
Optimization-based Coordination and Control of Traffic Lights and
Mixed Traffic in Multi-Intersection Environments

Nilesh Suriyarachchi1, Rien Quirynen2, John S. Baras1, and Stefano Di Cairano2

Abstract— Coordinating the flow of traffic through urban
areas with multiple intersections is a complex problem whose
solution has the potential to improve safety, increase through-
put, and optimize energy efficiency. In addition to controlling
traffic lights, the introduction of connected and automated
vehicles (CAVs) offers opportunities in terms of additional
sensing and actuation points within the traffic network. This
paper proposes a centralized and a decentralized implemen-
tation for the joint coordination and control of both traffic
signals and mixed traffic, including CAVs and human driven
vehicles (HDVs), in a network of multiple connected traffic
intersections. Mixed-integer linear programming (MILP) is
used to compute safe control trajectories for both CAVs and
traffic light signals, which minimize overall congestion and fuel
consumption. Our approaches are validated using extensive
traffic simulations on the SUMO platform and they are shown to
provide improvements of around 32-60%, 90-96% and 40-60%
in travel time, waiting time and fuel consumption, respectively,
when compared to gap-based adaptive and timed traffic lights.

I. INTRODUCTION

Coordination and control of vehicles travelling through
urban areas is an open challenge in transportation networks.
Most traditional control systems are based on timed traffic
light signals or density-adaptive traffic light signals [1].
However, these systems may change with the introduction
of connected automated vehicles (CAVs) that would allow
far more sensing and actuation points within the traffic
flow [2]. In addition to collecting traffic information via on-
board sensors on CAVs, traffic control systems can suggest
CAV actions that optimize the traffic flowing through an
urban network [3]. Furthermore, while human driven vehi-
cles (HDVs) cannot be directly controlled by these control
systems, the presence of neighbouring CAVs and traffic lights
significantly improves the degree of controllability of the
overall traffic flow in the network.

The main objective of an urban traffic control system is to
allow vehicles to travel through the network in the shortest
possible time while minimizing overall fuel consumption.
To achieve this goal, a central traffic controller (CTC) is
responsible for generating both CAV and traffic light control
trajectories while ensuring safety, fairness and optimal traffic
throughput. Achieving these goals in the presence of mixed
traffic adds an extra layer of complexity due to the need for
sufficiently accurate predictions of HDV behavior.

Intelligent traffic light control has been studied for
decades, with methods ranging from time-based switching to
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Fig. 1. Schematic of the proposed central traffic controller (CTC) directly
controlling connected automated vehicles (CAVs) and indirectly affecting
motion of human driven vehicles (HDVs) by commanding traffic lights.

density-based switching using heuristics [4], optimization [5]
and deep learning [6]. For multi-intersections, an adaptive
dynamic programming approach was presented in [7]. These
methods typically allow for reactive control which can be
sub-optimal and lead to vehicles having to slow down to a
stop at intersections. Additionally, most of existing research
focuses on macro-level traffic modeling which often abstracts
details and results in a loss of efficiency at the micro-
level. Research interest is also placed in CAV control for
navigating through unsignalized intersections [8], [9] and
merging points [3], [10], [11]. However, these algorithms
typically require all vehicles to be CAVs and deal with only
local control for a single traffic intersection.

In the context of centralized control of multi-intersection
environments with mixed traffic including both CAVs and
HDVs, receding horizon methods based on mixed-integer
linear programming (MILP) using either a road segment-
based [12] or time-based formulation [13] have recently been
proposed. Many remaining challenges exist in extending this
work to real-time capable systems that can operate under
realistic conditions and high density traffic.

Contributions: We propose both centralized and decentral-
ized MILP-based strategies for the joint computation of CAV
trajectories and traffic light switching commands, targeting
multi-intersection mixed traffic coordination, and we validate
their performance in realistic traffic simulations. Compared
to the prior work in [12], [13], our novel contributions are,

• We describe an MILP formulation for joint vehicle
and intersection coordination, with support for multiple
intersections, mixed traffic, lane changes, HDV predic-
tions, and an advanced traffic light switching model.

