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Abstract— Seismocardiography (SCG) has attracted signif-

icant interest for monitoring cardiac health and diagnosing

cardiovascular conditions. While traditional SCG methods

rely on uncomfortable chest-mounted accelerometers, re-

cent research explores non-contact approaches, including

analyzing video recordings of the chest. In this study, three

computer vision-based methods including Lucas-Kanade

optical flow, template tracking, and Gunnar-Farneback

optical flow were evaluated for extracting SCG signals

from ordinary camera-recorded chest videos. The study

focused on right-to-left and head-to-foot SCG signals

obtained from 13 healthy subjects during breath-hold at

the end of exhalation and inhalation. Comparative analysis

was performed by calculating the mean squared error

(MSE) and root MSE (RMSE) between the vision-based

SCG signals and the gold-standard accelerometer signals.

Visual and quantitative analyses showed that the Lucas-

Kanade and template tracking methods estimated vision-

based SCG signals closely resembling the accelerometer

data, particularly in the head-to-foot direction. The Lucas-

Kanade method had MSE values ranging from 0.14 to

0.93, RMSE values from 0.38 to 0.96, average correlation

values of 0.82±0.09. The template tracking method showed

MSE values between 0.12 to 0.94, RMSE values from

0.35 to 0.97, and average correlation values of 0.83±0.10.

In comparison, the Farneback method had higher MSE

values ranging from 0.20 to 1.07, RMSE values from

0.44 to 1.03, and average correlation values of 0.76±0.11.

These results suggest the effectiveness of Lucas-Kanade

and template tracking methods for non-contact SCG signal

extraction from chest video data.

Keywords— Seismocardiography, heart vibrations, contact-
less cardiovascular monitoring, vision-based SCG.

I. INTRODUCTION

Cardiovascular diseases are a significant global health
concern, being the leading cause of mortality with
approximately 17.9 million deaths annually, and their
economic burden is substantial, with costs projected
to reach 47 trillion USD by 2030 [1–3]. Despite ad-
vancements in prevention, diagnosis, and treatment,
the impact of these conditions on healthcare systems,
productivity, and societal costs remains significant. In
that regard, early detection and management of car-
diovascular diseases are crucial not only for improving
patient outcomes but also for alleviating the strain on
healthcare resources [1].

Seismocardiography (SCG) emerges as a promising
noninvasive technique for capturing cardiac vibrations

from the chest surface, offering valuable information
on cardiac activity through the detection of both low-
frequency infrasonic vibrations and higher-frequency
components related to cardiac events [4–8]. Unlike
electrocardiography, SCG does not rely on the electrical
activity of the heart, making it a unique and complemen-
tary method for assessing cardiac mechanical health.
Traditionally, SCG involves attaching accelerometers di-
rectly to the chest, which can be inconvenient and costly,
particularly when an array of accelerometers is used
to measure SCG signals from multiple chest locations.
This has prompted researchers to explore alternative
strategies including non-contact SCG approaches utiliz-
ing infrared speckle vibrometry [9–11] and millimeter
and microwave radar [12–15], which offer the potential
to capture SCG signals without physical contact.

Advancements in computer vision have further ex-
panded the possibilities for non-contact SCG signal
extraction. Recently, we proposed three innovative com-
puter vision-based methods for SCG extraction from
chest videos: Lucas-Kanade optical flow-based SCG
extraction [16], template tracking-based SCG extraction
[17], and Gunnar-Farneback optical flow-based SCG
extraction [18]. These methods are developed to provide
accurate and reliable SCG signal extraction pipelines
from chest videos captured by ordinary cameras, poten-
tially revolutionizing the field of cardiac diagnostics by
providing a more accessible and comfortable alternative
to traditional methods. The objective of this paper is
to compare the accuracy of these three methods in
extracting SCG signals from ordinary videos, thereby
contributing to the ongoing development of non-invasive
and efficient diagnostic tools for cardiovascular health.
By advancing non-contact SCG techniques through
computer vision, we aim to address the limitations of
traditional methods and offer new pathways for early
diagnosis and continuous monitoring of cardiovascular
diseases through more convenient and accessible meth-
ods, ultimately contributing to better patient outcomes
and reduced healthcare burdens.

