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Abstract— Traffic shock waves are a commonly occurring
phenomena caused by the delays in reaction times of Human
Driven Vehicles (HDVs) resulting in unnecessary congestion in
highway networks. Application of a suitable moving bottleneck
control using Connected Autonomous Vehicles (CAVs) can
result in shock wave mitigation and smoothing of the traffic
flow. This traffic control scheme is dependent on accurately
predicting shock wave conditions while choosing the best control
to apply for the observation available to the CAV. In this
work, we propose the use of a multi-agent shared policy
reinforcement learning algorithm which leverages communica-
tion between CAVs for improved observability of downstream
traffic conditions. A key feature of this method is the ability
to perform shock wave dissipation control without the need
for global information and the applicability of this method to
multi-lane mixed traffic highways of arbitrary structure. We
use the shared-parameter Proximal Policy Optimization (PPO)
reinforcement learning strategy for obtaining the controls for
each CAV in the simulation. We also built a custom SUMO-Gym
wrapper for the multi-lane highway simulation with custom
designed observation space, action space and rewards for
each agent. The shock wave dissipation efficiency is evaluated
on a three lane circular highway loop using realistic traffic
simulation software and low CAV penetration levels.

I. INTRODUCTION

Owing to the advancements in on-board sensing capabil-
ities [1] and modern communication networks [2], we are
seeing a rise in connected automated transportation systems.
These modern transportation systems bring along with them
the promise of solving some of the major problems plaguing
the road infrastructure today [3], [4]. In this work, we target
once such problem where we utilize these advanced sensing
and communication capabilities of the modern connected and
autonomous vehicles (CAVs) to control the state of highway
traffic by sharing local information over a communication
network. The on-board sensors enable the CAVs to take in
the critical information from the environment and pass it
along to the other CAVs, with minimal delay, in order to
make a collaborative decision.

The specific problem we address in this work is the
dissipation of shock waves [5] in highway networks. Shock
waves refer to the conditions on highways where the vehicles
tend to accelerate and decelerate periodically, resulting in
traffic buildup and increase in overall travel time and fuel
consumption for each of the vehicles involved. In dense
traffic conditions, shock waves can be formed by relatively
mundane factors, such as obstruction on the shoulder of a
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highway, narrowing of road, human reaction time in decision
making [3] etc., and can last for hours [6], until dissipated
by a decrease in the overall traffic flow on the highway.

A key difficulty in creating a shock wave dissipation
algorithm without the use of global information is mapping
the limited observations available to a given CAV with the
best action it should take in order to handle the situation.
There are many features that need to be considered in order
to obtain inherently safe actions that also lead to shock wave
dissipation performance. In this work, we explore the use
of Deep Reinforcement Learning (DRL) to obtain the best
actions for a given observation for each CAV on the highway.

Literature review

In the absence of CAVs, the research community has
addressed the shock wave dissipation problem through the
application of variable road speed limits [7]. The applica-
bility of such a method, however, is contingent upon the
availability of necessary infrastructure. In regards to the
CAV-based research, Sugiyama et al. [6] and Stern et al. [8]
demonstrated the generation and mitigation of shock waves
in field experiments. In these experiments, the vehicles were
placed in a single file loop and a single ego vehicle [8]
applied control to dissipate the shock wave. Moreover, [9]
improved upon the performance by employing platoons to
reduce shock waves in a similar single lane road setting.
For the same setting, [10] went a step further and deployed
an optimal control approach while accounting for multiple
ego vehicles in the formulation. A different line of research
explored the use of learning based techniques, specifically
deep reinforcement learning, to address the shock wave
dissipation problem [11]. However, this approach makes the
assumption of availability of global traffic state information,
which is unrealistic in a real world situation. A more realistic
approach [12] is the utilization of V2V communication in
order to leverage shared information to dissipate downstream
shock wave condition by proactively altering the driving pa-
rameters. Even though the discussed approaches demonstrate
decent shock wave mitigation performance for the single lane
road setting, they cannot simply be extended to the multi-lane
highway setting, without the closed-loop assumption, so we
need to look into different reformulations for the generalized
scenario. Our previous work explored the the use of V2V
communication in the shock wave dissipation problem [5],
but the approach was limited to simple step control that
resulted in hard braking, while also not incorporating lane
changing control. This work was later extended to provide
smoother control profiles in [13].
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Contribution

