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Abstract—The rate-regulation tradeoff, defined between two ob-
jective functions, one penalizing the packet rate and one the reg-
ulation cost, can express the fundamental performance bound of
networked control systems. However, the characterization of the
set of globally optimal solutions in this tradeoff for multidimen-
sional Gauss–Markov processes has been an open problem. In
this article, we characterize a policy profile that belongs to this set
without imposing any restrictions on the information structure or
the policy structure. We prove that such a policy profile consists
of a symmetric threshold triggering policy based on the value of
information and a certainty-equivalent control policy based on a
non-Gaussian linear estimator. These policies are deterministic
and can be designed separately. Besides, we provide a global opti-
mality analysis for the value of information VoIk , a semantic metric
that emerges from the rate-regulation tradeoff as the difference
between the benefit and the cost of a data packet. We prove that it is
globally optimal that a data packet containing sensory information
at time k be transmitted to the controller only if VoIk becomes
nonnegative. These findings have important implications in the
areas of communication and control.

Index Terms—Decision policies, globally optimal solutions, net-
worked control systems, rate-regulation tradeoff, semantic com-
munications, semantic metrics, value of information.

I. INTRODUCTION

The rate-regulation tradeoff, defined between two objective func-
tions, one penalizing the packet rate and one the regulation cost, can
express the fundamental performance bound of networked control
systems. This tradeoff naturally leads to the adoption of an event
trigger that is collocated with the sensor and of a controller that is
collocated with the actuator as the distributed decision makers, and
is formulated as a stochastic optimization problem over the space of
causal decision policy profiles. Unfortunately, the optimization problem
in the rate-regulation tradeoff for the joint design of the event trigger
and the controller is, in general, intractable [1], [2]. Despite lack of a

Manuscript received 2 October 2021; revised 25 April 2022; accepted
10 July 2022. Date of publication 27 July 2022; date of current version
29 May 2023. This work was supported in part by the Knut and Alice
Wallenberg Foundation, in part by the Swedish Strategic Research
Foundation, in part by the Swedish Research Council, in part by the DFG
Priority Program SPP1914 “Cyber-Physical Networking”, and in part by
DARPA under ARO Grant W911NF1410384 and ARO Grant W911NF-
15-1-0646. Recommended by Associate Editor Z. Shu. (Corresponding
author: Touraj Soleymani.)

Touraj Soleymani and Karl H. Johansson are with the Digital Futures
Research Center, Royal Institute of Technology, SE-11428 Stockholm,
Sweden (e-mail: touraj@kth.se; kallej@kth.se).

John S. Baras is with the Institute for Systems Research, Univer-
sity of Maryland College Park, College Park, MD 20742 USA (e-mail:
baras@umd.edu).

Sandra Hirche is with the Chair of Information-Oriented Control,
Technical University of Munich, D-80333 Munich, Germany (e-mail:
hirche@tum.de).

Digital Object Identifier 10.1109/TAC.2022.3194125

general theory for coping with this difficulty, our goal here is to find a
globally optimal solution in the rate-regulation tradeoff, and provide a
global optimality analysis for the value of information, a quantity that
emerges from the rate-regulation tradeoff and systematically captures
the semantics of data packets by taking into account their potential
impacts. We previously argued in [3] that the value of information as
a semantic metric determines the right piece of information, a concept
that is not defined in classical data communication, while it is crucial to
the development of future communication networks. In this respect, the
goal we pursue here not only is interesting on its own from a theoretical
perspective, but, if achieved, has important implications in the areas of
communication and control.

In what follows, we first review and categorize the previous studies
on networked systems that are closely related to our article, and then
provide an overview of our results.

A. Related Work

There exist a number of studies that have explored a tradeoff between
the packet rate and the mean-square error, and characterized the optimal
triggering policy in such a tradeoff [4]–[9]. The intrinsic difficulty
in these studies is due to a nonclassical information structure, which
complicates the derivation of the optimal triggering policy. Notably,
Imer and Başar [4] studied the optimal event-triggered estimation of
a scalar Gauss–Markov process based on dynamic programming by
assuming that the triggering policy is symmetric threshold, and derived
the optimal threshold value of the policy. Lipsa and Martins [5] ana-
lyzed the optimal event-triggered estimation of a scalar Gauss–Markov
process based on majorization theory, and proved that the optimal trig-
gering policy is symmetric threshold. Molin and Hirche [6] studied the
convergence properties of an iterative algorithm for the optimal event-
triggered estimation of a scalar Markov process with symmetric noise
distribution, and found a result coinciding with that in [5]. Chakravorty
and Mahajan [7] addressed the optimal event-triggered estimation of a
scalar autoregressive Markov process with symmetric noise distribution
based on renewal theory, and proved that the optimal triggering policy
remains symmetric threshold. In addition, Rabi et al. [8] formulated the
optimal event-triggered estimation of the scalar Ornstein–Uhlenbeck
process as an optimal multiple stopping time problem by assuming that
the estimator is linear, and showed that the optimal triggering policy
is symmetric threshold. Guo and Kostina [9] also contributed to this
area by studying the optimal event-triggered estimation of the scalar
Ornstein–Uhlenbeck process without any assumption on the structure
of the estimator, and obtained a similar result as in [8]. Note that the
optimal estimator in [4]–[7], and [9] is in fact linear.

Aside from the above tradeoff, several works have investigated opti-
mal event-triggered estimation when the triggering policy is fixed [1],
[10]–[12]. The main challenge in these works is to find a procedure
for dealing with a signaling effect, which can cause a nonlinearity in
the structure of the optimal estimator. To that end, Sijs and Lazar [10]
used a sum of Gaussian approximation, and developed an estimator that

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:02:57 UTC from IEEE Xplore.  Restrictions apply. 



