learning, anneal-
ing optimization, online deterministic annealing (ODA), pro-
gressive learning, reinforcement learning (RL), stochastic
approximation.

I. INTRODUCTION

L EARNING from data samples has proven to be an im-
portant component in the advancement of diverse fields,

Manuscript received 18 October 2022; accepted 11 December 2022.
Date of publication 28 December 2022; date of current version 26
April 2023. This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant HR00111990027, in
part by ONR under Grant N00014-17-1-2622, and in part by a grant
from Northrop Grumman Corporation. Recommended by Senior Editor
Tetsuya Iwasaki and Guest Editors George J. Pappas, Anuradha M.
Annaswamy, Manfred Morari, Claire J. Tomlin, Rene Vidal, and Melanie
N. Zeilinger. (Corresponding author: Christos N. Mavridis.)

The authors are with the Department of Electrical and Computer
Engineering and the Institute for Systems Research, University of
Maryland, College Park, MD 20742 USA (e-mail: mavridis@umd.edu;
baras@umd.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3232706.

Digital Object Identifier 10.1109/TAC.2022.3232706

including artificial intelligence, computational physics, biolog-
ical sciences, communication frameworks, and cyber-physical
control systems. While virtually all learning problems can be
formulated as constrained stochastic optimization problems, the
optimization methods can be intractable, with the constraints
originating mainly from model assumptions and defining a trade-
off between complexity and performance [1]. For this reason,
designing models of appropriate structure, and optimization
methods with particular properties, has been the cornerstone of
machine learning algorithms.

Currently, deep learning methods dominate the field of ma-
chine learning owing to their experimental performance in
numerous applications [2]. However, they typically consist of
overly complex models of a great many parameters, which
comes at the expense of time, energy, data, memory, and compu-
tational resources [3], [4]. Furthermore, they are inherently unin-
terpretable and vulnerable to small perturbations [5], [6], which
has led to an emerging hesitation in their usage outside common
benchmark datasets and real life or security-critical applica-
tions [7]. In this work, we introduce a learning model designed
to alleviate these limitations to meet the needs of applications in
which computational resources are limited, and robustness and
interpretability are prioritized. To that end, the learning model
should create a meaningful representation, should be updated
recursively (and even in real time) with easy-to-implement
updates, and its complexity should be appropriately and progres-
sively adjusted to offer online control over the tradeoff between
model complexity and performance. This tradeoff is also closely
related to overfitting, generalization capacity, and robustness to
input perturbations and adversarial attacks [8]. This is further
reinforced by recent studies revealing that existing flaws in the
current benchmark datasets may have inflated the need for overly
complex models [9], and that overfitting to adversarial training
examples may actually hurt generalization [10].

We focus on prototype-based models [11], [12], [13], which
are iterative, consistent [11], interpretable, robust [14], and
topology-preserving competitive-learning neural networks [15],
sparse in the sense of memory complexity, fast to train and
evaluate, and have recently shown impressive robustness against
adversarial attacks, suggesting suitability in security-critical
applications [16]. They use a set of representatives (typically
called prototypes, or codevectors) to partition the input space
in an optimal way according to an appropriately defined ob-
jective function. This is an intuitive approach that parallels
similar concepts from cognitive psychology and neuroscience.
We approximate the global minima of the objective function by

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2863

solving a sequence of optimization subproblems that make use of
entropy regularization at different levels. This is a deterministic
annealing (DA) approach [12], [17] that 1) adjusts the number of
prototypes/neurons (which defines the complexity of the model)
as needed through an intuitive bifurcation phenomenon; 2) offers
robustness with respect to the initial conditions; and 3) gener-
alizes the proximity measures used to quantify the similarity
between two vectors in the data space beyond convex metrics.
In addition, the annealing nature of the algorithm contributes to
(but does not guarantee) avoiding poor local minima, requires
minimal hyperparameter tuning, and allows online control over
the performance–complexity tradeoff.

Although DA approaches have been known for a while [17],
an online optimization method for such architectures is an
important development, similar to the introduction of a greedy
online training algorithm for a network of restricted Boltz-
mann machines that gave rise to one of the first effective deep
learning algorithms [18]. We develop an online training rule
based on a stochastic approximation algorithm [19], [20] and
show that it is also gradient free, provided that the proximity
measure used belongs to the family of Bregman divergences:
information-theoretic dissimilarity measures that play an im-
portant role in learning applications and include the widely
used Euclidean distance and Kullback–Leibler divergence [21],
[22]. While stochastic approximation offers an online, adaptive,
and computationally inexpensive optimization framework, it is
also strongly connected to dynamical systems. This enables
the study of the convergence of the learning algorithm through
mathematical tools from dynamical systems and control [20].
We take advantage of this property to prove the consistency
of the proposed learning algorithm as a density estimator (un-
supervised learning), and as a classification rule (supervised
learning). Moreover, we make use of the theory of two-timescale
stochastic approximation to show that the proposed learning
algorithm can be used as an adaptive aggregation scheme in
reinforcement learning (RL) settings with 1) a fast component
that executes a temporal-difference learning algorithm and 2) a
slow component for adaptive aggregation of the state–action
space. Finally, we illustrate the properties and evaluate the
performance of the proposed learning algorithm in multiple
experiments.

In particular, we start by dedicating Section II to reviewing the
theory of stochastic approximation as an optimization approach
for learning algorithms, giving emphasis to its connection to
dynamical systems. This concise background is targeted toward
broader audience and aims to motivate the generalization of
training updates in learning algorithms. We follow with Sec-
tion III, where we introduce the online deterministic annealing
(ODA) algorithm for unsupervised and supervised learning and
study its convergence and practical implementation. In Sec-
tion IV, we show how ODA can be integrated with common
RL approaches, and, in particular, as an adaptive state–action
aggregation algorithm that allows Q-learning to be applied to
Markov decision processes (MDPs) with infinite-dimensional
state and input spaces. Section V illustrates experimental results.
Finally, Section VI concludes this article.

II. STOCHASTIC APPROXIMATION: LEARNING WITH

DYNAMICAL SYSTEMS

In this section, we briefly review the theory of stochastic
approximation that is going to form the base for the convergence
analysis of the proposed learning schemes. We give emphasis
to its connection to dynamical systems, and how this property
can be particularly useful to optimization and machine learning
algorithms.

A. Stochastic Approximation and Dynamical Systems

Stochastic approximation, first introduced in [19], was origi-
nally conceived as a tool for statistical computation, and, since
then, has become a central tool in a number of different dis-
ciplines, often times unbeknownst to the users, researchers,
and practitioners. Stochastic approximation offers an online,
adaptive, and computationally inexpensive optimization frame-
work, properties that make it an ideal optimization method for
machine learning algorithms. As a result, many of the most
widely used learning algorithms partially or entirely consist of
stochastic approximation algorithms, from stochastic gradient
descent used in the back-propagation algorithm to train artificial
neural networks [23], [24], to the Q-learning algorithm used in
RL applications [25], [26]. In addition to its connection with
optimization and learning algorithms, stochastic approximation
is also strongly connected to dynamical systems. A fact that is of-
ten overlooked is that almost any recursive numerical algorithm
can be described by a discrete time dynamical system. In this
sense, results about the behavior, e.g., stability and convergence
properties, of discrete time dynamical systems can be applied to
iterative optimization and learning algorithms. This connection
is remarkably direct in stochastic approximation that allows the
study of its convergence through the analysis of an ordinary
differential equation, as illustrated in the following theorem,
proven in [20].

Theorem 1 ([20, Ch. 2]): Almost surely (a.s.), the sequence
{xn} ∈ S ⊆ Rd generated by the following stochastic approx-
imation scheme:

xn+1 = xn + α(n) [h(xn) +Mn+1] , n ≥ 0 (1)

with prescribed x0, converges to a (possibly sample-path-
dependent) compact, connected, internally chain transitive, in-
variant set of the ODE:

ẋ(t) = h (x(t)) , t ≥ 0 (2)

where x : R+ → Rd and x(0) = x0, provided the following
assumptions hold.

(A1) The map h : Rd → Rd is Lipschitz in S, i.e., ∃L with 0 <
L < ∞ such that ‖h(x)− h(y)‖ ≤ L‖x− y‖, x, y ∈ S.

