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Abstract—Constant temporospatial variations in the user de-
mand complicate the end-to-end (E2E) network slice (NS) re-
source provisioning beyond the limits of the existing best-effort
schemes that are only effective under accurate demand forecasts
for all NSs. This paper proposes a practical two-time-scale
resource allocation framework for E2E network slicing under
demand uncertainty. At each macro-scale instance, we assume
that only the spatial probability distribution of the NS demands
is available. We formulate the NSs resource allocation problem as
a stochastic mixed integer program (SMIP) with the objective of
minimizing the total CN and RAN resource costs. At each micro-
scale instance, given the exact NSs demand profiles known at
operation time, a linear program is solved to jointly minimize the
unsupported traffic and RAN cost. We verify the effectiveness of
our resource allocation scheme through numerical experiments.

Index Terms—Network slicing, end-to-end resource provision-
ing, demand uncertainty, stochastic programming

I. INTRODUCTION

In the paradigm of 5G enhanced by network slicing, mo-
bile network operators (MNOs) manage and set up network
slices (NSs) and provide service providers (SPs) with an
on-demand and scalable delivery of network services [1].
The SPs, ak.a. tenants, seamlessly dedicate NSs to cus-
tomers with various QoS requirements. A mobile NS spans
across multiple domains including the radio access network
(RAN), the core network (CN), and the transport network
(TN), forming an end-to-end (E2E) sub-network. In contrast
to the traditional static resoruce allocation schemes [2], 5G
RAN slicing introduces the capability of sharing physical
network infrastructure among mobile virtual network operators
(MVNOs). Consequently, the core and radio resources are
reserved on the fly according to end-users demand. Designing
E2E NSs requires resource provisioning across heterogeneous
physical and virtual network infrastructures each having spe-
cific technical constraints. Despite the desirable impacts of
network slicing on the agility and flexibility of next-generation
mobile networks (NGMN), practical NS deployment faces
key challenges among which the demand uncertainty stands
out. While the existing resource provisioning methods for
network slicing are typically performed in a best-effort manner
[3], the shared network resources must be dynamically and
efficiently allocated to logical NSs based on changing user
demands. Besides the dynamicity of the user demand profiles,
the variation in the infrastructure resource availability status
may degrade the slice QoS compared to the service level
agreement (SLA) promised by the SPs [4]. In this paper,
we propose a novel approach to optimize the E2E resource
provisioning for network slicing under demand uncertainty.

Stochastic programming is a powerful tool to address opti-
mization under uncertainty. We consider the joint resource
allocation of next-generation RAN (NG-RAN) and 5G core
(5GC) for different NSs. In our proposed solution, the RAN
slicing is triggered more frequently than the CN segment, due
to the existence of more dynamic parameters in the RAN such
as user mobility and varying channel condition. Therefore,
our algorithm operates at two time scales. At each macro-
scale instance, we assume that only the spatial probability
distribution of the slice demands is available. We formulate
the NSs resource provisioning problem as a stochastic mixed
integer program (SMIP) with the objective of minimizing the
total resource cost. At each micro-scale instance, utilizing the
realized exact NS demands, a linear program is solved to
jointly minimize the unsupported traffic and the RAN resource
cost by adjusting the RAN slices and scaling E2E resource
allocation.

The remainder of the paper is organized as follows. Sec-
tion I describes the system model. The problem formulation
and proposed solution are provided in section III. The numer-
ical results and conclusion are provided in section IV.

II. SYSTEM MODEL
A. Substrate Network Model

We consider a mobile network infrastructure (a.k.a. sub-
strate network) that is comprised of next-generation NodeBs
(gNBs) and CN nodes hosting SGC components. Let G =
(V, E) denote the substrate network graph, where V and F
represents the set of substrate nodes and links, respectively.
We assume that V = Vynp U V_ynyp where Vynp and
V_gnp are the substrate gNB and non-gNB nodes. Each
gNB is characterized by its maximum supported traffic that
is computed based on its available resource blocks (RBs) and
antenna configuration. Non-gNB nodes are general-purpose
servers providing essential capabilities to run core VNFs. A
substrate node is characterized by its residual CPU, storage,
and RAM resources. Let W; = (W}, v € T) represent the
residual capacity of the substrate node 7 € V, the set of
resources defined as 7 = {CPU,STO,RAM}. Similar to
the RAN slicing model considered by [5], we assume that
the gNB j € Vynp has W RBs available to be allocated to
different NSs. Furthermore, we assume that £ = Erg UEgy
where Erppy and Epp stand for the set of gNB-CN links
and the remaining links, respectively. Each substrate link
e € FE is characterized by its available bandwidth, WEBW,
and propagation delay, 7 RO Moreover, let P denote the set
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of substrate paths used for traffic routing. Define P(i — j) to
be the set of substrate paths between nodes ¢ and j. Therefore,
P = Ui jev,izjP(i — j). Let U denote the set of UEs
distributed across the geographical area. We assume that each
UE is served by a gNB according to nearest association rule.

