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Abstract— In the typical multiagent formation tracking problem
centered on consensus, the prevailing assumption in the litera-
ture is that the agents’ nonlinear models can be approximated
by integrator systems, by their feedback-linearized equivalents,
or by dynamics composed of deterministic linear and nonlinear
terms. The resulting approaches associated with such assump-
tions, however, are hardly applicable to general nonlinear
systems. To this end, we present consensus-based control laws
for multiagent formation tracking in finite-dimensional state
space, with the agents represented by a more general class
of dynamics: control-affine nonlinear systems. The agents also
exchange information via a leader-follower communication
topology modeled as an undirected and connected graph with a
single leader node. By leveraging standard tools from algebraic
graph theory and Lyapunov analysis, we first derive a locally
asymptotically stabilizing formation tracking law. Next, to
demonstrate the effectiveness of our approach, we present
results from numerical simulations of an example in robotics.
These results — together with a comparison of the formation
errors obtained with our approach and those realized via an
optimization-based method — further validate our theoretical
propositions.

Index Terms— multiagent systems, consensus, formation con-
trol, control-affine nonlinear systems

I. INTRODUCTION

Multiagent formation tracking — the task of controlling a
group of dynamic units (or agents) to maintain a desired
formation while following a reference trajectory — has risen
to become evidently one of the most popular topics in
cooperative control and related fields, owing to its numerous
practical applications. The formation tracking problem is
distinct from the nominal formation control problem (where
the focus instead is only on the agents converging to a desired
formation) and has traditionally been tackled using ideas
from fields such as learning theory, graph theory, optimiza-
tion, and control theory, to name a handful. However, studies
featuring methods from the aforementioned areas typically
consider the agents’ dynamic models as linear systems
— a common simplification from their general and more
complex nonlinear representations. Within the consensus
control domain particularly, several research articles [1], [2]
have studied the formation tracking problem, following the
seminal work of [3]. These studies have been mostly adhoc,
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however, extending the aforementioned ideas to only time-
invariant linear systems or systems with dynamics compris-
ing deterministic linear and nonlinear terms. Unfortunately,
the control schemes designed under these approximations
are largely not generalizable and cannot be extended to the
nonlinear case as a result. This significant research gap thus
motivates the need for results applicable to a more general
class of systems.

A. Prior Work

Results demonstrating the application of consensus to for-
mation control for nonlinear systems began to appear fairly
recently, starting in [4], which featured a consensus-based
event-triggered control scheme, with the agents represented
by nonlinear systems with a scalar control coefficient. Fol-
lowing that, in a closely-related work [5], the authors laid
down consensus-based formation control laws for a class
of nonlinear multiagent systems — with models similar
to those studied in [4]. More recently, consensus-based
formation control laws were given in [6], but for nonlinear
systems with linear-in-state drift terms. In our work, we
derive original locally asymptotically stable consensus-based
formation tracking laws for a more general class of nonlinear
systems — affine-in-control systems with a state-dependent
drift term. Following [7], [8], we present general consensus
control rules that guarantee asymptotic decay of the forma-
tion error of the multiagent system (MAS). In contrast to
the aforementioned studies, we apply the agreement protocol
to the problem of formation tracking, where the agents are
modeled by general control-affine nonlinear systems.

B. Main Contributions

We contribute the following to the state of the art
in consensus-based formation tracking: (i) an original
consensus-based formation tracking control scheme — for
control-affine nonlinear systems — that guarantees asymp-
totic convergence of each agent’s consensus error to the
corresponding relative state, thus preserving the formation
(Section III), and (ii) numerical formation tracking simula-
tions that juxtapose the performance of our approach with
that obtained by an optimization-based method (Section V).

II. NOTATION & MATHEMATICAL PRELIMINARIES

Throughout, we denote vectors and matrices with boldface
font (e.g.,  and A), with corresponding elements in regular
italicized font, i.e., x; denotes the i™ element of the vector
x, while A;; is the element occupying the i row and ;™
column of A. AT denotes the transpose of matrix A, X (in
the context of three-dimensional vectors) represents the cross
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product, and ® is the standard Kronecker product operator.
Unless otherwise noted, I,, is the n X n identity matrix, K,
is the vector [xr .. x]7 € R™, with 5 € R, and ||z|| =
(27, (2:)?)? is the vector Buclidean norm. diag([x]icr) is
the |I| x |I| diagonal matrix, with I an index set. The i
block, x;, can either be a scalar, vector, or matrix, and will
be clear from the context. R is the set {a € R | a > 0}.
To set the stage for the theoretical framework and problem
formulation to follow, we now introduce several key lemmas,
definitions, and theorems, to be invoked in the proofs to
come.

