
GAMEOPT: Optimal Real-time Multi-Agent Planning and Control
for Dynamic Intersections

Nilesh Suriyarachchi1, Rohan Chandra2, John S. Baras1 and Dinesh Manocha1,2

Abstract— We propose GAMEOPT: a novel hybrid approach
to cooperative intersection control for dynamic, multi-lane,
unsignalized intersections. Safely navigating these complex and
accident prone intersections requires simultaneous trajectory
planning and negotiation among drivers. GAMEOPT is a hybrid
formulation that first uses an auction mechanism to generate
a priority entrance sequence for every agent, followed by an
optimization-based trajectory planner that computes velocity
controls that satisfy the priority sequence. This coupling op-
erates at real-time speeds of less than 10 milliseconds in high
density traffic of more than 10, 000 vehicles/hr, 100× faster
than other fully optimization-based methods, while providing
guarantees in terms of fairness, safety, and efficiency. Tested
on the SUMO simulator, our algorithm improves throughput
by at least 25%, time taken to reach the goal by 75%, and fuel
consumption by 33% compared to auction-based approaches
and signaled approaches using traffic-lights and stop signs.

I. INTRODUCTION

Effectively navigating unsignalized intersections often re-
quires carefully planning due to low visibility and complex
maneuvers such as unprotected left turns. 40% of all crashes,
50% of serious collisions, and 20% of fatalities occur at
unsignalized intersections [1]. The notion of introducing
vehicle-to-infrastructure (V2I) communication capable con-
nected autonomous vehicles (CAVs), to provide additional
sensing and actuation points in the traffic flow, allows for
the development of new algorithms to handle these scenarios.
This has been applied successfully in complex traffic bottle-
necks such as highway merging and traffic shock waves [2],
[3], [4]. Recent research into leveraging cooperation among
CAVs to achieve safe, fair, and efficient intersection control
has provided promising results with solutions from many
fields, including game theory, auctions, optimization, and
deep learning. While each domain has its own advantages,
no single solution has been shown to be able to achieve
all the four key considerations of safety, efficiency, fairness,
and real-time operation. Here, safety involves the prevention
of collisions, efficiency involves maximizing the capacity
of the intersection, and fairness involves treating all agents
equitably. Real-time computation is also essential in this
scenario, as the system must react to dynamic changes in
this fast-paced environment.

The general multi-agent intersection control problem can
be broadly divided into two phases. The planning phase
involves the selection of the optimal entrance sequence (order
in which vehicles enter the intersection) and the control phase
involves generating safe trajectories for all the vehicles in
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Fig. 1: GAMEOPT vs. Traffic Lights: We present a new approach
for optimal real-time planning and control in dynamic, multi-agent
unsignalized intersections. In this figure, the light blue regions
denote the control zone. We show that at identical input traffic flow
levels, our approach outperforms even traffic light infrastructure,
resulting in less queues and enabling smooth traffic flow.

order to achieve the selected sequence. The system then
transmits the output target trajectories to each vehicles’
local controller for execution. Here, sequence selection can
become very difficult as the number of possibilities grows
exponentially with the number of vehicles. This is further
complicated in multi-lane scenarios, which should allow
multiple non-conflicting vehicles to enter the intersection at
the same time to achieve optimal throughput. Additionally,
practical intersection scenarios are dynamic, which means
that the number of vehicles that request to cross the inter-
section changes with time.

A. Related Work

In Table I, we compare our approach with the current state-
of-the-art in navigating unsignalized intersection scenarios
on the basis of optimality guarantees, dynamic intersection
handling and real-world applicability through real-time com-
putation capabilities.

1) Auctions: Auction mechanisms have been used to nav-
igate unsignalized intersections in real-time with fairness and
feasibility guarantees [5], [6]. But they work only in static
scenarios, where the number of participating agents is fixed,
yielding poor efficiency and throughput in scenarios where
the number of vehicles is variable. Incentive-compatible
auctions such as Sayin et al. [7] propose a mechanism in
which agents are assigned turns based on their distance
from the intersection and the number of passengers in the
vehicle. Carlino et al. [6] and Rey et al. [8] propose a sim-
ilar mechanism but use a monetary-based bidding strategy.
Buckman et al. [9] integrate a driver behavior model [10]
within the first-in first-out framework to incorporate human
social preference. More recently, Chandra et al. [5] proposed
an auction based on the driving behavior of the agents.
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Approach Intersection Optimality Realtime

Safety Efficiency Fairness

Auctions Static ✗ ✗ ✓ ✓
Game Theory Dynamic ✗ ✗ ✓ ✗
Optimization Dynamic ✓ ✓ ✗ ✗

Deep Learning Static ✗ ✓ ✗ ✓

This work Dynamic ✓ ✓ ✓ ✓

TABLE I: Comparison with prior work: We highlight approaches
for navigating unsignalized intersections based on the type of
intersection, optimality guarantees, and real-time capability.