II. MATERIALS AND METHODS

A. Study Population

This research study was conducted under a protocol re-
viewed and approved by the Institutional Review Board
at Mississippi State University. Data were collected
from 14 human subjects (including 4 females), with an



M. M. Rahman, et al.: Extracting Cardiovascular-Induced ... Page 2 of 5

average age of 23.50 ± 5.16 years and a body mass
index of 23.93 ± 4.07 kg/m2. Prior to participation,
all subjects were informed about the study’s goals
and procedures and signed an informed consent form.
Additionally, all participants confirmed they had no
history of cardiovascular disease. Due to incomplete
data recording from one of the female subjects, the
study analysis was based on the data from the remaining
13 subjects.

B. Data Acquisition Protocol

We attached a tri-axial accelerometer (356A32, PCB
Piezotronics, Depew, NY) to the left sternal border
near the fourth costal notch while the subjects were
in a supine position. The accelerometer was used to
record gold-standard SCG signals at a sampling fre-
quency of 5000 Hz. A sticker patterned with a QR
code was attached to the top face of the accelerometer
to create a high-contrast artificial region and facili-
tate the object tracking as shown in Figure 1. Chest
videos were recorded using an iPhone (13 Pro, Apple
Inc., Cupertino, CA) at 60 fps with a resolution of
3840⇥2160 pixels. To prevent phone vibrations during
the recordings, we used a phone holder and a Bluetooth
control to remotely start and stop the video recordings.
Synchronization between the accelerometer and video
data was achieved using a microphone connected to
both the smartphone and the data acquisition system
recording the accelerometer output (416, iWorx Sys-
tems, Inc., Dover, NH). At the beginning and end of
each recording, the microphone was tapped, and these
timestamps were utilized to synchronize the videos
and the SCG data obtained from the accelerometer.
We recorded data in two breath-holding sessions, each
lasting about 15 seconds: one at the end of exhalation
(BHEE) and the other at the end of inhalation (BHEI).

C. Vision-based SCG Signal Extraction

We used three computer vision-based methods to extract
SCG signals from the region of the sticker attached to
the accelerometer in the video. All image processing and
computer vision techniques were implemented using
Python 3.10, while signal processing was performed
using MATLAB R2022a. To extract the SCG signals
from the sticker, we first identified the sticker’s location
in the first video frame. For this purpose, we utilized
the same deep learning model used in [18], where a
YOLOv7 [19] object detection method was trained on
a custom QR code dataset.

After locating the sticker, we extracted the right-to-
left and head-to-foot components of the SCG signals
from the chest videos using computer vision techniques,
including Lucas-Kanade optical flow [16], template
tracking [17], and Gunnar-Farneback optical flow [18].

1) Lucas–Kanade Optical Flow: We employed the
Lucas-Kanade optical flow method [20, 21] to track

Accelerometer

QR Code

Stethoscope
ECG lead

Figure 1. Data acquisition and sensor placement setup. Chest
videos were recorded using an ordinary camera phone. Simul-
taneously, an accelerometer was used to record SCG signals.
A sticker patterned with a QR code was attached to the top
face of the accelerometer to facilitate the extraction of SCG
signals from the chest videos.

the sticker across video frames and extract the SCG
signal in both right-to-left and head-to-foot directions,
as described in [16]. This dense optical flow technique
estimates motion vectors by assuming that the flow
remains approximately constant within a small local
neighborhood of a pixel. It analyzes differences between
consecutive video frames, solving the basic optical flow
equations using the least squares criterion. The goal is
to find the optimal alignment of pixels, representing the
motion vector at each pixel.

2) Template Tracking: Template tracking [22] is a tech-
nique used to follow an object’s movement across video
frames. The process begins by selecting a template
from the initial frame. Subsequently, this template is
compared to image regions in the subsequent frames.
The objective is to find the best match with the tem-
plate, indicating the new location of the object. This is
accomplished by sliding the template over the image
and identifying the location with the highest similarity
between the template and the overlapped region of the
new video frame. To extract the SCG signal, we adopted
the workflow outlined in [17] from the video using tem-
plate tracking. Initially, template tracking was employed
to follow the identified sticker across successive video
frames, after which a sub-pixel refinement process was
applied to enhance displacement accuracy at the sub-
pixel level.

