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Abstract— In the typical multiagent formation tracking problem
centered on consensus, the prevailing assumption in the litera-
ture is that the agents’ nonlinear models can be approximated
by integrator systems, by their feedback-linearized equivalents,
or by dynamics composed of deterministic linear and nonlinear
terms. The resulting approaches associated with such assump-
tions, however, are hardly applicable to general nonlinear
systems. To this end, we present consensus-based control laws
for multiagent formation tracking in finite-dimensional state
space, with the agents represented by a more general class
of dynamics: control-affine nonlinear systems. The agents also
exchange information via a leader-follower communication
topology modeled as an undirected and connected graph with a
single leader node. By leveraging standard tools from algebraic
graph theory and Lyapunov analysis, we first derive a locally
asymptotically stabilizing formation tracking law. Next, to
demonstrate the effectiveness of our approach, we present
results from numerical simulations of an example in robotics.
These results — together with a comparison of the formation
errors obtained with our approach and those realized via an
optimization-based method — further validate our theoretical
propositions.

Index Terms— multiagent systems, consensus, formation con-
trol, control-affine nonlinear systems

I. INTRODUCTION

Multiagent formation tracking — the task of controlling a

group of dynamic units (or agents) to maintain a desired

formation while following a reference trajectory — has risen

to become evidently one of the most popular topics in

cooperative control and related fields, owing to its numerous

practical applications. The formation tracking problem is

distinct from the nominal formation control problem (where

the focus instead is only on the agents converging to a desired

formation) and has traditionally been tackled using ideas

from fields such as learning theory, graph theory, optimiza-

tion, and control theory, to name a handful. However, studies

featuring methods from the aforementioned areas typically

consider the agents’ dynamic models as linear systems

— a common simplification from their general and more

complex nonlinear representations. Within the consensus

control domain particularly, several research articles [1], [2]

have studied the formation tracking problem, following the

seminal work of [3]. These studies have been mostly adhoc,
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however, extending the aforementioned ideas to only time-

invariant linear systems or systems with dynamics compris-

ing deterministic linear and nonlinear terms. Unfortunately,

the control schemes designed under these approximations

are largely not generalizable and cannot be extended to the

nonlinear case as a result. This significant research gap thus

motivates the need for results applicable to a more general

class of systems.

A. Prior Work

Results demonstrating the application of consensus to for-

mation control for nonlinear systems began to appear fairly

recently, starting in [4], which featured a consensus-based

event-triggered control scheme, with the agents represented

by nonlinear systems with a scalar control coefficient. Fol-

lowing that, in a closely-related work [5], the authors laid

down consensus-based formation control laws for a class

of nonlinear multiagent systems — with models similar

to those studied in [4]. More recently, consensus-based

formation control laws were given in [6], but for nonlinear

systems with linear-in-state drift terms. In our work, we

derive original locally asymptotically stable consensus-based

formation tracking laws for a more general class of nonlinear

systems — affine-in-control systems with a state-dependent

drift term. Following [7], [8], we present general consensus

control rules that guarantee asymptotic decay of the forma-

tion error of the multiagent system (MAS). In contrast to

the aforementioned studies, we apply the agreement protocol

to the problem of formation tracking, where the agents are

modeled by general control-affine nonlinear systems.

B. Main Contributions

We contribute the following to the state of the art

in consensus-based formation tracking: (i) an original

consensus-based formation tracking control scheme — for

control-affine nonlinear systems — that guarantees asymp-

totic convergence of each agent’s consensus error to the

corresponding relative state, thus preserving the formation

(Section III), and (ii) numerical formation tracking simula-

tions that juxtapose the performance of our approach with

that obtained by an optimization-based method (Section V).

II. NOTATION & MATHEMATICAL PRELIMINARIES

Throughout, we denote vectors and matrices with boldface

font (e.g., x and A), with corresponding elements in regular

italicized font, i.e., xi denotes the ith element of the vector

x, while Aij is the element occupying the ith row and jth

column of A. AT denotes the transpose of matrix A, × (in

the context of three-dimensional vectors) represents the cross
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product, and ⊗ is the standard Kronecker product operator.

