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Abstract— This paper proposes a hierarchical autonomous
vehicle navigation architecture, composed of a high-level speed
and lane advisory system (SLAS) coupled with low-level trajec-
tory generation and trajectory following modules. Specifically,
we target a multi-lane highway driving scenario where an
autonomous ego vehicle navigates in traffic. We propose a novel
receding horizon mixed-integer optimization based method for
SLAS with the objective to minimize travel time while ac-
counting for passenger comfort. We further incorporate various
modifications in the proposed approach to improve the overall
computational efficiency and achieve real-time performance. We
demonstrate the efficacy of the proposed approach in contrast
to the existing methods, when applied in conjunction with
state-of-the-art trajectory generation and trajectory following
frameworks, in a CARLA simulation environment.

I. INTRODUCTION

Lane changing is considered to be one of the most risky
driving behaviors since it is highly contingent upon multi-
modal trajectory predictions of neighboring vehicles and
requires timely decision making [1]. It is further influenced
by a number of uncertainty factors such as road conditions,
measurement accuracy, and a long tail of behavioral uncer-
tainty of on-road agents. However, if executed efficiently,
lane changing coupled with speed adjustment can yield
significant improvement in minimizing overall travel time
while ensuring passenger comfort [2].

To elaborate further, consider the scenario presented in
Fig. 1. Based on the predicted motion (shown in a lighter
shade) of the neighboring vehicles (shown in orange), the
ego vehicle (shown in blue) may decide to either change
lane left in an attempt to minimize its travel time or slow
down in the current lane to maintain safety. However, it
would be imprudent for the ego vehicle to risk changing
lane right and consequently get stuck behind a slow moving
vehicle even though there is presently a greater headway.
This simple scenario highlights the importance of foresight
and long planning-horizon in strategic decision making for
autonomous vehicles.

Existing methods like MOBIL [3] give us the ability
to change lanes but behave greedily (prioritizing imme-
diate rewards) oftentimes, which can lead to sub-optimal
performance. It was shown in [2] that the lane changing
performance can be improved with an A⋆ inspired approach,
but the formulation was limited to constant speed. Such an
approach is unable to assess the benefits of speed adjustment
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Fig. 1. Motivational Example. With a slow moving vehicle ahead, the ego
vehicle (in blue) may decide to either change lane to the fast moving lane
(left) to minimize travel time or adjust its speed without changing lanes to
preserve safety but it would be unwise for it to switch to the slow moving
lane (right) as that would not benefit travel time or safety.

in minimizing overall travel time. As will become apparent in
Section IV, it may be necessary at times to sacrifice on short-
term benefits to gain long-term performance improvements.
In such a scenario, an approach with speed adjustment
coupled with long planning horizon has the foresight to
deliver significantly better results. Moreover, the inclusion of
speed adjustment in the decision making process inhibits the
risk of incurring trajectory infeasibility as the environment
conditions may prevent the ego vehicle from traveling at a
constant reference speed and the low-level planner may be
unable to handle such a discrepancy. Therefore, in this work,
we propose a low complexity receding horizon optimization
based approach that outputs the lane change maneuvers
coupled with speed adjustments for long planning horizons
(> 15s) while guaranteeing safety. The long horizon strategic
decision making gives ego vehicle the ability to proactively
anticipate and handle challenging driving situations.

Literature review: In the literature, speed and lane chang-
ing decisions are generally considered from a motion plan-
ner’s perspective [4], which allows for a simultaneous de-
termination of target lanes and waypoints to perform the
maneuver. The motion planning methods present in the
literature can broadly be categorized into sampling-based,
learning-based and optimization-based approaches.

In regards to the sampling-based approaches, single-query
methods, in particular the different variants of RRT, are
preferred over multi-query methods, like roadmap-based
methods, due to the faster execution time and their ability
to incorporate non-holonomic constraints [5]. Even though
these methods are able to incorporate safety guarantees
by sampling feasible trajectories from a reachable safe set
[6], the overall driving experience is often rather uncom-
fortable due to the concatenation of individual trajectories.
Moreover, the asymptotic optimality guarantees availed by

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 6979

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e 

on
 D

ec
is

io
n 

an
d 

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
24

01

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 13,2024 at 16:23:43 UTC from IEEE Xplore.  Restrictions apply. 



these methods do not help with real-world implementation
in complex driving scenarios since they tend to have high
sample complexity [5].