2) Game theory: Game-theoretic approaches have also
been used for autonomous vehicle navigation [11], [12]. Li
et al. [11] implement a stackelberg game in which one agent
is the leader (modeled by first-out (FIFO) principle) and
the other agent is a follower. Tian et al. [12], on the other
hand, use a recursive k−level approach in which strategies
at current levels are derived from previous levels. However,
all agents except the ego-agent at the first level are assumed
as static.

3) Optimization-based methods: These methods compute
optimal trajectories and provide safety guarantees, however,
they are unable to perform in real-time due to high computa-
tional costs. Existing methods circumvent this issue by using
unrealistic assumptions. Rios-Torres et al. [2], [13] solve
the optimization problem in real time using Hamiltonian
analysis, which does not extend to the fully constrained
problem. Computation is also restricted to a fewer vehicles
in single lane roads, and no turning at intersections, to
allow for close to real-time computing [14], [15], [16].
In Suriyarachchi et al. [3], we applied a hybrid rule and
optimization based control to the highway merging scenario
to achieve real-time performance. However, the selection
of sequences based on rules only provides a sub-optimal
solution. Most of these methods do not scale well into multi-
lane scenarios.

4) Deep learning: Deep learning methods involving rein-
forcement learning [17] and recurrent neural networks [18]
learn a planning and control policy, to be used by agents
approaching an intersection. In practice, these policies do
not generalize well to different environments and often do
not provide guarantees in terms of safety and fairness.
Furthermore, most learning methods do not easily extend
to dynamic multi-agent planning and control scenarios.

B. Main Contributions:
In the field of cooperative unsignalized multi-lane intersec-

tion control, existing work is unable to combine optimality
guarantees in safety, efficiency, and fairness, with real-time
performance. In order to bridge this gap, we develop a
novel hybrid planning and control algorithm for navigating
unsignalized dynamic intersections by combining auctions
with optimal control. This is the first such framework, with
implications that extend beyond intersection control to more
general multi-agent systems, due to the challenging nature
of dynamic mechanism design. Our main contributions are:

• Game-theoretic optimality: The priority order sequence
is fair, efficient, and tractable (Section III-A).

• Safety guarantees: The optimal trajectories satisfy the
priority order with safety guarantees (Section III-C).

• Real-time computation: GAMEOPT operates on average
at 1.16ms with more than 10000 vehicles per hour.

• Efficiency: We outperform state-of-the-art by improving
throughput, time-to goal, and fuel consumption on a
realistic traffic simulator (Figure 5).

• Dynamic flow: GAMEOPT handles varying traffic flow
in different arms of the intersection (Figure 6).

• Multi-lane capability: Increased performance by allow-
ing many vehicles to enter intersection simultaneously.

II. PROBLEM FORMULATION

In this section, we formally define the fully automated
unsignalized intersection planning and control problem as a
large optimal control problem consisting of a hierarchy of
two simpler decoupled optimization problems: mechanism
design followed by vehicle trajectory planning. In a dynamic
scenario consisting of n vehicles, our goal is to compute
velocities vi for each vehicle such that they autonomously
navigate an unsignalized multi-lane intersection safely, fairly,
and efficiently. We observe the following goals/constraints:

1) Fairness: The computed velocities, vi, must maximize
utility across all agents and be incentive compatible.

2) Safety: The trajectories generated by the optimizer
must not result in collisions.

3) Efficiency: The overall algorithm must optimize
throughput, time-to-goal, and fuel efficiency.

4) The overall planning and control must not assume
access to the objective or utility functions of other
agents.

5) The overall planning and control must not assume a
dynamics model; rather, it should compute the dynam-
ics for each agent assuming a simple forward motion
model.

The first step in this process involves defining the physical
characteristics of an unsignalized intersection as well as the
dynamics and control of the CAVs involved.