3642 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023

has an asymptotically bounded estimation error covariance for a Gauss–
Markov process subject to a deterministic triggering policy. Wu et al. [1]
used a Gaussian approximation, and found a suboptimal estimator for a
Gauss–Markov process subject to a deterministic threshold triggering
policy. He et al. [11] took one step further, and adopted the generalized
closed skew normal distribution to characterize the optimal estimator
for a Gauss–Markov process subject to a similar triggering policy as
in [1]. Han et al. [12] also took advantage of a stochastic triggering
policy that preserves the Gaussianity of the conditional distribution,
and obtained the optimal estimator for a Gauss–Markov process.

Furthermore, several works have investigated optimal event-
triggered control when the triggering policy is fixed [2], [13], [14].
Note that this problem is more complicated than the estimation coun-
terpart because of a dual effect, which can lead to a coupling between
estimation and control. In this context, Molin and Hirche [13] studied
the optimal event-triggered control of a Gauss–Markov process, and
showed that the optimal control policy is certainty equivalent when the
triggering policy is reparameterizable in terms of primitive random
variables. Ramesh et al. [2] studied the dual effect in the optimal
event-triggered control of a Gauss–Markov process, and proved that
the dual effect, in general, exists. They also proved that the certainty
equivalence principle holds if and only if the triggering policy is
independent of the control policy. Later, Demirel et al. [14] addressed
the optimal event-triggered control of a Gauss–Markov process by
adopting a stochastic triggering policy that preserves the Gaussianity of
the conditional distribution, and showed that the optimal control policy
remains certainty equivalent.

On the contrary to the above vein of research, there exist a few studies
that have considered a tradeoff between the packet rate and the trace
of variance [15], [16]. In this case, one instead of an observation-based
triggering policy, i.e., the type used in [1]–[14], searches for a variance-
based triggering policy. These studies are somehow related to sensor
scheduling, which dates back to a few decades ago [17]. Previously,
Kushner [17] studied the optimal control of a Gauss–Markov process
subject to a limited number of observations, and found the optimal
triggering policy that does not depend on the observations. Recently,
Leong et al. [15], [16] addressed the optimal variance-based event-
triggered estimation of a Gauss–Markov process, and showed that the
optimal triggering policy is a threshold policy that can be expressed
in terms of the estimation error covariance. Note that the certainty
equivalence principle simply holds when a variance-based triggering
policy is used [18]. Nevertheless, variance-based triggering policies
are generally outperformed by observation-based triggering policies,
as they do not take advantage of realized sensory information.

Moreover, there exist a few studies that have considered a tradeoff
between the bit rate and the mean-square error in a causal setting [19]–
[21]. In this case, one instead of a triggering policy searches for a
quantization policy. In particular, Witsenhausen [19] addressed the
sequential coding of a discrete-time kth order Markov process over
a finite time horizon, and showed that the optimal code depends on
the last k process states and the current decoder state. Walrand and
Varaiya [20] investigated the sequential coding of a discrete-time
finite-state Markov process over a noisy channel with feedback, and
showed that there exists a separation in the design of the encoder and
the decoder through the conditional distribution. Borkar et al. [21] also
studied the sequential coding of a discrete-time Markov process without
fixing the quantization levels, and provided a procedure based on dy-
namic programming for the computation of the optimal partition. Later,
Yüksel [22] extended the above results to optimal control, and showed
that for a Gauss–Markov process the globally optimal quantization
policy is predictive and the globally optimal control policy is certainty

equivalent. Note that in all these studies quantized sensory information
is transmitted in a periodic way.

B. Overview and Outline

Despite a considerable body of research in the area of networked
systems, the characterization of the set of globally optimal solutions in
the rate-regulation tradeoff, as described above, for multidimensional
Gauss–Markov processes has been an open problem. In this article,
we characterize for the first time a policy profile that belongs to this
set without imposing any restrictions on the information structure or
the policy structure. We prove that such a policy profile consists of a
symmetric threshold triggering policy based on the value of information
and a certainty-equivalent control policy based on a non-Gaussian
linear estimator. More specifically, we show that the rate-regulation
tradeoff attains a globally optimal solution of the form (π�, μ�) =
({1VoIk≥0}Nk=0, {−Lkx̂k}Nk=0), where 1VoIk≥0 denotes the indicator
function ofVoIk ≥ 0,VoIk is the value of information,Lk is the linear-
quadratic-regulator gain, and x̂k is the minimum mean-square-error
state estimate at the controller. Clearly, our study is different from the
studies in [4]–[9], where the results apply to the estimation of scalar
processes. Here, the results apply to the control of multidimensional
Gauss–Markov processes. Our study is also different from the studies
in [1], [2], [10]–[13], and [14], where only an estimation policy or a
control policy is derived when the triggering policy is fixed and subject
to some conditions. Here, we search for a globally optimal triggering
policy and a globally optimal control policy jointly and without impos-
ing any restrictions. Finally, our study differs from the studies in [15],
[16], [18]–[21], and [22], where a variance-based triggering policy or
a quantization policy is derived. Here, we are particularly interested in
observation-based triggering policies.

Besides, in this article, we provide for the first time a global op-
timality analysis for the value of information VoIk, which in fact
measures the difference between the benefit and the cost of a data
packet, and complement our analysis in [3]. We prove that it is globally
optimal that a data packet containing sensory information at time k be
transmitted to the controller only if VoIk becomes nonnegative. Using
backward induction in [3], we quantified and approximated the value of
information for multidimensional Gauss–Markov processes at a Nash
equilibrium, where neither decision maker has a unilateral incentive to
change its policy. However, a question that was not addressed there is
whether this equilibrium is globally optimal. The importance of this
question cannot be overstated, as the rate-regulation tradeoff might
admit other Nash equilibria with better performance. We address this
question in this article by developing new techniques, and prove that
the previously characterized Nash equilibrium has zero optimality gap.
Throughout our analysis, we will use the existence result and some of
the mathematical derivations of [3].

