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Abstract—Beam search algorithms have been proposed to align
the beams from an access point to a user equipment. The process
relies on sending beams from a set of scanning beams (SB) and
tailoring a transmission beam (TB) using the received feedback.

In this paper, we discuss a fundamental trade-off between the
gain of SBs and TBs. The higher the gain of an SB, the better
the penetration of the SB and the higher the gain of the TB the
better the communication link performance. However, TB depends
on the set of SBs and by increasing the coverage of each SB and
in turn reducing its penetration, there is more opportunity to
find a sharper TB to increase its beamforming gain. We define
a quantitative measure for such trade-off in terms of a trade-
off curve. We introduce SB set design namely Tulip design and
formally prove it achieves this fundamental trade-off curve for
channels with a single dominant path. We also find closed-form
solutions for the trade-off curve for special cases and provide
an algorithm with its performance evaluation results to find the
trade-off curve revealing the need for further optimization on the
SB sets in the state-of-the-art beam search algorithms.

I. INTRODUCTION

In pursuance of larger bandwidth that is required for realizing
one of the main promises of 5G, i.e. enhanced mobile broad-
band (eMBB), millimeter wave (mmWave) communications is a
key technology due to abundance of unused spectrum available
at mmWave frequency ranges [1]. However, high path loss
and poor scattering associated with mmWave communications
leads to intense shadowing and severe blockage, especially
in dense urban environments. These are among the major
obstacles to increase data rate in such high frequency bands. To
tackle these issues effective beamforming (BF) techniques are
required to avoid the power leakage to undesired directions
using directional transmission patterns, i.e., narrow beams
[2]1[3]. Furthermore, several experimental results demonstrate
that the mmWave channel usually consists of a few components
(a.k.a spatial clusters) [4]. Therefore, it is essential to align the
devised narrow transmission beams with the direction of the
channel components. The problem of aligning the directions of
the beams with the angle of departure (AoD) associated with
clusters of the channel, is termed as the beam alignment (BA)
problem. In the literature the beam alignment problem is also
indexed as beam training or beam search. Devising effective
beam alignment schemes is essential since a slight deviation of
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the transmitted beam AoDs from the mmWave channel clusters
may result in a severe drop in the beamforming gain [5][6].

Beam alignment schemes may be categorized as exhaus-
tive search (ES) and hierarchical search (HS). Under the ES
scheme, ak.a beam sweeping, the angular search space is
divided into multiple angular coverage intervals (ACIs) each
covered by a beam. Then the beam with the highest received
signal strength at the receiver is chosen [7][8]. To yield nar-
rower beams in ES, the number of beams increases which
results in larger beam sweeping overhead. The HS scheme
lowers the overhead of the beam search by first scanning the
angular search space by coarser beams and then gradually finer
beams [9][10][11]. The BA procedure may happen in one of the
two modes, i.e. interactive BA (I-BA), and non-interactive BA
(NI-BA). In the NI-BA mode, the transmitter sends the scanning
packets in the scanning phase and receives the feedback from
the users after the scanning phase is over, while in the [-BA
mode the transmitter receives the feedback for the previously
transmitted scanning pilots during the scanning phase and can
utilize this information in the rest of the scanning phase. Most
of the prior art on I-BA are limited to single-user scenarios
while NI-BA schemes can handle multi-user scenarios as the
set of scanning beam does not change or depend on the received
feedback from the users. The process of beam search relies
on sending beams out of a set of scanning beams (SB) and
tailor a data transmission beam (TB) based on the received
feedback. In this paper, we discuss a fundamental trade-off
between the gain of the SBs and TBs. The higher the gain
of a SB, the better the penetration of the SB and the higher
the gain of TB the better the communication link performance.
However, TB depends on the set of SBs and by increasing
the coverage of each SB, there is more opportunity to find a
sharper TB to increase its beamforming gain. This means that
the beamforming gain and hence the penetration of the SB is
reduced. We define a quantitative measure for such trade-off in
terms of a trade-off curve. We prove a fundamental result by
finding the class of SB set designs namely Tulip design which
achieves this fundamental trade-off curve for channels with
single dominant path. We also find closed-form solutions for the
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trade-off curve for special cases and provide an algorithm with
its performance evaluation results to find the trade-off curve in
general. Our results reveal that the state-of-the-art beam search
algorithm should further optimize their SB sets based on this
fundamental trade-off between the SB penetration and TB gain.