3) Gunnar-Farneback Optical Flow: This method [23]
is a dense motion estimation technique that calculates
the motion for every pixel between two frames. It
constructs an image pyramid, where each successive
level has a lower resolution than the preceding one. At
each level, the algorithm uses polynomial expansion to
approximate the pixel neighborhoods. By minimizing
the sum of squared differences between the predicted
and actual pixel intensities, it iteratively determines the
best displacement for each pixel. In our implementation,
once the sticker’s location was identified in the first
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frame, we tracked its motion across subsequent frames
using the Gunnar-Farneback optical flow algorithm to
extract the SCG signal, following the method in [18].
For the Gunnar-Farneback algorithm, we set the pyra-
mid scale factor to 0.5, using five pyramid levels.
The averaging window size was set to 20, with 10
iterations applied at each pyramid level. We used a
pixel neighborhood size of five and applied Gaussian
smoothing with a standard deviation of 1.1. This process
produced an optical flow map with a displacement
vector (dx,dy) for each pixel. To calculate the overall
displacement for each region of interest (RoI), we took
the median displacement of all pixels within the RoI
and obtained the second derivative of the displacement
as the acceleration (SCG) signal in the right-to-left and
head-to-foot directions.

D. Signal Denoising

After extracting vision-based SCG signals from the
QR code sticker motions using the three aforemen-
tioned algorithms in both right-to-left and head-to-foot
directions, we applied a band-pass filter with cutoff
frequencies of 1 and 30 Hz to both the vision-based
SCG signals and the accelerometer signal to remove
low-frequency respiration vibrations and high-frequency
SCG components above 30 Hz. Next, we resampled
the vision-based SCG signals from 60 Hz to 5000 Hz
to match the sampling frequency of the gold standard
accelerometer signal. During the resampling process,
we used MATLAB’s resample function, which employs
an FIR antialiasing low-pass filter and accounts for the
signal delay caused by this filter. Finally, to enhance
signal quality for subsequent analysis and interpretation,
the signals were centered around zero by subtracting
their mean values and normalized by dividing by their
standard deviations.

III. RESULTS AND DISCUSSION

A. Accuracy of the Vision-Based SCG

We compared the vision-based SCG signals with the
gold-standard signals recorded by the accelerometer.
Figure 2 shows the SCG signals captured in both the
right-to-left and head-to-foot directions for subject 8
(S08) during BHEE. Visual inspection reveals a close
resemblance between the signals generated by all three
vision-based methods and the gold standard accelerom-
eter signal. To quantify the similarity between the sig-
nals, we calculated the mean squared error (MSE) and
the root MSE (RMSE) between the vision-based SCG
signals and the accelerometer signal (Figure 3). Results
show that the vision-based SCG signals in the head-
to-foot direction generally have lower MSE and RMSE
values compared to those in the right-to-left direction.
This indicates better performance of the vision-based
methods in capturing the head-to-foot vibrations than
the right-to-left SCG components.

Among the three methods, Lucas-Kanade and template
tracking achieved comparable performance, with consis-
tently lower MSE and RMSE values compared to the
Farneback method. For both the BHEI and BHEE tasks
combined, the Lucas-Kanade method’s MSE ranged
from 0.52 to 1.46 in the right-to-left direction and 0.14
to 0.93 in the head-to-foot direction (Figure 3). The
template tracking method exhibited similar results, with
MSE values between 0.58 and 1.47 for the right-to-
left SCG and 0.12 to 0.94 for the head-to-foot SCG.
The Farneback method had higher dissimilarity to the
accelerometer signal, with MSE ranging from 0.67 to
1.56 and 0.20 to 1.07 for the right-to-left and head-to-
foot SCG signals, respectively.

The RMSE values followed a similar trend. The Lucas-
Kanade method achieved a range of 0.72 to 1.21 (right-
to-left) and 0.38 to 0.96 (head-to-foot), and the template
tracking method showed RMSE values between 0.76 to
1.21 (right-to-left) and 0.35 to 0.96 (head-to-foot). The
Farneback method again yielded higher RMSE values,
ranging from 0.82 to 1.25 (right-to-left) and 0.44 to 1.03
(head-to-foot).

