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Abstract—We consider the tradeoff between resource efficiency
and performance isolation that emerges when multiplexing the
resource demands of Network Slices (NSs). On the one hand,
multiplexing allows the use of idle resources, which increases
resource efficiency. On the other hand, the performance of each
NS becomes susceptible to traffic surges in other NSs, which
degrades performance isolation. The analysis of this tradeoff
enables network operators to determine the effect of performance
isolation on the operating cost of each NS.

To study the tradeoff, we solve an optimization problem where
we find the multiplexing policy that requires the least provisioned
resources to honor the Service Level Agreements (SLAs) of all
NSs. The SLA of each NS i states that its resource demand should
be met for PH

i fraction of time, and for PL
i ≤ PH

i fraction of
time, it should be met regardless of the demands of other NSs.

For resource demands that follow ergodic Markov chains, we
show that the well-known Max-Weight scheduler is an optimal
multiplexing policy. Since the Max-Weight scheduler does not
require any knowledge of the statistics of the resource demands,
we also propose its use in non-markovian settings. For resource
demands obtained in the LTE module of ns-3, we show that
the Max-Weight scheduler reduces the provisioned bandwidth
by 36.2% when no performance isolation is required. Lastly,
for these non-markovian resource demands, the Max-Weight
scheduler maintains its optimality since it requires as much
provisioned bandwidth as the best non-causal scheduler.

Index Terms—network slicing, multiplexing, sharing, over-
booking, isolation, Lyapunov optimization, 5G, LTE, ns-3

I. INTRODUCTION

Future cellular networks need to serve a wide variety of ap-

plications. Examples include the traffic control of autonomous

vehicles in intersections, the communications between ambu-

lances and hospitals, and augmented reality. Such applications

prioritize different types of Quality of Service (QoS) such as

high reliability, low packet delays or high bitrates.

These applications may be requested by different companies

that may also require strict guarantees regarding the delivery of

the desired QoS to their application. Therefore, each company

can be viewed as a ”tenant” in the cellular network that forms

a Service Level Agreement (SLA) with the Network Operator

(NO) for the expected QoS delivered to their application.

The above paradigm requires a cellular network that pro-

vides varying types of QoS with strict guarantees as stated
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in SLAs. This requirement has led to the emergence of net-

work slicing, where the physical infrastructure of the cellular

network is “sliced” to create multiple virtual networks called

Network Slices (NSs). Each NS is an end-to-end network span-

ning over the Radio Access Network (RAN), the Transport

Network (TN), and the Core Network (CN).

To provide various types of QoS, the NO composes each

NS using custom network functions that match the needs

of its application. For instance, each NS may use its own

Medium Access Control (MAC) scheduler in the RAN, routing

policies in the TN and CN, and firewalls in the CN. The fast

deployment of custom network functions has been enabled by

virtualization techniques and software-defined networking.

To ensure that the SLA of each NS is honored, the NO

needs to provision in advance enough resources so that the

network functions of each NS can deliver the promised QoS.

Based on the provisioned resources, the NO can then compute

the cost of the SLA and provide a price quote to the tenant.

Resource provisioning may involve traffic forecasting for each

NS, however forecasting is out of the scope of this paper.

For instance, in the RAN, the NO may need to provision

Physical Resource Blocks (PRBs) to the MAC scheduler of

a NS to ensure high bitrates, or in the TN and CN, routing

paths to ensure high reliability.

Here, we are particularly interested in these provisioning

problems. We wish to obtain the amount of resources needed

so that the resource demand of a NS i is met for a high fraction

of time PH
i . By resource demand, we refer to the amount of

resources needed by a network function of a NS to provide

the desired QoS given its current traffic state.

An obvious solution approach is to estimate the cumulative

distribution function (cdf) of the resource demand of each

NS and provision PH
i -percentile resources for each of them.

However, since the traffic state of a NS is time-varying, its

resource demand also varies over time. Thus, provisioning

PH
i -percentile resources for each NS i is wasteful since some

resources may remain unused for PH
i fraction of time.

This observation implies that allowing the unused provi-

sioned resources of a NS i to be used by some other NS j may

reduce the overall provisioned resources. Thus, it is beneficial

to consider a scheduler that multiplexes the resource demands

of NSs. Hence, the fulfillment of the SLAs in network slicing

involves a joint scheduling and resource provisioning problem.

However, multiplexing may have negative effects on the
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performance of a NS i. For instance, suppose that a NS i relies

solely on the unused PH
i -percentile provisions of the other

NSs. Then, in case the other NSs experience unexpected traffic

surges, e.g., due to Distributed Denial of Service (DDoS)

attacks, the performance of NS i will be severely affected. This

is an undesirable outcome since tenants often require that the

performance of their NS should remain unaffected by other

NSs. This requirement is referred to as performance isolation.

Here, we quantify performance isolation as the fraction of

time PL
i that the resource demand of NS i is guaranteed to

be met regardless of the traffic state of other NSs. The higher

PL
i is, the higher the degree of isolation is. A simple solution

to provide PL
i degree of isolation to NS i is to allocate PL

i -

percentile resources that are always available to NS i if needed.

Given the above, there is a tradeoff between resource

efficiency and performance isolation. On one hand, scheduling

resource demands reduces the provisioned resources and in-

creases resource efficiency. On the other hand, heavily relying

on the unused resources of other NSs degrades performance

isolation as indicated in the previous DDoS attack example.