In terms of the learning-based methods, the preferred ap-
proach seems to be the variations of Reinforcement Learning
techniques applied in a simulated environment [7], [8], [9],
[10], [11]. These approaches, although seeming to work well
in simulation, have concerns regarding real-world implemen-
tation due to the large amount of training data that they
require, the exploration of unsafe behaviors during training,
and a general inability to handle edge cases. They mainly
utilize neural networks as function approximators which
yields low computational complexity but also results in a
lack of explainability and safety guarantees.

Lastly, the optimization-based approaches, especially the
derivatives of optimal control methods, are abundant in the
literature. In contrast to the potential-field based approaches
[12] that yield decent collision avoidance performance but
are unable to accommodate vehicle dynamics, the optimal
control methods [13], especially the derivatives of Model
Predictive Control (MPC) approach [14], [15], [16], yield
excellent collision avoidance performance while accommo-
dating vehicle dynamics. However, this performance comes
at a cost of high computational complexity, arising mainly
from the non-convex collision avoidance and the non-linear
dynamics constraints. This, in turn, restricts the planning
horizon to merely a few seconds.

Contribution: The key requirements for the algorithmic
design of an autonomous vehicle include real-time oper-
ation, safety guarantees, optimality with respect to some
metric(s), and accounting for the behavior variability of
on-road agents. Considering these requirements, we pro-
pose an optimization-based behavioral planning framework
that enables autonomous vehicle maneuvering on multi-
lane highways. While having the benefits of optimization-
based approaches, our method achieves a low computational
complexity by employing a binary representation of the
decoupled lane indicator dynamics in lieu of lateral dynam-
ics, and utilizing algorithmic modifications to aid numerical
computations. Specifically, our method provides:

• optimality with respect to travel time and comfort;
• safety and feasibility guarantees;
• real-time applicability for a long planning horizon; and
• modularity in design, which enables the integration of

external trajectory prediction modules.
The proposed method fills in the research gap by meeting
all the key algorithmic requirements while simultaneously
gaining the foresight to make strategic decisions that yield
long-term performance benefits, as verified in Section IV.

II. PROBLEM FORMULATION

In this section, we present the algorithmic pipeline and
formalize the road, observation and vehicle dynamics models
that will be utilized in the subsequent sections.

A. Algorithmic Pipeline
Fig. 2 illustrates the algorithmic pipeline of the proposed

navigation architecture, in reference to the various existing
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Fig. 2. Algorithmic pipeline of the proposed navigation architecture. The
raw sensory input data is processed by the Perception, and Simultaneous
Localization and Mapping (SLAM) modules to place the autonomous
vehicle relative to the various environmental entities in a unified frame
of reference. This information is then passed on to the navigation stack,
composed of the behavioral planning, motion planning, and vehicle control
modules. The output of the navigation module is passed down further in
terms of actuation commands (brake, throttle and steering) to the actuators.

algorithmic modules deployed on an autonomous vehicle.
The taxonomy of the various components of the navigation
stack (highlighted by the dotted rectangle) is borrowed
from [17]. This pipeline essentially improves the pipeline
introduced in [2] by adding a speed advisory system.

Our main focus is the development of the behavior plan-
ning module, highlighted as SLAS in Fig. 2. SLAS outputs
the target lane and reference speed which are utilized by the
motion planning module to generate a reference trajectory for
the ego vehicle. The vehicle controllers compute the throttle
and steering commands to track the trajectory accordingly.

For the motion planning module, we adopt the Neural
Networks integrated Model Predictive Control (NNMPC)
[18] due to its ability to accommodate the behaviors of
neighboring vehicles in the trajectory generation process.
In our approach, we assume that the perception (of other
vehicles) and the localization (of ego vehicle) are known
without any uncertainty, for simplicity, but the modular
architecture avails us the ability to integrate any perception
or SLAM module in the overall framework.

Notation

Throughout the manuscript, Z will denote the set of
integers and R the set of real numbers. For some a, c ∈ Z
and a < c, we will write Z[a,c] = {b ∈ Z | a ≤ b ≤ c}. For
some e, g ∈ R and e < g, we will write R[e,g] = {f ∈ R |
e ≤ f ≤ g}.