The remainder of the paper is organized as follows. Section II
describes the system model. In Section III we elaborate on the
notion of trade-off curve and and propose our main contribu-
tions in section IV. Section V presents our evaluation results,
and finally, in Section VI, we highlight our conclusions.

II. SYSTEM MODEL

We consider a mmWave communications scenario with a
single base station (BS) and an arbitrary number of mobile
users (MUs), say N, where prior knowledge on the value
of N may or may not be available at the BS. The BA
procedure aims at obtaining the accurate AoDs corresponding
to the downlink mmWave channel from the BS to the users.
Under the BA procedure, the BS transmits probing packets
in different directions via various scanning beams (SBs) and
receives feedback from all the users, based on which the BS
computes a transmission beam (TB) for each user.

A. Channel Model

Let ¥, denote the random AoD vector corresponding to the
channel between the BS and the j'» MU. Denote by fu,,
defined over D C (0,27], the probability density function
(PDF) of W;. The PDF fy,(.) encapsulates the knowledge
about the AoD of the j*" user prior to the BA procedure, or
may act as a priority function over the angular search domain.
Such information may be inferred from previous beam tracking,
training, or alignment trials. A uniform distribution means lack
of any prior knowledge over the search domain.

B. Beamforming Model

We consider a multi-antenna base station with an antenna
array of large size realizing beams of high resolution. For power
efficiency, we assuming hybrid beamforming techniques are in
effect in the BS deploying only a few RF chains. Further, we
adopt a sectored antenna model where each beam is modeled
by the constant gain of its main lobe, and the angular coverage
interval (ACI) it covers. Such models are widely adopted in the
literature for modeling the beamforming gain and the directivity
of mmWave transmitters.

C. Time-slotted System Model

We consider a system operating under the time division
duplex (TDD) and the NI-BA schemes, with frames of length
T. Each frame consists of T equal slots. In each frame, the
first b slots are dedicated to the transmission of the probing
packets, denoted by scanning time-slots (STS) and the next
d slots denoted by feedback time-slots (FTS) are allocated to
receiving the users feedback that may arrive through a side
channel or according to any random access mode. Finally, the
last T4 b+ d slots are reserved for data transmission, namely
data transmission time-slots (DTS).
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Fig. 1: Time-slotted System Model

D. Beam Alignment Model

The objective of the BA scheme is to generate narrowest
possible TBs for the data transmission phase for each user
to produce beams of higher gain and quality. In other words,
utilizing the feedbacks provided by the users in the FTS to
the SBs transmitted by the BS in the STS, the BS aims at
localizing the AoD of each user to minimize the uncertainty
region (UR) for each AoD. Let B = {®;}’_, be the set of
STS scanning beams where ®; denotes the ACI of the SB sent
over time-slot ¢ € [b]. The feedback provided by each user to
each SB is binary. If the AoD corresponding to at least one of
the resolvable paths in the channel from the BS to the MU is
within the ACI of the SB, then the MU will receive the probing
packet sent via that SB and feeds back an acknowledgment
(ACK). Otherwise, the feedback of the MU will be considered
as a negative acknowledgment (NACK) indicating none of the
user AoD’s lie in the ACI of the SB. Once the FTS ends, the
BS will determine the TBs using the SBs and the feedback
sequences provided by the users according to the BA policy.
The BA policy is formally defined as a function from the set
of feedback sequences to the set of TBs.

III. PROBLEM FORMULATION

To reach more distant users, in the scanning phase of the BA
procedure, we are in need of a SB set with high-gain beams, i.e.,
beams as narrow as possible. However, there is a limit on sizes
of the SBs in order to cover the entire angular domain D (say in
azimuth angle). More precisely, the union of the set of SBs have
to be at least equal to D. Moreover, the intersections of the SBs
contribute to the possibility of having additional TBs which in
turn allows for optimizing the set of TBs. For example, using b
SBs, a GES scheme has b TBs while a tulip design has 2b TBs.
This would allow tulip design to have smaller TBs than GES
in the expense of having larger SBs. In general, there exists a
trade-off between the beamwidth of the beams in the SB and
the TB sets. To formally define a quantitative measure for such
tradeoff we first review some preliminaries.