(A2) The stepsizes {α(n) ∈ R++, n ≥ 0} satisfy
∑

n α(n) =
∞, and

∑
n α

2(n) < ∞.
(A3) {Mn} is a martingale difference sequence with respect to

the increasing family of σ-fieldsFn := σ(xm,Mm, m ≤ n),

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2864 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

n ≥ 0, i.e., E[Mn+1|Fn] = 0 a.s., for all n ≥ 0, and, further-
more, {Mn} are square-integrable with E[‖Mn+1‖2|Fn] ≤
K(1 + ‖xn‖2), a.s., where n ≥ 0 for some K > 0.

(A4) The iterates {xn} remain bounded a.s., i.e.,
supn ‖xn‖ < ∞ a.s.

Intuitively, the stochastic process (1) can be seen as a noisy
discretization (also known as the Euler scheme in numerical
analysis literature) of (2). As an immediate result, the following
corollary also holds.

Corollary 1.1 ([20]): If the only internally chain transitive
invariant sets for (2) are isolated equilibrium points, then, a.s.,
{xn} converges to a, possibly sample-dependent, equilibrium
point of (2).

Given the conditions of Theorem 1 and using standard Lya-
punov arguments, the following corollary, regarding distributed,
asynchronous implementation of the algorithm, also holds.

Corollary 1.2 ([20, Ch. 7]): Suppose that there exists a con-
tinuously differentiable function J such that h(x) = −∇J(x)
(or h(x) = F (x)− x). Define Yn ⊆ {1, . . . , d} to be the subset
of components of xn that are updated at time n, and v(i, n) :=∑n

m=0 1[i∈Ym] to be the number of times the ith component x(i)
n

has been updated up until time n. Then, a.s., the sequence {xn}
generated by

x
(i)
n+1 = x(i)

n + α(v(i, n))1[i∈Yn]

[
h(i)(xn) +M

(i)
n+1

]
(3)

where i ∈ {1, . . . , d}, and n ≥ 0, converge to the invariant set
H := {x : ∇J(x) = 0} (or H := {x : F (x) = x}), provided
that each component (i) is updated infinitely often, i.e.,

lim
n→∞ inf

v(i, n)

n
> 0.

Corollaries 1.1 and 1.2 reveal the connection of the stochas-
tic approximation algorithms with iterative approximation and
optimization algorithms, including two notable special cases:
stochastic gradient descent and the Q-learning algorithm. These
special cases of stochastic approximation are discussed in more
detail in what follows.

B. Stochastic Gradient Descent

Stochastic gradient descent is an iterative stochastic optimiza-
tion method that tries to solve the problem of minimizing the
cost:

min
θ

E [J(X, θ)] (4)

where X : Ω → H is a random variable defined in the proba-
bility space (Ω,F ,P), and H is a Hilbert space. The update

θn+1 = θn − αn∇θJ(xn, θn) (5)

is used to bypass the estimation of Ê[J(x, θn)] =
1
n

∑n
i=1 J(xi, θn), which can be expensive or infeasible. This

is a special case of a stochastic approximation update. Observe
that, under the condition ∇θE[J(x, θn)] = E[∇θJ(x, θn)], (5)
can be written as

θn+1 = θn + αn [−∇θE [J] + (E [∇θJ]−∇θJ)] (6)

where h(θ) = −∇θE[J(X, θ)] is a Lipschitz continuous func-
tion, and Mn = E[∇θJ(X, θ)]−∇θJ(xn, θ) is a martingale
difference sequence, since the data samples xn are assumed
independent realizations of the random variable X . Therefore,
by Theorem 1 and Corollary 1.1, as long as

∑
n α(n) = ∞,

and
∑

n α
2(n) < ∞, and θn remain bounded a.s., stochastic

gradient descent will converge to a possibly path-dependent
equilibrium of θ̇ = −∇θE[J(X, θ)], i.e., in a minimizer of
E[J(X, θ)].

C. Q-Learning

As a second example, the Q-learning algorithm, widely used
in RL, is again a special case of a stochastic approximation
algorithm [27]. Consider a discrete-time MDP (X ,U ,P, C)
with:

� X being the state space;
� U being the action (control) space;
� P : (x, u, x′) �→ P [x′|x, u] being the transition probabil-

ities associated with a stochastic state transition function
f : (x, u) �→ x′;

� C : X × U → R+, being the immediate cost function,
assumed deterministic.

RL examines the problem of learning a control policy u :=
(u0, u1, . . .) that solves the discounted infinite-horizon optimal
control problem

min
u

E

[∞∑
l=0

γlC(xl, ul)

]

where γ ∈ (0, 1]. Define the value function V u of a policy u as

V u(xk) : = E

[∞∑
l=k

γl−kC(xl, ul)

]

= C(xk, uk) + γE [V u(xk+1) | xk]

= Qu(xk, uk)

where Qu represents the quality function of a policy u, i.e.,
the expected return for taking action uk at time k and state
xk, and thereafter following policy u. As a result of Bellman’s
principle, we get the (discrete-time) Hamilton–Jacobi–Bellman
(HJB) equation

V ∗(xk) : = min
u

E

[∞∑
l=k

γl−kC(xl, ul)

]

(HJB)
= min

u
{C(xk, uk) + γE [V ∗(xk+1) | xk] }

= min
uk

Q∗(xk, uk) (7)

where V ∗ := V u∗
and Q∗ := Qu∗

represent the optimal value
and Q functions, respectively. RL algorithms consist mainly of
temporal-difference learning algorithms that try to approximate
a solution to (7) using iterative optimization methods. The
optimization is performed over a finite set of parameters that
are used to describe the value (or Q) function. These parameters

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2865

typically correspond to a parametric model (e.g., a neural net-
work) used for function approximation, or to the different values
of the vector V (X) (or Q(X ,U)), in which case X and U are
assumed finite either by definition or as a result of discretization.
Assuming that the state and action spaces X and U are finite, a
widely used approach is the Q-learning algorithm:

Qj+1(x, u
′) = Qj(x, u

′) + αj [C(x, u′)

+ γmin
u

Qj(x,
′ u)−Qj(x, u

′)]

which is a stochastic approximation algorithm [27]:

Qj+1(x, u
′) = Qj(x, u

′) + αj[(
C(x, u′) + γE

[
min
u

Qj(x, u)
]
−Qj(x, u

′)
)

+ γ
(
min
u

Qj(x,
′ u)− E

[
min
u

Qj(x, u)
])]

(8)

with h(Q(x, u′)) = C(x, u′) + γE[minu Qj(x, u)]−
Qj(x, u

′), and Mj = γ(minu Qj(x,
′ u)− E[minu Qj(x, u)])

is a martingale difference sequence. As a result, under
the conditions of Theorem 1, the Q-learning algorithm
converges to the global equilibrium of Q̇ = F (Q)−Q, with
F (Q(x, u′)) = C(x, u′) + γE[minu Qj(x, u)], i.e., to the
stationary point Q(x, u) = C(x, u) + γE[minu Qj(x, u)],
which solves the HJB equation.

D. Dynamics and Control for Learning

It follows from the above that stochastic approximation algo-
rithms define a family of iterative approximation and optimiza-
tion algorithms that can be used, among others, for machine
learning applications. Their strong connection to dynamical
systems (see Theorem 1) can give rise to the study of learn-
ing algorithms and representations through systems-theoretic
mathematics, connecting machine learning with stochastic op-
timization, adaptive control, and dynamical systems, which can
lead to new developments in the field of machine learning. As a
first example, notice that (1) defines an iterative algorithm that
can be used for stochastic optimization and does not necessarily
depend on the gradient of a cost function. As will be shown in
Section III, this can lead to gradient-free learning algorithms
that can alleviate common problems such as that of the vanish-
ing gradients. In addition, the developed mathematical theory
of dynamical systems can be utilized to construct and study
learning algorithms that run at the same time but at different
timescales. In particular, the theory of the ODE method for
stochastic approximation in two timescales as detailed in [20] is
summarized in the following theorem.