B. Road Model

The physical road structure is modeled as a continuous
multi-lane highway with negligible curvature and unidirec-
tional traffic flow. The lanes on the highway are clearly
demarcated and at any given time k, the number of available
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lanes for the vehicles to travel on is denoted by Nl(k)
while the road speed limit is denoted by Vl. Therefore,
the set of lanes available for traveling at a given time
instant k is denoted by L(k) = Z[0,Nl(k)]. We work with
the Frenet coordinate system where the distance along the
road is denoted by the longitudinal displacement (s) and the
distance perpendicular to the road is defined by the lateral
displacement (d). Each lane is assigned a lane indicator
variable l. The leftmost lane, with respect to the direction
of traffic flow, is assigned a value of l = 0 while each
subsequent lane is assigned an increasing integer value for
l, as depicted in Fig. 1.

C. Vehicle Model

Since we aim to have real-time computations for a long
planning horizon (> 15s), we model the vehicle dynamics
with a linearized decoupled dynamical system. For the high-
way driving scenario, where the road curvature is typically
small, it is reasonable to assume a decoupling between the
lateral and the longitudinal dynamics [19], especially for
the behavior planning layer. Therefore, we utilize a linear
constant acceleration model for the longitudinal dynamics
and abstract out the lateral dynamics with a lane indicator
variable. For the lane change dynamics, we use a moving
average filter coupled with a rounding function to model the
time required by the ego vehicle to change lanes. This is
compactly represented as:

s0(k) = s0(k − 1) +
v0(k − 1) + v0(k)

2
· Ts (1)

l0(k) =

⌊
1

N

N−1∑
i=0

L(k − i) +
1

2

⌋
(2)

where s0(k), v0(k), l0(k) and L(k) denote the ego vehicle’s
longitudinal displacement, speed, lane indicator and target
lane, respectively, at time instant k; the subscript i indexes
the vehicles on the road with 0 being reserved for the
ego vehicle; Ts denotes the discretization time step; and N
corresponds to the number of time steps required to change
lane. The state (x0(k)) and control input (u0(k)) to the
system at time instant k are defined as:

x0(k) =
[
s0(k) l0(k)

]T ∈ R× L(k) (3)

u0(k) =
[
v0(k) L(k)

]T ∈ R[0,Vm] × L(k) (4)

where Vm denotes the maximum speed of the ego vehicle.

D. Observation Model

For practical considerations, we restrict the ego vehicle’s
visibility range to the sensory perception limit, denoted by
Rv . Then, the set of vehicles in ego vehicle’s visibility range
at time instant k, represented by O(k), is defined as:

O(k) = {i ∈ Z>0 | |si(k)− s0(k)| ≤ Rv} (5)

where si(k) corresponds to the longitudinal displacement of
the observed vehicle.

Remark 1: For the multi-lane highway driving scenario,
occlusion does not play a prominent role so we do not

account for it in the existing formulation. However, the
proposed framework can easily accommodate occlusion and
measurement uncertainties since the receding horizon ap-
proach bases its decision on the most up-to-date information
available at any given time, as demonstrated in [20].

III. METHODOLOGY

In this section, we describe the prediction model to gen-
erate the predicted future trajectories of observed vehicles
and present a discussion on the proposed receding horizon
optimization-based behavioral planning module.

A. Trajectory Prediction

Reliable behavior and trajectory prediction of other traffic
participants is crucial for safe maneuvering of autonomous
vehicles. The algorithm proposed in Section III-B is able to
incorporate any generic prediction module available in the
literature [21] as long as it can provide a deterministic pre-
dicted future trajectory for a given vehicle. In this work, we
formulate a low-complexity prediction model that highlights
the flexibility and efficiency of our proposed approach.

For an observed vehicle i ∈ O(k), the future speed profile
is predicted using a piece-wise linear function while the lane
profile is assumed to stay constant for the duration of the
prediction horizon. At a given time step k, the estimated
acceleration (āki ) and the estimated speed (v̄ki ) parameters
are obtained through linear regression with mean-squared
error on the past oki > 1 speed observations. Based on
the estimated parameters, we predict the future speed and
longitudinal displacement as follows:

v̂ki (j) =


v̄ki , j = 0

v̂ki (j − 1) + āki · j, 0 < j ≤ Ha

v̂ki (j − 1), j > Ha

(6)

ŝki (j) =

{
si(k), j = 0

ŝki (j − 1) + Ts

2 · (v̂ki (j − 1) + v̂ki (j)), j > 0.