B. Network Slice Model

We assume that a NS consists of one or multiple SFCs,
each comprised of a number of VNFs (e.g. gNB, AFM, UPF,
SMF) and virtual links (VLs) between them. The set of NSs is
denoted by K = {1,..., K'}. Let G}, = (V/, E},) represent the
kth slice SFC modeled as an undirected graph. Vk, Vk N B>
Vi _onB> Ers By g, and Ej gy are defined similar to the
correspondlng components of the substrate network. We as-
sume that each instance of the SFC corresponding to NS k£ has
QoS requirements expressed as network-level UE throughput
and maximum E2E tolerable latency. In order to guarantee the
requirement of different NSs, the network-level performance
requirement are translated to cell-level radio resource require-
ment [6]. Let ﬁ? denote the average number of RBs required
for a UE requesting NS % served by gNB j. The value of
Ef depends on the overall cell load, antenna configuration,
channel condition, modulation and coding scheme (MCS), and
NS QoS requirements. The details of translation mechanisms
such as [7] are beyond the scope of this article.

We denote the set of substrate paths considered for slice
k by Py. Let P}, represent the set of all paths in G}.. Each
path of G), corresponds to either CP or UP data flows. For
instance, the path gNB-AMF-SMF of a 5G NS is a CP path
while gNB-UPF is a UP path. Let P}, ;; and Py, p denote
the set of UP and CP paths in G}. We assume that the QoS
requirement of each NS is given as the maximum tolerable UP
(CP) latency denoted by dY (d$7). Let Z/{k C U denote the
set of UEs requesting NS k We define u]’ to be equal to 1 if
1 € Uy, and 0, otherwise. In order to support the demands of all
UEs requesting a NS, multiple instances of the NS may need
to be deployed. Let I be the number of instances of slice &
deployed to support the load for slice k. Let R = (R;-’,7 Ve
T) denote the required per-unit CPU, STO and RAM for VNF
j'. Similarly, each VL €’ € Ej, is characterized by its per-unit
bandwidth requirement RBW to meet the demand for data
transmission between the two end-point VNFs of ¢’. The per-
unit resource requirements must be scaled according to the
traffic load and resource-sharing factor. We define xj; . to be
the scaling factor of resource v, v € T for VNFs of slice
k. Moreover, Xk W stands for the BW scaling factor of VLs
of slice k. The cost of running a VNF on the substrate node
j is composed of two parts: (i) a fixed cost denoted by C,
(i1) a variable cost that increases linearly with respect to the
consumed amount of resources by that VNFE. Let C7,v € T
denote the per-unit cost of using resource v of node j. The
per-unit bandwidth cost of the infrastructure link e is CZW.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, we formulate the E2E network slicing
problem under demand uncertainty as a two-stage SMIP. A
stochastic linear programs (SLP) is a linear program where
some data is uncertain, represented as random variables with

given probability measures. The value of these random vari-
ables are known only after a random experiment. Thus, a SLP
variables are divided into two groups: first-stage variables,
determined before the experiment, and second-stage variables,
determined after the experiment results are known. We refer
the interested readers to [8] for further details.

A. Stochastic Mobile Network Slicing Optimization Model

We start by defining the decision variables for the optimiza-
tion model as follows:

. . ki’
e x;: set of binary variables where z7"’

;7 equals 1 if the
VNF j’ of NS k is placed on the substrate node j.

yk set of binary variables where yk e equals 1 if the VL
e’ of NS k is mapped to substrate path D € Py.

e zj: set of continuous variables where zj’“ represents the

fraction of gNB j spectrum allocated to NS k.