Theorem 2 ([28, Ch. 6]): Consider the sequences {xn} ∈
S ⊆ Rd and {yn} ∈ Σ ⊆ Rk, generated by the iterative stochas-
tic approximation schemes

xn+1 = xn + α(n)
[
f(xn, yn) +M

(x)
n+1

]
(9)

yn+1 = yn + β(n)
[
g(xn, yn) +M

(y)
n+1

]
(10)

for n ≥ 0 and M
(x)
n , M (y)

n martingale difference sequences,
and assume that

∑
n α(n) =

∑
n β(n) = ∞,

∑
n(α

2(n) +

β2(n)) < ∞, and β(n)/α(n) → 0, with the last condition imply-
ing that the iterations for {yn} run on a slower timescale than
those for {xn}. If the equation

ẋ(t) = f(x(t), y), x(0) = x0

has an asymptotically stable equilibrium λ(y) for fixed y and
some Lipschitz mapping λ, and the equation

ẏ(t) = g(λ(y(t)), y(t)), y(0) = y0

has an asymptotically stable equilibrium y∗, then, a.s., (xn, yn)
converges to (λ(y∗), y∗).

This result allows for two learning algorithms, that may de-
pend on each other, to run online at the same time, but at different
timescales. As will be shown in Section IV, a two-timescale
stochastic approximation algorithm can be used for RL with 1)
a fast component that executes a Q-learning algorithm and 2) a
slow component that adaptively partitions the state–action space
according to an appropriately defined dissimilarity measure.

III. ODA FOR UNSUPERVISED AND SUPERVISED LEARNING

To formulate the mathematics of a prototype-based learning
model that progressively grows in size, it is convenient to
start our analysis with the case of unsupervised learning, i.e.,
clustering and density estimation, and then show how these
results generalize in the supervised case, i.e., in classifica-
tion and regression, as well. In the context of unsupervised
learning, the observations (data) are represented by a random
variable X : Ω → S defined in a probability space (Ω,F ,P),
where S ⊆ Rd is the observation space (data space). The goal
of prototype-based learning is to define a similarity measure
d : S → ri(S) (where ri(S) represents the relative interior of S)
and a set of K prototypes μ := {μi}Ki=1, μi ∈ ri(S), on the data
space such that an average distortion measure is minimized, i.e.,

min
μ

J(μ) := E

[
min
i

d(X,μi)
]
. (11)

Here, the similarity measure as well as the number of prototypes
K are predefined designer parameters. This process is equivalent
to finding the most suitable model out of a set ofK local constant
models, and results in a piecewise-constant approximation of the
data space S. This representation has been used for clustering
in vector quantization applications [11], [29], and, in the limit
K → ∞, can be used for density estimation.

To construct a learning algorithm that progressively increases
the number of prototypes K as needed according to different
“levels of detail” (to be defined shortly), we will define a
probability space over an infinite number of candidate models,
and constrain their distribution using the maximum-entropy
principle at different levels. As we will show, solving a sequence
of optimization problems parameterized by a single parameterT
will result in a series of model distributions with a finite number
ofK(T)values with nonzero probability, i.e., this process results
in a finite number of “effective codevectors” K(T) that depends
on a “temperature parameter” T .

First, we need to adopt a probabilistic approach for (11), in
which a quantizerQ : S → ri(S) is defined as a discrete random

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2866 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

variable with domain μ := {μi}Ki=1, such that (11) becomes

min
μ

D(μ) := E [d(X,Q)]

= E [E [d(X,Q)|X]]

=

∫
p(x)

∑
i

p(μi|x)dφ(x, μi) dx. (12)

This is now a problem of finding the locations {μi} and the asso-
ciation probabilities {p(μi|x)} := {p(Q = μi|X = x)}. Notice
that this is a more general problem than that of (11), where it
is subtly assumed that p(μi|x) = 1[x∈Si], where Si = {x ∈ S :
i = arg minj=1,...,K d(x, μj)}, i = 1, . . . ,K, and {Si} defines
a Voronoi partition.

Now, we make the assumption that we have access to an
infinite number of possible models, i.e., that the quantizer Q is a
discrete random variable over a countably infinite setμ := {μi}.
Instead of choosing K a priori, we will constraint the model
distribution at different levels by maximizing the entropy:

H(μ) := E [−logP (X,Q)]

= H(X) +H(Q|X)

= H(X)−
∫

p(x)
∑
i

p(μi|x) log p(μi|x) dx. (13)

This is essentially a realization of Jaynes’s maximum-entropy
principle [30]. We formulate the resulting multiobjective opti-
mization as the minimization of the Lagrangian

min
μ

F (μ) := D(μ)− TH(μ) (14)

where T ∈ [0,∞) acts as a Lagrange multiplier, and, as we will
show, can be seen as a temperature coefficient in an annealing
process [12], [17].

Remark 1: Alternatively, (14) can be formulated as

min
μ

F (μ) := (1− λ)D(μ)− λH(μ) (15)

where λ ∈ [0, 1], with

T :=
1− λ

λ
, λ ∈ [0, 1] (16)

representing the corresponding temperature coefficient. This is a
mathematically equivalent formulation that, as will be discussed,
can yield major benefits in the algorithmic implementation.

Equation (14) represents the scalarization method for trade-
off analysis between two performance metrics, one related to
performance and the other to generalization. The entropy H
acts as a regularization term and is given progressively less
weight asT decreases. For large values ofT → ∞, we maximize
the entropy. As we will show, this results in a unique effective
codevector that represents the entire data space. AsT is lowered,
we essentially transition from one solution of the multiobjective
optimization (a Pareto point when the objectives are convex)
to another in a naturally occurring direction that resembles an
annealing process.

In this sense, the value of T defines the “level of detail” of
the dataset that is allowed to be seen by the maximum-entropy

constraint. As we will show, when certain critical values of T are
reached, a bifurcation phenomenon occurs, according to which,
the number of nonzero values K(T) of the model distribution
increases, indicating that the solution to the optimization prob-
lem of minimizing F (T) requires more “effective codevectors”
K(T).

Remark 2: We note that this concept is similar to convex
relaxation of hierarchical clustering, which results in a family of
objective functions with a natural geometric interpretation [31].
However, as we will show, the proposed approach does not
make any relaxation assumptions, uses entropy as a naturally
occurring regularization term, and allows for the development of
a gradient-free training rule based on stochastic approximation.
This will result in a learning algorithm that can be integrated
with RL approaches.

A. Solving the Optimization Problem

As in the case of standard vector quantization algorithms, we
will minimize F by successively minimizing it first with respect
to the association probabilities {p(μi|x)}, and then with respect
to the codevector locations μ.

The following lemma provides the solution of minimizing F
with respect to the association probabilities p(μi|x).

Lemma 1: The solution of the optimization problem

F ∗(μ) := min
{p(μi|x)}

F (μ)

s.t.
∑
i

p(μi|x) = 1 (17)

is given by the Gibbs distributions

p∗(μi|x) = e−
d(x,μi)

T∑
j e

− d(x,μj)

T

∀x ∈ S. (18)

Proof: We form the Lagrangian:

Lf ({p(μi|x)} , ν) :=D(μ)−TH(μ) + ν

(∑
i

p(μi|x)− 1

)
.

(19)
Taking ∂L

∂p(μ|x) = 0 yields

d(x, μi) + T (1 + log p(μi|x)) + ν = 0

⇒ log p(μi|x) = − 1

T
d(x, μi)−

(
1 +

ν

T

)

⇒ p(μi|x) = e−
d(x,μi)

T

e1+
ν
T

. (20)

Finally, from the condition
∑

i p(μi|x) = 1, it follows that

e1+
ν
λ =

∑
i

e−
d(x,μi)

T (21)

which completes the proof. �

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2867

In order to minimize F ∗(μ) with respect to the codevector
locations μ, we set the gradients to zero

d

dμ
F ∗(μ) = 0 ⇒ d

dμ
(D(μ)− TH(μ)) = 0

⇒
∫

p(x)
∑
i

d

dμ
(p∗(μi|x)dφ(x, μi))

+ T
d

dμ
(p∗(μi|x) log p∗(μi|x)) dx = 0

⇒
∑
i

∫
p(x)p∗(μi|x) d

dμi
d(x, μi) dx = 0 (22)

where we have used (18), direct differentiation, and the fact that∑
i

d
dμp

∗(μi|x) = d
dμ

∑
i p

∗(μi|x) = 0. In the next section, we
show that (22) has a closed form solution if the dissimilarity
measure d belongs to the family of Bregman divergences.

B. Bregman Divergences as Dissimilarity Measures

Prototype-based algorithms rely on measuring the proximity
between different vector representations. In most cases the Eu-
clidean distance or another convex metric is used, but this can
be generalized to alternative dissimilarity measures inspired by
information theory and statistical analysis, such as the Bregman
divergences [21].