A. Modeling the Physical Intersection
We define an unsignalized intersection as a single-lane

or multi-lane four-way crossing that is not regulated either
by traffic signals or right-of-way rules. In Fig. 2, we show
an example of a single-lane intersection used in our work.
We define a control zone of length Lc along each arm
of the intersection; vehicles in the control zone can share
state information and receive actuation commands using
V2I communication protocols. In this research we assume
zero transmission delay and that this V2I communication
channel has perfect conditions. The center of the intersection
is referred to as the conflict zone, where collisions are
likely to occur. We denote the number of vehicles in the
control zone in roads 0, 1, 2, 3 as n1, n2, n3, n4, respectively,
with the total number of vehicles in the control zone being
n = n1+n2+n3+n4.

Vehicles are autonomous and can freely choose between
turning left, turning right, and going straight. The input flow
rate of vehicles in each control zone of the intersection can be
adjusted along with the ratio of vehicles that turn left, turn
right, or go straight. We vary the input flow rate between
2, 000 vehicles per hour to 10, 000 vehicles per hour, where
vehicles are generated according to a Poisson distribution.
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Fig. 2: Regions of interest: We highlight the control zone in which
vehicles communicate with the control tower and the conflict zone
in which vehicles cross over to their desired target road.

B. Vehicle Dynamics and Control Variables

In real-world scenarios, vehicle dynamics are hard to
model accurately due to their non-linearity. Standard practice
in control theory suggests the use of a local controller, zi, that
produces low-level controls for the longitudinal and lateral
motion of a vehicle according to the following equation,

δsi
δt

= F(t, si, zi). (1)

Here, we represent F as the unknown non-linear dynamic
function. si denotes the distance of the agent i from the
intersection measured in the Frenet coordinate system.
Dynamics: Since F is generally unknown, we define
the high-level dynamics by the following velocity control
scheme:

δsi
δt

= vi

vi(t) = ui(t)
(2)

for i ∈ {1, . . . , n}.
Control variables: The control input, ui(t), represents the
command velocity for vehicle i. We compute the optimal
value for ui(t) with respect to safety, efficiency and reach-
ability guarantees described in the following sections.
State vector: In addition to si(t) and vi(t), we assign an
indicator variable lic(t) ∈ {0, 1, . . . , Ln− 1}, which signifies
which lane the vehicle is currently in, with Ln representing
the number of lanes on each road. We also assign a bidding
value bi(t) to each vehicle according to III-A, which allows
for the computation of the sequence order in which vehicles
would cross the intersection. We also obtain the length
li, and maximum acceleration amax

i and deceleration amin
i

capabilities of each CAV i. The CAVs are thereby completely
defined by the state vectors:

Φi(t) = [si(t), vi(t), l
i
c(t), bi(t), li, a

max
i , amin

i ]⊤ (3)

for i ∈ {1, . . . , n}. We also define a parameter tuple Ms =
{Msr,Msl}, which represent the safety margins needed to
prevent rear-end and lateral collisions.

C. Dynamic Traffic Intersection Planning & Control Prob-
lem

The dynamic traffic intersection problem involves com-
puting suitable, collision-free, continuous trajectories for all
vehicles approaching an intersection to achieve efficient and
fair traffic flow. This problem can be formulated as an
optimal control problem, with the objective of computing the
optimal command velocities ui for each CAV i ∈ {1, . . . , n},
resulting in the minimization of the maximum time taken by
each CAV to cross the intersection:

min
{ui}

max
i

tif

s.t. C({Φi}, v̄, S(Ms))
(4)

where tif is the intersection crossing time of vehicle i. C is a
set of constraints, discussed in Section III-C, that depend on
the state vectors {Φi} of the CAVs, and safety requirements
S(Ms) which prevent collisions between vehicles.

Equation 4 is, however, intractable to optimize directly
because it implicitly assumes that agents are navigating
the intersection according to the optimal priority order, q∗.
Equation 4 can be equivalently solved by optimizing jointly
over sequences, q, and the control velocities, ui, needed to
implement the sequence.

min
{ui,q}

n∑
i=1

λ(ui − v̄)2 + (1− λ)(ui − vi)
2

s.t. C({Φi}, v̄, S(Ms), q)

(5)

where v̄ is the speed limit. We solve this optimization
problem in Section III-C.