(7)

Here, Ha corresponds to the acceleration horizon while v̂ki (j)
and ŝki (j) respectively represent the predicted speed and
longitudinal displacement for vehicle i, j time steps into the
future starting from the current time instant k.

Remark 2: Due to the modular nature of the proposed
framework, the behavior planning module detailed in Section
III-B can work with advanced maneuver-based (e.g. Markov
Chain [22]) and interaction-based (e.g. Social Generative
Adversarial Networks [23]) trajectory prediction modules,
allowing for interactive maneuvering behaviors.

B. Speed and Lane Advisory System

The goal of our behavior planning module, Speed and
Lane Advisory System or in short, SLAS, is to determine
a sequence of speed and lane change commands that would
enable the ego vehicle to maximize its speed, thus minimiz-
ing the travel time, while accounting for driver comfort and
abiding by its dynamical, actuator, and safety limits. The
output of this module is a relatively smooth speed and lane
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change profile which is then passed on to a motion planner.
It is necessary to incorporate the dynamical and actuator
limits in the behavioral planning module so as not to provide
the motion planner with goals that are not reachable, and
jeopardize the safety of the overall system as a result.

In the subsequent discussion, we provide a formulation
of the optimization problem for SLAS; highlight the modifi-
cations necessary to improve the computational complexity;
and, present safety and feasibility analysis.

1) Optimization Problem with Integer Constraints: SLAS
is posed as an optimization problem, with the objective to
maximize speed while minimizing frequent lane changes and
abrupt changes in speed. The output of SLAS, at time instant
k, is the control input u0(k + 1), as defined in (4). The
optimization problem is formulated as follows:

min
vk(1),··· ,vk(H);

Lk(1),··· ,Lk(H)

H∑
j=1

[−γ1 · vk(j) + γ2 · (Lk(j)− Lk(j − 1))2

+ γ3 · (vk(j)− vk(j − 1))2] (8)

s.t. sk(0) = 0 (9)

vk(0) = v0(k) (10)

Lk(p) = l0(k), ∀p ∈ Z[−N+1,0] (11)
∀j ∈Z[1,H] :

vk(j) ∈ R[0,Vl] (12)

vk(j)− vk(j − 1)

Ts
∈ R[Amin,Amax] (13)

sk(j) = sk(j − 1) +
vk(j − 1) + vk(j)

2
· Ts

(14)

Lk(j) ∈ L(k) (15)

Lk(j)− Lk(j − 1) ∈ Z[−1,1] (16)

lk(j) =

⌊
1

N

N−1∑
i=0

Lk(j − i) +
1

2

⌋
(17)

min
i∈A(k)

{|ŝki (j)− sk(j)|} ≥ Ls
i (j), (18)

A(k) = {a ∈ O(k) | lk(j) = la(k)}.

Objective Function: In the formulation above, the opti-
mization variables are the ego vehicle’s speed (vk(j)) and
target lane (Lk(j)), j step into the future, starting from
time instant k. Here, H corresponds to the planning horizon.
The scalarization parameters γ1, γ2 and γ3 in the objective
function (8) account for a relative tradeoff between maximiz-
ing speed, minimizing lane changes and minimizing abrupt
changes in speed respectively. Increasing γ1 yields a more
aggressive behavior with the priority placed on maximizing
speed while γ2 and γ3 combine to place an emphasis on
maximizing passenger comfort by reducing lane and speed
changes respectively.

Dynamical Constraints: These constraints are put in place
to ensure the dynamical feasibility of the solution. The
constraints (9), (10) and (11) serve to initialize the longi-
tudinal displacement, speed and target lane respectively for

the optimizer, based on the values observed at time instant k.
The constraints (12) and (13) bound the ego vehicle’s speed
by the speed limit and the acceleration limits of the vehicle
respectively. The ego vehicle’s speed is then used to calculate
the projected longitudinal displacement in (14).

The target lane values at any planning step (j) are re-
stricted to the set of reachable values by (15), (16) and (17).
Here, (15) restricts the target lane to the set of available lanes
(L(k)), (16) ensures that the lane change, if needed, is made
to the adjacent lane only and (17) models the time steps (N )
required for a lane change. The flooring function can easily
be transformed into a couple of linear constraints by the
introduction of an auxiliary integer variable, as shown in the
Appendix. Finally, lk(j) is merely the internal representation
of the lane the ego vehicle is projected to travel on at
planning step j.