• We propose a decentralized implementation by decou-
pling the MILP, resulting in multiple intersection traffic
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controllers (ITCs), to achieve real-time computations.
• We perform extensive validations of the proposed ap-

proach based on SUMO [14], using realistic simulations
of vehicle demand, behavior and interactions.

In Section II, we describe the problem statement, mod-
eling and objectives, and Section III describes the MILP
for centralized coordination. The decentralized approach is
presented in Section IV, and Section V presents the SUMO
simulation results. Finally, Section VI concludes the paper.

Notation: R, R+, R0+ (Z, Z+, Z0+) are the set of real,
positive real and nonnegative real (integer) numbers, and B =
{0, 1}. The logical operators and, or, xor, not are ∧, ∨, ⊻,
¬, and the logical operators implies and equivalent (if and
only if) are =⇒ , ⇐⇒ . Inequalities between vectors are
intended componentwise.

II. PROBLEM DESCRIPTION

In the multi-intersection traffic coordination problem, the
central traffic controller (CTC) computes the most suitable
CAV trajectories and traffic light state trajectories to allow for
smooth traffic flow, as described in Figure 1. The presence
of mixed traffic creates the need for accurate HDV behavior
prediction in order to achieve the best performance. The
overarching goals of the system involve the maximization of
traffic throughput, while minimizing a combination of wait-
ing time and fuel consumption. Here, we aim at executing
the control center at a sampling frequency of 1 Hz, i.e., using
a sampling time period Ts = 1 sec, similar to [12], [13].

A. Modeling of Physical Road Network

In this work, we consider a case study based on a traffic
network with 5 intersections, with connecting road segments
as shown in Figure 2, each with 3 lanes in both directions.
The distance between the centers of adjacent intersections is
set to 100m. We further use the index set J = {1, . . . , 5}
to denote each of the traffic intersections. The speed limit
v̄ of the road network is set to 15m/s. The vehicles can
be either CAVs or HDVs resulting in mixed traffic, and the
CAV penetration level rcav (ratio of CAVs to total number
of vehicles) in the simulation can be adjusted. We use the
index sets Vc and Vh to denote each of the CAVs and HDVs
in the road network, where V = Vc ∪ Vh and Vc ∩ Vh = ∅.

B. Modeling of Controlled Vehicles (CAVs)

Each CAV i ∈ Vc has an on-board control architecture,
capable of computing actuation commands (throttle and
braking) in order to follow a sequence of velocity targets
set by the CTC. This on-board controller also computes
the required steering angles to keep the vehicle in the lane
and to execute lane change maneuvers as instructed by the
CTC. From the CTC’s perspective, CAVs can therefore be
modeled as agents with known dimensions moving along
the center of the lane. CAVs are also assumed to be able
to relay information to and from intersection infrastructure
using vehicle-to-infrastructure (V2I) communication. In this
work, we assume perfect communication and do not model
V2I network conditions such as delays and packet loss.

Fig. 2. Traffic road network with 5 intersections, where each road segment
consists of 3 lanes in both directions, and 4 road segments where vehicles
can flow in and out of the road network.

C. Modeling of Human Driven Vehicles (HDVs)

Similar to the work in [13], we model the predictions
of HDV behavior using a switched dynamical system to
represent reactions of HDVs to the, possibly changing, traffic
rules. In the present work, we model each HDV i ∈ Vh using
the following state-dependent switched dynamics:

• HDV stops at traffic light, if traffic light for its particular
traffic direction is red and HDV is within a predeter-
mined distance from stopping zone, otherwise

• HDV follows leading vehicle and maintains safe fol-
lowing distance, if leading vehicle is within a particular
distance in front of HDV, otherwise

• HDV travels at a fixed desired target speed.

In Section III, we describe how these switched dynamics can
be modeled using mixed-integer constraints.

D. Traffic Light Intersection Model

Traffic lights at intersections are modeled as a collection
of finite states where a state contains the status of each of
the individual light signals of a particular intersection. The
traffic lights of a junction allow vehicles to pass through the
intersection j ∈ J in a specific direction d ∈ D if the traffic
light phase status ψd

j = 1 (green), and no vehicles can pass
through the intersection j in the direction d if ψd

j = 0 (red).
For a 4-way intersection, where each road segment contains
3 lanes, there are 12 possible directions as shown in Figure 3,
i.e., we define the index set D = {1, . . . , 12}.