Intractability of Equation (5): The optimal control veloc-
ities, ui, depend on the sequence order q of the vehicles
entering the conflict zone. The naive solution is to solve a
mixed-integer optimization problem for every possible en-
trance sequences q by performing an exhaustive search. This
process involves two sub-problems—generating a sequence
q followed by computing the optimal velocity commands ui

for that sequence. The total number of possible sequences q
grows exponentially with the number of vehicles in the con-
trol zone which would take the form O

(
(n1+n2+n3+n4)!

n1!n2!n3!n4!

)
,

where n=n1+n2+n3+n4 is the number of vehicles in the
control zone. Therefore, current methods to solve Equation 5
are intractable.

We propose the use of auctions to obtain an optimal
priority sequence order q∗ in O (n log n) time, significantly
reducing the combinatorial runtime complexity of the mixed-
integer formulation. We run the optimization over ui for the
selected optimal sequence q∗ which can be solved in real
time.

D. Auction Theory

Auctions are a central theme in mechanism design. An
auction allocates k items among n agents. Each agent i has
a private valuation ζi and submits a bid bi to receive at most
one item of value αi. In any auction, we have b1 > b2 >
. . . > bK and α1 > α2 > . . . > αK . Each auction has an
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Fig. 3: GAMEOPT overview: Our approach begins by reading in the positions and velocities of all agents in the control zone (blue).
Our approach is hybrid; in the planning phase, GAMEOPT collect the bids from every agent and generate an optimal priority sequence
(Section III-A). In the controls phase, we use an optimization-based trajectory planner to compute the optimal velocity for each agent
that satisfies the priority order while simultaneously guaranteeing safety and real-time performance (Section III-C).

allocation rule (who gets what), a payment rule (who pays
what), and a utility function (how much value an agent gets
based on their bid). In a sponsored search auction, which is
the model we are using in this work, the allocation rule is
that the agent with the jth highest bid is allocated the jth most
valuable item, αi. The quasi-linear utility θi [19] incurred
by i is as follows,

θi(bi) = ζiαi −
k∑

j=i

bj+1 (αj −αj+1) . (6)

The term ζiαi denotes the time reward gained by
i by moving on the ith turn. The payment term,∑k

j=i bj+1 (αj −αj+1), represents the risk [20] associated
with moving on that turn. It follows that an allocation of a
conservative agent to a later turn (smaller α) also presents
the lowest risk and vice-versa.

III. GAMEOPT: METHODOLOGY

We present our overall approach in Figure 3. Computation
begins by receiving the positions, velocities and initial bids
from all agents in the control zone via V2I communication
(Section II). In the following planning phase, this information
along with the processed bids are used to generate an optimal
priority order or sequence, which determines the order in
which agents will enter the intersection (Section III-A).
The control phase of our approach then involves using an
optimization-based trajectory planner to compute the optimal
velocity (Section III-C) for each agent, which satisfies the
priority order while simultaneously guaranteeing safety and
real-time performance.

A. GAME: Selecting the Priority Order, q∗

Choosing an optimal ordering for agents to navigate
unsignalized traffic scenarios is equivalent to allocating each
agent a turn in which they would cross the intersection. Such
an allocation depends on the incentives of the agents which,
in many cases, are not known apriori. Auctions model the
incentives of agents in unsignalized traffic scenarios using
an optimal combination of bidding, allocation, and payment
strategies. In the rest of this section, we present the auction
framework for generating an optimal priority order, followed
by an analysis of its fairness.

The Sponsored Search Auction (SSA), described in Sec-
tion II-D, is an ideal mechanism to generate a priority order
for the agents. The agent with the highest priority bid is
allowed to navigate the scenario first, followed by the agent
with the next highest priority, and so on. This algorithm
runs in polynomial time, since the main computation at
this stage is dominated by sorting the agents’ bids [21].
The priority value of an agent is its true private valuation,
ζi, and our approach accommodates many different met-
rics that can be used for computing the priority value for
an agent. For instance, our approach can work with both
driver behavior-based [5], distance-based [9], and monetary-
based [6] bidding strategies. We compute the priority value
based on its velocity and its distance from the intersection.
More specifically, agents that are closer to the intersection
and have higher velocities have higher priority to cross the
intersection.

More formally, recall that si(t) measures the distance of
agent i from the intersection, and we use τi to denote the
time in which i shall reach the intersection, based on its
current velocity and si(t). Then, the priority value for agent
i is,

ζi = si(t)× (c− τi), (7)

where c is a constant. To avoid a single lane dominating
the intersection (due to a constant flow of fast moving
vehicles) and to prevent congestion, we reward agents that
have been waiting in queue for a long time. Thus, ζi ← wiζi,
where wi represents the waiting time reward value. Such a
strategy of mitigating congestion has been commonly used
in auction-based approaches [6]. Finally, to deal with multi-
agent dynamic traffic, we implement an overflow strategy
where, if an agent with a higher priority is behind an agent
with a lower priority, then the former transfers some amount
of their bid to the latter. This phenomenon is commonly
observed in agent-based motion models such as the Social
Forces model.