Safety Constraint: The safety constraint (18) ensures that
the ego vehicle maintains a minimum safe distance (Ls

i (j))
to the nearest vehicle i, in its projected lane of travel (lk(j)),
at planning instant j. We borrow the definition of this safe
distance from [24], where the authors provide a formaliza-
tion, based on the clause from Vienna Convention on Road
Traffic that states that “A vehicle [...] shall keep at a sufficient
distance [...] to avoid collision if the vehicle in front should
suddenly slow down or stop.” Furthermore, the absolute value
constraint can be decomposed into linear constraints by the
application of big-M method and the introduction of an
auxiliary variable, as shown in the Appendix.

Remark 3: The proposed formulation can accommodate
arbitrary number of lanes at any given time instant k. This
means that if at any given time, the number of available
lanes for traveling either increases or decreases, the proposed
formulation will still continue to hold. This is an important
consideration since many a times on highways, some lanes
are blocked due to various unanticipated situations such as
road accidents, roadwork, narrowing of road etc.

2) Computational Complexity Reduction: This section
details the optimization problem reformulation with binary
variables, optimization warm start technique and lazy con-
straint implementation, all of which combine to improve the
computational complexity of our SLAS module.

Binary Variables: The proposed formulation in Section
III-B has relatively high computation complexity (computa-
tion time of ∼ 2s in the worst case scenario - slow moving
traffic blocking all the lanes) due to the integer decision
variables yielding a mixed-integer optimization problem [25].
To circumvent the computational overload, we reformulate
the problem with binary variables that replace the integer
variables, as follows:

∀i ∈ L(k), ∀j ∈ Z[1,H] : L̃
k(i, j) ∈ {0, 1} (19)

where the L̃k(i, j) represents the modified target lane vari-
able, indexed by the lane (i) as well as the planning step (j)
and L̃k(a, b) = 1 represents the choice of lane a ∈ L as the
target lane at planning step b ∈ Z[1,H]. Then, some of the
constraints from the SLAS formulation in Section III-B are
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modified as follows:

(11) → L̃k(l0(k), 0) = 1 (20)

(15) →
∑

i∈L(k)

L̃k(i, j) = 1, ∀j ∈ Z[1,H] (21)

(16) → L̃k(a, j) = 1 =⇒
∑

b∈B(k)

L̃k(b, j) = 1, (22)

B(k) = Z[a−1,a+1] ∩ L(k)
(18) → min

i∈A(k)
{|ŝki (j)− sk(j)|} ≥ L̃s

i (j), (23)

A(k) = {a ∈ O(k) | L̃k(la(k), j) = 1}.

Here, (20) initializes the target lane, (21) restricts the target
lane at any planning step to the set of available lanes, (22)
restricts the lane change between consecutive planning steps
to the adjacent lanes, and (23) represents the augmented
safety constraint. The implication ( =⇒ ) in (22) can easily
be transformed into a linear constraint (see Appendix). The
augmented minimum safety distance (L̃s

i (j)) incorporates the
time required to execute the lane change maneuver (N ) from
(17) into the following unified safety constraint:

L̃s
i (j) = Ls

i (j) + γd(δ
k(j)) · (vk(j) ·N · Ts) (24)

γd(δ
k(j)) = γ4 ·

2|δk(j)|
Ll

(25)

δk(j) = min

{
δ(k) +

Ll · j
N

,
Ll

2

}
(26)

where Ll is the width of the lanes (see Fig. 1), δ(k) is
the signed lateral deviation of the ego vehicle from the
previous target lane’s boundary at time step k, and γd(δ

k(j))
is the dynamic cost of deviation from the previous target
lane (L(k− 1)). Moreover, in the cost function (8), we take
Lk(0) = L(k − 1). These costs are introduced to prevent
the swerving (canceling of lane switch before completion)
behavior, unless absolutely necessary (for safety purposes).

Remark 4: Since the ego vehicle is considered to have
changed lane once it crosses a lane boundary, the deviation
δk(j) is considered from the lane boundary instead of
the center of the target lane to maintain the continuity of
γd(δ

k(j)) with respect to the lateral displacement of the ego
vehicle. Specifically, δk(j) > 0 if the ego vehicle has crossed
the previous target lane boundary and 0 otherwise. This is an
important consideration since a discontinuity in γd(δ

k(j)),
upon completion of lane change, may lead to infeasibility.