Definition 1 (Bregman Divergence): Let φ : H → R, be a
strictly convex function defined on a vector space H such that
φ is twice F-differentiable on H . The Bregman divergence
dφ : H ×H → [0,∞) is defined as

dφ (x, μ) = φ(x)− φ (μ)− ∂φ

∂μ
(μ) (x− μ)

wherex, μ ∈ H , and the continuous linear map ∂φ
∂μ (μ) : H → R

is the Fréchet derivative of φ at μ.
In this work, we will concentrate on nonempty, compact

convex sets S ⊆ Rd so that the derivative of dφ with respect
to the second argument can be written as

∂dφ
∂μ

(x, μ) =
∂φ(x)

∂μ
− ∂φ(μ)

∂μ
− ∂2φ(μ)

∂μ2
(x− μ) +

∂φ(μ)

∂μ
(23)

= −∂2φ(μ)

∂μ2
(x− μ) = −〈∇2φ(μ), (x− μ)〉

(24)

where x, μ ∈ S, ∂
∂μ represents differentiation with respect to

the second argument of dφ, and ∇2φ(μ) represents the Hessian
matrix of φ at μ.

Example 1: As a first example, φ(x) = 〈x, x〉, x ∈ Rd,
yields the squared Euclidean distance dφ(x, μ) = ‖x− μ‖2.

Example 2: A second interesting Bregman divergence that
shows the connection to information theory is the generalized
I-divergence that results fromφ(x) = 〈x, log x〉, x ∈ Rd

++ such
that

dφ(x, y) = 〈x, log x− log μ〉 − 〈1, x− μ, 〉

where 1 ∈ Rd is the vector of ones. It is easy to see that dφ(x)
reduces to the Kullback–Leibler divergence if 〈1, x〉 = 1.

The family of Bregman divergences provides proximity mea-
sures that have been shown to enhance the performance of
a learning algorithm [22]. There is also a deeper connec-
tion of Bregman divergences to prototype-based learning algo-
rithms [21]. In the next theorem, we show that we can have ana-
lytical solution to the last optimization step (22) in a convenient
centroid form, if d is a Bregman divergence.

Theorem 3: The optimization problem

min
μ

F ∗(μ) (25)

where F ∗(μ) is defined in (17) is solved by the codevector
locations μ given by

μ∗
i = E [X|μi] =

∫
xp(x)p∗(μi|x) dx

p∗(μi)
(26)

if d := dφ is a Bregman divergence for some function φ that
satisfies Definition 1.

Proof: Given (24), (22) becomes∫
(x− μi)p(x)p

∗(μi|x) dx = 0 (27)

which is equivalent to (26) since
∫
p(x)p∗(μi|x) dx = p∗(μi).�

C. Bifurcation and the Number of Clusters

So far, we have assumed a countably infinite set of codevec-
tors. In this section, we will show that the distribution of the
quantizer Q is actually discrete and takes values from a finite
set of K(T) codevectors which we call “effective codevectors.”
Both the number and the locations of the codevectors will
depend on the value of the temperature parameter T . These
effective codevectors are the only parameters that an algorithmic
implementation will need to store in memory.

First, notice that as T → ∞, (18) yields uniform association
probabilities p(μi|x) = p(μj |x)∀i, j∀x. As a result of (26), all
codevectors are located at the same point:

μi = E [X] ∀i
which means that there is one unique effective codevector given
by E[X].

As T is lowered below a critical value, a bifurcation phe-
nomenon occurs, when the number of effective codevectors
increases, which is a physical analogy with chemical annealing
processes. Mathematically, it occurs when the existing solution
μ∗ given by (26) is no longer the minimum of the free energy
F ∗, as the temperatureT crosses a critical value. Following prin-
ciples from variational calculus, we can rewrite the necessary
condition for optimality (22) as

d

dε
F ∗(μ+ εψ)|ε=0 = 0 (28)

with the second-order condition being

d2

dε2
F ∗({μ+ εψ})|ε=0 ≥ 0 (29)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

for all choices of finite perturbations {ψ}. Here, we will denote
by {y := μ+ εψ} a perturbed codebook, where ψ are pertur-
bation vectors applied to the codevectors μ, and ε ≥ 0 is used
to scale the magnitude of the perturbation. Bifurcation occurs
when equality is achieved in (29), and hence, the minimum is no
longer stable.1 These conditions are described in the following
theorem.

Theorem 4: Bifurcation occurs under the following condition

∃yn s.t. p(yn) > 0 and det

[
I − T

∂2φ(yn)

∂y2n
Cx|yn

]
= 0 (30)

where Cx|yn
:= E[(x− yn)(x− yn)

T|yn].
Proof: From direct differentiation, the optimality condition

(29) becomes

∑
i

p(yi)
∂2φ(yi)

∂y2i
ψT

[
I − T

∂2φ(yi)

∂y2i
Cx|yi

]
ψ

+ T

∫
p(x)

(∑
i

p(yi|x)∂
2φ(yi)

∂y2i
(x− yi)

Tψ

)2

dx = 0

(31)
where

Cx|yi
:= E

[
(x− yi)(x− yi)

T|yi
]

=

∫
p(x|yi)(x− yi)(x− yi)

Tdx. (32)

The left-hand side of (31) is positive for all perturbations {ψ}
if and only if the first term is positive. To see that notice that
the second term of (31) is clearly nonnegative. For the left-hand
side to be nonpositive, the first term needs to be nonpositive
as well, i.e., there should exist at least one codevector value,
say yn, such that p(yn) > 0 and [I − T ∂2φ(yn)

∂y2
n

Cx|yn
] � 0. In

this case, there always exist a perturbation vector {y} such that
y = 0 ∀y �= yn, and

∑
y=yn

ψ = 0, that vanishes the second

term, i.e., T
∫
p(x)(

∑
i p(yi|x)∂

2φ(yi)
∂y2

i
(x− yi)

Tψ)2dx = 0. In
other words, we have shown that

d2

dε2
F ∗(y) > 0 ⇔

∃yn s.t. p(yn) > 0 and

[
I − T

∂2φ(yn)

∂y2n
Cx|yn

]
� 0 (33)

which completes the proof. �
Notice that loss of minimality also implies that the number

of effective codevectors has changed, otherwise the minimum
would be stable. In addition, we have showed that bifurcation
depends on the temperature coefficient T (and the choice of the
Bregman divergence, through the function φ) and occurs when

1

T
=

∂2φ(yn)

∂y2n
ν̄ (34)

1For simplicity, we ignore higher order derivatives, which should be checked
for mathematical completeness, but which are of minimal practical importance.
The result is a necessary condition for bifurcation.

where ν̄ is the largest eigenvalue of Cx|yn
. As a result, the

following corollary holds.
Corollary 4.1: The number of effective codevectors always

remains bounded between two critical temperature values.
In other words, an algorithmic implementation needs only

as many codevectors as the number of effective codevectors,
which depends only on the changes of the temperature parameter
below certain thresholds that depend on the dataset at hand
and the dissimilarity measure used. As shown in Algorithm 1,
we can detect the bifurcation points by introducing perturbing
pairs of codevectors at each temperature level T . In this way,
the codevectors μ are doubled by inserting a perturbation of
each μi in the set of effective codevectors. The newly inserted
codevectors will merge with their pair if a critical temperature
has not been reached and separate otherwise. For more details
about the implementation of the algorithm, the reader is referred
to [12].

D. Online Learning Rule

The conditional expectation E[X|μ] in (26) can be approx-
imated by the sample mean of the data points weighted by
their association probabilities p(μ|x), i.e., Ê[X|μ] =

∑
xp(μ|x)
p(μ) .

This approach, however, defines an offline (batch) optimization
algorithm and requires the entire dataset to be available a priori,
subtly assuming that it is possible to store and also quickly
access the entire dataset at each iteration. This is rarely the
case in practical applications and results in computationally
costly iterations that are slow to converge. We propose an ODA
algorithm that dynamically updates its estimate of the effective
codevectors with every observation. This results in a significant
reduction in complexity that comes in two levels. The first
level refers to a huge reduction in memory complexity, since
we bypass the need to store the entire dataset, as well as the
association probabilities{p(μi|x)∀x, i} that map each data point
in the dataset to each cluster. The second level refers to the
nature of the optimization iterations. In the online approach, the
optimization iterations increase in number but become much
faster, and practical convergence is often reached after a smaller
number of observations. To define an online training rule for
the DA framework, we formulate a stochastic approximation
algorithm to recursively estimateE[X|μ] directly. The following
theorem provides a means toward constructing a gradient-free
stochastic approximation training rule for the ODA algorithm.