In [5], the authors show that the sponsored search auction
is game-theoretically optimal for static intersections consist-
ing of 1 vehicle on each arm of the intersection. In this
work, we extend the proof for dynamic traffic intersections
where we must take into account three factors–(i) multiple
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vehicles on each arm of the intersection and (ii) lower
priority vehicles blocking higher priority vehicles, and (iii)
providing waiting time rewards to agents.

Fairness Analysis of q∗: From a game-theoretic perspec-
tive, fairness implies that no agent is incentivized to “cheat”
or, in other words, this occurs when the dominant strategy
for each agent is to bid their true valuation ζi. Incentivizing
traffic-agents to bid their true value (bi = ζi) as a dominant
strategy is known as incentive compatibility [19]. Chandra et
al. [5] showed that SSAs implemented at static intersections
with a single agent on each arm are incentive-compatible. We
extend the theoretical framework of static SSAs to dynamic
intersections with multiple vehicles, taking into account
overflow, which is when a lower priority vehicle blocks a
higher priority one.

Theorem III.1. Incentive compatibility for dynamic inter-
sections: For each agent i for i = 1, 2, . . . , n and n =
n1+n2+n3+n4 where nj represents the number of vehicles
on the jth arm, bidding bi = ζi is the dominant strategy.

The next desired property in a fair auction is welfare
maximization [19] which maximizes the total time reward
(Section II-D) earned by every agent. We show that SSAs
maximize social welfare for dynamic intersections as well.

Theorem III.2. Welfare maximization for dynamic inter-
sections: Social welfare of an auction is defined as

∑
i ζiαi

for each agent i for i = 1, 2, . . . , n and n = n1+n2+n3+n4

where nj represents the number of vehicles on the jth arm.
Bidding bi = ζi maximizes social welfare for every agent.

Finally, we propose a novel strategy to address overflow
by transferring a portion of the higher priority agent’s bid
to the lower priority agent i. We denote such a transfer by
(â, b̂ = a

c−→ b), where â = a− c, b̂ = b+ c. More formally,

Theorem III.3. Overflow prevention: In a current SSA,
suppose there exists (i, j) ∈ [nk] × [nk], k = 1, 2, 3, 4, such
that ζi > ζj and si[t] > sj [t]. Let ζ̂i, ζ̂j = (ζi

q−→ ζj). If

q < ζi

(
1− αi+m

αi

)
−

i+m−1∑
s=i

ζs+1

(
αs − αs+1

αi

)
,

the new SSA with ζ̂i, ζ̂j as the new priority values for i, j is
incentive compatible.

As a final remark, Carlino et al. [6] show that multiplying
a bid by a waiting time reward does not change the incentive
compatibility of the auction. We defer the proofs of Theo-
rems III.1, III.2, and III.3 to [22].

B. Multi-lane Intersection Planning and Control

A key capability of our method is its ability to handle
traffic effectively in multi-lane intersections. The extension
from single lane to multi-lane is not straight forward. Many
assumptions that can be made in single lanes (such as one
vehicle at a time in the conflict zone) do not hold up in
a multi-lane scenario. Therefore, we introduce a system to
classify all vehicles in the control zone into groups based
on their desired trajectory (origin road and intention) in
order to handle conflicts among vehicles accurately. Group

(a) Multi-lane intersection structure with lane-based groups

Lane group No-conflict group set

0-1 0-2, 1-1, 2-2
0-2 0-1, 1-2, 3-1
1-1 0-1, 1-2, 3-2
1-2 0-2, 1-1, 2-1
2-1 1-2, 2-2, 3-1
2-2 0-1, 2-1, 3-2
3-1 0-2, 2-1, 3-2
3-2 1-1, 2-2, 3-1

(b) Non-conflicting trajectory groups at intersection

Fig. 4: Conflict handling at multi-lane intersections. We propose
a novel strategy for conflict handling using vehicle grouping based
on non-colliding trajectories.

x-y: x=road num, y=intention (Here intention values are:
0=right turn, 1=go straight, 2=left turn). For example, a
vehicle from road 1 taking a left turn would be in group
1-2. Fig. 4a shows the trajectories that vehicles in each lane
can take, along with the labeling used to allocate groups
based on these trajectories, marked on each of the lanes.