The rest of this article is organized as follows. We formulate the
rate-regulation tradeoff in Section II, and present our main result in
Section III. Finally, Section IV concludes the article.

C. Preliminaries

In the following, the sets of real numbers and nonnegative inte-
gers are denoted by R and N, respectively. For x, y ∈ N and x ≤ y,
the set N[x,y] denotes {z ∈ N|x ≤ z ≤ y}. The sequence of vectors
x0, . . . , xk is represented by xk. For matrices X and Y , the relations
X � 0 and Y � 0 denote that X and Y are positive definite and
positive semidefinite, respectively. The indicator function of a subset A
of a set X is denoted by 1A : X → {0, 1}. The symmetric decreasing
rearrangement of a Borel measurable function f(x) vanishing at infinity
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is represented by f ∗(x). The probability measure of a random variable
x is represented by P(x), its probability density or probability mass
function by p(x), and its expected value and covariance by E[x] and
cov[x], respectively.

Definition 1 (Stochastic kernels): Let (X ,BX ) and (Y,BY) be two
measurable spaces. A Borel measurable stochastic kernel P : BY ×
X → [0, 1] is a mapping such that A 	→ P(A|x) is a probability mea-
sure on (Y,BY) for any x ∈ X , and x 	→ P(A|x) is a Borel measurable
function for any A ∈ BY .

Definition 2 (Globally optimal solutions): For a given team game
with two decision makers, let γ1 ∈ G1 and γ2 ∈ G2 be the decision
policies of the decision makers, where G1 and G2 are the sets of
admissible policies, and L(γ1, γ2) be the associated loss function. A
policy profile (γ1�, γ2�) is globally optimal if

L(γ1�, γ2�) ≤ L(γ1, γ2), for all γ1 ∈ G1, γ2 ∈ G2.

Note that globally optimal solutions express a stronger solution concept
than Nash equilibria.

II. RATE-REGULATION TRADEOFF

Consider a networked control system in its basic form. The dynamics
of the underlying process is given by the discrete-time state and output
equations

xk+1 = Akxk +Bkuk + wk (1)

yk = Ckxk + vk (2)

for k ∈ N[0,N ] with initial condition x0, where xk ∈ Rn is the state
of the process, Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×m is the
input matrix, uk ∈ Rm is the control input applied by an actuator and
decided by a controller that is collocated with the actuator,wk ∈ Rn is a
Gaussian white noise with zero mean and covarianceWk � 0, yk ∈ Rp

is the output of the process observed by a sensor, Ck ∈ Rp×n is the
output matrix, vk ∈ Rp is a Gaussian white noise with zero mean and
covariance Vk � 0, and N ∈ N is a finite time horizon. It is assumed
that x0 is a Gaussian vector with mean m0 and covariance M0, and
that x0, wk, and vk are mutually independent for all k ∈ N[0,N ]. The
feedback control loop is closed via a reliable but costly communication
channel, and the sensory information in this channel is carried in the
form of data packets subject to one-step delay. Let ak and bk represent
the input and the output of the channel at time k, respectively. Then,
we have

bk+1 =

{
ak, if δk = 1,
∅, otherwise

(3)

for k ∈ N[0,N ] with b0 = ∅, where δk ∈ {0, 1} is the transmission
decision decided by an event trigger that is collocated with the sensor.
It is assumed that the data packet that can be transmitted at time k
contains the minimum mean-square-error state estimate at the event
trigger at time k, and that the quantization error is negligible.

The event trigger and the controller, as two distributed deci-
sion makers, make their decisions based on their causal information
sets, which are given by Ie

k := {yt, bt, δs, us|t ∈ N[0,k], s ∈ N[0,k−1]}
and Ic

k := {bt, δs, us|t ∈ N[0,k], s ∈ N[0,k−1]}, respectively. We say
that a triggering policy π and a control policy μ are admissible if
π = {P(δk|Ie

k)}Nk=0 and μ = {P(uk|Ic
k)}Nk=0, where P(δk|Ie

k) and
P(uk|Ic

k) are Borel measurable stochastic kernels. We represent the
sets of admissible triggering policies and admissible control policies
by P and M, respectively.

Our goal in this study is to find a globally optimal solution (π�, μ�)
to the following stochastic optimization problem:

minimize
π∈P,μ∈M

Φ(π, μ) := (1− λ)R(π, μ) + λJ(π, μ) (4)

for the tradeoff multiplier λ ∈ (0, 1) and

R(π, μ) := 1
N+1

E
[∑N

k=0 �kδk

]
(5)

J(π, μ) := 1
N+1

E
[∑N+1

k=0 xT
k Qkxk +

∑N
k=0 u

T
k Rkuk

]
(6)

where �k ≥ 0 is a weighting coefficient and Qk � 0 and Rk � 0 are
weighting matrices.

Remark 1: The optimization problem in (4) formulates the rate-
regulation tradeoff between the packet rate and the regulation cost
for multidimensional Gauss–Markov processes. Note that the set of
globally optimal solutions in this tradeoff cannot be empty following
our results in [3], where the existence of a Nash equilibrium is proved.
In the following, we in fact investigate the optimality gap of this
very equilibrium. Our study focuses on the soft-constraint version of
the rate-regulation tradeoff, where the packet rate appears in the loss
function. The hard-constraint version of the rate-regulation tradeoff,
where the packet rate appears as a constraint, attains the same solutions
as long as there exists an associated Lagrange multiplier.