A state Φs
j of intersection j ∈ J is defined as a collection

of non-conflicting traffic directions that are allowed to enter
the intersection j simultaneously. For the 4-way intersection,
with 3 lanes in each road segment, 9 possible states can
be identified, i.e., we define the index set S = {1, . . . , 9}.
A mapping from state Φs

j to direction ψd
j is introduced in

Table I for each intersection j ∈ J , state s ∈ S , and direction
d ∈ D. Here, ψd

j = 0 or ψd
j = 1 indicates that a specific

direction’s traffic light is red or green, respectively.
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Fig. 3. Each 4-way traffic intersection, with 3 lanes in each road segment,
includes traffic lights to control the flow in each of 12 possible directions.

State (Φ) Phase Direction (ψ)

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 1 1 0
3 1 0 0 0 0 1 1 0 0 0 0 1
4 1 1 0 0 0 0 1 1 0 0 0 0
5 0 0 1 1 0 0 0 0 1 1 0 0
6 1 0 0 0 0 0 0 0 0 1 1 1
7 0 0 0 1 1 1 1 0 0 0 0 0
8 0 0 0 0 0 0 1 1 1 1 0 0
9 1 1 1 1 0 0 0 0 0 0 0 0

TABLE I
MAPPING FROM 9 TRAFFIC LIGHT STATES TO THE VALUE 0 (RED) OR

1 (GREEN) FOR EACH OF THE 12 TRAFFIC LIGHT DIRECTIONS.

III. MILP FORMULATION FOR CENTRALIZED
TRAFFIC COORDINATION

The centralized traffic controller (CTC) is responsible for
computing control trajectories for CAVs, including target
velocities and lane changes, and traffic light commands
while enforcing traffic rules and predicting the behavior of
HDVs. Compared to the prior work in [13], the MILP-based
CTC formulation in the present paper includes lane-change
behavior for both CAVs and HDVs, as well as more advanced
modeling for traffic lights and HDV predictions.

A. CAV Control Trajectories

The vehicle dynamics involve the evolution of its posi-
tion state pi along the direction of motion in the traffic
network (see Fig. 2), according to the target velocity vi, i.e.,

pi(t+ 1) = pi(t) +
vi(t) + vi(t+ 1)

2
∆t, (1)

for each CAV i ∈ Vc, and where ∆t is the discretization
time. The initial target velocity vi(0) is set to the current
vehicle’s velocity, given by sensors and/or through V2I com-
munication. To ensure realistic target velocities, the velocity
assigned by the CTC to CAVs needs to be within the speed
limit, vi(t) ≤ v̄i, and the maximum acceleration āmax

i and
deceleration āmin

i limit of each vehicle

vi(t)− āmin
i ∆t ≤ vi(t+ 1) ≤ vi(t) + āmax

i ∆t. (2)

In order to model the lateral dynamics of vehicles, we
introduce binary variables, σh

i = 1 if vehicle i ∈ V is in

lane h, where h ∈ {1, . . . ,ml} = Zml
1 and ml is the max-

imum number of lanes on a road segment. These variables
model lane changes, ensure vehicles enter intersections in
the correct lane and perform collision avoidance in multi-
lane scenarios. At every time step, each vehicle is always in
exactly one of the traffic lanes, i.e.,

∑
h σ

h
i = 1.

Lane change behavior: Lateral CAV dynamics are mod-
eled as discrete switching between lanes. We introduce two
binary variables lci,u(t), l

c
i,d(t) ∈ {0, 1} to represent a lane

change up and down respectively as follows,

σh
i (t) ∧ lci,u(t) =⇒ σh+1

i (t+ 1),

σh
i (t) ∧ lci,d(t) =⇒ σh−1

i (t+ 1).
(3)

The implications in (3) can be enforced using the following
inequality constraints for i ∈ V and t ∈ ZN−1

0

1− (1− σh
i (t))− (1− lci,u(t)) ≤ σh+1

i (t+ 1) ≤ 1,

1− (1− σh
i (t))− (1− lci,d(t)) ≤ σh−1

i (t+ 1) ≤ 1.
(4)

Similarly, we implement the implication for no lane change

σh
i (t) ∧ ¬lci,u(t) ∧ ¬lci,d(t) =⇒ σh

i (t+ 1). (5)