A. Preliminaries

1) Beam Alignment Policies: The BA policy determines how
the direction of the TBs is computed. This decision naturally
considers the UR of the AoDs of each user channel. In the
literature, two main policies have been considered frequently,
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i.e. i) Spatial Diversity (SD), and ii) Beamforming (BF) Policy.
The SD policy aims at generating TBs with minimal angular
span that cover all the angular intervals that may contain a
resolvable path, while the promise of the BF policy is to
generate TBs that cover at least one resolvable path but further
reduce the angular span of the TBs. The advantage of the SD
policy to the BF policy is its resilience against the potential
failure or blockage of one or some of the spatial clusters as long
as at least one resolvable path remains, while the BF policy has
the advantage of producing much higher beamforming gains
compared to that of the SD policy but it is vulnerable to path
blockage.

Let B}, (B,s) denote the UR of the 4" user providing the
feedback sequence s under the policy P € {SD,BF} and the
SB set B. Further, let the positivity set A7(s) C [b] be the set of
all indices corresponding to the SBs that are acknowledged by
the j*" user. Define the negativity set N7(s) C [b] in a similar
fashion for the not acknowledged SBs.

Note that if the j" user sends an ACK in response to the
SB @, this would mean that ©;(s) = ®; has at least one
resolvable path. On the other hand, a NACK would mean that
no resolvable paths reside in ®; and therefore, any resolvable
path should exist in ©;(s) =D — ®;, and B}, (B,s) € D — ®;
for the above-mentioned policies. Having this in mind, we can
explicitly express the UR for the mentioned policies as follows.

(D
)

BgD(S) = (Uica()9i(s)) N (Nien(s)©Oi(s))
Big(s) = O1(s) N (Nien(s)Oi(s))

where k = arg mingc 4() |04(s) N (Nien(s)©i(s)) |-

2) Beam Alignment Formulation: . We assume there are
N users that are prlorltlzed according to the welght vector
{¢; > 0}7 1 ,ZN ¢; = 1L Let i = {uk}k , denote the
range of the policy function Bg,,(B, s). In other words, the TBs
resulting from the BA scheme may take any value in the set
U. The expected value of the average beamwidth resulted from
the BA scheme for policy P is

N
= 2 BB 0

Z |ur| P{Bp(s) = ur}

where,

3)

E[|Bp(s) “4)

and |ug| denotes the Lebesgue measure of the wuy. Note that
ur may be a finite union of multiple intervals in which case
|ug| will be the sum of their widths. Given the value of b the
objective of the BA scheme is to design {@i}le such that the
expected average TB beamwidths as in (3) gets minimized. i.e.,

{@;‘}?:1 = arg min{@}LlUP ({(I)i}f:1)

The solution to the optimization problem is presented in great
details in [12]. We summarize the main results as follows.

®)
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Fig. 2: Example of a Tulip design for b = 5

Theorem 1. Among the set of contiguous scanning beams, a
set of scanning beams with Tulip design generates the maximal
number of possible feedback sequences for the channel with
p =1 and 2, for an arbitrary distribution of channel AoD that
is nonzero on any points in the range [0, 27).

Proof. Please see [13]. The Tulip design is defined as follows.

Definition 2. Tulip design is given by a set of contiguous SBs
B ={®;},i € [b] where each beam may only have intersection
with its adjacent beams with the exception of ®, and ®; for
which the intersection might be nonempty. This means ®; N
¢, =0 1<]i—jl<b-1

An example of a Tulip design is given in Fig. 2. Any
scanning beam in the Tulip design consists of three parts,
namely two side lobes (common between two neighboring
scanning beams) and one middle lobe. We denote by each
component a component beam (CB) and define the set C as
the CB set. We denote by the middle lobes the CBs of first
type and and by the side lobes the CBs of second type. In the
above example we have,

¢t =1{0,1,2,3,4},¢% = {[0,1],[1,2],[2,3],[3,4], [4,

Next, we define the notion of trade-off curve.

0} (6)

B. Trade-off curve

Let Ap(s) denote the beamwidth of T'B for the received
feedback sequence s and 7); = |®;| denote the beamwidth of the
SB i, i.e., ®; . Consider a measure x(.) which is a function from
a set of real numbers to a single real number. In this paper, we
particularly are interested in two measures: max and average.
We define the max function as p1({n;}’_;) = max({n;}’_,)
and the average function as po({n;}_,) = (1/b) Zi’:l 7;. The
tradeoff curve for the policy P, using b scanning beams for
the channel with p path is defined as the minimum value of
w({\p(s)}ses) for any given value of p({n;}’_,) where S is
the set of all possible feedback sequences.