Theorem 5: Let S be a vector space, μ ∈ S, and X : Ω → S
be a random variable defined in a probability space (Ω,F ,P).
Let {xn} be a sequence of independent realizations of X , and
{α(n) > 0}be a sequence of stepsizes such that

∑
n α(n) = ∞,

and
∑

n α
2(n) < ∞. Then, the random variable mn = σn/ρn,

where (ρn, σn) are sequences defined by

ρn+1 = ρn + α(n) [p(μ|xn)− ρn]

σn+1 = σn + α(n) [xnp(μ|xn)− σn] (35)

converges to E[X|μ] a.s., i.e., mn
a.s.−−→ E[X|μ].

Proof: We will use the facts that p(μ) = E[p(μ|x)] and
E[1[μ]X] = E[xp(μ|x)]. The recursive equations (35) are

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2869

stochastic approximation algorithms of the form

ρn+1 = ρn + α(n)[(p(μ)− ρn)

+ (p(μ|xn)− E [p(μ|X)])]

σn+1 = σn + α(n)[(E
[
1[μ]X

]− σn)

+ (xnp(μ|xn)− E [xnp(μ|X)])]. (36)

It is obvious that both stochastic approximation algorithms
satisfy the conditions of Theorem 1. As a result, they converge
to the asymptotic solution of the differential equations

ρ̇ = p(μ)− ρ

σ̇ = E
[
1[μ]X

]− σ

which can be trivially derived through standard ODE analysis
to be (p(μ),E[1[μ]X]). This follows from the fact that the only
internally chain transitive invariant sets for (36) are the isolated
equilibrium points (p(μ),E[1[μ]X]). In other words, we have
shown that

(ρn, σn)
a.s.−−→ (

p(μ),E
[
1[μ]X

])
. (37)

The convergence of mn follows from the fact that E[X|μ] =
E[1[μ]X]/p(μ), and standard results on the convergence of the
product of two random variables. �

As a direct consequence of this theorem, the following corol-
lary provides an online learning rule that solves the optimization
problem of the DA algorithm.

Corollary 5.1: The online training rule{
ρi(n+ 1) = ρi(n) + α(n) [p̂(μi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + α(n) [xnp̂(μi|xn)− σi(n)]
(38)

where the quantities p̂(μi|xn) and μi(n) are recursively updated
as follows:

p̂(μi|xn) =
ρi(n)e

− d(xn,μi(n))

T∑
i ρi(n)e

− d(xn,μi(n))

T

μi(n) =
σi(n)

ρi(n)
(39)

converges a.s. to a possibly sample-path-dependent solution of
the optimization (25), as n → ∞.

Finally, the determinsitic annealing algorithm with the learn-
ing rule (38), (39) can be used to define a consistent (histogram)
density estimator at the limit T → 0. In the limit λ → 0, and as
the number of observed samples {xn} goes to infinity, i.e., n →
∞, the learning algorithm based on (38) and (39) results in a
codevector μ that constructs a consistent density estimator. This
follows from the fact that as T → 0, we get p∗(μi|x) → 1[x∈Si]

and K → ∞, i.e., the number of effective codevectors K goes
to infinity. As a result, it can be shown that V ol(Si) → 0, where

Si = {x ∈ S : i = arg minj d(x, μj)}. Then, p̂(x) =
∑

i 1[x∈Si]

nV ol(Si)
is a consistent density estimator. The proof follows similar
arguments to the stochastic vector quantization (sVQ) algorithm
(see, e.g., [32]) but is omitted due to space limitations.

E. ODA for Supervised Learning

The same learning algorithm can be extended for classifi-
cation as well. A multiclass classification problem involves a
pair of random variables {X, c} ∈ S × Sc defined in a prob-
ability space (Ω,F ,P), with c ∈ Sc representing the class of
X and S ⊆ Rd. The codebook is represented by μ := {μi}Ki=1,
μi ∈ ri(S), and cμ := {cμi

}Ki=1, such that cμi
∈ Sc represents

the class of μi for all i ∈ {1, . . . ,K}.
We can approximate the optimal solution of a minimum

classification error problem by using the distortion measure

dc(x, cx, μ, cμ) =

{
d(x, μ), cx = cμ

0, cx �= cμ.
(40)

It is easy to see that this particular choice for the distortion
measure dc in (40) transforms the learning rule in (38) to{

ρi(n+ 1) = ρi(n) + β(n) [sip̂(μi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + β(n) [sixnp̂(μi|xn)− σi(n)]
(41)

where si := 1[cμi
=c]. As a result, this is equivalent to estimating

strongly consistent class-conditional density estimators:

p̂(x|c = j) → πjp(x|c = j), a.s. (42)

whereπi := P [c = i]. This results in a Bayes-optimal classifica-
tion scheme. The proof is beyond the scope of this article, since
we will focus our attention to RL. As a side note, a practical
classification rule such as the nearest-neighbor rule:

ĉ(x) = cμh∗ (43)

where h∗ = arg maxτ=1,...,K p(μτ |x), h ∈ {1, . . . ,K}, results
in an easy-to-implement classifier with tight upper bound, i.e.,
J∗
B ≤ Ĵ∗

B ≤ 2J∗
B , where JB represents the optimal Bayes error

(see, e.g., [32]).

F. Algorithm

The ODA algorithm for both clustering and classification is
shown in Algorithm 1 and its source code is publicly available.2

The temperature parameter Ti is reduced using the geometric
series Ti+1 = γTi, for γ < 1. The temperature schedule {Ti}
affects the behavior of the algorithm by introducing the follow-
ing tradeoff: small steps Ti − Ti−1 are theoretically expected to
give better results, i.e., not miss any bifurcation points, but larger
steps provide computational benefits.

Remark 3: Notice that the temperature schedule and its values
depend on the range of the domain of the data. When the input
domain is not known a priori, we can use the formulation (15)
and (16), substituting Ti by Ti :=

1−λi

λi
, λi ∈ [0, 1].

Regarding the stochastic approximation stepsizes, simple
time-based learning rates of the form αn = 1/a+bn, a, b > 0,
have experimentally shown to be sufficient for fast convergence.
Convergence is checked with the conditionTdφ(μn

i , μ
n−1
i) < εc

for a given threshold εc. This condition becomes harder as the
value ofT decreases. Exploring adaptive learning rates is among
the authors’ future research direction. The stopping criteria

2https://github.com/MavridisChristos/OnlineDeterministicAnnealing

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2870 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

SCstop can include a maximum number of codevectors Kmax

allowed, a minimum temperatureTmin to be reached, a minimum
distortion/classification error etarget to be reached, a maximum
number of iterations imax reached, and so on.

Bifurcation, at Ti, is detected by maintaining a pair of per-
turbed codevectors {μj + δ, μj − δ} for each effective code-
vector μj generated by the algorithm at Ti−1, i.e., for j =
1 . . . ,Ki−1. Using arguments from variational calculus (see
Section III-C), it is easy to see that, upon convergence, the
perturbed codevectors will merge if a critical temperature has
not been reached, and will get separated otherwise. Therefore,
the cardinality of the model is at most doubled at every tem-
perature level. These are the effective codevectors discussed
in Section III-C. For classification, a perturbed codevector for
each class is generated. Merging is detected by the condition
Tdφ(μj , μi) < εn, where εn is a design parameter that acts as
a regularization term for the model that controls the number
of effective codevectors. These comparisons need not be in
any specific order, and the worst-case number of comparisons
is Nk =

∑K−1
i=1 i, which scales with O(K2). An additional

regularization mechanism is the detection of idle codevectors,
which is checked by the condition ρi(n) < εr, where ρi(n) can
be seen as an approximation of the probability p(μi, cμi

). In
practice, εc, εn, and εr are assigned similar values and their
impact on the performance is similar to any threshold parameter
that detects convergence.