Unless otherwise noted, In is the n× n identity matrix, κn

is the vector [ κ κ ... κ ]
T

∈ R
n, with κ ∈ R, and ||x|| =

(
∑n

i=1
(xi)

2)
1

2 is the vector Euclidean norm. diag([⋆i]i∈I) is

the |I| × |I| diagonal matrix, with I an index set. The ith

block, ⋆i, can either be a scalar, vector, or matrix, and will

be clear from the context. R+ is the set {α ∈ R | α > 0}.

To set the stage for the theoretical framework and problem

formulation to follow, we now introduce several key lemmas,

definitions, and theorems, to be invoked in the proofs to

come.

Definition 1 (Control-Affine Nonlinear System): A control-

affine nonlinear system is the system (here subscripted by

i to represent the ith agent for notational cohesion):

ẋi = f(xi) + g(xi)ui (1a)

yi = h(xi), (1b)

where xi ∈ X ⊂ R
n, ui ∈ U ⊆ R

m, and yi ∈ R
q are,

respectively, the state, control, and output vectors, with m not

necessarily equal to q. f(·), g(·), and h(·) are, respectively,

the drift and control vector fields, and the output map —

with appropriate dimensions — which are assumed to be

sufficiently-smooth functions (Cn;n ≥ 1), with f(0n) = 0n,

so that xi = 0n is an open-loop equilibrium point of

(1), and h(0n) = 0q . X is a compact set containing 0n,

while admissible control signals take values in the set, U ,

of piecewise continuous and absolutely-integrable functions,

i.e., the set {ui(t) |
∫ t

0
|ui(τ)|dτ < ∞}.

Definition 2 (Graph Theory): An undirected, finite, graph

(hereafter graph) G is the tuple (V , E), with V equal to

the non-empty set {v1, v2, . . . , vk} of k distinct elements,

called nodes or vertices and E (the edge set) ⊆ V × V =
{{vi, vj} | vi, vj ∈ V}. The graph is weighted if there exists

a map w : E 7→ R that associates to each edge, a real

number, denoted as wij . It is unweighted otherwise. A path

is a sequence of distinct vertices v1, v2, . . . , vm, where every

consecutive pair of vertices (i.e., vi and vi+1; i = 1, . . . ,m)

is joined by an edge in E . A graph is connected if every

node in the graph is connected to every other node by a path;

the graph is disconnected otherwise. The neighborhood set,

Ni, is the set {vj ∈ V | {vi, vj} ∈ E , j 6= i}. The graph

adjacency and Laplacian matrices (denoted, respectively, as

A(G) and L(G)) associated with G, are the matrices:

A(G) = [Aij ], where Aij =

{

1, if {vi, vj} ∈ E

0, otherwise
(2a)

L(G) = [Lij ], where Lij =











∑

j∈Ni

Aij , if i = j

−Aij , otherwise.

(2b)

Hereafter, for brevity, we shall drop the G argument in the

notations for the adjacency matrix and graph Laplacian.

Definition 3 (Leader-Follower Formation Tracking):

Consider an interconnected system of N + 1 identical

agents — each with dynamics described by (1a) — on

the (connected) line graph depicted in Figure 1. For

convenience, let the MAS comprise a single leader (with

index L) and N followers. The formation tracking problem

is to synthesize controls, ui, under which the follower

agents converge to states that respect the inter-agent

distance constraints imposed by a specified formation rule,

as the leader agent independently tracks a known reference

trajectory, xr
L. Formally, taking ξi ∈ R

n to be the desired

(goal) state of the ith follower agent (i = 1, 2, . . . , N ), given

by the formation specification, and xi to be the ith agent’s

actual state, the formation tracking problem is to find a ui

that drives the ith follower agent so that

||xj(t)− xi(t)|| = ||dij || = δij , ∀ j ∈ Ni, ∀ t ≥ 0, (3)

and a uL that drives the leader such that

lim
t→∞

||xL(t)− xr
L(t)|| = 0, (4)

where dij = (ξj − ξi) ∈ R
n is a constant vector, with norm

δij ∈ R+.