IV. MAIN RESULTS

In order to find the trade-off curve, one needs to consider all
possible SB designs in general. In this section, we provide an
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interesting result on the class of SB designs that outperform all
other designs in terms of the trade-off between the SB and TB
sizes. In particular, we prove that for the channel with single
dominant path p = 1, the trade-off curve is always achieved by
a SB design that follows tulip design for both max and average
measures. The results for multi-path channels is out of the scope
of this paper. We note that for p = 1 both the diversity and
beamforming policies collapse into one. As mentioned before,
different measures for the SBs and TBs can be taken into
account for demonstrating the trade-off. For the max measure,
we consider the pair (9maz> Amaz) Where Ay, q, represents the
maximum resulting beamwidth of the beams in the TB set, and
Nmae denotes the maximum beamwidth for the set of SBs. The
trade-off curve may be interpreted as follows. For a given value
of Nmax there is a minimum achievable A" . The trade-off
curve is defined as the set of all achievable (9q2, AT ). Also,
for a given value of \,,,, there is a minimum achievable 7"
Alternatively, the trade-off curve is composed of all achievable
(nmin X nae). For the average measure, we consider the pair
(7, \) where \ represents the average resulting beamwidth of
the beams in the TB set, and 77 denotes the average beamwidth
for the set of SBs. We have the following theorem.

Theorem 3. The optimal (i.e., generating the trade-off curve)
BA scheme is achieved by a SB set that follows the Tulip design.

Proof. Each SB can be represented by its coverage interval
which is an arc on the Trigonometric circle. Hence, if we move
in a counter clockwise direction each SB has a starting point
and an ending point. A marker is defined as any starting point
or ending point. Please note that in general multiple starting or
ending points may be concurrent (i.e., the same) in which case
such marker is called non-singular marker. If a marker only
represents a single starting point or a single ending point it is
called a singular marker. The proof consist of multiple steps.

Step 1: We exchange each of the non-singular markers
with multiple singular markers which are only a differential
amount apart in such a way that all starting point are moved in
clockwise directions and all ending points are moved in counter
clockwise direction. Please note that in this process the ordering
between the starting points or between the ending points is not
important.

Step 2: There are exactly 2b markers and hence 2b arcs on
the circle. Each SB is comprised of one or more arcs that are
adjacent. An arc may be shared between multiple SBs. The
order of an arc is the number of scanning beams that intersect
with that arc. Since each SB is contiguous and each marker is
singular, the order of the arcs are alternatively odd and even
on the circle. It can be easily verified that the order of the arc
in the Tulip design is alternatively 1 and 2. For the original
design, we associate a Tulip design where the corresponding
arcs in both designs are either both odd or even ( See Fig. 2).

On one hand, we have

b
pa({miYi—y) = (1/6) >

i=1

2b
. = (1/b) Z arc;n;
i=1
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where arc; is the length of the arc ¢ and n; is its order. Similarly,
for pa({n:}%_,) we note that each SB in the Tulip design is
entirely covered by at least one SB in the original design. To
see this, we note that each SB in Tulip design consists of three
arcs, say, ¢ — 1,7, + 1 where their orders n;_j,n;, n;4+1, are
even, odd, and even, respectively. We note that |n;_q —n;| =1
and |n;+1 —n;| = 1 since each marker is singular and hence the
sets of the beams that cover any two adjacent arc exactly differ
by one beam. Either, we have n;,_; > n; > n;y; in which
case all the beams that cover the arc 741 would cover the arcs
17 — 1 and 7 which means that in the original design there is a
beam that covers all three arcs ¢ — 1,%,,¢ + 1. Hence, in the
Tulip design the beam that covers exactly the arcs i —1,4,7+ 1
is covered by a beam in the original design. If n;,_1 > n;,
n; < niy1, all the beams that cover the arc ¢ have to cover the
arc ¢t — 1l and ¢ + 1. If n;—1 < n; < n;y1, all the beams that
cover the arc ¢ — 1 have to cover the arc ¢ and i + 1. Finally,
if n;_1 <mn;, n; > n;y1, all the beams that cover the arc ¢ — 1
are the same as the beams that cover the arc ¢ + 1 and they
cover the arc ¢ as well, but the arc ¢ covers exactly one different
beam. Hence, it is immediate that the average (or max) of SB
for a tulip design that matches the same marker positions is not
more than the average (or max) of SB for the original design.
On the other hand, we note that for both the original design
and the Tulip design the position of the markers are the same.
Moreover, the set of TBs for Tulip design is all possible 2b
arcs. Since any other beam design including the original design
can at most distinguish the same 2b arcs, hence, any measure
function (e.g., max or mean) on the set of TBs for Tulip design
is always less than or equal to that of the original design. This
means that the trade-off curve is achieved by the Tulip design.