The complexity of Algorithm 1 for a fixed temperature co-
efficient Ti is O(Nci(2Ki)

2 d), where Nci is the number of
stochastic approximation iterations needed for convergence,
which corresponds to the number of data samples observed,
Ki is the number of codevectors of the model at temperature
Ti, and d is the dimension of the input vectors, i.e., x ∈ Rd.
Therefore, assuming a training dataset of N samples and a
temperature schedule {T1 = Tmax, T2, . . . , TNT

= Tmin}, the
worst-case complexity of Algorithm 1 becomes

O(Nc(2K̄)2 d)

where Nc = maxi{Nci} is an upper bound on the number of
data samples observed until convergence at each temperature
level, and

NT ≤ K̄ ≤ min

{
NT−1∑
n=0

2n,

log2 Kmax∑
n=0

2n

}
< NTKmax

where the actual value of K̄ depends on the bifurcations occurred
as a result of reaching critical temperatures and the effect of the
regularization mechanisms described above. Note that typically
Nc � N as a result of the stochastic approximation algorithm,
and K̄ � NTKmax as a result of the progressive nature of the
ODA algorithm.

As a final note, because the convergence to the Bayes decision
surface comes in the limit (K,T) → (∞, 0), in practice, a fine-
tuning mechanism can be designed to run on top of Algorithm 1
after a predefined threshold temperature Tmin. This can be either
an LVQ algorithm [33] or some other local model, i.e., we can
use the partition created by Algorithm 1 to train local models in
each region of the data space.

Algorithm 1: Online Deterministic Annealing (ODA).
Select a Bregman divergence dφ
Set stopping criteria SCstop (e.g., Kmax, Tmin)
Set convergence parameters: γ, {αn}, εc, εn, εr, δ
Initialize: K = 1, λ = 1− ε, T = 1−λ/λ, {μi},
{cμi = c, ∀c ∈ C}, {p(μi) = 1}, {σ(μi) = μip(μi)}

repeat
Perturb μi ← {μi + δ, μi − δ}, ∀i
Update K ← 2K, p(μi), σ(μi) ← μip(μi), ∀i
n ← 0
repeat

Observe data point x and class label c
for i = 1, . . . ,K do

Compute membership si = 1[cμi=c]

Update:

p(μi|x) ← p(μi)e−
dφ(x,μi)

T∑
j p(μ

j)e−
dφ(x,μj)

T

p(μi) ← p(μi) + αn

[
sip(μi|x)− p(μi)

]
σ(μi) ← σ(μi) + αn

[
sixp(μi|x)− σ(μi)

]
μi ← σ(μi)

p(μi)

n ← n+ 1
end for

until Convergence: Tdφ(μi
n, μ

i
n−1) < εc, ∀i

Keep effective codevectors: discard μi if
Tdφ(μ

j , μi) < εn, ∀i, j, i �= j
Remove idle codevectors: discard μi if p(μi) < εr, ∀i
Update K, p(μi), σ(μi), ∀i
Lower temperature: λ ← γλ, T ← 1−λ

λ

until SCstop

IV. ODA FOR RL

The learning architecture of Algorithm 1 can also be inte-
grated with RL methods, giving rise to adaptive state–action
aggregation schemes. As will be shown in this section, this is
a result of using stochastic approximation as a training rule,
and yields an RL algorithm based on a progressively changing
underlying model [34], [35].

We consider an MDP (X ,U ,P, C), where S ⊆ RdX , S ⊆
RdU are compact convex sets (see Section II-C). We are inter-
ested in the approximation of the quality functionQ : X × U →
R+. To this end, we use the ODA algorithm (see Algorithm 1)
as an online recursive algorithm that finds an optimal repre-
sentation of the data space with respect to a tradeoff between
minimum average distortion and maximum entropy. We define
a quantizer QP (x, u) =

∑K
h=1 μh1[(x,u)∈Ph], where {Ph}Kh=1

is a partition of X × U . The parameters μh := (mh, vh) define
a state–action aggregation scheme with K clusters (aggregate
state–action pairs), each represented by mh ∈ X and vh ∈ U ,
for h = 1, . . . ,K. After convergence, if the representation is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2871

Algorithm 2: Reinforcement Learning with ODA.

Initialize μh, Q0(h), ∀h ∈ {1, . . . ,K}
repeat

Observe x and find

h = arg min
τ=1,...,k

dφ((x, u
′), μτ)

Choose u′ = πL(h|μ)
Observe x′ = f(x, u′) and find

h′ = arg min
τ=1,...,k

dφ(x,
′ μ(τ))

Update Q(h):

Qi+1(h) = Qi(h) + αi[C(x, u′)

+ γmin
u

Qi(h
′)−Qi(h)]

if i mod N = 0 then
Update partition μ := {μh}Kh=1 using Algorithm 1

end if
until Convergence
Update Policy:

u∗(x) = arg minu {Q(h(x)) }

meaningful, the finite set {μh}Kh=1, where μh ∈ X × U , can
be used directly as a piecewise-constant approximation of the
Q function. We stress that the cardinality K of the set of
representatives of the space X × U is automatically updated by
Algorithm 1 and progressively increases, as needed, with respect
to the complexity–accuracy tradeoff presented above.

Remark 4: It is also possible to use {μh}Kh=1 as pseudoinputs
for an adaptive and sparse Gaussian process regression [36], but
this is beyond the scope of this article.

In essence, we are approximating the Q function with a
piecewise-constant parametric model with the parameters that
define the partition living in the data space and being chosen
by the ODA algorithm (see Algorithm 1). However, since the
system observes its states and actions online while learning its
optimal policy using a temporal-difference RL algorithm, the
two estimation algorithms need to run at the same time. This
can become possible by observing that Algorithm 1, as well
as most temporal-difference algorithms, are stochastic approx-
imation algorithms. Therefore, we can design an RL algorithm
as a two-timescale stochastic approximation algorithm with
1) a fast component that updates the values Q := {Q(h)}Kh=1

with a temporal-difference learning algorithm, and 2) a slow
component that updates the representation μ := {μh}Kh=1 based
on Algorithm 1. Such a framework can incorporate different
RL algorithms, including the proposed algorithm presented in
Algorithm 2. The exploration policy πL(h|μ) in Algorithm 2
depends on the aggregate state h and balances the ratio between
exploration and exploitation.

The convergence properties of the algorithm can be studied by
directly applying the theory of the ODE method for stochastic
approximation in multiple timescales in Theorem 2. For more

details, see [20]. As a result, Algorithm 2 converges according
to the following theorem.

Theorem 6: Algorithm 2 converges a.s. to (μ∗, Q∗), whereμ∗
is a solution of the optimization problem (25) and Q∗ minimizes
the temporal-difference error:

Jh = ‖E
[
C(x, u) + γmin

u
Q(h′)|(x, u) ∈ Ph

]
−Q(h)‖2

(44)
where h = 1, . . . ,K, and {Ph}Kh=1 is a partition of X × U with
every Ph assumed to be visited infinitely often.

Proof: From Theorem 5, it follows that Algorithm (1) is a
stochastic approximation algorithm of the form (10) that con-
verges to a solution of (25). It is easy to see that the Q function
update in Algorithm 2 is also a stochastic approximation algo-
rithm of the form (9), for f(Q(h)) = −∇Q(h)Jh. The result
follows from Theorem 2. �

We note that the condition βi/αi → 0 is of great importance.
Intuitively, Algorithm 2 consists of two components running
in different timescales. The slow component updates μ and
is viewed as quasi-static when analyzing the behavior of the
fast transient Q that updates the approximation of the quality
function. As an example, the condition βn/αn → 0 is satisfied by
stepsizes of the form (αn, βn) = (1/n, 1/1+n logn) or (αn, βn) =
(1/n2/3, 1/n). Another way of achieving the two-timescale effect
is to run the iterations for the slow component {μn} with step-
sizes {αn(k)}, where n(k) is a subsequence of n that becomes
increasingly rare (i.e., n(k + 1)− n(k) → ∞), while keeping
its values constant between these instants. In practice, it has been
observed that a good policy is to run the slow component with a
slower stepsize schedule βn and update it along a subsequence
keeping its values constant in between [20, Ch. 6]. This explains
the parameter N in Algorithm 2 whose value should increase
with time.

Remark 5: Algorithm 2 is essentially based on successive
entropy-regularized RL problems. However, the entropy is de-
fined with respect to the learning representation in the state–
action space X × U . As such, this approach is not to be directly
compared to common entropy-regularized approaches as in [37],
and related methods, such as PPO [38]. The deeper connection to
risk-sensitive RL can be studied along the lines of [14] and [39].

V. EXPERIMENTAL EVALUATION AND DISCUSSION

We illustrate the properties and evaluate the performance of
the proposed algorithm in supervised, unsupervised, and RL
problems.