Recent studies [9] have argued for the representation of the

interaction in networked MAS using a three-layer multi-

graph model as opposed to the ubiquitous single-layer model

that often portrays only communication or information ex-

change. For completeness, therefore, we note here that Figure

1 depicts the connection of the agents on the communication

layer; the collaboration and information-sharing layers are

taken to be subsumed in the network.

aL af1 af2 afN

Fig. 1. An unweighted line graph on N+1 vertices illustrating the leader-
follower network structure under consideration. For clarity, the nodes have
been renamed with the agent designations. Follower 1 (af1 ), while alike to
the other followers, is the only agent with the leader in its neighborhood
set. Clearly, the network structure is a tree and not a complete graph.

Theorem 1 (Mesbahi and Egerstedt [10]): For a connected

goal formation, encoded by the graph, Gf = (V, Ef ), and

a goal location set Xf = {ξ1, ξ2, . . . , ξN}, where ξi is the

goal location of the ith agent, the following formation control

scheme

ẋi(t) = −
∑

j∈Ni

(xi(t)− xj(t))− (ξi − ξj) (5)

will drive the MAS so that the agents converge to a constant

displacement of the target positions, τ , i.e., for all agents,

xi(t)− ξi → τ as t → ∞.

Assumption 1: The system in (1) is autonomous, hence

associated notions of Lyapunov stability apply.

Assumption 2: The network structure of the MAS is encoded

by an unweighted, connected, and static graph, i.e., neither

V nor E are time-dependent.

Assumption 3: The agents are taken to be represented by

models with exact state information, so we do not consider

the influence of noise or exogenous disturbances.
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Assumption 4: The leader is driven by an independent con-

trol (utrack), so that it asymptotically tracks its reference,

xr
L(t) ∀ t ∈ [0, T ], with T finite.

Assumption 5: There exists a positive definite matrix P ∈
R

n×n such that the following inequality holds:

(xi − xj)
TP (f(xi)− f(xj)) ≤ 0

∀ i, j = 1, 2, . . . , N and t ≥ 0, (6)

which places bounds on the relative inter-agent states of the

unforced nonlinear dynamics for the multiagent system.

Assumption 6 ([7], Remark 1): There exists a positive defi-

nite N ×N matrix M such that:

ML = IN , (7)

which translates to an existence of the graph Laplacian’s

inverse and hence, the connectivity of the associated graph

(see Lemma 1).

III. MAIN RESULT: CONSENSUS-BASED FORMATION

MAINTENANCE ALGORITHM

Suppose Assumption 4 holds. We define the ith consensus

error as:

ei =
∑

j∈Ni

Aij(xi − xj). (8)

Then, from Theorem 1, the inter-agent distance constraints

(together with the tracking requirement) can be achieved by

respectively selecting the following control law for the ith

follower and leader:

ui(t) = −gT (xi(t))P (ei(t) + di), i = 1, 2, . . . , N, (9)

uL(t) = −gT (xL(t))P (eL(t) + dL) + utrack, (10)

where di =
∑

j∈Ni
dij , and P satisfies (6).

Remark 1: We will show that, with (9), the follower agents

reach consensus (asymptotically) on the inter-agent distances

specified by the formation rule. That is, we can think of

the consensus error as converging to the prescribed agent-to-

agent distances (as opposed to zero in the nominal consensus

case), which implies asymptotic decay of the formation error.

Also notice that, since NL = {af1}, the leader is driven by a

control signal (10) that balances the tracking and formation

maintenance requirements.

To prove the validity of this result, we first define the

following ensemble notation (for the follower-only network):

x =
[

xT
1 xT

2 . . . xT
N

]T

∈ R
Nn, (11)

e =
[

eT1 eT2 . . . eTN

]T

∈ R
Nn, (12)

u =
[

uT
1 uT

2 . . . uT
N

]T

∈ R
Nm, (13)

G(x) = diag
( [

g(x1) g(x2) . . . g(xN )
] )

∈ R
Nn×Nm,

(14)

F (x) =
[

fT (x1) fT (x2) . . . fT (xN )
]T

∈ R
Nn,

(15)

and

d =
[

dT
1 dT

2 . . . dT
N

]T

∈ R
Nn. (16)

We can then write (9) as:

u(t) = −GT (x(t))(IN ⊗ P )(e(t) + d), (17)

with the equation

ẋ = F (x) +G(x)u (18)

representing the ensemble dynamics of the MAS in block

notation. With this block formulation, it is easy to see that

e in (12) satisfies the following dynamical equation:

ė = (L⊗ In)ẋ = (L⊗ In)(F (x) +G(x)u). (19)

Next, we introduce key lemmas (mostly adapted from [7])

which will be useful for proving the results to follow.