Remark 5: The swerving behavior is suppressed but not
completely eliminated with a hard constraint since such a
behavior is necessary at times to react to the environment’s
unpredictability. This reactive strategy, which is a distinctive
feature of our approach, avails the algorithm the ability to
proactively ‘change its mind’ in case something unantici-
pated happens in the environment that can jeopardize safety.

Optimization Warm Start: To aid the optimizer in
finding an initially feasible solution, we provide the
solution from the previous time step as a reference.
Formally, {vk−1(2), · · · , vk−1(H),Lk−1(2), · · · ,Lk(H)}
is provided as a reference for {vk(1), · · · , vk(H −

1),Lk(1), · · · ,Lk(H − 1)}. This doesn’t imply that the
solution from time step k − 1 will hold exactly at time
step k, owing to the unmodeled disturbances, but providing
this reference aids the optimizer in finding an initially
feasible solution in the vicinity of the reference solution.
This observation is rooted in the premise that the solution
for the long planning horizon is not expected to change
significantly between time steps, given the sampling time is
not too large, and the predicted behavior of on-road agents
does not alter significantly.

It is also worth pointing out that the priority here is quickly
finding a feasible solution that obeys the safety constraints
and actuator limits, and recursively improving it rather than
excessively iterating to reach at a global optimum. In our
experiments, it was observed that a suboptimal solution
was qualitatively not significantly different from the optimal
one. Therefore, we utilize the cutting planes method for
optimization [26], which first looks for a feasible solution,
using our provided reference, and then recursively updates
it until either the globally minimal solution is found or the
time limit is reached.

Lazy Constraints: To further enhance the computational
efficiency, we introduce a lazy implementation of the lane
changing constraints (22). It was observed in our exper-
iments that a feasible solution without the lane changing
constraints (22) can be found several order of magnitude
(∼ 10×) quicker than if we include these constraints so
we decided to have a lazy implementation for them. With
a lazy implementation [27], the solver finds a set of feasible
solutions without the inclusion of these constraints and then
determines the feasibility of those solutions from the reduced
problem with respect to the lazy constraints.

3) Feasibility: By an argument similar to the one pre-
sented in [20], it is a relatively straightforward proof for
recursive feasibility of the problem, i.e. the optimization
problem will continue to stay feasible, if initially feasible,
with the trivial solution being matching the speed of the
leading vehicle and not changing lanes.

IV. RESULTS

In this section, we detail our experimental setup, demon-
strate the performance of SLAS, and report a qualitative as
well as a quantitative comparative analysis. The baselines in
our comparative analysis are set to: Extended-Astar (EA⋆)
[2], MOBIL [3], and no lane-change model (No-Change).

A. Experimental Setup
The implementation setup, depicted in Fig. 3, is composed

of the CARLA simulator (Version 0.9.11) [28], SLAS mod-
ule (Section III-B), and the planner and controller module
[18]. To solve the optimization problem for SLAS, we use
Gurobi Optimizer (Version 9.1.1) [29]. The simulations are
performed on a computer equipped with an Intel Xeon(R)
CPU E5-2643 v4 @ 3.40GHz × 12 and NVIDIA Titan XP,
running Ubuntu 20.04 LTS. On average, the time required for
each optimization step is ∼ 0.096s, while the maximum time
limit for the optimizer is set to 0.2s, indicating the strong
potential for real-time applicability.
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Fig. 3. Simulation Setup. Scenario Runner sets up the scenario for the
CARLA Simulator, which then communicates with the SLAS and the
Planning and Control ROS (Robot Operating System) nodes through the
ROS bridge node.

B. Case Study

Figure 4 illustrates the test case scenario for our com-
parative analysis. The scenario is composed of a highway
segment with four lanes and the rightmost lane reserved for
merging vehicles. The ego vehicle is initialized to follow a
slow moving vehicle in lane 1 and has even slower moving
traffic to its right in lane 2. Thus, the only option for it, in
order to minimize travel time, is to switch left to lane 0 with
faster moving traffic and greater headway. Once it moves to
lane 0, and overtakes the slow moving vehicle in lane 1, it
has two options: either to keep traveling in lane 0 without
making any lane change decisions until getting close to the
lead vehicle or proactively exploiting the gap in lane 2 to
switch to lane 3 in anticipation of traffic buildup in lanes 1
and 2. A strategic decision maker with foresight will choose
to take the later option and make the decision proactively for
a greater overall benefit.