We model the resource provisioning problem for NSs as a
two-stage SMIP. We refer to this problem as stochastic mobile
network slicing (SMNS), explained in the following.

1) First-Stage Problem: The first-stage objective of SMNS
is to minimize the total provisioning cost which consists of
node and link deployment costs for all slices. Let C}¥ and
Ci denote the node and link costs corresponding to NS k.
Consequently, we have:

=3 N YT ST S Ry oval

JEV j'eV) JEV j'eV/veT
1
=20 D mwRICMy; @
pEP e€p '€k,
where
. k,j’
g (1T 20 ®
0 otherwise
Hence, the first-stage objective is:
y) =Y Ci(zk) + Y Ci(yy) @
ke ke

where v,,v € T U {BW?} are the weights used to balance
the objective terms of (4) corresponding to different resources.
Since each gNB(non-gNB) VNF should be placed at substrate
gNB(non-gNB) nodes only, a valid slicing strategy satisfies:

oo abl =1, Vkek, i €V _yvp (5)
JjEV_4NnB
k

xj’j/ =0,VkeK,j eV yn,j €Vi,nn ©)

The flow conservation is guaranteed by constraints (7) and (8):

ke’ ke ki k,j’
Yyp —Yg =Ty T,
PEPL(i—37),q€PL(j—1),jEV
Vk € K,e € Ey gu,src(e’) =14, dst(e’) = j' 7

= (" —aFI,

ke’ ke’
yp - yq

PEPK(1—7),q€EPL(j—1i),j€EV

Vk € K,i € Vognp, e € Ey p,src(e’) =i dst(e') =5 (8)
The domain constraints are as follows,

7y € 0,1} VE € K,j € V,j € Vi,p € Pr,¢ € By (9)
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2) Second-Stage Problem: The objective of the second-
stage problem is minimizing the cost of gNBs resources:

Ca(z) =) > Chzfwy

keK jeEVynB

(10)

The processing delay of VNF j’ € V/ on a substrate node is

represented by 7 k3" The UP(CP) latency of slice k instances
is guaranteed to be lower than the delay budget d¥ ' (d{'") by:

BW
k,e Xk e’
WEW

S uw XY Yow

e’’ep’ | PEPk e€p | keEKpEPy e’ €E},
le€p
Z Z k,j' k.5’ UP/CP ’ ’
+ |: .CL’]-] T J:| <d / Vp epk’Up/cp,vk
j'ep’ LieV

The above constraint ensures that the maximum latency of
each NS is less than its tolerable latency by enforcing the
inequality for all paths of G). We linearize it by 1ntroducmg

a set of additional continuous variables 7, > 0 and 77;; < >0,

defined as the latency of path p € P and the latency of VL
e’ € E;. on path p, respectively. Therefore, we have:

RBW
YT Y S R s e an
e€q | k€K pePyle€p e/ €E), €
e 4my =i < ¢ VpePr e €Elkek (12)
el k' _k,j’ UP/CP
PO DD DD D LT
e’ €p’ PEP, jlep’ JEV
vp' € Prupicp k€K (13)

where ( is a large constant. We also add the term €D to the

objective function where D(n) = 34 X pep, eep, nk-e
and € is a very small value in order to make sure that the main
objective of minimizing the resource provisioning cost is not
affected by adding D. Given the network-level performance

translation to cell-level metric Ef, the RAN NS is:

Zuk lR < kg’ ZJW Vk,j € Vynp,j € Vk{,gNB (14)

1=1

Using the big-M method and convert (14) to the following:

Uk
S ubtRE < WP+ (1 -2l )M, vk eK,
=1

J € VenB,j € Vignp (15)

In order to satisfy the slice isolation constraint and given the

maximum number of RBs allowed for a NS at each gNB (R ),
we formulate the slice isolation constraint using the followmg
inequality:

KW < E?Jc?’jl,

Vk€K,j € Vynp,j € Vignn (16)

For the substrate nodes and links, the capacity constraints are:

The capacity and placement constraints of gNBs enforced by:

J ) V] € ‘/QNij/ € Vk,,gNB (19)

U
xf’ﬂ > H{Zu?” >1}, VkeK,j € Vynp,j € Vk/,gNB (20)

i=1
The domain constraints of the second-stage problem are:

¥ el0,1], Vk e K,j € Vons
e mp >0, Vk € K,¢ € Ej,p € Py @n

Thus, the E2E network slicing problem with demand uncer-
tainty is formulated as a two-stage SMIP presented below:

min $1C1(x, y) + ¢2 Bg[min Ca(z) + €D(n)]
s.t. 5)— @21

(22)

The objective (22) minimizes the summation of the CN slice

and the expectation of the RAN slice provisioning cost. The
weights ¢1, ¢o determine the balance between the objectives
of the first and second stage problems. An interpretation of
the SMNS is as follows:

e The MNO provisions the CN resources for different
NSs, represented by the decision variables «,y, before
the actual value of the random variable vector &
(Z/ll,...,Z/IK,u%’l,. U%Ul,...,ull‘(/’qlfj;‘,xll’,...

v € TU{BW}) is realized. '

e Once & realized, the RAN resource provisioning and

delay decision variables, denoted by z, 1 are determined.

v
7XK;

The expectation term in (22) requires an integration over the
high-dimensional random vector £. To tackle this challenge,
we use the sample average approximation (SAA) technique
and replace the expectation in (22) with its SAA.

B. Deterministic Equivalent Reformulation

The SAA method is an approach for solving stochastic opti-
mization problems by using Monte Carlo s1mulat10n Suppose

SN SR <W veT VeV (17)
KeK jev) that H i.i.d observations of the random variables u ' Uy, and
o X}, are available, denoted by u; h,Uk hs X b =1,..., H.
Z Z Yp© RIVAEY <WPW Vee E (18) For each realization, we define a separate set of second stage
kerlfg e'emy decision variables zj’-f o Moo nﬁ:i . Thus, we convert SMNS to
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its sampled deterministic equivalent problem:

H

. 1
min. 1Ci(z,y) + 62 Y 7 (Ca(zn) + €D(ny,)) (23)
h=1
subject to : ORI
o XEn R
D2 D 7’“{1}” = nenVah Q4
ecq | keEK pEPk e EE/
le€p
Cybe o — nﬁ' < (¢ Vp€Pre € Bl ke K,heH (25)
SN X Sk e,
e’ep’ pEPy j'ep’ JEV
Vp' € Prupjop k€ K,h € H (26)
STN BRI <W W eT,jeV,heH @7
keK j'ev)
S w ‘REVREYW <WEY Vec E.heH  (28)
keEK pEPk e eE’
le€p k
Uk h
iRy < 25 Wi+ (1—a) IVM,
=1
Vk € K,j € Vynp,j € Vigns, h €H (29)

KW < Rjah Yk € K,j € Vonp, i € Vignp h €H (30)

K
> < 1LVi€Vynp heH

31)
k=1
., Uk’h' .
2 > 1) by > 1},Vk € K,j € Vonn,§' € Vigng, h
=1
(32)
2 € 10,1, mp, s >0, Yk €K, j € Vonp,heH  (33)

We refer to the above problem as DET-SMNS(H). It is shown
in [9] that as the sample size H increases and under certain
mild conditions, the solution to DET-SMNS(H) converges to
that of the original SMNS problem. To solve the E2E network
slicing problem under demand uncertainty, we propose a
two-timescale resource allocation scheme that utilizes DET-
SMNS. In this approach, the E2E resource allocation problem
of NSs is addressed through long and short time slots. We
assume that the lifecycle of an NS is divided into a number
of long time slots (macro-scale) indexed by 7. At each
macro-scale instance, the spatial probability distribution of the
demand for NSs is known. Let FT = {F] ... FL}, where
Fi(.,.) : R? — [0,1] denote the spatial density function
of the kth NS demand across the considered geographical
area in the macro-scale instance 7. Given F7T, we solve
the resource provisioning problem DET-SMNS(H). In order
to adjust the provisioned resources to address the actual
demand, we further divide each macro-slot into Nt short time
slots (micro-scale). At each micro-scale instance ¢, the actual
demand for the duration of the micro-slots is observed and &
becomes known, denoted by &£. The demand of a NS is served
if supported by the allocated resources in RAN and CN. We
define O’ k€ K,j € Vynp to be the fraction of total demand
requested for slice k in gNB j that is not supported. Given the