Definition 1 (Control-Affine Nonlinear System): A control-
affine nonlinear system is the system (here subscripted by
i to represent the i" agent for notational cohesion):

z; = f(x;) + g(zi)u;

where ®; € X C R*, u; € Y C R™, and y; € R? are,
respectively, the state, control, and output vectors, with m not
necessarily equal to ¢. f(-), g(-), and h(-) are, respectively,
the drift and control vector fields, and the output map —
with appropriate dimensions — which are assumed to be
sufficiently-smooth functions (C"*;n > 1), with f(0,) = 0,,
so that ; = 0, is an open-loop equilibrium point of
(1), and h(0,) = 0,. X is a compact set containing 0,,
while admissible control signals take values in the set, U,
of piecewise continuous and absolutely-integrable functions,
ie., the set {u;(t) | [y |ui(7)|dr < oo}

(1a)
(1b)

Definition 2 (Graph Theory): An undirected, finite, graph
(hereafter graph) G is the tuple (V,&), with V equal to
the non-empty set {vy,va,...,vx} of k distinct elements,
called nodes or vertices and £ (the edge set) C V x V =
{{vi,v;} | vi,v; € V}. The graph is weighted if there exists
amap w : & — R that associates to each edge, a real
number, denoted as w;;. It is unweighted otherwise. A path
is a sequence of distinct vertices vy, va, . . ., Uy, Where every
consecutive pair of vertices (i.e., v; and v;y1; ¢ =1,...,m)
is joined by an edge in £. A graph is connected if every
node in the graph is connected to every other node by a path;
the graph is disconnected otherwise. The neighborhood set,
N, is the set {v; € V | {v;,v;} € €, j # i}. The graph
adjacency and Laplacian matrices (denoted, respectively, as
A(G) and L(G)) associated with G, are the matrices:

B _ 1, if {Ui,’Uj}Eg
AG) = [yl where Aij = {0, otherwise 22)
> Ay ifi=j
[,(Q) = [,Cij}, where Eij = § jEN; (Zb)

—A;;, otherwise.

Hereafter, for brevity, we shall drop the G argument in the
notations for the adjacency matrix and graph Laplacian.

Definition 3 (Leader-Follower Formation Tracking):
Consider an interconnected system of N + 1 identical
agents — each with dynamics described by (la) — on
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the (connected) line graph depicted in Figure 1. For
convenience, let the MAS comprise a single leader (with
index L) and N followers. The formation tracking problem
is to synthesize controls, wu;, under which the follower
agents converge to states that respect the inter-agent
distance constraints imposed by a specified formation rule,
as the leader agent independently tracks a known reference
trajectory, «;. Formally, taking §; € R"™ to be the desired
(goal) state of the i follower agent (i = 1,2,..., N), given
by the formation specification, and ; to be the i agent’s
actual state, the formation tracking problem is to find a u;
that drives the i follower agent so that

loe;(t) — @i(t)]| = l|dijl| = bij, Vj €Ny, VE=0, (3)
and a wy, that drives the leader such that
Jim [z (t) — 7 (1)]| = 0, )

where d;; = (§; —&;) € R" is a constant vector, with norm
57;]‘ S R+.

Recent studies [9] have argued for the representation of the
interaction in networked MAS using a three-layer multi-
graph model as opposed to the ubiquitous single-layer model
that often portrays only communication or information ex-
change. For completeness, therefore, we note here that Figure
1 depicts the connection of the agents on the communication
layer; the collaboration and information-sharing layers are
taken to be subsumed in the network.

o/

Fig. 1. An unweighted line graph on N + 1 vertices illustrating the leader-
follower network structure under consideration. For clarity, the nodes have
been renamed with the agent designations. Follower 1 (ay, ), while alike to
the other followers, is the only agent with the leader in its neighborhood
set. Clearly, the network structure is a tree and not a complete graph.

Theorem 1 (Mesbahi and Egerstedt [10]): For a connected
goal formation, encoded by the graph, Gy = (V,&y), and
a goal location set Xy = {&1,€2,...,€n}, where &; is the
goal location of the i" agent, the following formation control
scheme

@i(t) = — > (@i(t) —a(t) — (&= &)  5)
JEN;
will drive the MAS so that the agents converge to a constant
displacement of the target positions, T, i.e., for all agents,
x;(t) — & — T as t — oo.

Assumption 1: The system in (1) is autonomous, hence
associated notions of Lyapunov stability apply.