III. GLOBAL OPTIMALITY ANALYSIS OF THE VALUE OF INFORMATION

The main result of this article is provided in this section. We first
introduce two distinct value functions from the perspectives of the event
trigger and the controller, and then provide the general formula of the
value of information.

Definition 3 (Value functions): The value functions V e
k (Ie

k) and
V c
k (Ic

k) are defined as

V e
k (Ie

k) := min
π∈P:μ=μ�

E
[∑N

t=k θtδt + ςt+1

∣∣∣Ie
k

]
(7)

V c
k (Ic

k) := min
μ∈M:π=π�

E
[∑N

t=k θt−1δt−1 + ςt

∣∣∣Ic
k

]
(8)

for k ∈ N[0,N ] given a policy profile (π�, μ�), where θk = �k(1−
λ)/λ and ςk = (uk + (BT

k Sk+1 Bk +Rk)
−1 BT

k Sk+1 Akxk)
T

(BT
k Sk+1 Bk +Rk) (uk + (BT

k Sk+1 Bk +Rk)
−1 BT

k Sk+1 Akxk)
with the exception of θ−1 = 0 and ςN+1 = 0, and Sk � 0 obeys the
algebraic Riccati equation

Sk = Qk +AT
k Sk+1Ak −AT

k Sk+1Bk

× (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak (9)

for k ∈ N[0,N ] with initial condition SN+1 = QN+1 and with the
exception of SN+2 = 0.

Definition 4 (Value of Information): The value of information at
time k is defined as the variation in the value function V e

k (Ie
k) with

respect to the sensory information ak that can be communicated to the
controller at time k, i.e.,

VoIk(Ie
k) := V e

k (Ie
k)|δk=0 − V e

k (Ie
k)|δk=1 (10)

where V e
k (Ie

k)|δk denotes the value function V e
k (Ie

k) when the trans-
mission decision δk is enforced.

Let x̌k := E[xk|Ie
k] and x̂k := E[xk|Ic

k]denote the minimum mean-
square-error state estimates at the event trigger and the controller,
respectively. In addition, let us define the estimation error from the
perspective of the event trigger ěk := xk − E[xk|Ie

k], the estimation
error from the perspective of the controller êk := xk − E[xk|Ic

k], and
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the estimation mismatch ẽk := E[xk|Ie
k]− E[xk|Ic

k]. The next theo-
rem states our main result on the characterization of a globally optimal
solution in the rate-regulation tradeoff.

Theorem 1: The rate-regulation tradeoff attains a globally optimal
solution (π�, μ�) such that

(π�, μ�) =
({

1VoIk≥0

}N

k=0
, {−Lkx̂k}Nk=0

)
(11)

with

VoIk(Ie
k) = ẽTk A

T
k Γk+1Akẽk − θk + �k (12)

x̂k+1 = Akx̂k +Bkuk + δkAkẽk (13)

for k ∈ N[0,N ], where Lk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak is the

control gain, Γk = AT
k Sk+1Bk(B

T
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak

is a weighting matrix, �k = E[V e
k+1(Ie

k+1)|Ie
k, δk = 0]−

E[V e
k+1(Ie

k+1)|Ie
k, δk = 1] is a symmetric function of ẽk, and

x̂0 = m0 is the initial condition.
Remark 2: The globally optimal solution (π�, μ�) in (11) con-

sists of a symmetric threshold triggering policy based on the value
of information and a certainty-equivalent control policy based on a
non-Gaussian linear estimator. This result is important as it shows
that the characterized Nash equilibrium in [3] has zero optimality gap.
Observe that the decision policiesπ� andμ� are deterministic, implying
that randomization does not improve the system performance, and that
they can be designed separately. Moreover, note that VoIk(Ie

k) in (12),
which is a symmetric function of the estimation mismatch ẽk, measures
the difference between the benefit of transmitting a data packet, i.e.,
ẽTk A

T
k Γk+1Akẽk + �k, and its associated cost, i.e., θk. This means that

it is globally optimal that a data packet containing the sensory infor-
mation x̌k be transmitted to the controller only if its benefit surpasses
its cost. Furthermore, note that the state estimate x̂k in (13) obeys a
linear recursive equation with no residual ık := Ak E[êk|Ic

k, δk = 0]
(see Lemma 2 in the Appendix for the general equation of the optimal
estimator at the controller). This implies that the controller’s inference
about the state of the process when no data packet is delivered has no
contribution from the minimum mean-square-error perspective. Finally,
we remark that at the globally optimal solution (π�, μ�) the transmis-
sion of the state estimate x̌k is equivalent to that of the estimation
mismatch ẽk, whose magnitude is comparatively smaller.

Proof: Let (πo, μo) denote a policy profile in the set of globally
optimal solutions. As we said earlier, this set cannot be empty. We
prove that the policy profile (π�, μ�) in the claim is globally optimal by
showing that Φ(π�, μ�) cannot be greater than Φ(πo, μo). Our proof
is structured in the following way. We first find an innovation-based
triggering policy σ such that Φ(σ, μo) = Φ(πo, μo). Then, we derive
a certainty-equivalent control policy ξ such that Φ(σ, ξ) ≤ Φ(σ, μo).
Afterward, we construct a symmetric triggering policy ω such that
Φ(ω, ξ) ≤ Φ(σ, ξ). Finally, we show that for the policy profile in
the claim, we have Φ(π�, μ�) ≤ Φ(ω, ξ). Throughout our analysis,
without loss of generality, we assume that m0 = 0. Similar arguments
can be made for m0 
= 0 following a coordinate transformation.