The evaluation metrics for the comparative analysis in-
clude: travel time, lateral displacement, headway and dis-
tance to the closest vehicle. As for the simulation parameters,
the simulation step size is set to 0.05s (simulation frequency
of 20Hz); the velocities of vehicles in lanes 0, 1 and 2 are
set to 8, 5 and 2 m/s respectively while the speed limit Vl is
set to 15m/s; the length of the highway patch is set to 350m
while the width between the lanes is set to 3.5m; and the
sensor visibility range is set to Rv = 50m. The parameters
for SLAS are set as follows: Ts = 0.4s, H = 40, N = 3,
Amin = −5m/s2, Amax = 3.5m/s2, γ1 = 1, γ2 = 0.1 and
γ3 = 0.01. The values of these parameters can be tuned to
yield an aggressive or defensive behavior of the algorithm.

1) Travel Time: The left plot in Fig. 5 depicts the travel
time as a function of longitudinal displacement for the
four algorithms. As seen in the plot, our method (SLAS)
maintains a lower overall travel time as compared to the
other methods. Quantitatively speaking, SLAS outperforms

EA⋆, MOBIL and No-change methods by 12.72%, 23.52%
and 54.34% respectively in terms of the time required
to complete the simulation scenario. This shows that our
method’s foresight compensates for its apparent conserva-
tiveness arising from the need to preserve passenger comfort.

2) Lateral Displacement: To identify the differences in
lane changing behaviors between the four approaches, the
relationship between lateral and longitudinal displacements
over the course of the simulation is highlighted in the center
plot of Fig. 5. In the plot, the lateral displacement of 0
corresponds to the center of lane 0 while the center of each
following lane is 3.5m away. Comparing the performance
of the four algorithms, we see SLAS and EA⋆ showing
relatively similar performances, resulting from proactive de-
cision making. In contrast, since MOBIL only assesses the
advantage of switching to the adjacent lanes, it is unable
to see the benefit of proactively switching to lane 2. This
explains why EA⋆ and SLAS start outperforming MOBIL in
terms of travel time (left plot) at around the 130 [m] mark
for longitudinal displacement.

As for a direct comparison between SLAS and EA⋆, the
benefits of having speed advisory system become apparent
in this center plot. Due to speed control, SLAS is able to
constantly maintain a greater headway (right plot) without
having to brake significantly upon getting too close to the
lead vehicle. This results in a smooth lateral displacement
profile which allows the vehicle to change lanes with min-
imal jerk (quantitative analysis to follow in Section IV-C)
and deliver better overall timing performance (left plot).

3) Headway: The right plot in Fig. 5 shows the head-
way maintained by the ego vehicle over the course of the
simulation. In accordance with our prior discussion, MOBIL
cruises behind the front vehicle, maintaining a relatively
low headway until a sufficient space in the adjacent lane
is found to perform the lane-change maneuver. On the other
hand, EA⋆ and SLAS show a comparable headway trajectory,
however, SLAS maintains a greater headway throughout and
achieves the maximum headway prior to EA⋆. Quantitatively,
SLAS maintains on average 9.43%, 36.57% and 113.17%
more headway than the EA⋆, MOBIL and No-change ap-
proaches respectively. This strong performance by SLAS can
be attributed to its incorporation of safety guarantees coupled
with its consideration for passenger comfort.

4) Distance to closest vehicle: Finally, we compare the
distance that ego vehicle maintains from the closest vehicle
throughout the simulation. On average, SLAS maintains
9.28%, 32.01%, and 22.84% more distance in comparison to
EA⋆, MOBIL and No-change approaches respectively. These
numbers are a testament to the strength of our approach re-
sulting from consideration of long planning horizon coupled
with speed control.

C. Monte Carlo Simulations

To demonstrate the long-term performance of the three
approaches (SLAS, EA⋆ and MOBIL), we run a series
of Monte Carlo simulations on scenarios with randomized
initial positions (within a range of 8m) and velocities (within
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1 2 3 4

Fig. 4. Testing scenario with three lanes: lane 0 (left), lane 1 (center) and lane 2 (right). The expected motion of the ego vehicle, over the course of the
simulation, is shown with numbered frames. The right most lane (lane 3) is reserved for merging traffic so it is not utilized in our simulation.