Assumption 2: The network structure of the MAS is encoded
by an unweighted, connected, and static graph, i.e., neither
V nor £ are time-dependent.

Assumption 3: The agents are taken to be represented by
models with exact state information, so we do not consider
the influence of noise or exogenous disturbances.
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Assumption 4: The leader is driven by an independent con-
trol (wyack), SO that it asymptotically tracks its reference,
7 (t) ¥Vt €[0,T), with T finite.

Assumption 5: There exists a positive definite matrix P €
R™*™ such that the following inequality holds:

(w; — ;)" P(f(@;) — f(w;)) <0

Vi, j=1,2,...,N and t >0, (6)

which places bounds on the relative inter-agent states of the
unforced nonlinear dynamics for the multiagent system.

Assumption 6 ([7], Remark 1): There exists a positive defi-
nite N x N matrix M such that:

ML = Iy, (7

which translates to an existence of the graph Laplacian’s
inverse and hence, the connectivity of the associated graph
(see Lemma 1).

III. MAIN RESULT: CONSENSUS-BASED FORMATION
MAINTENANCE ALGORITHM

h

Suppose Assumption 4 holds. We define the "™ consensus

€rror as:

e, = Z Alj(wz - :Ilj). (8)
JEN;

Then, from Theorem 1, the inter-agent distance constraints

(together with the tracking requirement) can be achieved by

respectively selecting the following control law for the i

follower and leader:

wi(t) = —g7 (z:(t))Ples(t) +dy), i =1,2,...,N, (9
ur(t) = —g" (zr(t))Pler(t) + dr) + ek, (10)
where d; = > d;;, and P satisfies (6).

JEN;
Remark 1: We will show that, with (9), the follower agents
reach consensus (asymptotically) on the inter-agent distances
specified by the formation rule. That is, we can think of
the consensus error as converging to the prescribed agent-to-
agent distances (as opposed to zero in the nominal consensus
case), which implies asymptotic decay of the formation error.
Also notice that, since Ni, = {a, }, the leader is driven by a
control signal (10) that balances the tracking and formation
maintenance requirements.

To prove the validity of this result, we first define the
following ensemble notation (for the follower-only network):

e=[ol of .. af] €BR™.
T

e=lel e .. e erM, (12)
T

u=|uf Wl ... uf] eRY a3

NnXxXNm
g(xN)} ) €R (14)7
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F(z) = {fT(ml) fh () fT(mN)}T eRY,

15)
and -
d=ldf df di| e R (16)
We can then write (9) as:
u(t) = -G (z(t)) Iy @ P)(e(t) +d), (17
with the equation
& = F(z) + G(a)u (18)

representing the ensemble dynamics of the MAS in block
notation. With this block formulation, it is easy to see that
e in (12) satisfies the following dynamical equation:

e=(LoI,)z= (LI, (F(z)+ Gx)u).

Next, we introduce key lemmas (mostly adapted from [7])
which will be useful for proving the results to follow.

19)

Lemma 1 ([10]): For a connected leader-follower graph on
N + 1 vertices with one leader and N followers, if £ €
RN*N s the Laplacian corresponding to the follower net-
work, then £ is real, symmetric, and positive definite, with
its eigenvalues related by: 0 < A1 < Ay < -+ < Ap.

Lemma 2 (Schur Complement Lemma [11]): For any real
and symmetric matrix K = [ﬁi I’gz], with Ky = K%,
the following statements are equivalent: (i) K < 0; (ii)
K, < 0, KI, - KLK 'K, < 0; (iii) Ky < 0,
K, - K3 K, K], < 0.

Lemma 3 ([7]): For a connected graph G with Laplacian
L and adjacency matrix A = [A;;], for any h =
[RTRT .. hE)T and k = [kTKT ... EL]T in RV,

N N
2h" (L@ L)k =YY Ay(hi —h;)" (ki — kj). (20)
i=1 j=1
Lemma 4: If Assumptions 2 and 5 hold, then:

(e+ d)T(IN ® P)F(x) <0.
Proof: (Motivated by [7]) From (15), we can write
(In ® P)F(x)

2y

@ frap . anp] @
£ FP (). (23)
From the left-hand side of (21), it follows that:
(e+d)"(Iy @ P)F(x)
= (e+d)TFP(x)
=("(cel,)+d")FP(x) (24)

Invoking Lemma 3, we can write (24) as:

(e+d)(Iy ® P)F(x)

1 N N
= 5 ZZA”(QI% — ZCJ)TP(f(xl) - f(ﬂ?]))

i=1 j=1
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+ Y dLP(f(zi) — f(x))), (25)

JEN;

which is < 0 by Assumption 5 and since A;; > 0V 4,j =
1,2,..., N under Assumption 2. |

Theorem 2: Suppose Assumptions 2 and 5 hold. With the
control defined in (9), the followers in the MAS will even-
tually converge to states respecting (3).