In the first step, we will show that, given the control pol-
icy μo, we can find an innovation-based triggering policy σ that
is equivalent to the triggering policy πo. Note that the inno-
vation νk := yk − Ck E[xk|Ie

k−1] is a white Gaussian noise with
zero mean and covariance Nk = CkMkC

T
k + Vk, where Mk =

cov[xk|Ie
k−1]. From this definition, we have yk = νk +Ekx̌k−1 +

Fkuk−1, where Ek and Fk are matrices of proper dimensions.
By Lemma 1 in the Appendix, we have x̌k = Gkνk +Hkuk−1,
where Gk and Hk are matrices of proper dimensions. In addition,
from (3), we know that bk is a function of x̌k−1 and δk−1. As a result,

it is possible to write

pπo(δk|Ie
k) = pπo(δk|νk, δk−1,uk−1)

pμo(uk|Ic
k) = pμo(uk|νk−1, δk−1,uk−1).

Accordingly, any realizations of δk and uk can be expressed as δk =
δk(ηk;νk, δk−1,uk−1) and uk = uk(ζk;νk−1, δk−1,uk−1), respec-
tively, where ηk and ζk represent random variables that are independent
of any other variables. Hence, it is possible to recursively construct σ
with pσ(δk|νk, δk−1, ζk−1) such that it is equivalent to pπo(δk|Ie

k).
This proves that Φ(σ, μo) = Φ(πo, μo). Note that although the trig-
gering policy σ has been constructed associated with the control policy
μo, it now depends only on νk, δk−1, and ζk−1 at each time k.

In the second step, given the triggering policy σ, we will search for
an optimal control policy ξ, and prove that ξ is certainty equivalent.
Using (1) and (9), we can derive the following identities:

xT
k+1Sk+1xk+1 = (Akxk +Bkuk + wk)

T

× Sk+1(Akxk +Bkuk + wk) (14)

xT
k Skxk = xT

k

(
Qk +AT

k Sk+1Ak

−LT
k (B

T
k Sk+1Bk +Rk)Lk

)
xk (15)

xT
N+1SN+1xN+1 − xT

0 S0x0

=
∑N

k=0 x
T
k+1Sk+1xk+1 −

∑N
k=0 x

T
k Skxk.

(16)

Then, incorporating the identities (14) and (15) into the identity (16),
taking the expectation of both sides of (16), and using the facts thatwk is
independent of xk and uk and that the terms xT

0 S0x0 and wT
k Sk+1wk

are independent of the decision policies, we find the following loss
function:

Ψ(σ, μ) := E
[∑N

k=0 θkδk + ςk

]
(17)

for σ that was obtained in the first step and for any μ ∈ M. Note that
Ψ(σ, μ) is equivalent to Φ(σ, μ). Associated with Ψ(σ, μ), we define
the value function V c

k (Ic
k), when σ is given, as

V c
k (Ic

k) := min
μ∈M

E
[∑N

t=k θt−1δt−1 + ςt

∣∣∣Ic
k

]
(18)

for k ∈ N[0,N ] with initial condition V c
N+1(Ic

N+1) = 0. By Lemmas 1
and 2 in the Appendix, we observe that êk and ẽk obey

êk+1 = Akêk − δkAkẽk + wk − (1− δk)ık (19)

ẽk+1 = (1− δk)Akẽk +Kk+1νk+1 − (1− δk)ık (20)

for k ∈ N[0,N ] with initial conditions ê0 = x0 and ẽ0 = K0ν0, where
ık = Ak E[êk|Ic

k, δk = 0] and Kk = YkC
T
k V −1

k . It is easy to deduce
from (19) and (20) that êk and ẽk are independent of the control inputs
under σ. Now, following a similar argument used in the proof of [3,
Th. 1], we find that the value function V c

k (Ic
k) should obey

V c
k (Ic

k) = min
uk∈Rm

{θk−1 E[δk−1|Ic
k] + tr(ΓkZk)

+ (uk + Lkx̂k)
T (BT

k Sk+1Bk +Rk)

×(uk + Lkx̂k) + E[V c
k+1(Ic

k+1)|Ic
k]
}

for k ∈ N[0,N ], where δk−1 and Zk = cov[êk|Ic
k] are independent of

the control inputs. As a result, the minimizer is obtained by u�
k =

−Lkx̂k. This establishes that Φ(σ, ξ) ≤ Φ(σ, μo).
In the third step, given the control policy ξ, we will prove that

Φ(ω, ξ) ≤ Φ(σ, ξ), where ω is a special form of σ that is symmetric
with respect to νk at each time k. Let N be the set on which νk is
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defined, B(r) be a ball of radius r centered at the origin and of proper
dimension, and �k ∈ N be a variable obtained by the transformation
Tkνk for a given Tk. We recursively construct ω such that at each time
k, the following conditions are satisfied:∫

N pω(δk = 0|�k, δk−1 = 0) sk(�k)d�k

=
∫
N pσ(δk = 0|�k, δk−1 = 0) qk(�k)d�k (21)

and ∫
B(r) pω(δk = 0|�k, δk−1 = 0) sk(�k)d�k

≥ ∫
B(r) (pσ(δk = 0|�k, δk−1 = 0) qk(�k))

∗ d�k (22)

for all r ≥ 0 with pω(δk = 0|�k, δk−1 = 0) sk(�k) as a radially
symmetric function of �k, where sk( . ) := pω( . |δk−1 = 0) and
qk( . ) := pσ( . |δk−1 = 0). Note that while the first condition states
that pω(δk = 0|�k, δk−1 = 0) sk(�k) has the same volume under the
curve as (pσ(δk = 0|�k, δk−1 = 0) qk(�k))

∗, the second condition
in fact states that the former is equally or more concentrated near the
origin than the latter. This concentration near the origin, as we will see,
leads to better estimation performance of the innovation, which is a
Gaussian vector with zero mean.