Finally, we prevent lane changes both up and down at the
same time, along with lane change down from lowest lane,
and lane change up from the highest lane as

lci,u(t) + lci,d(t) ≤ 1,

lci,d(t) + σ1
i (t) ≤ 1, lci,u(t) + σml

i (t) ≤ 1.
(6)

B. Collision Avoidance

Collision avoidance constraints are placed between vehicle
pairs whose trajectories may lead to potential collisions.
Specifically, vehicles within the same road segments and
adjoining road segments are paired up for collision checking.
For these vehicle pairs, we enforce that the lead vehicle
should remain ahead of the following vehicle, while both
vehicles are in the same lane,

{pi1(t) +Ri1,i2 ≤ pi2(t) + Li1 + dsi2(t)− sci2}
∧ {σh

i1(t+ 1) = σh
i2(t+ 1)}

=⇒ pi1(t+ 1) +Ri1,i2 + Li2 + dsi1(t) ≤ pi2(t+ 1) + sci1 ,

{pi1(t+ 1) +Ri1,i2 ≤ pi2(t+ 1) + Li1 + dsi2(t)− sci2}
∧ {σh

i1(t+ 1) = σh
i2(t+ 1)}

=⇒ pi1(t) +Ri1,i2 + Li2 + dsi1(t) ≤ pi2(t) + sci1 ,
(7)

for h ∈ Zml
1 , two vehicles i1, i2 ∈ V , t ∈ ZN−1

0 , and Ri1,i2

denotes the initial relative distance between vehicles i1 and
i2, and sci ≥ 0 represents the slack variable that is added to
ensure feasibility in the presence of model mismatch and dis-
turbances. The collision avoidance constraints in (7) take into
account spatial dimensions of vehicles and safety margins,
i.e., including the vehicle lengths Li and safety distances
dsi(t) = Ds + kvvi(t) for each i ∈ V , using a base value
Ds and a velocity-dependent component with coefficient
kv. The presence of the slack variables sci , in combination
with the safety margins dsi(t), account for possible mismatch
between predicted and actual vehicle behavior. In addition,
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the receding horizon implementation of the control center
solves the MILP at each sampling time period Ts = 1 sec
in order to correct possible prediction errors. Note that the
constraints in (7) prevent lane changes that are predicted to
lead to collisions at future time steps.

C. Intersection Membership

We introduce the matrix Fsd to model the mapping from
traffic light states to individual traffic light signals for each
direction, as shown in Table I. The relationship between
traffic light states and individual traffic light signals for
intersection j ∈ J is enforced by the constraints

ψd
j (t) ≥ Fsd Φ

s
j(t), ψd

j (t) ≤ 1− (1− Fsd) Φ
s
j(t), (8)

for all states s ∈ S and all directions d ∈ D in each
intersection j ∈ J . Additionally, the traffic lights should
be in exactly one state at any time

∑
s∈S Φs

j = 1.
To represent the presence of vehicle i ∈ V in intersection

j ∈ J at time t ∈ ZN
0 , we introduce binary variables δdij(t) ∈

{0, 1}. We also introduce a given binary value adij ∈ {0, 1}
that indicates if a vehicle i ∈ V intends to cross intersection
j ∈ J in direction d ∈ D, as part of its future route plan.
For each vehicle, we know the relative position at which it
enters P in

i,j and exits P out
i,j the intersection. Therefore, we set

the variables δdij based on the following bi-conditional

pi(t) ∈ [P in
i,j + sδi , P

out
i,j − sδi ] ⇐⇒

∑
d

adijδ
d
ij(t) = 1, (9)

where sδi (t) ≥ 0 denotes a slack variable to ensure feasibility
in the presence of model mismatch.

We can impose an upper bound on the number of vehicles
that can be inside the intersection at the same time∑

i

δdij(t) ≤ Cd
j ψ

d
j (t), ∀j, d, (10)

where Cd
j is the intersection capacity (upper bound based

on physical intersection dimensions) for a specific direction
d ∈ D and ψd

j is the traffic light signal for that direction, i.e.,
ψd
j = 0 (red) or ψd

j = 1 (green). Constraint (10) additionally
ensures that vehicles can only enter the intersection if the
corresponding traffic light signal is green.