Here, we notice that vehicles taking right turns at the
intersection (groups 0-0, 1-0, 2-0, 3-0) do not conflict with
any other vehicle groups. Therefore, they are allowed to
enter into the intersection freely, and the constraints in the
optimization in III-C, reflect this. For each of the remaining
lane groups, we need to identify which other lane groups
can be allowed to enter the intersection at the same time.
We denote this collection as the non-conflicting group set for
each corresponding main lane group, as shown in Table 4b.
For example, consider the main lane group 0-1. The groups
with trajectories that do not conflict with this main group
are 0-2, 1-1, and 2-2 along with all the right turn groups
(0-0, 1-0, 2-0, 3-0). What this effectively means is that any
vehicles belonging to the non-conflicting group set of a main
lane group will be allowed to enter the intersection at the
same time along with a vehicle of the main lane group.
Note that vehicles in the right turn at intersection groups
(0-0, 1-0, 2-0, 3-0) are directly marked as non-conflicting
and are included in the non-conflicting groups list for all
vehicle groups by default. The non-conflicting groups are
based on the assumption that the vehicles approaching the
conflict zone have completed all strategic lane changes.
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C. OPT: Computing Optimal Velocities

The Optimization Problem:
Based on the optimal priority sequence q∗ from Sec-

tion III-A, the optimal command velocities, ui, for each
vehicle are computed by optimizing Equation 5 for a fixed
sequence. The objective function restated:

J (ui|q∗) = min
{ui}

n∑
i=1

λ(ui − v̄)2 + (1− λ)(ui − vi)
2 (8)

The first quadratic term of Equation 8 prevents ui from
deviating from the speed limit v̄ (results in improved
throughput). The second quadratic term minimizes the
control effort applied to optimize fuel efficiency. Below we
discuss constraints on safety and the influence of q∗ on
Equation (8).

Constraints on Safety and Compliance with q∗:
We consider both longitudinal (rear-end) collisions in the

control zone and collisions in the conflict zone. Rear-end
collisions along each of the lanes in the control zone are
prevented by ensuring all vehicles in the same lane maintain
a safe distance between each other. Formally,∣∣∣skj (t+ 1)− skj′(t+ 1)

∣∣∣ ≥ lj +Msr (9)

for all k lanes in the control zone and for all agents j, j′ with
j ̸= j′ in the kth lane. lj represents the length of the agent
j and Msr is a safety margin added to maintain a safe gap
between vehicles and to account for imperfections in sensing
and actuation. We compute the future position si(t+1) using,

si(t+ 1) = si(t)−∆t

(
vi(t) + ui(t)

2

)
(10)

Here, ∆t is defined as the planning time step of the con-
troller.

Next, we also need to ensure that no collisions occur
inside the conflict zone. This task reduces to ensuring no
vehicles belonging to conflicting lane groups (III-B) enter the
intersection simultaneously. Therefore, for each vehicle i in
the sequence q∗, paired with a vehicle j in a conflicting group
where i has higher priority over j, we add the constraint,

tic +
(li +Msl)

ui
≤ tjc (11)

where tic = si(t+1)
ui

represents the time at which i would
arrive at the intersection. The above constraint ensures that
command velocities ui are chosen such that vehicles proceed
through the conflict zone in the order of the sequence under
consideration q∗. Note that this constraint is applied to
every conflicting pair of vehicles; non-conflicting vehicles
are allowed to enter the intersection at the same time,
increasing the efficiency of the system. The safety margin
Msl corresponds to the width of the intersection and prevents
lateral collisions occurring when conflicting vehicles cross
the intersection.

The safety constraints with respect to ordering q∗ in
Equations (9) and (11) result in an intractable mixed-integer
quadratic programming (MIQP) optimization problem. This

problem is further compounded due to lane indexing, which
introduces a new variable indicating the agent’s lane. We
remove the dependency over the lane index by separating
the constraints for each lane and using the multi-lane conflict
resolution scheme introduced in III-B. This results in sim-
plification of Equations (9) and (11), reformulating the orig-
inal MIQP as a quadratic programming (QP) optimization
problem; this QP can be solved in real-time. More formally,
Equation (9) can be simplified as,

uk
j − uk

j+1 ≥
(
vkj+1 − vkj

)
+

2

∆t

(
skj − skj+1 + lj +Msr

) (12)

for all k lanes in the control zone and for all j, j + 1
consecutive vehicles belonging to lane k. And Equation (11)
can be simplified as,

uj

(
si −

∆t

2
.vi + li +Msl

)
≤ ui

(
sj −

∆t

2
.vj

)
(13)

for all vehicles i in sequence q∗ and for all vehicles j in a
conflicting group to vehicle i.