PCF

1 S
-AUSF\ . SWF

/\ Backhaul

N
[NssF} - -[Avr |
Fronthaul ’

EEERRE R
gNB

Fig. 1: Example substrate (left) and NS (right)

solution of the DET-SMNS(H) and &, we solve the following
LP (RNSR(x,y,&)) with the objective of minimizing RAN
resource allocation cost and total unsupported traffic.

minimize Z Z +(1- 0) (34)
keK jeVyns
Uk My
(1= a4y )Ry < 5w + (1 — a7 )M,
=1
Vk € K,j € Vonn,j € Vigne G35
k U ~ ki
Djevpns (Lm0 Nkt
S Xk S Xk,p'rovv
Uk
Vk e K,ve TU{BW} (36)
z;-“er < fo";’j,, Vk € K,j € Vyng,i € Vi np 37)
Z zf <1, VjeVynB (33)
kex
],]6[01] Vke K,je Vynn (39)

IV. PERFORMANCE EVALUATION AND DISCUSSION
A. Simulation Setup

We consider a substrate network consisting of seven
general-purpose servers at four levels of hierarchy and 6
gNB nodes connected to the third-level servers as illustrated
in Fig. 1. L1, L2, L3, and L4 servers have CPU (cycle/s),
storage (GB), and RAM (GB) capacities of (72,144,288),
(36,72,144), (18,36,72), and (6,12,24), respectively. The
backhaul links have a capacity of 2Gbps while the fronthaul
links can support 1Gbps of traffic. For the sake of simplicity,
the resource scaling factor x7 is assumed to be the same for
all resource types v € T and is equal to the number of users
requesting slice k. Each VNF requires (0.1yg,0.2x%,0.4x%)
units of CPU, STO, and RAM resources. The simulation
environment is implemented in Java and we use the CPLEX
commercial solver for solving the DET-SMNS and RNSR
models. We assume that the demand density functions (F7)
change hourly, i.e. the value of the macro-slot is one hour.
Moreover, the duration of the micro-slot is set to one minute,
ie. Ny = 60. We consider three slices, namely, eMBB,
URLLC, and mMTC with the SFC graph as depicted in Fig. 1.
The NS simulation parameters are given in Table I. We use
the 3-shortest path algorithm to construct the set P(i — j).
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Fig. 2: UP and CP latency for URLLC, eMBB, and mMTC slices
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Fig. 3: Average request acceptance ratio for URLLC, eMBB, and mMTC slices
TABLE I: Simulation Parameters for all slices. This is due to the fact that as the number
. of realizations increases, the solution of the DET-SMNS(H)
Slice Type dYP1dIP | mean value of RY ‘ R; problem is a better approximation of the original SMNS
eMBB (k=1) | 100/20 ms 50 0.6 problem modeled as a SMIP as explained in Section III-A.
URLLC (k=2) 25/5 ms 10 0.2 :
mMTC (k=3) | 300760 ms = 05 In summary, our proposed algorithm for the E2E network

B. Numerical Results

Figure 4 illustrates the UP and CP latency for the URLLC,
eMBB, and mMTC slices. We consider the results of 5 and
depict both the average latency and the profile of latency
values for different NSs, in the cases of H = 5,10,30.
We observe that in all cases, the obtained UP and CP
latencies are below the corresponding maximum tolerable
latency given in Table I. Thus, the proposed two-time-scale
resource provisioning algorithm provides solutions that meet
the NSs’ QoS requirement in terms of E2E UP and CP
latency. In Fig. 5, the average acceptance ratio of different
slices averaged for the duration of 60 micro-slots is illustrated.
The percentage of accepted requests is obtained from the
supported traffic solution of the RNSR problem, and averaged
over different gNBs, i.e. Avg. acceptance ratio of slice k£ =
100 = ZjEVgNB 0;?/|VgNB|. Figure 3a, 3b, and 3c denote
the average acceptance ratio for the eMBB, URLLC, and
mMTC slices, respectively. In this experiment, we change the
number of realizations from 1 to 30. It is observed that as
the value of H increases (more realizations are considered as
an input to DET-SMNS(#H)), the acceptance ratio enhances

slicing under demand uncertainty operates in two phases with
long and short time scales corresponding to the E2E resource
provisioning followed by the RAN slice adjustments.
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