In this work, we develop a shock-wave detection and
dissipation approach that does not require an assumption
that global traffic information is available to all CAVs at any
time. Instead, we utilize the local sensing and communication
capabilities of CAVs to build up a sufficiently data rich ob-
servation space for each CAV from which we can use a DRL
algorithm to detect shock-wave conditions and obtain a safe
control strategy that would lead to shock wave dissipation.
We implemented a custom built SUMO-gym wrapper for
multi-agent learning in a multi-lane highway environment.
This allowed us to use a custom designed observation space,
action space and reward structure for each agent in the
simulation. The system also allows for multi-agent handling
using the multi-agent environment architecture of the RLLIB
platform. We use a Proximal Policy Optimization (PPO)
based reinforcement learning strategy with parameter sharing
to learn a policy that shows positive improvements in terms
of safe controls and shock wave dissipation performance
even at low CAV penetration levels. A rule-based lane
changing controller is also implemented to ensure that the
CAVs are uniformly distributed among the lanes of the
highway, leading to effective control application on each of
the lanes. We find that communication-based methods can
operate with high levels of performance without the need
for global information and show that the proposed learning
based method shows a positive trend towards matching the
performance of a rule-based communication control strategy
presented in our previous work [5], [13]. We compare our
proposed approach against a baseline no control approach
as well as our previous rule based approach to highlight the
advantages and disadvantages of the learning based method.

II. MODELING CAVS AND HDVs

In this work, we target the general multi-lane highway
scenario in a mixed-traffic setting, as depicted in Fig. 1.
In this scenario, the highway structure (e.g. ring loop), its
length, the number of lanes, and the number of Human
Driven Vehicles (HDVs) and CAVs, are all tunable design
parameters (see Section IV). This section details the sensor
models of the CAVs as well as the car following and lane
changing model of HDVs.

A. Autonomous Vehicle Modeling

Each CAV is able to detect the positions and velocities of
at most eight of its surrounding non-occluded vehicles within
a realistic sensor range. These detected vehicles are shown
in Fig. 1. The actual number of detected vehicles may be
lower, depending on the position and the number of CAVs.
This information is then used to populate the observation
space for each of the CAVs III-A. In terms of CAV control,
the input to the dynamical model [5] is in terms of velocity
changes yielding a velocity control scheme.

In terms of the vehicle-to-vehicle (V2V) communication
capabilities, we assume that the CAVs can communicate with
each other, within a realistic communication range, over a
combination of IEEE 802.11p and 5G networks. Moreover,

Connected Autonomous Vehicle (CAV)

Human Driven Vehicle (HDV)

(O~ Tracked vehicles

Fig. 1: Modeling CAV sensing capabilities in a mixed-traffic
multi-lane highway [5].

we do not take into consideration the effects of network delay
and packet loss during transmission. This assumption allows
the CAVs to communicate reasonably small information
packets in real time.

B. Modeling Human-Driven Vehicles

In order to model the behavior of human-driven vehicles
on highways, we typically require two separate models: a
longitudinal dynamical model, commonly referred to as car-
following model, and a lateral dynamical model, commonly
referred to as lane-changing model. The car-following model
takes into account the interaction of the ego vehicle with a
lead vehicle while incorporating the associated safety param-
eters that allow for a safe gap to the lead vehicle. The lane-
changing model, on the other hand, accounts for appropriate
lane selection while incorporating associated parameters that
enable safe lane changes.