D. HDV Modeling and Prediction

Using the HDV model in Section II-C, and depending
on which mode is currently active for each HDV i ∈ Vh,
we compute a safe reference velocity vsi (t) that is used to
predict the HDV trajectories. To model mode switching, we
introduce the binary variables bfi(t), b

x
i (t) ∈ {0, 1} to indicate

whether an HDV i ∈ Vh is in the lead vehicle following
mode or stopping for red traffic light mode, respectively.

1) HDV lead vehicle following: For each HDV i ∈ Vh,
we introduce the index il ∈ V to denote its lead vehicle, if
a vehicle exists ahead of the HDV within a predetermined
distance from the HDV. This lead vehicle could be either a
CAV or another HDV. The safe following distance is defined
using a base value Df and a velocity-dependent component

with coefficient kf . In order to define the binary variable
bfi(t), we implement the following bi-conditional

pil(t) +Ril,i − pi(t)− Lil ≤ Df + kfvi(t) ⇐⇒ bfi(t) = 1,
(11)

where Ril,i denotes the initial relative distance between
vehicles il ∈ V and i ∈ Vh, and given the length Lil .

2) HDV stopping at red traffic light: Setting the binary
indicator variable bxi (t) for stopping at a red light involves
both the state of the associated traffic light signal and the
set membership of the HDV in the braking region prior to
the intersection. We introduce two binary variables bli and bui
such that the HDV is in the braking region when both these
variables are 1. For each HDV i ∈ Vh, we denote the initial
distance to the next intersection as P tl

i , and the safe stopping
distance is defined using a base value DI and a velocity-
dependent component with coefficient kI. We implement the
following implications

P tl
i − pi(t) ≤ DI + kIvi(t) =⇒ bli(t) = 1,

pi(t) ≤ P tl
i =⇒ bui (t) = 1,

bli(t) = 1 ∧ bui (t) = 1 ∧ ψd
j (t) = 0 ⇐⇒ bxi (t) = 1,

(12)

where j ∈ J denotes the next intersection such that the HDV
stops if and only if the HDV is inside the braking region and
the corresponding traffic light is red.

3) HDV safe reference velocity: The safe reference veloc-
ity vsi for HDV i ∈ Vh is defined based on the indicators bfi
and bxi , using the following implications

bxi (t) = 1 =⇒ vsi (t) = 0,

bxi (t) = 0 ∧ bfi(t) = 1 =⇒ vsi (t) = vil(t),

bxi (t) = 0 ∧ bfi(t) = 0 =⇒ vsi (t) = v̄,

(13)

where vil denotes the velocity of the leading vehicle il ∈ V
for HDV i ∈ Vh, and v̄ denotes the desired target speed.

4) HDV prediction model: The HDV prediction must
respect the HDV’s acceleration limits. We introduce the
binary variables bmax

i and bmin
i to check whether these limits

are reached. The HDV velocity prediction is given by

vsi (t+ 1)− vi(t) ≥ āmax
i ∆t ⇐⇒ bmax

i (t) = 1,

vsi (t+ 1)− vi(t) ≤ −āmin
i ∆t ⇐⇒ bmin

i (t) = 1,
(14)

bmax
i (t) = 1 =⇒ vi(t+ 1) = vi(t) + āmax

i ∆t,

bmin
i (t) = 1 =⇒ vi(t+ 1) = vi(t)− āmin

i ∆t,

bmax
i (t) = 0 ∧ bmin

i (t) = 0 =⇒ vi(t+ 1) = vsi (t+ 1).