Fig. 5. Left: Travel time comparison. Center: Lane choice (lateral position) comparison. The center lines of lanes 0 (left), 1 (center) and 2 (right) have
fixed lateral displacements of 0m, 3.5m and 7m respectively. Right: Headway comparison. With no leading vehicle, the headway is restricted by the
visibility range of 50m.

Model Comp.
Time Brake Brake

Jerk Thr. Thr.
Jerk

Ang.
Acc.

Ang.
Jerk

Average
SLAS 27.84 -0.46 -0.45 0.74 0.69 2.21 5.04
EAstar 27.23 -0.56 -0.47 0.83 0.77 2.83 6.69
MOBIL 28.06 -0.62 -0.49 0.86 0.79 2.43 5.62

Standard Deviation
SLAS 1.77 0.25 0.09 0.08 0.15 0.73 1.89
EAstar 2.85 0.38 0.15 0.11 0.21 1.48 3.93
MOBIL 3.82 0.42 0.18 0.11 0.23 0.77 2.05

TABLE I
MONTE CARLO SIMULATION RESULTS

ranges of 8, 5 and 2 m/s assigned to each of the three
lanes randomly) of traffic participants. The result from 50
simulations is presented in Table I.

In this table, the columns represent the different evaluation
metrics, the rows identify the three algorithms, and the values
highlighted in green represent the best result with respect to
each evaluation metric. The evaluation metrics, going from
left to right in the table, are completion time (s), brake
(R[−1,0]), brake jerk (R[−1,0]), throttle (R[0,1]), throttle jerk
(R[0,1]), angular acceleration (◦/s2) and angular jerk (◦/s3).
Apart from completion time, the remaining metrics, based
on the commands passed to the vehicular actuators (Fig. 2),
are used to model passenger comfort. In terms of average
performance, SLAS greatly outperforms the other methods
when it comes to passenger comfort since it explicitly

accounts for comfort in the formulation. However, it does so
at a cost of slightly reduced performance in regards to travel
time, when compared to EA⋆, since SLAS tries to strike
a balance between minimizing travel time and maximizing
passenger comfort. SLAS also secures the lowest standard
deviation, for each of the evaluation metrics, when compared
to the other methods, which points to the consistency in its
long-term performance.

V. CONCLUSION

We propose a novel behavior planning module for the
multi-lane highway maneuvering scenario, that outputs
strategic target lane and reference speed commands, and
incorporate it with a state-of-the-art motion planning and
control framework. We formulate the approach as a receding
horizon mixed integer optimization with the goal to minimize
travel time while accounting for passenger comfort for a
long planning horizon. In order to reduce the computational
overload, we reformulate the problem by replacing integer
variables with binary ones and further incorporate various
modifications to aid numerical computations. We also carry
out a detailed comparative analysis to demonstrate the perfor-
mance of our approach on the CARLA simulator. Our future
work includes incorporating various delays and uncertainty
measures in the perception, localization and prediction mod-
ules to evaluate the robustness properties of our approach.
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APPENDIX

A. Flooring Constraint

For y ∈ Z and x ∈ R, the constraint y = ⌊x⌋ can be
represented by the following linear constraints:

y ≤ x, y + 1 ≥ x+ ϵ

where ϵ > 0 accounts for the feasibility tolerance.

B. Implication Constraint

For a, b ∈ {0, 1}, the constraint (a = 1) =⇒ (b = 1)
can be represented with a linear constraint as follows:

b+M · (1− a) ≥ 1− ϵ

where M ≫ 0 (big-M) and ϵ > 0 accounts for numerical
errors (chosen to be 0.1 in our implementations).

C. Absolute Value Constraint

For ∆s, Ls ∈ R, the constraint |∆s| − Ls ≥ 0 can be
represented as:

∆s ≥ Ls ∨∆s ≤ −Ls.

This can further be generalized, as done in our implementa-
tion, to have different forward and rear safety margins as:

∆s ≥ Lf
s ∨∆s ≤ −Lr

s

where Lf
s and Lr

s are forward and rear safety margins
respectively. This can be represented with the following
linear constraints:

∆s+M · c− Lf
s ≥ 0

−∆s+M · (1− c)− Lr
s ≥ 0

where M ≫ 0 (big-M) and c ∈ {0, 1} is responsible for
making a choice between the two constraints.
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