1) Car-following Model: The Krauss car-following model
[14] is selected for its accuracy, simplicity and the ease with
which parameters relating to human reaction speed can be
adjusted. This model computes the safe following speed vs(t)
by considering the impact of speed limits v, vehicle ac-
celeration capabilities a,,4., the vehicle deceleration profile
b(v(t)), distance gap As(t) and speed v;(t) of lead vehicle,
time step At and driver reaction time 7,- as shown in equation
(1).

vs(t) = min(T, v(t) + amar At, vi(t) + w
A7
b(v(t)) T

ey

Finally, the command velocity u(t) is set by considering
the random perturbations 7 that occur due to the imperfection
in human driving and vehicle actuation as shown in:

u(t) = max(0,vs(t) — n) 2)

A key feature of the Krauss model, is the availability of
parameters 7, and 1 which allow for the modeling a human-
driving imperfections and human reaction times. This is
especially useful in shock wave research as these factors are
major contributors for spontaneous shock wave generation.

2) Lane-Changing Model: In multi-lane highways, mod-
eling lane changing behavior is a key requirement. We use
the lane-changing model developed by Erdmann [15] for the
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HDVs in our simulation, as it provides for realistic lane-
change characteristics. This model computes the choice of
best lane, safety criteria for lane change maneuvers and the
speed adjustments necessary to change lane. In a multi-lane
highway simulation it is important that HDVs behave real-
istically and change lane to overtake slow moving vehicles
given the opportunity.

III. DEEP REINFORCEMENT LEARNING

The shock wave problem with N ego vehicles can be
modeled as a Stochastic (Markov) Game and reinforcement
learning algorithms can be used to equip the CAVs with a
data-driven algorithmic decision mechanism. Staring from
some initial global state drawn from some distribution py,
at each time-step ¢, the ¢-th ego vehicle perceives its local
state si and executes an action a! according to its local
policy. The system transitions to a successor state s’ under
the joint action a; := (a},a?,...,al) with some probability,
i.e., p(s’|s,a). Then each agent receives a reward r! :=
r(s¢,as). The RL-agent is characterized by its policy. We
consider randomized policies. Randomized policy 7;(|s?) is
a probability distribution over action space given the state,
parameterized by 6;, which prescribes the probability of
taking an action a’ when in state s*. Echo ego vehicle seeks
a policy that maximizes its cumulative discounted reward,
ie.

m; =argmaxJ(0;) :=E, p [RZ} 3)
T
where 7 1= (7, mo,...,7N), R' = 32_01 ytré is the -
discounted cumulative reward over the system trajectory; -y
is a discount between 0 and 1. The expectation is taken over
the space of trajectories generated by following the policy,
i.e. 9 ~ po, ar ~ 7(+|s¢) and spy1 ~ p(|as, st).

We assume limited sensing and communication range.
The state space of each ego vehicle is a finite dimensional
vector of six continuous variables: the velocity and average
velocity estimate of the the ego vehicle itself, the relative
position and velocity of the leading vehicle in the sensing
range of its sensors, and the relative position and average
velocity estimate of the slowest (facing worst conditions)
CAV in its communication range (further details in section
III-A). The action space of the ego vehicle is a discrete
space with values {—3,—2,—1,0,1,2}. This limitation is
set for simplicity and can easily be extended to allow for a
larger action space which could result in smoother velocity
trajectories. The positive values indicate acceleration and the
negative values indicate deceleration. The reward received
at each time step r¢ by ego vehicle i is a weighted sum
of the average velocity (avg_vel) of the cars in the ego
vehicles’ communication range (weighted with 81) and the
standard deviation (std_dev) of the velocity of the cars in
the ego vehicle’s communication range (weighted with 85);
this weighted sum gets augmented by a high negative value
if there is a collision (coll) (weighted with §3) or if an non-
executable action (¢mp) (weighted with () is selected, i.e.

ri = By * avg_vel + By * std_dev + B3 * coll’ + B4 * imp"

A. Observation space

The two main tasks of each ego CAV involves choosing
a control that leads to safe navigation (car-following be-
havior) and also leads to eventual dissipation of the high
speed variance conditions witnessed during shock waves. To
achieve safe following behavior, the CAVs observation space
includes information about the leading vehicle, such as the
relative distance to the leading vehicle and the current tracked
velocity of the leading vehicle. The leading vehicle is defined
as the vehicle directly in front of the ego vehicle in the same
lane. The observation state also includes information of the
ego vehicles’ own velocity.