Finally, we enforce reachability by bounding the command
velocities by the speed limit, v̄, as well as the acceleration
and breaking capabilities of each individual vehicle.

0 ≤ ui(t) ≤ v̄ (14)

amin
i ∆t ≤ ui(t)− vi(t) ≤ amax

i ∆t (15)

Solving OPT: The constraints (12), (13), (14), and (15)
are provided to OPT with objective function given by Equa-
tion (8), which is solved numerically using Gurobi (version
9.1.2) [23].

The computed target ui command velocities are transmit-
ted to each of the CAVs in the control zone. Note that we
do not consider delays in communication and assume data
is transmitted instantaneously via V2I communication. The
low-level controller on-board each CAV then computes the
acceleration or deceleration needed, to achieve the desired
ui command velocity within the control time (∆t) duration.

Finally, a key feature of our approach is that it is robust to
drift in the executed control. Our approach operates at a cycle
frequency of 100 ms after which new command velocities
are obtained, updating the previous controls. Therefore, any
deviation between optimal control and the executed control
is erased during every 100 ms update cycle.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the capabilities of our ap-
proach, study the impact of varying environmental param-
eters, and compare against other real-time methods.

A. Experiment Setup

We evaluate the performance of GAMEOPT in a multi-
lane four-arm intersection simulation using the SUMO plat-
form [24] with the following parameters; Control zone length
(Lc) = 150m, Speed limit (v̄) = 20m/s Objective trade-off
(λ) = 0.7, Safety margins: Msr = 2.0 and Msl = 25.0. The
high-level controller uses the TraCI traffic controller interface
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(a) Throughput (b) Time-to-goal (c) Fuel Efficiency

Fig. 5: Comparison with baselines: GAMEOPT increases throughput by approximately 25% and 174% compared to TRAFFIC-LIGHT and
AUCTION, respectively. Furthermore, our method reduces the time-to-goal by 75% and 81%, respectively, and improves fuel efficiency
by 33% and 66%, respectively, compared with TRAFFIC-LIGHT and AUCTION.

to communicate with the simulation. All simulations and
optimization algorithms run on a personal computer with an
Intel i7-8750H CPU and 32GB of RAM.
B. Evaluation Metrics and Baselines

The key performance metrics used to evaluate merging
algorithms are throughput (number of vehicles that can travel
through the intersection per min), time-to-goal (average time
vehicles spend in the control zone) and fuel consumption. To
showcase the properties and appropriately assess the perfor-
mance of GAMEOPT, we compare it with two other real-time
capable baseline approaches using the same inputs. The first
is an auction framework where the bidding strategy is based
on the order in which agents arrive at the intersection, similar
to the FIFO principle. To test the limits of our approach, we
also compare against well-tuned traffic lights (light timing
set to maximize performance), a well-established signaled
intersection traffic management system. We refer to these
baselines as TRAFFIC-LIGHT and AUCTION in the following
sections. Note that the Krauss vehicle following model was
used in these comparisons.
C. Efficiency Analysis

From the blue curves in Figure 5, we observe that
GAMEOPT exhibits linearly increasing throughput with in-
creasing input flow while the other two methods become
capped after a point. Similarly, we see that GAMEOPT
is capable of maintaining low temporal delays as well as
low fuel consumption across all values of input flow. This
highlights the consistent performance capabilities of the
GAMEOPT method, even at very high input flow rates such
as 10, 000 vehicles per hour. Note that input flow rate is
defined as the total number of vehicles that enter into the
intersection simulation per hour on all four roads.
Results and Comparison with Baselines: In Figure 5, we
show results of comparing GAMEOPT with TRAFFIC-LIGHT
and AUCTION based on throughput, time-to-goal, and fuel
efficiency. Perhaps the most significant result is that not only
does GAMEOPT outperform the AUCTION approach, it also
outperforms TRAFFIC-LIGHT, a well-established method op-
timized for signalized intersections. In Figure 5a, we observe
that GAMEOPT linearly increases in throughput (equivalent
to maximizing flow through the intersection) with increasing
flow rate. At high flow rates, GAMEOPT performs approxi-
mately 25% and 174% better when compared to TRAFFIC-
LIGHT and AUCTION, respectively. We also note that these

relative performance improvements become more apparent
with the increase in flow rate.