Observe that

sk+1(νk+1) =
p(νk+1) pω(δk = 0|νk, δk−1 = 0) sk(νk)

pω(δk = 0|δk−1 = 0)

qk+1(νk+1) =
p(νk+1) pσ(δk = 0|νk, δk−1 = 0) qk(νk)

pσ(δk = 0|δk−1 = 0)

with initial conditions s0(ν0) = q0(ν0) = p(ν0). Hence, given Tk, we
can obtain sk(�k) and pσ(δk = 0|�k, δk−1 = 0) qk(�k) based on
sk(νk) and qk+1(νk+1)/ p(νk+1), respectively. Moreover, observe
that

pσ(δk = 0|δk−1 = 0)

=
∫
N pσ(δk = 0|�k, δk−1 = 0) pσ(�k|δk−1 = 0)d�k

=
∫
N pω(δk = 0|�k, δk−1 = 0) pω(�k|δk−1 = 0)d�k

= pω(δk = 0|δk−1 = 0)

where in the second equality we used (21). This relation will be useful
in the following derivation.

To adopt the above construction, we need to introduce an equivalent
loss function. It is possible to write

Ψ(σ, ξ) = E
[∑N

k=0 θkδk + ςk

]

= E
[∑N

k=0 θkδk + êTk Γkêk

]

=
∑N

k=0 E
[
θkδk + E[êTk Γkêk|Ie

k]
]

=
∑N

k=0 E
[
θkδk + ẽTk Γkẽk + tr(ΓkYk)

]
for anyσ ∈ P that is innovation-based and for ξ that was obtained in the
second step, where in the second equality we incorporated the control
inputs uk = −Lkx̂k, in the third equality we used the tower property of
conditional expectations, and in the fourth equality Yk = cov[xk|Ie

k].
Note thatΨ(σ, ξ) is equivalent toΦ(σ, ξ). Let us define the loss function
ΩM

σ (ẽ0) as

ΩM
σ (ẽ0) :=

∑M
k=0 Eσ

[
θkδk + ẽTk Γkẽk

]
forM ∈ N[0,N ] given ẽ0. Since tr(ΓkYk) is independent of the decision
policies, to prove the claim in the third step, it is enough to prove that
ΩM

ω (ẽ0) ≤ ΩM
σ (ẽ0) for any M ∈ {0, . . . , N} and for any Gaussian

vector ẽ0. Note that ẽ0 = K0ν0 under both σ and ω. Moreover, using
the fact that pσ(δ0 = 0) = pω(δ0 = 0), we obtain

Eσ [δ0] = 1− pσ(δ0 = 0)

= 1− pω(δ0 = 0) = Eω [δ0] .

Hence, the claim holds for the time horizon 0. We assume that it also
holds for all time horizons from 1 to M − 1. Observe that by the law
of total probability, the following identities hold:

pσ(δ0 = 1) + pσ(δt = 0)

+
∑t

s=1 pσ(δs−1 = 0, δs = 1) = 1 (23)

for any t ∈ N[0,N ]. Applying the law of total expectation for the terms
Eσ[θkδk] and Eσ[ẽ

T
k Γkẽk] in ΩM

σ (ẽ0) on a partition provided by the
identity (23) for t = k − 1, and repeating this procedure for all k ∈
N[1,M ], we can obtain

ΩM
σ (ẽ0) =

∑M
k=0

{
θk pσ(δk−1 = 0)Eσ

[
δk

∣∣∣δk−1 = 0
]

+ pσ(δk−1 = 0)Eσ

[
ẽTk Γkẽk

∣∣∣δk−1 = 0
]

+ pσ(δk−1 = 0, δk = 1)

×Eσ

[
Ωk+1,M

σ (ẽk+1)
∣∣∣δk−1 = 0, δk = 1

]}

for M ∈ N[0,N ], where the cost-to-go Ωk,M
σ (ẽk) is defined as

Ωk,M
σ (ẽk) :=

∑M
t=k Eσ

[
θtδt + ẽTt Γtẽt

]
given ẽk. Now, we will show that the probability coefficients, the
transmission decision terms, the estimation mismatch terms, and the
cost-to-go terms in ΩM

σ (ẽ0) under σ cannot be less than those when
ω is used instead. First, note that since pσ(δk = 0|δk−1 = 0) =
pω(δk = 0|δk−1 = 0), we have pσ(δk−1 = 0) = pω(δk−1 = 0) and
pσ(δk−1 = 0, δk = 1) = pω(δk−1 = 0, δk = 1). Hence, all the prob-
ability coefficients remain the same. Moreover, for the transmission
decision terms, we get

Eσ

[
δk

∣∣∣δk−1 = 0
]
= 1− pσ(δk = 0|δk−1 = 0)

= 1− pω(δk = 0|δk−1 = 0)

= Eω

[
δk

∣∣∣δk−1 = 0
]
.

We continue the proof for the estimation mismatch terms by first
showing that ık = 0 for all k ∈ N[0,N ] under ω. We assume that ıt = 0
for all t ∈ N[0,k−1]. It is possible to write

E
[
êk

∣∣∣Ic
k, δk

]
= E

[
E[êk|Ie

k, δk]
∣∣∣Ic

k, δk

]

= E
[
E[êk|Ie

k]
∣∣∣Ic

k, δk

]

= E
[
ẽk

∣∣∣Ic
k, δk

]

where the first equality comes from the tower property of the conditional
expectations and the second equality from the fact that δk is a function
of Ie

k . Hence, ık = Ak E[êk|Ic
k, δk = 0] = Ak E[ẽk|Ic

k, δk = 0]. Let
τk denote the time elapsed since the last delivery when we are at time
k. We have ẽk−τk = Kk−τkνk−τk , and from (20), we can express ık
under ω as