A key feature needed for shock wave dissipation is a good
understanding of the traffic state surrounding a CAV. The
presence of a shock wave can be detected by a sudden
change in this traffic flow state from one point of the
highway to another. This is especially important in a multi-
lane scenario where the CAV needs to compute an accurate
estimate of the traffic flow conditions in its vicinity. This
change in conditions along with the characteristics of the
shock wave can be computed using the Rankine-Hugoniot
condition which provides the rate at which the shock wave
moves V). This is related to the conservation of mass of
traffic flow and is given by,

Vi = M 4)

Pc = Pf

Here, throughput and density are given by Q. and p. for
the congested region at the shock wave, and @ and py
for the free-flow region outside the shock wave. Based on
this information shock wave detection can be carried out by
a systematic comparison of the estimated traffic state near
each of the CAVs on the highway. In the case where the
CAVs cannot communicate with each other, shock waves
can only be detected by comparing the long term average
velocity data of a CAV with its current velocity [8]. Here,
shock waves can only be detected once the CAV is already
facing high congestion conditions. Furthermore, this form of
detection is often inaccurate in multi-lane highways, due to
the fact that traffic conditions in different lanes are often
significantly different.

In contrast by leveraging the communication capabilities
on-board modern CAVs the shock wave detection process can
be vastly improved by allowing CAVs to collect information
downstream of its actual location via communication with
other CAVs. The information communicated for this process
involves the average traffic conditions at each CAV’s loca-
tion.

Using the sensor suite on-board of CAVs, the immediate
neighboring vehicles in the vicinity of a CAV can be tracked
fairly accurately. This allows CAVs to obtain an accurate
estimate of the traffic conditions in its vicinity by aggregating
the information collected from all these tracked vehicles.
More specifically, as discussed in [5], let the number of
vehicles tracked be m, the maximum length of memory be &
and v;(t) represent the velocity at time ¢ of the j** vehicle
tracked by CAV i. Also let k; < k be the number of time
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steps the ;" vehicle is tracked. Then the average velocity
estimate V,¢(t) at position s‘(t) of CAV i is computed by
a rolling time average considering all tracked vehicles as
follows,

m k;
1 1 .
VE(t) = E E Lt — 5
7() m"‘ljzokj“v‘lT:OrUj( 7') (5

Here, v (t) represents the velocity of the ego CAV under
consideration 7, at time ¢t. As information of vehicles across
all lanes is aggregated, this leads to a much more accurate
representation of the average velocity traffic conditions in a
multi-lane highway. Note that, depending on how long the
tracked vehicle j stays within the field of view of CAV 1,
the value of k; can vary.

The state space of the ¥ CAV then is extended to
include the computed average velocity estimate V.(¢) which
provides information on the traffic state in the vicinity of the
ego CAV.

The next important stage in enabling accurate shock wave
detection is to provide information about downstream traffic
conditions in the ego vehicle’s observation space.

This process is carried out via communication with all
downstream CAVs j within communication range of ego
CAV 14, in order to obtain their current traffic condition
estimates V(t). The ego CAV can then compare this data
with its own computed temporal average velocity V°(t).
Based on this comparison, the ego CAV should be able to
detect the presence of the shock wave in advance.