This follows our intuition that with fewer vehicles, we do
not require a complex optimization-based method; a simpler
signal-based method suffices. However, as the traffic on the
road increases, which often leads to increased congestion
and delays, the benefit of GAMEOPT becomes apparent.
Furthermore, from Figures 5b and 5c, we observe that at
high flow rates our method reduces the time-to-goal by 75%
and 81%, respectively, and reduces fuel consumption by 33%
and 66%, respectively, compared with TRAFFIC-LIGHT and
AUCTION. This shows that GAMEOPT results in less waiting
in queues along with less acceleration and braking tasks,
resulting in improved fuel efficiency.

(a) Impact of increased speed limit.

(b) Impact of unbalanced inflow in different lanes.

Fig. 6: Impact of increasing the speed limit and unbalanced inflow
rates on the average time-to-goal. GAMEOPT handles both cases
well and even performs better with a higher speed limit. TRAFFIC-
LIGHT remains unchanged while AUCTION is worse in both cases.

We also analyze the impact of increasing road speed
limits from 20m/s to 25m/s, as this is a possibility in fully
autonomous systems. In Figure 6a, we observe that while
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TRAFFIC-LIGHT and AUCTION both remain unchanged,
GAMEOPT exhibits reduced time-to-goal. This shows that
the overall capabilities of GAMEOPT can be increased further
with improved road infrastructure. We also test the impact
of creating unbalanced vehicle demand on different arms of
the intersection by varying the inflow rate on each arm. As-
suming we keep the total number of vehicles constant, some
arms experience unusually high traffic density. As expected,
from Figure 6b we observe that AUCTION’s and TRAFFIC-
LIGHT’s performance worsens whereas GAMEOPT remains
unchanged, demonstrating robustness to this configuration.
Real-time Operation: The algorithm in our optimization-
based approach operates at a frequency of fs = 10Hz
(updates all control commands every 100ms). The time
required for the optimizer to compute control outputs for
a single sequence has a mean of 1.16ms, standard deviation
of 1.73ms, and a worst-case maximum of 17.25ms. This is
significantly lower than the controller update rate of 100ms,
thus enabling real-time operation. The fastest optimization-
based method in literature takes up to 2.4 seconds for 50
vehicles [16], [25] in a simple single lane environment. In
comparison, GAMEOPT takes less than 18 milliseconds for
50+ vehicles in a multi-lane setting. This is a speed-up of
around 130× in considerably more complex environments.

D. Effect of Overbidding and Underbidding
According to Theorem III.1 in Section III-A, overbidding

or underbidding yields a lower utility [5]. In simulation,
when the auction is combined with a trajectory planner,
we observe even more drastic consequences. In the case of
overbidding, the agent submits a higher than expected bid to
the trajectory planner. The planner accommodates this higher
bid by reducing a conflicting agent’s speed, causing the latter
to slow down and create a dangerous situation with possible
rear-end collisions. In the case of underbidding, the trajectory
planner reduces the speed of the agent that is underbidding,
resulting in possible rear-end collisions.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose GAMEOPT: a novel hybrid approach to
cooperative intersection control for dynamic, multi-lane,
unsignalized intersections. Our algorithm couples an auction
mechanism that generates a priority entrance sequence with
an optimization-based trajectory planner that computes the
optimal velocity commands to achieve this sequence. This
hybrid approach allowed us to achieve real-time computation
capabilities in high-density multi-lane traffic, while providing
guarantees in terms of efficiency, safety, and fairness. Our
performance was verified using the SUMO platform, and we
show that GAMEOPT improves throughput by around 25%,
time spent by 75%, and fuel consumption by 33%, com-
pared to auction-based approaches and signaled approaches
using traffic-lights and stop signs. We also demonstrate that
GAMEOPT operates at real-time speeds (< 10 milliseconds),
which is at least 100× faster than prior methods.

Future work in this area would include exploring differ-
ent kinds of auctions for flexibility in intersection control
management, the impact of imperfect communication on the
performance of the algorithm, and the capability to handle
the needs of heterogeneous vehicles and mixed traffic.
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