A. Supervised and Unsupervised Learning

We first illustrate the properties of Algorithm 1, in a classi-
fication problem where the data samples were sampled from a
mixture of 2-D Gaussian distributions. In Figs. 1 and 2, the tem-
perature level (the values of T shown are the normalized values
λ = 1/T+1), the average distortion of the model, the number of
codevectors (neurons) used, the number of observations (data
samples) used for convergence, as well as the overall time are
shown. Since the objective is to give a geometric illustration of
how the algorithm works in the 2-D plane, the Euclidean distance

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2872 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

Fig. 1. Evolution of the ODA algorithm in 2-D binary classification based on class-conditional density estimation. Temperature T decreases from
left to right.

Fig. 2. Performance curves for the problem of Fig. 1.

Fig. 3. Illustration of the evolution of Algorithm 1 for binary classifica-
tion in 2-D based on class-conditional density estimation. Showcasing
robustness to bad initial conditions, which indicates poor local minima
prevention.

is used as the proximity measure. Notice that the classification
accuracy for K = 5 is 98% and it gets to 100% only when we
reach K = 144. This showcases the performance–complexity
tradeoff that Algorithm 1 allows the user to control in an online
fashion. Since classification and clustering are handled in a
similar way by Algorithm 1, these examples properly illustrate
the behavior of the proposed methodology for clustering as well.

In Fig. 3, the progression of the learning representation is
depicted for a binary classification problem with underlying
class distributions shaped as concentric circles. The algorithm
starts at a high temperature with a single codevector for each
class. Here, the codevectors are poorly initialized outside the
support of the data, which are not assumed known a priori (e.g.,
online observations of unknown domain). In this example, the
LVQ algorithm has been shown to fail [40]. This showcases
the robustness of the proposed algorithm with respect to the
initial configuration. This is an example of poor local minima

Fig. 4. Algorithm comparison for unsupervised learning. (a) Gaus-
sians. (b) PIMA.

prevention, which, although not theoretically guaranteed, is a
known property of annealing optimization methods. For cluster-
ing, we consider the dataset of Fig. 1 (Gaussians), and the PIMA
dataset [41]. In Fig. 4, we compare Algorithm 1 with the stochas-
tic (online) vector quantization (sVQ) algorithm [40], and two
offline (batch) algorithms, namely k-means [42] and the original
DA algorithm [17]. The algorithms are compared in terms of
the minimum average distortion achieved, as a function of the
number of samples they observed and the number of clusters
they used. The Euclidean distance is used for fair comparison.
Since there is no criterion to decide the number of clusters
K for k-means and sVQ, we run them sequentially for the K
values estimated by DA, and add up the computational time. All
algorithms are able to achieve comparable average distortion
values, given good initial conditions and appropriate size K.
Therefore, the progressive estimation of K and the robustness
with respect to the initial conditions are key features of both
annealing algorithms. Compared to the offline algorithms, i.e.,
k-means and DA, ODA, and sVQ achieve practical convergence
with a significantly lower number of observations, which corre-
sponds to reduced computational time, as argued above. Com-
pared to the online sVQ (and LVQ), the probabilistic approach
of ODA introduces additional computational cost: all neurons
are now updated in every iteration, instead of only the winner
neuron. However, the updates can still be computed relatively
fast when using Bregman divergences (see Theorem 3). For more
experimental results regarding clustering and classification, the
readers are referred to [12], [36], and [43].

B. RL

Finally, we validate the proposed methodology on the in-
verted pendulum (cart–pole) optimal control problem. The state

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

MAVRIDIS AND BARAS: ANNEALING OPTIMIZATION FOR PROGRESSIVE LEARNING WITH STOCHASTIC APPROXIMATION 2873

Fig. 5. Average number of timesteps (Nt = 1000) over number of
aggregate states used. Red represents the proposed algorithm. Black
represents Q-learning without state aggregation. Blue represents the
SOM-based algorithm of [34].

variable of the cart–pole system has four components
(x, θ, ẋ, θ̇), where x and ẋ are the position and velocity of the
cart on the track, and θ and θ̇ are the angle and angular velocity
of the pole with the vertical. The cart is free to move within
the bounds of a 1-D track. The pole is free to move only in the
vertical plane of the cart and track.

The action space consists of an impulsive “left” or “right”
force F ∈ {−10,+10} N of fixed magnitude to the cart at
discrete time intervals. The cart–pole system is modeled by the
following nonlinear system of differential equations [44]:

ẍ =
F +ml

(
θ̇2 sin θ − θ̈ cos θ

)
μcsgn(ẋ)

mc +m

θ̈ =
g sin θ + cos θ

(
−F−mlθ̇2 sin θ+μcsgn(ẋ)

mc+m

)
− μp

mlμcsgn(ẋ)

l
(

4
3 − m cos2 θ

mc+m

)
where the parameter values for g,mc,m, l, μc, and μp can be
found in [44]. The transition function for the state x is xn+1 =
xn + τ ẋ, where τ = 0.02 s. The initial state is set to X0 =
(ux, uθ, uẋ, uθ̇), where ux, uθ, uẋ, and uθ̇ follow a uniform
distribution U(−0.05, 0.05). Failure occurs when |θ| > 12◦ or
when |x| > 2.4 m. An episode terminates successfully after
Nt timesteps, and the average number of timesteps N̂t ≤ Nt

across different attempts is used to quantify the performance of
the learning algorithm. We use the Euclidean distance as the
Bregman divergence dφ.

In Fig. 5, we compare the average number of timesteps
(here, Nt = 1000) with respect to the number of aggregate
states used, for three different state aggregation algorithms.
The first one is naive discretization without state aggregation,
the second is the SOM-based algorithm proposed in [34],
and the last is the proposed algorithm (see Algorithm 2). We
initialize the codevectors μ by uniformly discretizing over
Ŝ × {−10, 10}, for Ŝ = [−1, 1]× [−4, 4]× [−1, 1]× [−4, 4].
We use K ∈ {16, 81, 256, 625} clusters, corresponding to a
standard discretization scheme with only n ∈ {2, 3, 4, 5} bins
for each dimension. As expected, state aggregation outperforms
standard discretization of the state–action space. The ability to
progressively adapt the number and placement of the centroids

of the aggregate states is an important property of the proposed
algorithm. Fig. 5 shows five instances of Algorithm 2 for five
different stopping criteria according to a predefined minimum
temperature Tmin. This results in different representations of the
state space with K ∈ {56, 118, 136, 202, 252} aggregate states,
respectively.

VI. CONCLUSION

We investigate the properties of learning with progressively
growing models, and propose an online annealing optimization
approach as a learning algorithm that progressively adjusts its
complexity with respect to new observations, offering online
control over the performance–complexity tradeoff. We show
that the proposed algorithm constitutes a progressively grow-
ing competitive-learning neural network with inherent regular-
ization mechanisms, the learning rule of which is formulated
as an online gradient-free stochastic approximation algorithm.
The use of stochastic approximation enables the study of the
convergence of the learning algorithm through mathematical
tools from dynamical systems and control, and allows for its
use in supervised, unsupervised, and RL settings. In addition,
the annealing nature of the algorithm, contributes to poor lo-
cal minima prevention and offers robustness with respect to
the initial conditions. To the best of our knowledge, this is
the first time such a progressive approach has been proposed
for machine learning and RL applications. These results can
lead to new developments in the development of progressively
growing machine learning models targeted toward applications
in which computational resources are limited and robustness and
interpretability are prioritized.

REFERENCES

[1] K. P. Bennett and E. Parrado-Hernández, “The interplay of optimiza-
tion and machine learning research,” J. Mach. Learn. Res., vol. 7,
pp. 1265–1281, 2006.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The compu-
tational limits of deep learning,” 2020, arXiv:2007.05558.

[4] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considera-
tions for deep learning in NLP,” arXiv:1906.02243.

[5] C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[7] V. Sehwag et al., “Analyzing the robustness of open-world machine learn-
ing,” in Proc. 12th ACM Workshop Artif. Intell. Secur., 2019, pp. 105–116.

[8] H. Xu and S. Mannor, “Robustness and generalization,” Mach. Learn.,
vol. 86, no. 3, pp. 391–423, 2012.

[9] C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors in
test sets destabilize machine learning benchmarks,” 35th Conf. Neural Inf.
Process. Syst. Datasets Benchmarks Track, 2021.

[10] A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang, “Ad-
versarial training can hurt generalization,” ICML Workshop Identifying
Understanding Deep Learn. Phenomena, 2019.