ık = Ak Eω

[∑τk
t=0 Dk−tνk−t

∣∣∣δk−τk = 0, . . . , δk = 0
]

= Ak

∑τk
t=0 Dk−t Eω

[
νk−t

∣∣∣δk−τk = 0, . . . , δk = 0
]
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where Dk−t is a matrix depending on As for s ∈ N[k−t,k−1]

and Kk−t. Since pω(νk|δk = 0) has zero mean, we deduce that
pω(νk−τk , . . . , νk|δk−τk = 0, . . . , δk = 0) has also zero mean. This
implies that ık = 0 for all k ∈ N[0,N ] under ω. Given this observation,
from (20) when δk−1 = 0, we find that ẽk = Xkνk−1 +Kkνk + ck
under σ, and that ẽk = Xkνk−1 +Kkνk under ω, for a suitable matrix
Xk and a suitable vector ck both independent of νk. We can then write

Eσ

[
ẽTk Γkẽk

∣∣∣δk−1 = 0
]

= Eσ

[
(Xkνk−1 +Kkνk + ck)

T Γk

× (Xkνk−1 +Kkνk + ck)
∣∣∣δk−1 = 0

]

= Eσ

[
νT
k−1X

T
k ΓkXkνk−1 + νT

k KT
k ΓkKkνk

+cTk Γkck + 2νT
k−1X

T
k Γkck

∣∣∣δk−1 = 0
]

where in the second equality we used the fact that νk has zero
mean and is independent of νk−1 and δk−1. Let us now use the
decomposition Γk = LT

k UkU
T
k Lk, choose Tk−1 = UT

k LkXk, and
define fσ(�k−1, νk) := (�k−1 + UT

k Lkck)
T (�k−1 + UT

k Lkck) +
νT
k KT

k ΓkKkνk, fω(�k−1, νk) := �T
k−1�k−1 + νT

k KT
k ΓkKkνk,

gσ( . ) := z −minz{z, fσ( . )}, and gω( . ) := z −minz{z, fω( . )}.
Clearly, for any fixed z, gσ(�k−1, νk) and gω(�k−1, νk) vanish at
infinity. It follows that

Eσ

[
ẽTk Γkẽk

∣∣∣δk−1 = 0
]
=

∫
N
∫
N fσ(�k−1, νk)

× pσ(�k−1|δk−1 = 0) p(νk)d�k−1dνk.

In addition, we can write∫
N gσ(�k−1, νk)

× pσ(δk−1 = 0|�k−1, δk−2 = 0) qk−1(�k−1)d�k−1

≤ ∫
N g∗σ(�k−1, νk)

× (pσ(δk−1 = 0|�k−1, δk−2 = 0) qk−1(�k−1))
∗ d�k−1

=
∫
N gω(�k−1, νk)

× (pσ(δk−1 = 0|�k−1, δk−2 = 0) qk−1(�k−1))
∗ d�k−1

≤ ∫
N gω(�k−1, νk)

× pω(δk−1 = 0|�k−1, δk−2 = 0) sk−1(�k−1)d�k−1

where in the first inequality, we used the Hardy–Littlewood inequality
(see Lemma 3 in the Appendix) with respect to�k−1, in the equality the
fact that g∗σ(�k−1, νk) = gω(�k−1, νk), and in the second inequality
Lemma 4 in the Appendix and (22). This implies that∫

N minz{z, fσ(�k−1, νk)}pσ(�k−1|δk−1 = 0)d�k−1

≥ ∫
N minz{z, fω(�k−1, νk)} pω(�k−1|δk−1 = 0)d�k−1

where we used the facts that

pσ(�k−1|δk−1 = 0)

=
pσ(δk−1 = 0|�k−1, δk−2 = 0) qk−1(�k−1)

pσ(δk−1 = 0|δk−2 = 0)

and that pσ(δk−1 = 0|δk−2 = 0) = pω(δk−1 = 0|δk−2 = 0). Now,
taking z to infinity, we conclude that∫

N fσ(�k−1, νk) pσ(�k−1|δk−1 = 0)d�k−1

≥ ∫
N fω(�k−1, νk) pω(�k−1|δk−1 = 0)d�k−1.

Therefore,

Eσ

[
ẽTk Γkẽk

∣∣∣δk−1 = 0
]
≥ Eω

[
ẽTk Γkẽk

∣∣∣δk−1 = 0
]
.

Finally, for the cost-to-go terms, we have

Eσ

[
Ωk+1,M

σ (ẽk+1)
∣∣∣δk−1 = 0, δk = 1

]

=
∫
Nk+2 Ω

k+1,M
σ (ẽk+1) pσ(νk+1|δk−1 = 0, δk = 1)dνk+1.

Note that ẽk+1 = Kk+1νk+1 under both σ and ω when δk = 1. Let
Ω̄M

σ (ẽ0) denote a loss function that is structurally similar to ΩM
σ (ẽ0)

but with different parameters. Clearly, if ΩM
σ (ẽ0) ≥ ΩM

ω (ẽ0) for any
parameters, then Ω̄M

σ (ẽ0) ≥ Ω̄M
ω (ẽ0). We can write

∫
Nk+2 Ω

k+1,M
σ (Kk+1νk+1)

× pσ(νk+1|δk−1 = 0, δk = 1)dνk+1

=
∫
N Ω̄M−k−1

σ (Kk+1νk+1) p(νk+1)dνk+1

≥ ∫
N Ω̄M−k−1

ω (Kk+1νk+1) p(νk+1)dνk+1

=
∫
Nk+2 Ω

k+1,M
ω (Kk+1νk+1)

× pω(νk+1|δk−1 = 0, δk = 1)dνk+1

where in the equalities we used the facts thatΩk+1,M
σ (ẽ) = Ω̄M−k−1

σ (ẽ)
for any Gaussian vector ẽ and a suitable selection of the parameters
in Ω̄M−k−1

σ (ẽ), and that νk+1 is independent of δk, and the Fubini’s
theorem; and in the inequality we used the hypothesis ΩM−k−1

σ (ẽ) ≥
ΩM−k−1

ω (ẽ) for any Gaussian vector ẽ. Therefore,

Eσ

[
Ωk+1,M

σ (ẽk+1)
∣∣∣δk−1 = 0, δk = 1

]

≥ Eω

[
Ωk+1,M

ω (ẽk+1)
∣∣∣δk−1 = 0, δk = 1

]
.