Step3: We note that after replacing the original SBs with
the Tulip design as described in Step 2, it is possible to undo
the operation of the step 1 and revert back by collapsing
the corresponding group of singular markers into a single
marker, for each non-singular marker. This would not affect
the correctness of the arguments in step 2. This can also be
interpreted as taking the limit over the differential value ¢ as it
goes to zero which obviously collapses the corresponding set of
singular points to its original non-singular point. We also note
that the introduction of Step 1 is necessary for the way that
the Tulip design is compared with the original design. Also,
the step 3 will also reveal that the design which achieves the
trade-off curve might be a special form of the Tulip design
where, e.g., some arcs are diminishing to zero.

We note that the above theorem holds for any channel
distribution, i.e., the distribution of the paths. For the case of the
multi-path channel, i.e., p > 2, Theorem 3 does not necessarily
hold true for an arbitrarily policy. The reason lies in the fact
that the TB is in general composite, i.e., it consists of multiple
arcs, and the composition of TBs is a function of the design.
Therefore, in the evaluation section, we present the achievable
trade-off curve for Tulip design in comparison to that of the
other designs without any optimality claim.
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A. Analytical Results for Uniform Distribution

The trade-off curve for uniform distribution somewhat ex-
hibits the worst case performance. In this section, we drive
the trade-off curve for both max and average measures under
uniform distribution. The results can also facilitate the visu-
alization of the trade-off curve for more general cases even
though the shape and the end points of the trade-off curve vary
for different distribution. First, by using Theorem 3 we derive
the closed-form solution for the trade-off curve.

Theorem 4. The trade-off curve for the average measure
(7,A) = (ug({m ,ll?:l),ug({)\p(s)}ses)) and under uniform

distribution follows a polynomial from order 2.

Proof. Consider a Tulip design with 2b CBs where {a;}?_;
and {;}%_, denote the CBs of degree 1 and 2 respectively.
For a given po({n;}%_,) it holds that,

b b
pa({miY—y) = 1/me = (1/b) Z ;i +26;) =

b b
(1/6) > (i + i)+ (1/0) D B;
=1 i=1

Hence

b

+ (/)Y B ()

i=1

o
b

b b
> ai=4r—by and Y Bi=by—2r

3
i=1 i=1
For uniform distribution on the users AoD we can write
b
A= Z of + B7) ©)
=1

For a given 7, the summation Z?:l a; and Z?:l B is fixed,
hence, it is easy to verify that the minimum value of i in (9)
is obtained when «; = o and 8; = §8 for all ¢ € [b] for proper
values of o and 3. We have,

A =b/2r ((a+ B)* — 2a8)

Following equation (8) we get « = 2y — 7 and 8 = 77 — .
Replacing these values in (10) it immediately follows that

A= (2/7)7° — 67+ 5y (11)

Hence, ) is a polynomial of degree 2 in terms of 7. O

We note that for any SB design we have v < 1 < 2v. On
the other hand, the analytical curve in (11) has its minimum in
1 = 1.5y and it is symmetric with respect to this point. Since
a good operating point for (7, \) is where both 7 and \ are
minimized, it is trivial that the trade-off curve only for v <
7 < 1.5 is of interest. For example for v < 5 < 1.5, both
(m,A) and (3 — 17, \) are on the trade-off curve and obviously
(M, \) is much more efficient than (3 —, \). Hence, we focus
our attention to the curve between v < 17 < 1.57.