[11] C. N. Mavridis and J. S. Baras, “Convergence of stochastic vec-
tor quantization and learning vector quantization with Bregman
divergences,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2214–2219,
2020.

[12] C. N. Mavridis and J. S. Baras, “Online deterministic annealing for
classification and clustering,” IEEE Trans. Neural Netw. Learn. Syst., to
be published, doi: 10.1109/TNNLS.2021.3138676.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

2874 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

[13] M. Biehl, B. Hammer, and T. Villmann, “Prototype-based models in
machine learning,” Wiley Interdiscipl. Rev., Cogn. Sci., vol. 7, no. 2,
pp. 92–111, 2016.

[14] C. Mavridis, E. Noorani, and J. S. Baras, “Risk sensitivity and entropy
regularization in prototype-based learning,” in Proc. IEEE 30th Mediter-
ranean Conf. Control Automat., 2022, pp. 194–199.

[15] E. A. Uriarte and F. D. Martín, “Topology preservation in SOM,” Int. J.
Appl. Math. Comput. Sci., vol. 1, no. 1, pp. 19–22, 2005.

[16] S. Saralajew, L. Holdijk, M. Rees, and T. Villmann, “Robustness of gen-
eralized learning vector quantization models against adversarial attacks,”
in Proc. Int. Workshop Self-Organizing Maps, 2019, pp. 189–199.

[17] K. Rose, “Deterministic annealing for clustering, compression, classifica-
tion, regression, and related optimization problems,” Proc. IEEE, vol. 86,
no. 11, pp. 2210–2239, Nov. 1998.

[18] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[19] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statis., pp. 400–407, 1951.

[20] V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint,
vol. 48. Berlin, Germany: Springer, 2009.

[21] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with Breg-
man divergences,” J. Mach. Learn. Res., vol. 6, no. Oct, pp. 1705–1749,
2005.

[22] T. Villmann, S. Haase, F.-M. Schleif, B. Hammer, and M. Biehl, “The
mathematics of divergence based online learning in vector quantization,” in
Proc. IAPR Workshop Artif. Neural Netw. Pattern Recognit., 2010, pp. 108–
119.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[24] L. Bottou, “Online learning and stochastic approximations,” On-line
Learn. Neural Netw., vol. 17, no. 9, pp. 9–42, 1998.

[25] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 279–292, 1992.

[26] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-learning,”
Mach. Learn., vol. 16, no. 3, pp. 185–202, 1994.

[27] V. S. Borkar and S. P. Meyn, “The ODE method for convergence of
stochastic approximation and reinforcement learning,” SIAM J. Control
Optim., vol. 38, no. 2, pp. 447–469, 2000.

[28] V. S. Borkar, “Stochastic approximation with two time scales,” Syst.
Control Lett., vol. 29, no. 5, pp. 291–294, 1997.

[29] T. Kohonen, Learning Vector Quantization. Berlin, Germany: Springer,
1995, pp. 175–189.

[30] E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev.,
vol. 106, no. 4, pp. 620–630, 1957.

[31] T. D. Hocking, A. Joulin, F. Bach, and J.-P. Vert, “Clusterpath an algorithm
for clustering using convex fusion penalties,” in Proc. 28th Int. Conf. Mach.
Learn., 2011, p. 1.

[32] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition, vol. 31. Berlin, Germany: Springer Sci. Bus. Media, 2013.

[33] A. Sato and K. Yamada, “Generalized learning vector quantization,” in
Proc. Adv. neural Inf. Process. Syst., 1996, pp. 423–429.

[34] C. N. Mavridis and J. S. Baras, “Vector quantization for adaptive state
aggregation in reinforcement learning,” in Proc. IEEE Amer. Control Conf.,
2021, pp. 2187–2192.

[35] C. N. Mavridis, N. Suriyarachchi, and J. S. Baras, “Maximum-entropy
progressive state aggregation for reinforcement learning,” in Proc. IEEE
60th Conf. Decis. Control, 2021, pp. 5144–5149.

[36] C. N. Mavridis, G. Kontoudis, and J. S. Baras, “Sparse Gaussian process
regression using progressively growing learning representations,” in Proc.
IEEE 61st Conf. Decis. Control, 2022, pp. 5144–5149.

[37] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, 2017, pp. 1352–1361.

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[39] E. Noorani, C. Mavridis, and J. Baras, “Risk-sensitive reinforcement
learning with exponential criteria,” 2022, arXiv:2212.09010.

[40] J. S. Baras and A. LaVigna, “Convergence of a neural network classifier,”
in Proc. Adv. Neural Inf. Process. Syst., 1991, pp. 839–845.

[41] J. W. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes, “Using
the ADAP learning algorithm to forecast the onset of diabetes mellitus,”
in Proc. Annu. Symp. Comput. Appl. Med. Care. 1988, p. 261.

[42] L. Bottou and Y. Bengio, “Convergence properties of the k-means algo-
rithms,” in Proc. Adv. Neural Inf. Process. Syst., 1995, pp. 585–592.

[43] C. N. Mavridis and J. S. Baras, “Progressive graph partitioning based on
information diffusion,” in Proc. IEEE 60th Conf. Decis. Control, 2021,
pp. 37–42.

[44] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834–846, Sep./Oct. 1983.

Christos N. Mavridis (Member, IEEE) received
the diploma degree from the National Technical
University of Athens, Athens, Greece, in 2017,
and the M.S. and Ph.D. degrees from the Uni-
versity of Maryland, College Park, MD, USA, in
2021, all in electrical and computer engineering.

He was a Postdoctoral Associate with the Uni-
versity of Maryland, and a Visiting Postdoctoral
Fellow with the KTH Royal Institute of Tech-
nology, Stockholm. He was a Research Intern
for the Math and Algorithms Research Group,

Nokia Bell Labs, NJ, USA, and the System Sciences Lab, Xerox Palo
Alto Research Center (PARC), CA, USA. His research interests include
systems and control theory, stochastic optimization, learning theory,
multiagent systems, and robotics.

Dr. Mavridis is a Member of the Institute for Systems Research (ISR)
and the Autonomy, Robotics and Cognition (ARC) Lab. He was the
recipient of the Ann G. Wylie Dissertation Fellowship in 2021, and the A.
James Clark School of Engineering Distinguished Graduate Fellowship,
the Outstanding Graduate Research Assistant Award, the Future Faculty
Fellowship, in 2017, 2020, and 2021, respectively, and he has received
the Best Student Paper Award (1st Place) at the IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2021. He has
been a finalist in the Qualcomm Innovation Fellowship US, San Diego,
CA, 2018.

John S. Baras (Life Fellow, IEEE) received the
diploma degree in electrical and mechanical en-
gineering from the National Technical University
of Athens, Athens, Greece, in 1970, and the
M.S. and Ph.D. degrees in applied mathematics
from Harvard University, Cambridge, MA, USA,
in 1971 and 1973, respectively.

From 1985 to 1991, he was the Founding
Director of the ISR. Since 1992, he has been
the Director of the Maryland Center for Hybrid
Networks (HYNET), which he co-founded. He is

currently a Distinguished University Professor and holds the Lockheed
Martin Chair in Systems Engineering with the Department of Electrical
and Computer Engineering and the Institute for Systems Research
(ISR), University of Maryland College Park, MD, USA. His research
interests include systems and control, optimization, communication net-
works, applied mathematics, machine learning, artificial intelligence,
signal processing, robotics, computing systems, security, trust, systems
biology, healthcare systems, and model-based systems engineering.

Dr. Baras is a Fellow of SIAM, AAAS, NAI, IFAC, AMS, and AIAA, a
Member of the National Academy of Inventors, and a Foreign Member
of the Royal Swedish Academy of Engineering Sciences. He was the
recipient of major honors, including the 1980 George Axelby Award from
the IEEE Control Systems Society, the 2006 Leonard Abraham Prize
from the IEEE Communications Society, the 2017 IEEE Simon Ramo
Medal, the 2017 AACC Richard E. Bellman Control Heritage Award,
the 2018 AIAA Aerospace Communications Award. In 2016, he was
inducted in the A. J. Clark School of Engineering Innovation Hall of
Fame. In 2018, he was awarded a Doctorate Honoris Causa by his alma
mater the National Technical University of Athens, Greece.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:05:00 UTC from IEEE Xplore. Restrictions apply.