In order to streamline this process, the information re-
ceived from the downstream CAVs C? of the ego vehicle
i, via V2V communication is first sent through a sorting
step which identifies the downstream CAV that is facing
the worst case traffic conditions, as shown in equation
(6). Once identified, the information regarding this worst
case downstream velocity conditions, along with the relative
distance to the ego vehicle from the location of these worst
conditions, are included in the observation state for the ego
CAV 1. This simplification through sorting is possible due
to the fact that a control computed to handle the worst case
bottleneck traffic conditions provides the best performance,
i.e., the information from other CAVs facing better conditions
are redundant and would not affect the control applied.

Uwc(t) - JHGHCI}L V] (t) (6)

Thereafter, by combining all this information, the obser-

vation space of CAV 1 is defined as [Ego CAV velocity, Ego

CAV average velocity, Lead vehicle position gap, Lead vehi-

cle velocity, Position gap to CAV with worst case conditions,
Average velocity of CAV with worst case conditions].

B. PPO

To find the optimal policy, the ego vehicles use the
PPO algorithm. PPO is an iterative first-order optimization
procedure that attempts to find the modified KL-constrained

objective function given by
maxE. p [min (r(@t)fl@t (s,a),
Clip(1 = €,1+ €,7(0,) Ao, (5, )) )|

IE‘rr,P {DKL(W0t+1(a|s)a 71—9,((1\3)))] < o

where
To,(als

r(0;) = (als)
791,,1(11|s)
is the ratio of successive policies; Dg is the Kullback-
Libeler (KL) divergence between the two distributions. The
Clip function restricts the ratio of successive policies to a
range between 1 — ¢ and 1 + ¢, i.e., 7(0)€[l —¢,1 + €] and
helps with stability and convergence speed. For more details
on the algorithm, please see [16].

C. Multi-agent DRL Architecture

We use PPO with full parameter sharing, that is, all
policies are represented by a single neural network with
the same shared parameters, for more details please refer to
[17]. Each agent observes the environment (the agents have
different observations), chooses an actions, and then receives
a reward. A shared policy gets updated according to the
collective experiences of the agents in the environment. It has
been shown that Parameter Sharing results in more efficient
learning by decreasing the number of trainable parameters,
which in turn shortens the training times.

D. SUMO DRL Wrapper Interface

In this work, we developed a custom RLLIB [18] multi-
agent environment wrapper based on the OpenAl Gym
structure, for the SUMO [19] traffic simulation environment.
As such multiple different reinforcement learning algorithms
can be tested on the same environment. This also allows for
the customization of the simulation environment in terms of
the number of agents, physical highway structure, individual
vehicle parameters and initialization points. It also provides
the ability to customize the observation spaces, action spaces
and reward functions of each agent in the environment. This
module is responsible for converting the actions provided by
the learning algorithm into SUMO vehicle speed commands,
and collecting data from the SUMO environment in order to
build the observation spaces and rewards for each agent.

E. CAV’s Lane-Changing Controller

The system introduced in our method involves two paral-
lely implemented control structures. A longitudinal controller
for the velocity control of CAVs based on Deep RL and
a rule-based lane changing controller which identifies the
best lane a CAV should be in and carries out the needed
lane changing maneuvers. The implementation of this lane-
changing controller is based on maintaining a uniform dis-
tribution of CAVs across all the lanes of the multi-lane
highway.

In order to ensure the maximum impact of a shock wave
dissipation control in a multi-lane highway, we need the
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CAVs to be evenly distributed among the lanes of the
highway, thus ensuring that control is applied equally on all
the lanes. To achieve this, each ego CAV computes the dis-
tribution of other downstream CAVs within communication
range. Then the lane-changing controller identifies the lane
with lowest CAV occupancy as the target lane. The system
then checks if the ego vehicle can safely execute a lane
change maneuver into the target lane. If it is safe to change
lanes, the controller issues a lane change command to the
low-level controller. In this research, we use the low-level
lane-change controller [15].

IV. EXPERIMENTAL SETUP AND RESULTS

We implemented a circular three lane highway loop sim-
ulation on the SUMO [19] traffic simulation platform as
shown in Fig. 2. Our Gym-based SUMO wrapper uses the
TraCl traffic controller interface to communicate with the
SUMO simulator. The RL subsection uses the Ray RLLIB
framework for implementing the multi-agent shared policy
PPO learning algorithm. A personal computer with an Intel
i7-8750H CPU and 32GB of RAM was used to run all the
simulations and algorithms.