Proof: (Motivated by [7]) We begin the proof by select-
ing the Lyapunov function candidate:

V= 1(e(zs) +d)T(M @ P)(e(t) + d),

5 (26)

where P and M are as previously defined in Assumptions
(5) and (6), respectively. Then, omitting the time and x
arguments for conciseness, we can write the time derivative
of V' along the trajectories of the closed-loop system as:

V=(e+d)T(MxP)e 27
=(e+d)' (M ® P)(L®I,)(F + Gu) (28)
=(e+d)(ML®I,)(Iy® P)(F+Gu). (29)

By (17) and under Assumption 6, we can then write:

V =(e+d)"(Iy @ P)(F + Gu) (30)

V=(+d"(IyeP)F
—(e+d)T(Iy® P)GGT(Iy ® P)(e+d). (31)

By Lemma 4 and since the second term of (31) is always
negative, it follows that V < 0. Thus, the Lyapunov function
(26) will decrease along the trajectories of the closed-loop
system, which implies (local) asymptotic stability of the
equilibrium point of (19). Since, with the change of variables
z(t) = e(t) + d, it is easy to see that 2 = é. Thus, from
(31) and (19), it follows that z(t) — 0, as t — co —>
lle(t)|] — ||d|| as t — oo, thus completing the proof. [ |

Corollary 1: Define the formation error for (18) as f(t) =
d — e(t). Since |le(t)]| — ||d|| as t — oo, it immediately
follows that ||f(¢)|| — ||d —d|| = 0, as ¢ — oo, thus
confirming asymptotic decay of the MAS’s formation error.

Remark 2: For the popular case of the formation tracking
problem, where the agents’ models are linear time-invariant
systems — equivalent to setting f(x;) = Ax; and g(x;) =
B in (la), with A and B constant matrices of appropriate
dimensions (see [6] for example) — the prevailing approach
(assuming full controllability of the linear system) is to define
u; in terms of some control gain matrix K, solve for a
positive definite matrix P that satisfies the linear system’s
algebraic Riccati equation, and express K in terms of P,
e.g., K = —BT P~ The interested reader can consult [12]
for a detailed treatment on the topic.

Theorem 3: Suppose a P satisfying (6) exists. Then, it must
be the case that P also satisfies the following linear matrix

Technical Co-Sponsors: IEEE CSS, IEEE SMC, IEEE RAS & IFAC.

inequality (LMI)

0c RNnXNn PE

1 <0, (32)
Pz, —AfDT
where D € RY™*N s the matrix
0,, ifi=j
i ! {dij, otherwise, 53
Py, =Iy® P! and (34)
Af € RVN™ N is the matrix
. 0,, ifi=j
’ P\ J(&) — £(&)), otherwise,

Proof: We begin the proof by noting (from (6)) that P
must satisfy:

(& — &) P(f(&) — (&) <0
= d;P(f(&) - f(£)) 0.

By block diagonalization (as in (33) and (35)) and using the
Kronecker product, we can show that (37) is equivalent to

(36)
(37

DT(Iy ® P)Af <0, (38)
with D and A f already defined. Invoking Lemma 2, it is
straightforward to show that (38) can be expressed as (32),
which ends the proof. |

Remark 3: In the preceding theorem, a change of variables
(34) was necessary, to simplify the notation and allow for
an immediate invocation of the Schur complement lemma.
However, it is trivial to show that the original matrix of
interest (P) can be readily obtained from the uppermost-left
nxn block of Pﬁ}i.lWe are also guaranteed a factorization of

the form Py,, = P2, P2, since Py, > 0 and ® preserves
positive definiteness.

We now present the following algorithm for formation main-
tenance. T% and «;(0) are the total number of unity-spaced
time steps (in [0, 7'], for a given interval) and the initial state
of the i follower agent, respectively.