(15)

E. Traffic Light Timing Constraints
We introduce a binary variable ltlj,s(t) ∈ {0, 1} for each

traffic light state s ∈ S of each intersection, where ltlj,s(t) = 1
if and only if the traffic light state changes, i.e.,

Φs
j(t+ 1)− Φs

j(t) ≤ ltlj,s(t) ≤ Φs
j(t+ 1) + Φs

j(t), (16)

Φs
j(t)− Φs

j(t+ 1) ≤ ltlj,s(t) ≤ 2− Φs
j(t+ 1)− Φs

j(t). (17)

We introduce a variable l̂tlj (t) ∈ {0, 1} to denote if the overall
state of the traffic intersection has changed, i.e.,∑

s∈S
ltlj,s(t)− 1 ≤ l̂tlj (t) ≤

∑
s∈S

ltlj,s(t). (18)
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Then, depending on the binary variable l̂tlj (t), a timer variable
ttlj (t) can be reset or updated as follows

−(1− l̂tlj (t))M ≤ ttlj (t+ 1) ≤ (1− l̂tlj (t))M,

ttlj (t) + ∆t− l̂tlj (t)M ≤ ttlj (t+ 1) ≤ ttlj (t) + ∆t+ l̂tlj (t)M.
(19)

We additionally impose a minimum time between two con-
secutive traffic light change commands as well as an upper
bound for the counter variable as follows

tmin −M(1− l̂tlj (t)) ≤ ttlj (t) ≤ tmax. (20)

F. MILP Objective Function

The objective function of the proposed MILP formulation
for the CTC reads as the maximization of

J =
N∑
t=1

∑
i∈V

(
w1 pi(t)− w2 |σi(t)− σref

i | (21a)

−w3 l
c
i,u(t)− w3 l

c
i,d(t)− w4 s

δ
i (t)− w5 s

c
i (t)

)
, (21b)

with user-defined weight values wi ≥ 0 for i = 1, . . . , 5.
The first term is to maximize the traveled distance pi(t) of
all vehicles in (21a). We penalize vehicles for not being in
their preferred lane by minimizing |σi(t)−σref

i |, in which the
absolute value can be handled by defining auxiliary variables
in the MILP formulation. We introduced a penalty on unnec-
essary lane changes by minimizing lci,u(t), l

c
i,d(t) in (21b).

In addition, we penalize the slack variables sδi (t), s
c
i (t) ≥ 0

that ensure feasibility in the presence of model mismatch and
disturbances. Large penalty weight values w4, w5 ≫ 0 are
used to ensure that a solution with sδi (t) = 0 and sci (t) = 0
is computed, whenever feasible.

IV. DECENTRALIZED TRAFFIC COORDINATION

The main concern with the centralized control center is
the combinatorial complexity of the MILP solution, i.e., the
computational cost generally increases exponentially with the
number of vehicles and the prediction horizon length. As
shown in Section V, given our desired update frequency of
1 Hz, the centralized system is often not tractable under cur-
rent hardware/processing limitations and with current state-
of-the-art MILP solvers such as GUROBI [15]. A natural
way to decompose the centralized coordination problem is by
solving a subproblem for each traffic intersection individually
with considerably fewer optimization variables.

A. Decentralized Architecture

In the proposed decentralized implementation, each in-
tersection is assumed to have an independently operating
control center, which is further referred to as an intersection
traffic controller (ITC). The ITC at each intersection operates
fundamentally similar to the centralized control center, based
on the same MILP formulation as described in Section III,
but with each of the variables restricted to only the relevant
intersection, its traffic lights and immediately approaching
vehicles within a predetermined control zone around the
traffic intersection. Each ITC computes CAV velocities and
lane change trajectories as well as the traffic light phase

switching trajectories for its particular intersection, and the
computations for each ITC may be executed in parallel on
separate computing units. Adapting the MILP formulation
from Section III to the decentralized implementation, for
each ITC, we consider one intersection j ∈ J and a subset
Vj ⊆ V of the vehicles in the traffic network.

B. Vehicle Assignment to MILP-ITCs

In the decentralized implementation, the HDV modeling
described in Section III-D can be used to model both HDVs
and CAVs that are controlled by a different ITC. Therefore,
each CAV could be assigned to a particular ITC “for control”
or “for prediction”. This is used in the proposed decentralized
implementation to increase safety, especially when vehicles
transition from one ITC to the next. The assignment of
vehicles to the subsets Vj , for each ITC j ∈ J , is performed
according to the following rules:

1) Each HDV is assigned to an intersection’s ITC for
prediction, if it is within a predetermined distance.

2) Each CAV is assigned to their next intersection’s ITC
for control, if it is within a predetermined distance.

3) Each CAV is assigned to their previous intersection’s
ITC for prediction, i.e., it will be treated as HDV by
that MILP-ITC, if it is within a predetermined distance.