Fig. 2: Circular multi-lane highway simulation

A. Modeling the physical highway structure

The highway is modeled in the form of a loop in order to
simulate an infinite stretch of multi-lane highway. The length
of the highway loop is set to 1km and the number of lanes
to 3.

The resulting multi-lane simulation is more realistic,
highlights the effects of interactions between vehicles and
provides a more accurate representation of the conditions
faced by vehicles under shock wave conditions in a multi-
lane highway. All tests were carried out with N = 200
vehicles in the loop with 15 of these vehicles being CAVs.
Note that, it is possible to change the number of vehicles as
well as the CAV penetration level as needed.

B. Parameters for shock wave generation

In order to simulate realistic driving behavior which results
in the natural formation of shock waves, we modify two
key simulation parameters related to SUMO and the Krauss
car following model. The parameter Sigma allows the
specification of driver imperfection and is set to its maximum
value of 1. The parameter actionStepLength handles the
reaction time involved in the decision making process of

HDVs and is set to 1sec. We found that these parameters lead
to natural traffic shock wave formation over time, similar to
that observed in human driving data.

C. Performance Evaluation
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Fig. 3: Variation in trajectories of vehicles.

We use a comparison with a method in which no control
is applied (Fig. 3a) and a rule-based communication based
method from our previous work [5], [13] (Fig. 3b) in order
to evaluate our proposed trained PPO algorithm’s (Fig. 3c)
performance. For better comparability, the previous rule-
based method [5], [13] was updated to include the parallely
implemented lane changing controller so that the focus of
this comparison is purely based on the performance of
the proposed learning method. In Fig. 3, we observe that
in the case where no control is applied the shock wave
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conditions continue over time indefinitely. Our previous rule-
based method [5] is capable of dissipating the shock wave
rapidly within a few minutes, but comes at the cost of hard
braking controls resulting in an uncomfortable experience for
passengers. In contrast, we find that after 100 episodes of
shared policy training for 15 agents, our proposed learning-
based method is capable of reducing the harsh stop-go
behavior of the shock wave. However, in terms of overall
average velocity reached it is unable to perform at the
same level as the rule-based method. It is possible that
given more training episodes and better algorithmic tuning
the performance of the learning algorithm can be improved
further.

-50000

—100000

—150000

—200000

Reward per agent

~250000

—300000

—350000

0 20 40 60 80 100
Episodes

Fig. 4: Deep RL training performance

The proposed PPO-based learning algorithm was trained
over 100 episodes with 15 CAV agents in the simulation
learning a shared policy. As shown in Fig. 4, we observe
that the average reward per agent shows a positive trend as
learning episodes proceed. The agents learn to provide safe
actions and begin to dissipate the shock wave. It is possible
that further modifications in terms of hyper parameter tuning
and learning duration could improve the overall performance
of the algorithm.

V. CONCLUSION

We propose the use of V2V communication among CAVs
to design a Deep Reinforcement Learning based traffic
shock wave detection and dissipation controller for multi-
lane highways. This implementation involves a multi-agent
learning algorithm with a shared parameter space. In order to
implement this we build a custom multi-agent SUMO-Gym
wrapper with a custom designed observation space, action
space and rewards. Our cooperation-based learning method
for shock wave dissipation is evaluated in a multi-lane
simulation with comparisons to existing communication-
based approaches that do not use learning. A lane changing
controller is also implemented to provide a uniform distri-
bution of CAVs among the multiple lanes of the highway.
While the performance of the learning algorithm shows
promising results, future work in this area involves more
intensive training with hyper parameter tuning to extract the
best performance of this learning method. Additionally, other
reinforcement learning algorithms can be explored using the
same custom SUMO-Gym environment.
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