Lemma 1 ([10]): For a connected leader-follower graph on

N + 1 vertices with one leader and N followers, if L ∈
R

N×N is the Laplacian corresponding to the follower net-

work, then L is real, symmetric, and positive definite, with

its eigenvalues related by: 0 < λ1 ≤ λ2 ≤ · · · ≤ λN .

Lemma 2 (Schur Complement Lemma [11]): For any real

and symmetric matrix K =
[

K11 K12

K21 K22

]

, with K21 = KT
12,

the following statements are equivalent: (i) K < 0; (ii)

K11 < 0, KT
22 − KT

12K
−1
11 K12 < 0; (iii) K22 < 0,

KT
11 −K12K

−1
22 KT

12 < 0.

Lemma 3 ([7]): For a connected graph G with Laplacian

L and adjacency matrix A = [Aij], for any h =
[hT

1 h
T
2 . . .hT

N ]T and k = [kT
1 k

T
2 . . .kT

N ]T in R
Nn,

2hT (L⊗ In)k =

N
∑

i=1

N
∑

j=1

Aij(hi − hj)
T (ki − kj). (20)

Lemma 4: If Assumptions 2 and 5 hold, then:

(e+ d)T (IN ⊗ P )F (x) ≤ 0. (21)

Proof: (Motivated by [7]) From (15), we can write

(IN ⊗ P )F (x)

=
[

fT (x1)P fT (x2)P . . . fT (xN )P
]T

(22)

, FP (x). (23)

From the left-hand side of (21), it follows that:

(e+ d)T (IN ⊗ P )F (x)

= (e+ d)TFP (x)

= (xT (L⊗ In) + dT )FP (x) (24)

Invoking Lemma 3, we can write (24) as:

(e+ d)T (IN ⊗ P )F (x)

=
1

2

N
∑

i=1

N
∑

j=1

Aij(xi − xj)
TP (f(xi)− f(xj))
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+
∑

j∈Ni

dT
ijP (f(xi)− f(xj)), (25)

which is ≤ 0 by Assumption 5 and since Aij ≥ 0 ∀ i, j =
1, 2, . . . , N under Assumption 2.

Theorem 2: Suppose Assumptions 2 and 5 hold. With the

control defined in (9), the followers in the MAS will even-

tually converge to states respecting (3).

Proof: (Motivated by [7]) We begin the proof by select-

ing the Lyapunov function candidate:

V =
1

2
(e(t) + d)T (M ⊗ P )(e(t) + d), (26)

where P and M are as previously defined in Assumptions

(5) and (6), respectively. Then, omitting the time and x

arguments for conciseness, we can write the time derivative

of V along the trajectories of the closed-loop system as:

V̇ = (e+ d)T (M ⊗ P )ė (27)

= (e+ d)T (M ⊗ P )(L⊗ In)(F +Gu) (28)

= (e+ d)T (ML⊗ In)(IN ⊗ P )(F +Gu). (29)

By (17) and under Assumption 6, we can then write:

V̇ = (e+ d)T (IN ⊗ P )(F +Gu) (30)

V̇ = (e+ d)T (IN ⊗ P )F

− (e+ d)T (IN ⊗ P )GGT (IN ⊗ P )(e+ d). (31)

By Lemma 4 and since the second term of (31) is always

negative, it follows that V̇ ≤ 0. Thus, the Lyapunov function

(26) will decrease along the trajectories of the closed-loop

system, which implies (local) asymptotic stability of the

equilibrium point of (19). Since, with the change of variables

z(t) = e(t) + d, it is easy to see that ż ≡ ė. Thus, from

(31) and (19), it follows that z(t) → 0n as t → ∞ =⇒
||e(t)|| → ||d|| as t → ∞, thus completing the proof.