The latter set of rules ensure that the velocity and lane change
commands for each CAV are computed by at most one ITC.
If a CAV is not assigned to any ITC, given the predetermined
threshold distance, then control is returned to the on-board
control architecture. In the region immediately after a traffic
intersection, both HDVs and CAVs are treated equally and
their behavior is predicted to prevent possible collisions with
any vehicles further upstream. Each ITC provides controls to
CAVs only prior to the intersection and while the vehicle is
physically within the intersection. Control is handed back to
the vehicle or to the next junction’s ITC (if junctions are
very close) after the CAVs exit the intersection.

V. NUMERICAL VALIDATION RESULTS WITH
SUMO SIMULATOR

In this Section, we present extensive simulation results to
validate the performance of the proposed implementations
for the traffic coordination and control system, and to inves-
tigate its computational tractability. The mixed traffic simu-
lations are built on the SUMO [14] platform. The control sys-
tems are implemented in Matlab and the MILP problems
are solved using GUROBI [15]. The communication between
Matlab and SUMO is handled by the traci4matlab [16]
software. The simulations are executed on a desktop with an
Intel i7-10700k processor and 64GB of RAM.

A. Traffic Simulation

The traffic inflow from each of the four input directions
(see Fig. 2) are kept equal to each other, resulting in a bal-
anced flow of vehicles in the road network. The rate of traffic
inflow for CAVs and HDVs is varied independently, in order
to create multiple scenarios with varying traffic inflow rates
rin and CAV penetration levels rcav (ratio of CAVs to total
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number of vehicles). Vehicles enter the simulation according
to a Poisson process with expected value of arrivals equal
to the desired input flow rate for each inflow road. Each
vehicle entering the network has an assigned destination
road and the system chooses between possible routes from
source to destination based on predefined probabilities to
provide balanced traffic flow throughout the network. In the
simulated vehicle model of SUMO [14], parameters for the
level of driver imperfection are set to low for CAVs and
relatively high for HDVs. This results in lower predictability
of HDV behavior due to higher variance in human actions.

B. Comparison Metrics and Baselines

The key metrics used in evaluating comparable traffic
control systems are the average travel time of vehicles
flowing through the network, the average time spent waiting
at traffic lights per vehicle and the average fuel consumption
per vehicle. In addition to these metrics, we also present
the average computation times (τ ) for each of the proposed
control architectures. The runtime (τITC) of the decentralized
architecture involves solving multiple MILPs in parallel, one
for each intersection’s ITC. We report both the average over
time of the CPU runtime for the most expensive MILP at
each time step (dark blue bar in Figures 4,5,6), as well as
the average over time of cumulative CPU runtimes to solve
all MILPs at each time step (light blue bar in Figures 4,5,6),

τmax
ITC =

1

T

T∑
t=1

max
j∈J

τ jITC(t), τ sumITC =
1

T

T∑
t=1

∑
j∈J

τ jITC(t).

(22)
We use the standard baseline of a time-based traffic lights

switching system as a reference. The traffic light timings
are tuned to suit the densities being tested. All four inflow
roads in an intersection are treated equally in terms of
traffic light timing since the overall inflow to the network
is balanced. Furthermore, as a more competitive reference,
we implemented a gap-based adaptive traffic light control
strategy in SUMO [14]. This adaptive strategy allows traffic
lights to dynamically adapt to current traffic conditions in
the incoming lanes of an intersection by prolonging traffic
phases whenever a continuous stream of traffic is detected.

C. Performance Analysis

The overall performance of the systems show that both
centralized and decentralized control strategies significantly
outperform the timed traffic lights. We observed considerable
improvements of around 60%, 96% and 60% in travel time,
waiting time and fuel consumption, respectively, when using
the centralized strategy over the timed traffic lights method.
Similarly, when comparing the centralized strategy against
the adaptive traffic lights method, we observed improvements
of around 32%, 90% and 40% in travel time, waiting
time and fuel consumption, respectively. These significant
reductions in waiting times correspond to reduced idling of
vehicles at traffic lights, which leads to more eco-driving
strategies, which in turn results in fuel savings.
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Fig. 4. SUMO results over 2000 s to compare centralized MILP, decen-
tralized MILPs versus timed and adaptive traffic lights for increasing inflow
rates rin = 0.24, 0.48 and 0.72 veh/s, with N = 10, rcav = 50%.