(10)

20

Algorithm 1 Greedy-SA

Input: no,N b, fo (), done = &
1. Gy = a set of N points in [0, 27]
: {2:}?%, = random points from G such that 7
: {21}1:1 <:>ic7e:ft = {(21,7 Zi+1 mod b)aZ S [2b]}
: Compute A using fy(¢) and Ceg
: while not done do
(done, \, Ceir) = modify-sol(Gn, N\, Cetr> 7o)
: end while
: Return \, Cegr

<o

SIS T NV R N O

Algorithm 2 Modify-Sol

Input: Gy, A, Ceir, 70, 5 = True, count =0
1. dir = { forward, backward}, Agjq = A
2: perm = Shuffle {(p, ¢, 7)|p, q € [2b],r € dir,p < q}
3: repeat

4:  Orderly select next tuple (p, g, r) from perm
5: Slide {#};_, in r € dir direction on points in Gy
6:  Compute 7 using Cefr

7. if 7 > 7o then

8: count + +

9: else

10: Compute M, using fy (1)) and Ce

11: if /_\new > 5\old then

12: count 4+ +

13: end if

14 end if

15: until (count = 2b% +b) V A pew < Aotd)

16: if count = 2b% + b then

17:  Return (True, Apew, Cefr)

18: else

19:  Return modify-sol (G, Apew Ceir)
20: end if

V. PERFORMANCE EVALUATION

The trade-off curve for arbitrary distribution in general may
not admit an analytical form. Theorem 3 proves useful in this
case by restricting the set of scanning beam to Tulip design.
We use Algorithm 1 to compute the points on the trade-off
curve for a given value of 77 = 9. We start by setting 79 = v
and increase its value by small value § at each step. At each
step for a given value of 7, we find the minimum \ by simply
iterating Algorithm 1 for a given number of trials where at least
one such starting set of scanning beams defined by {z;}?2, at
each step is the one that correspond to the minimum Value of A
in previous step. As we discussed earlier, the trade-off curve for
the uniform distribution achieves its minimum at = 1.5 and
any other distribution beside uniform achieves its minimum at
7 < 1.57. Hence, it is not necessary to search for the value
of 7 > 1.5y. After the trade-off curve reaches its minima
say at 77 increasing the value of 7 > n* would not improve
the curve. This is verified through our numerical evaluation
as well. For empirical measurements, We consider uniform
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Fig. 3: Theoretical trade-off Curve for Uniform dist.

distribution, the cut-normal distribution, i.e., A/ (n=mo=1)
that is truncated beyond the range (0,27), and the piece-wise
uniform distribution with two segments A = [0,27/3] with
p(A) = 3/4, and B = [27/3,2n] with p(B) = 1/4. Fig. 4
illustrates the trade-off curve for b = 5 beams using average
measure evaluated based on the proposed algorithm for these
three distributions. As derived in Section IV the trade-off curve
for uniform distribution is a a convex curve that starts from
7 = ~ and admits its minimum at 7 = 1.5y. It is easy to
verify that the trade-off curve for average measure is convex
since a time sharing between every two SB sets can be used to
generate points on the line connecting the performance points of
these two SB sets. The trade-off curves for the same number of
beams b for non-uniform distributions is always strictly below
that of the uniform distribution. This can be interpreted as
uniform distribution has the worst case in terms of trade-off.
We note that other two trade-off curves for both piece-wise
uniform distribution, and cut-normal distribution in Fig. 4 start
from 7 = ~ and take minima at a point for which 1 < 1.57.
Fig. 3 depicts the theoretical trade-off for uniform distribution
on the user AoD for both measures discussed earlier. The curve
corresponding to the Avg. and Max. measures follow parabolic
(equation (11)) and linear curves, respectively. We note that the
point (y,7y) on the Avg. trade-off curve corresponds to the GES
scheme and on the Max. trade-off curve to the ES scheme.

VI. CONCLUSIONS

We reveal a fundamental trade-off between the SBs and
TBs gains and define the notion of trade-off curve. We show
a fundamental class of SB set design, namely Tulip Design
achieves the trade-off curve. We present a closed-form solution
for the trade-off curve for special channel with uniform dis-
tribution on AoA. For general distributions, we provided an
algorithm and evaluation results to find the trade-off curve.
Our results emphasize that the state-of-the-art beam search
algorithms should further optimize their SB sets based on this
fundamental trade-off between the SB penetration and TB gain.
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