This establishes that ΩM
ω (ẽ0) ≤ ΩM

σ (ẽ0) and Φ(ω, ξ) ≤ Φ(σ, ξ).
In the final step, we will conclude global optimality of the policy

profile in the claim. Consider the following loss function:

Ψ(ω, ξ) = E
[∑N

k=0 θkδk + ςk

]

for any ω ∈ P that is of the form specified in the third step and for
ξ that was obtained in the second step. Again note that Ψ(ω, ξ) is
equivalent to Φ(ω, ξ). Associated with Ψ(ω, ξ), we define the value
function V e

k (Ie
k), when ξ is given, as

V e
k (Ie

k) := min
ω∈P

E
[∑N

t=k θtδt + ςt+1

∣∣∣Ie
k

]

fork ∈ N[0,N ] with initial conditionV e
N+1(Ie

N+1) = 0 and with ıt = 0
for all t ∈ N[0,N ]. Now, following a similar argument used in the proof
of [3, Th. 1], we find that the value function V e

k (Ie
k) should obey

V e
k (Ie

k) = min
δk∈{0,1}

{
θkδk + (1− δk)ẽ

T
k A

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk)

+tr(Γk+1Wk) + E[V e
k+1(Ie

k+1)|Ie
k]
}

for k ∈ N[0,N ]. As a result, the minimizer is obtained by δ�k = 1VoIk≥0,
where

VoIk(Ie
k) = ẽTk A

T
k Γk+1Akẽk − θk + E[V e

k+1(Ie
k+1)|Ie

k, δk = 0]

− E[V e
k+1(Ie

k+1)|Ie
k, δk = 1].

This certifies that Φ(π�, μ�) ≤ Φ(ω, ξ), and completes the proof. �
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IV. CONCLUSION

In this article, we characterized a globally optimal solution in
the rate-regulation tradeoff for multidimensional Gauss–Markov pro-
cesses, and showed that such a solution consists of a symmetric
threshold triggering policy based on the value of information and a
certainty-equivalent control policy based on a non-Gaussian linear
estimator. Besides, we provided a global optimality analysis for the
value of information, and showed that it is globally optimal that a data
packet containing the minimum mean-square-error state estimate at the
event trigger or equivalently the estimation mismatch be transmitted
to the controller only if its benefit surpasses its cost. We suggest that
future research should extend the framework developed in this study to
more complex classes of systems.

APPENDIX

In this section, we present a few lemmas that are used in our main
analysis. The next two lemmas characterize the optimal estimators at
the event trigger and the controller. For the proofs of these lemmas, see,
e.g., [3] and [23].

Lemma 1: The conditional mean E[xk|Ie
k] is the minimum mean-

square-error estimator at the event trigger, and obeys

x̌k+1 = Akx̌k +Bkuk

+Kk+1 (yk+1 − Ck+1(Akx̌k +Bkuk)) (24)

Yk+1 =
(
(AkYkA

T
k +Wk)

−1 + CT
k+1V

−1
k+1Ck+1

)−1
(25)

for k ∈ N[0,N ] with initial conditions x̌0 = m0 + Y0C
T
0 V −1

0 (y0 −
C0m0) and Y0 = (M−1

0 + CT
0 V −1

0 C0)
−1, where x̌k = E[xk|Ie

k],
Yk = cov[xk|Ie

k], and Kk = YkC
T
k V −1

k .
Lemma 2: The conditional mean E[xk|Ic

k] is the minimum mean-
square-error estimator at the controller, and obeys

x̂k+1 = Akx̂k +Bkuk + δkAkẽk + (1− δk)ık (26)

for k ∈ N[0,N ] with initial condition x̂0 = m0, where x̂k = E[xk|Ic
k]

and ık = Ak E[êk|Ic
k, δk = 0]. In addition, the conditional covariance

cov[xk|Ic
k] obeys

Zk+1 = AkZkA
T
k +Wk

− δkAk(Zk − Yk)A
T
k − (1− δk)Ξk (27)

for k ∈ N[0,N ] with initial condition Z0 = M0, where Zk =
cov[xk|Ic

k] and Ξk = Ak(Zk − cov[êk|Ic
k, δk = 0])AT

k .
Moreover, the next two lemmas are pertaining to symmetric decreas-

ing rearrangements of nonnegative functions. For the proofs of these
lemmas, see, e.g., [24] and [25].

Lemma 3 (Hardy–Littlewood inequality): Let f and g be nonnega-
tive functions defined on Rn that vanish at infinity. Then,

∫
Rn f(x)g(x)dx ≤ ∫

Rn f ∗(x)g∗(x)dx. (28)

Lemma 4: LetB(r) ⊆ Rn be a ball of radius r centered at the origin,
and f and g be nonnegative functions defined on Rn that vanish at
infinity and obey

∫
B(r) f

∗(x)dx ≤ ∫
B(r) g

∗(x)dx (29)

for all r ≥ 0. Then,
∫
B(r) h(x)f

∗(x)dx ≤ ∫
B(r) h(x)g

∗(x)dx (30)

for any nonnegative nonincreasing function h.
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