The centralized strategy also outperforms the decentralized
strategy in most metrics by a smaller margin, at the cost of
increased computation times. We observed a reduction in
performance of around 2%, 3% and 9% in travel time, wait-
ing time and fuel consumption, respectively, when using the
decentralized strategy over the centralized strategy. However,
the decentralized strategy CPU computation times are around
89% less than the centralized strategy.

1) Impact of vehicle inflow rate: As the inflow rate rin
increases, as observed in Figure 4, the travel time, waiting
time and fuel consumption show worse performance across
all the control strategies. High inflow rates cause the timed
traffic lights to have 100 sec average travel time and 53 sec
average waiting time, but the CTC reduces these values
to 42 sec and 3 sec, respectively. Even compared to the
adaptive traffic lights, the CTC demonstrates a 36%, 85%
and 40% improvement in travel time, waiting time and
fuel consumption. The decentralized ITCs allow for fast
computations below 1 sec, while only resulting in around
a 5% suboptimality in terms of other performance metrics.

2) Impact of CAV penetration: The percentage of CAVs
play a major role in the performance of the control system.
A greater amount of CAVs offers multiple actuation points
in the traffic flow which leads to better controllability of
the overall traffic network. For example, as observed in
Figure 5, using a N = 10 planning horizon and 0.6 veh/sec
inflow rate, in the CTC we observe performance gains of
8%, 46% and 24% in travel time, waiting time and fuel
consumption, respectively, when switching from 20% to
80% CAV penetration. Furthermore, we also observe that
prediction of HDVs is a more computationally expensive
process than the CAV trajectory computation, due to the
increased number of integer variables involved. Thereby, the
average computation times reduce by 36%, when switching
from 20% to 80% CAV penetration.

3) Impact of planning horizon: We observe that longer
planning horizons lead to improved performance in terms
of the key metrics but also cause the computation time to
increase rapidly. As shown in Figure 6, at N = 5 horizon
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Fig. 5. SUMO results over 2000 s to compare centralized MILP, decen-
tralized MILPs versus timed and adaptive traffic lights for increasing CAV
penetration levels rcav = 20, 50 and 80%, with N = 10, rin = 0.60 veh/s.

Fig. 6. SUMO results over 2000 s to compare centralized MILP, decentral-
ized MILPs versus timed and adaptive traffic lights for increasing horizon
lengths N = 5, 10, 15, with rin = 0.48 veh/s, rcav = 50%.

length, the CTC is capable of computing on average in about
0.3 sec. When the horizon length is increased to N = 15, the
average computation time increases significantly to around
3 sec. This is where the decentralized strategy with multiple
ITCs becomes more suitable. ITCs offer similar performance
improvements obtained by increasing horizon length while
keeping total computation times under 0.5 sec, even at the
N = 15 horizon length.

4) Real-time feasibility: To achieve real-time feasibility
at a 1 Hz control frequency, the CTC/ITC needs to solve
its MILP problem in less than 1 sec. The CTC is able to
achieve this threshold only at low traffic inflow rates and
shorter planning horizons. However, at higher inflow rates
and planning horizons, the CTC’s average computation time
can easily exceed 10 sec. The average runtime of the ITCs
remain below 0.8 sec, making the decentralized strategy
a more practically implementable real-time system under
current hardware limitations.

VI. CONCLUSIONS

We presented an MILP approach for the computation of
control trajectories for CAVs and traffic light signals in a

network of multiple connected intersections with mixed traf-
fic, including both CAVs and HDVs. Using extensive SUMO
traffic simulations, our proposed centralized traffic controller
demonstrated a considerable increase in performance, with
around 90-96%, 32-60%, and 40-60% improvements in wait
times, travel times and fuel consumption, respectively, over
both adaptive and timed traffic light control methods. We also
introduced a decentralized implementation, with multiple
decoupled MILPs, which allows the system to be compu-
tationally tractable for higher traffic densities and longer
planning horizons, while only causing a relatively small
suboptimality in performance. Future work may involve
reducing the optimality gap in the decentralized method by
providing global information on traffic conditions.
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