Corollary 1: Define the formation error for (18) as f(t) =

d − e(t). Since ||e(t)|| → ||d|| as t → ∞, it immediately

follows that ||f(t)|| → ||d − d|| = 0, as t → ∞, thus

confirming asymptotic decay of the MAS’s formation error.

Remark 2: For the popular case of the formation tracking

problem, where the agents’ models are linear time-invariant

systems — equivalent to setting f(xi) = Axi and g(xi) =
B in (1a), with A and B constant matrices of appropriate

dimensions (see [6] for example) — the prevailing approach

(assuming full controllability of the linear system) is to define

ui in terms of some control gain matrix K, solve for a

positive definite matrix P that satisfies the linear system’s

algebraic Riccati equation, and express K in terms of P ,

e.g., K = −BTP−1. The interested reader can consult [12]

for a detailed treatment on the topic.

Theorem 3: Suppose a P satisfying (6) exists. Then, it must

be the case that P also satisfies the following linear matrix

inequality (LMI)





0 ∈ R
Nn×Nn P̄

1

2

Nn

P̄
1

2

Nn −∆fDT



 ≤ 0, (32)

where D ∈ R
Nn×N is the matrix

[dij ], with dij =

{

0n, if i = j

dij , otherwise,
(33)

P̄Nn = IN ⊗ P−1, and (34)

∆f ∈ R
Nn×N is the matrix

[δfij ], with δfij =

{

0n, if i = j

f(ξi)− f(ξj), otherwise.
(35)

Proof: We begin the proof by noting (from (6)) that P

must satisfy:

(ξi − ξj)
TP (f(ξi)− f(ξj)) ≤ 0 (36)

=⇒ dT
ijP (f(ξi)− f(ξj)) ≤ 0. (37)

By block diagonalization (as in (33) and (35)) and using the

Kronecker product, we can show that (37) is equivalent to

DT (IN ⊗ P )∆f ≤ 0, (38)

with D and ∆f already defined. Invoking Lemma 2, it is

straightforward to show that (38) can be expressed as (32),

which ends the proof.

Remark 3: In the preceding theorem, a change of variables

(34) was necessary, to simplify the notation and allow for

an immediate invocation of the Schur complement lemma.

However, it is trivial to show that the original matrix of

interest (P ) can be readily obtained from the uppermost-left

n×n block of P̄−1

Nn. We are also guaranteed a factorization of

the form P̄Nn = P̄
1

2

NnP̄
1

2

Nn, since P̄Nn ≻ 0 and ⊗ preserves

positive definiteness.

We now present the following algorithm for formation main-

tenance. TΣ and xi(0) are the total number of unity-spaced

time steps (in [0, T ], for a given interval) and the initial state

of the ith follower agent, respectively.

Algorithm 1 Formation Maintenance Algorithm

Inputs: D,∆f,N,Ni,A, δt, g(·), f(·), xi(0), xL(k)
Outputs : P , ei(k),xi(k); i = 1, 2, . . . , N
Solve (32) for P̄Nn and obtain P (see Remark 3)

for k ← 0 to TΣ do

for i ← 1 to N do

Calculate ei from (8)

Substitute P and ei from above steps in (9)

xi(k + 1) ← f(xi(k)) + g(xi(k))ui(k)
end for

end for
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TABLE I

QUADROTOR PARAMETERS

Parameter
Mass Arm Length Ixx Iyy Izz

kg m 10−6 kg· m2

Value 0.028 0.046 6.4893 16.4562 29.5435

IV. FORMATION SPECIFICATION

This section follows our previous work [13]; however, here,

the position of ith agent is in R
3 and not the plane. As in

[13], we consider a triangular formation (with one leader

and three followers) and also assume this formation to be

feasible and rigid (in the sense of [10], §6), and invariant to

homogeneous transformations, with appropriate dimensions.