Algorithm 1 Formation Maintenance Algorithm

Inputs: Dv Af, N, Nia Av 5ta g()v f()v ml(o)’ :BL(k)
Outputs : P,e;(k),z;(k); 1=1,2,...,N
Solve (32) for Py,, and obtain P (see Remark 3)
for k<0 to T% do
fori< 1 to N do
Calculate e; from (8)
Substitute P and e; from above steps in (9)
xi(k+1) < f(xi(k)) + g(z:(k))u; (k)
end for
end for
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TABLE I
QUADROTOR PARAMETERS
Parameter Mass Arm Length Iza Iyy I..
kg m 10~5 kg- m?
Value 0.028 0.046 6.4893 16.4562 29.5435

IV. FORMATION SPECIFICATION

This section follows our previous work [13]; however, here,
the position of 7" agent is in R? and not the plane. As in
[13], we consider a triangular formation (with one leader
and three followers) and also assume this formation to be
feasible and rigid (in the sense of [10], §6), and invariant to

homogeneous transformations, with appropriate dimensions.

V. SIMULATION EXAMPLE

As an example, consider the following dynamics for a six
degrees-of-freedom quadrotor, adapted from [14] and de-
scribed here (for brevity) using the Newton-Euler equations:

pr =vr

1

vz = fr (39)
(2 =Tiws

wp =J Y1 —ws x Jwg),

where the variables subscripted by Z represent quantities in
the inertial frame, while those with a B subscript pertain
to the quadrotor’s body frame. p;r = [#v2]" and vy =
[ve vy vz]T are, respectively, vectors of the X, Y, and
Z positions and linear velocities of the quadrotor, {7z =
[60v]" is the quadrotor’s attitude vector (of roll, pitch,
and yaw angles), while wg = [par]’ is the vector of
corresponding body-frame attitude rates. The parameters m,
J = diag([Is= Iyy 1::]), and g, represent the mass, inertia
matrix, and acceleration due to gravity, respectively. Finally,
fr = [ 1 f%]T and 73 = [7= 7y 7=]" are, respectively,
vectors of the total thrust force ( f}) and torques (about the
roll, pitch, and yaw axes) applied to the quadrotor, while
Tz € R3*3 is a matrix that transforms the body-frame
angular velocities to the inertial frame.

It has been shown in [15] that the model in (39) can be
expressed as a control-affine nonlinear system (la), but we
will skip the details to adhere to page limits. To simulate
the quadrotor dynamics, we select the parameters of the
Crazyflie 2.1 quadcopter (Table I), adapted from [16]. With
some calculations, it can be verified that P = Iy, satis-
fies (38). For numerical simulation, we take the leader’s
trajectory tracking law, wyacx (see Assumption 4), to be a
trajectory-error minimizing control law, after the manner of
[13]. We also select a loop (figure eight) trajectory and set
x1(0) = T1imas 2(0) = Tama, £3(0) = XT3ma, 61 = 1 m,
and 915 = 913 = 0.8 m. ®1md, Tomd, and x3mg are random
initial state vectors for the first, second, and third followers,
respectively.

VI. NUMERICAL RESULTS & DISCUSSION

As a prelude to discussing the consensus-based formation
tracking results, Fig. 2a shows the trajectory tracking per-
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formance of the leader. Here, we see that the independent
optimal control algorithm drives the leader (from an arbi-
trary initial state) so that it accurately tracks the desired
trajectory, thus satisfying Assumption 4. In Fig. 2b, the
trajectory tracking and formation maintenance results are
presented. Here, it is clear that under the consensus-derived
control law, the trajectories of the followers closely track
that of the leader resulting in tight trajectory tracking with
formation persistence. Finally, to give a numerical sense of
the formation tracking performance of our proposed control
scheme, we present the tracking and formation errors of
the MAS on Table II, with corresponding plots depicted on
Figs. 3a and 3b. These errors are given in terms of the root-
mean-square error (RMSE) between the leader and reference
trajectories and the RMSE between the desired and actual
inter-agent distances for each follower agent, respectively.
As expected, the consensus protocol yields almost negligible
formation errors, when viewed alone and also in comparison
with errors obtained via a formation tracking approach based
solely on optimization.

TABLE I
TRACKING AND FORMATION ERRORS (RMSE)

Agent Leader Follower 1 Follower 2 Follower 3
RMSE (consensus) 0.186  9.289x10 17  7.692x10~17  5207x10~17
RMSE (optimization) 0.186 0.0302 7.692x10~17 0.018

VII. CONCLUSIONS

In sum, we presented results on consensus-based formation
tracking for a general class of nonlinear systems — control-
affine systems with a state-dependent drift term — and
showed that, even with the MAS sharing information via
a network topology encoded by a tree, precise formation
tracking was still achieved. While our method delivers ex-
cellent formation tracking for a nonlinear system with a
high-dimensional state space, such near-perfect performance
is expected since we have assumed perfect knowledge of
the agents’ states. Thus, for the more interesting case where
agents have uncertain dynamics, the development of similar
control laws remains an open challenge. We look forward to
exploring this direction in future research.
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