In addition to MSE and RMSE, we also calculated
the correlation of each method with the gold standard
accelerometer signal, with the correlation range set
between -1 to 1. Among 13 subjects, the Lucas-Kanade
method had an average correlation of 0.50 ± 0.13 in
the right-to-left direction and 0.82± 0.09 in the head-
to-foot direction. The template tracking method had an
average correlation of 0.50 ± 0.12 in the right-to-left
direction and 0.83±0.10 in the head-to-foot direction.
The Farneback method had an average correlation of
0.44±0.13 in the right-to-left direction and 0.76±0.11
in the head-to-foot direction. When comparing the
correlation, the Lucas-Kanade and template tracking
methods performed slightly better than the Farneback
method. Across all methods, the highest correlation was
found in the head-to-foot direction.

This quantitative analysis corroborates the visual inspec-
tion observations presented in Figure 2, reinforcing the
superior performance of the Lucas-Kanade and template
tracking methods in capturing the vision-based SCG
signal, particularly in the head-to-foot direction.

B. Implications of Findings

The lower MSE and RMSE values, along with higher
correlation values in the head-to-foot direction suggest
that vertical vibrations are more accurately captured by
vision-based methods than horizontal vibrations. This
might be due to the nature of SCG signals where head-
to-foot vibrations are more pronounced and easier to
detect. This finding is crucial as it provides insight
into the directional sensitivity of our vision-based SCG
methods, which can guide the design of future SCG
monitoring systems. The consistently lower error met-
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(a) SCG signal in right-to-left direction (b) SCG signal in head-to-foot direction
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Figure 2. A 6-second sample of the vision-based SCG signals in the right-to-left (a) and head-to-foot (b) directions recorded
during breath-hold at the end of exhalation from subject S08. The gold-standard SCG signal recorded by the accelerometer and
the subject’s electrocardiogram are shown for reference.

(a) MSE between vision-based and accelerometer signals (b) RMSE between vision-based and accelerometer signals
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Figure 3. Comparison of the vision-based and gold-standard SCG signals during both breath-holding tasks. The MSE and RMSE
values are plotted for the right-to-left and head-to-foot SCG components.

rics for Lucas-Kanade and template tracking methods
highlight their robustness and reliability in non-contact
SCG measurement. The Farneback method, while still
viable, showed higher error values, indicating it may be
less suitable for precise SCG capture in the context of
this study.

C. Potential Applications and Future Work

These findings have significant implications for the
development of non-invasive, vision-based cardiac mon-
itoring systems. The ability to accurately capture SCG
signals without direct contact offers numerous advan-
tages, including increased patient comfort, reduced risk
of infection in particular groups of patients, and ease of
deployment in various settings, such as home monitor-
ing and telemedicine.

Future research could explore the integration of these
vision-based methods with advanced machine learning
algorithms to further improve the accuracy and relia-
bility of SCG signal extraction. Additionally, expand-
ing the study to include a more diverse population
and varying clinical conditions can help generalize the
findings and validate the efficacy of these methods
across different scenarios. Further studies could also
investigate the optimization of camera settings, lighting
conditions, and environmental factors to enhance the
robustness of vision-based SCG monitoring systems.
Exploring the combination of vision-based methods
with other non-contact sensing technologies, such as
radar and lidar, could provide a multi-modal approach
to cardiac monitoring, offering even greater accuracy
and reliability.
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IV. CONCLUSION

This study compared the performance of three computer
vision methods based on Lucas-Kanade optical flow,
template tracking, and Gunnar-Farneback optical flow
for extracting SCG signals from chest videos. Results
underscored the efficacy of these methods in SCG signal
extraction and highlighted the potential for these meth-
ods to enhance non-invasive cardiac diagnostics. The
results indicated that the Lucas-Kanade optical flow and
template tracking methods outperformed the Farneback
method. These methods exhibited superior accuracy,
particularly in capturing SCG signals in the head-to-
foot direction. As non-contact alternatives to traditional
accelerometer-based measurements, these vision-based
techniques can hold promise for advancing SCG re-
search, with the potential to revolutionize cardiac mon-
itoring and diagnostics.
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