V. SIMULATION EXAMPLE

As an example, consider the following dynamics for a six

degrees-of-freedom quadrotor, adapted from [14] and de-

scribed here (for brevity) using the Newton-Euler equations:

ṗI = vI

v̇I =
1

m
fI

ζ̇I = T I

B
ωB

ω̇B = J−1(τB − ωB × JωB),



























(39)

where the variables subscripted by I represent quantities in

the inertial frame, while those with a B subscript pertain

to the quadrotor’s body frame. pI = [ x y z ]
T

and vI =
[ vx vy vz ]

T
are, respectively, vectors of the X , Y , and

Z positions and linear velocities of the quadrotor, ζI =
[ φ θ ψ ]

T
is the quadrotor’s attitude vector (of roll, pitch,

and yaw angles), while ωB = [ p q r ]
T

is the vector of

corresponding body-frame attitude rates. The parameters m,

J = diag([ Ixx Iyy Izz ]), and g, represent the mass, inertia

matrix, and acceleration due to gravity, respectively. Finally,

fI = [ ft
I

ft
I

ft
I ]

T
and τB = [ τx τy τz ]

T
are, respectively,

vectors of the total thrust force (f t
I

) and torques (about the

roll, pitch, and yaw axes) applied to the quadrotor, while

T I

B
∈ R

3×3 is a matrix that transforms the body-frame

angular velocities to the inertial frame.

It has been shown in [15] that the model in (39) can be

expressed as a control-affine nonlinear system (1a), but we

will skip the details to adhere to page limits. To simulate

the quadrotor dynamics, we select the parameters of the

Crazyflie 2.1 quadcopter (Table I), adapted from [16]. With

some calculations, it can be verified that P = I12 satis-

fies (38). For numerical simulation, we take the leader’s

trajectory tracking law, utrack (see Assumption 4), to be a

trajectory-error minimizing control law, after the manner of

[13]. We also select a loop (figure eight) trajectory and set

x1(0) = x1rnd, x2(0) = x2rnd, x3(0) = x3rnd, δL1 = 1 m,

and δ12 = δ13 = 0.8 m. x1rnd, x2rnd, and x3rnd are random

initial state vectors for the first, second, and third followers,

respectively.

VI. NUMERICAL RESULTS & DISCUSSION

As a prelude to discussing the consensus-based formation

tracking results, Fig. 2a shows the trajectory tracking per-

formance of the leader. Here, we see that the independent

optimal control algorithm drives the leader (from an arbi-

trary initial state) so that it accurately tracks the desired

trajectory, thus satisfying Assumption 4. In Fig. 2b, the

trajectory tracking and formation maintenance results are

presented. Here, it is clear that under the consensus-derived

control law, the trajectories of the followers closely track

that of the leader resulting in tight trajectory tracking with

formation persistence. Finally, to give a numerical sense of

the formation tracking performance of our proposed control

scheme, we present the tracking and formation errors of

the MAS on Table II, with corresponding plots depicted on

Figs. 3a and 3b. These errors are given in terms of the root-

mean-square error (RMSE) between the leader and reference

trajectories and the RMSE between the desired and actual

inter-agent distances for each follower agent, respectively.

As expected, the consensus protocol yields almost negligible

formation errors, when viewed alone and also in comparison

with errors obtained via a formation tracking approach based

solely on optimization.

TABLE II

TRACKING AND FORMATION ERRORS (RMSE)

Agent Leader Follower 1 Follower 2 Follower 3

RMSE (consensus) 0.186 9.289×10−17 7.692×10−17 5.207×10−17

RMSE (optimization) 0.186 0.0302 7.692×10−17 0.018

VII. CONCLUSIONS

In sum, we presented results on consensus-based formation

tracking for a general class of nonlinear systems — control-

affine systems with a state-dependent drift term — and

showed that, even with the MAS sharing information via

a network topology encoded by a tree, precise formation

tracking was still achieved. While our method delivers ex-

cellent formation tracking for a nonlinear system with a

high-dimensional state space, such near-perfect performance

is expected since we have assumed perfect knowledge of

the agents’ states. Thus, for the more interesting case where

agents have uncertain dynamics, the development of similar

control laws remains an open challenge. We look forward to

exploring this direction in future research.
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