The analysis of this tradeoff is the main topic of this paper.

We study this tradeoff by formulating a joint scheduling and

resource provisioning optimization problem. The objective is

to minimize the provisioned resources s.t. for each NS i, its

resource demand is met for PH
i fraction of time, where for PL

i

fraction of time, it is met regardless of the traffic conditions in

other NSs. Adjusting PL
i in the above problem and computing

the provisioned resources allows us to study the tradeoff.

We primarily focus on the instance of the problem involving

the RAN part of a NS, where the network functions to be

provisioned are the MAC schedulers of each NS and the

resource demands are bandwidth demands measured in PRBs.

Nonetheless, our approach can be applied to any network

function whose resource provisioning decouples per node.

The main result of our paper is that the Max-Weight

scheduler is an optimal multiplexing policy since it requires

the least provisioned resources to satisfy the SLAs of all NSs,

when their resource demands follow an ergodic Markov Chain

(MC). To test its performance in non-markovian settings, we

obtain resource demands from the LTE module of ns-3. The

results show that the Max-Weight scheduler maintains its

optimality and achieved considerable bandwidth savings.

II. RELATED WORK

We are not the first to identify the resource efficiency vs

performance isolation tradeoff. In [1], the authors studied

the effect of overbooking strategies on resource allocation

and service violations. Specifically, the authors considered

the same PH and PL values for all NSs. Two scenarios

where investigated; perfect sharing and network slicing. In

perfect sharing, the base station (BS) simply sums the resource

demands of all NSs and provisions PH -percentile resources.

In network slicing, performance isolation is considered by

allocating dedicated PL-percentile resources to each NS. The

remaining resources needed to achieve PH − PL fraction of

time acceptance for each NS are computed based on past data.

Although their method provides significant insight, it requires

the same PH and PL value for all NSs. Also, there is no

insight on how to find the optimal multiplexing strategy.

In [2], the authors consider that the fixed provisioned

resources are more than the sum of the dedicated resources to

each NS. The remaining resources that are not dedicated to any

NS are viewed as auxiliary resources that are provided to each

NS with probabilistic guarantees. The main focus of the paper

is on overbooking strategies for the auxiliary resources. The

authors highlight the importance of forecasting and propose

interesting pricing models for this scenario. However, to ana-

lyze the tradeoff we are interested in, the joint consideration

of overbooking and resource provisioning is needed.

The authors in [3] study the effect of PH
i on the provisioned

resources by solving at each timeslot t a bandwidth mini-

mization problem. However, multiplexing is not considered

and the tradeoff cannot be fully studied. Also, solving a

separate optimization problem each timeslot t may lead to

SLA violations over time if the resource demands are not iid.

Several other works address SLA fulfillment in various

contexts. In [4], the authors present an overbooking strategy

to efficiently satisfy SLAs in end-to-end NSs and implement it

on a testbed composed of small-scale LTE BSs and OpenFlow

switches. In [5], a prediction model for each NS’s PRB usage

is developed to limit overprovisiong. Also, past literature

on cloud computing has addressed SLA fulfillment [6]–[10].

However, a clear problem formulation and solution approach

regarding the tradeoff we are interested in is still missing.

Lastly, in [11], the authors discuss the concept of isolation in

terms of performance, security, and dependability for various

network functions in the RAN, TN, and CN. In this paper, we

primarily focus on performance isolation as the title suggests.

III. SYSTEM ARCHITECTURE

We consider N NSs served by a single BS in a RAN. Each

NS may have different type of QoS requirements. For instance,

a NS may wish to upper bound the average packet delay of

its users, whereas another NS may wish to provide constant

bitrates to its users. For this reason, we also consider that NSs

may use different MAC schedulers.

Let vector W(t) = [W1(t),W2(t), ...,WN (t)] contain the

bandwidth demands at timeslot t of all N NSs. By bandwidth

demand Wi(t), we refer to the number of PRBs that the MAC

scheduler of NS i needs in order to provide the desired QoS

of NS i throughout timeslot t.
The determination of the bandwidth demand Wi(t) given

the current traffic state si(t) of NS i is not trivial, especially

for complex QoS requirements. However, for simpler QoS

metrics, it may be straightforward. For instance, suppose NS i
needs to deliver constant bitrates to each of its users. Then, the

bandwidth demand Wi(t) is computed using the Modulation

and Coding Scheme (MCS) of each user at timeslot t.
In any case, we consider that the bandwidth demand vector

W(t) is estimated at each timeslot t by a network function

called bandwidth demand estimator whose operation is outside

of the scope of this paper. Next, we consider a NS-level
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Fig. 1. In our system architecture, we consider two network functions. First,
the Bandwidth Demand Estimator observes the traffic state si(t) of a NS and
estimates the number of PRBs Wi(t) needed to meet its desired QoS. Second,
the NS-level Scheduler receives all bandwidth demands Wi(t) and decides
which ones to satisfy given the limited bandwidth at the BS. The timeslot
length depends on the timescales supported by these two network functions.

scheduler that at each timeslot t decides whether to allocate

the Wi(t) PRBs to the MAC scheduler of NS i given the

overall demand vector W(t) and the limited bandwidth at the

BS. Thus, the scheduler’s output is a binary decision vector

u(t). Figure 1 depicts the system architecture.

IV. PROBLEM FORMULATION

The overall objective of our system is to satisfy a high

percentage of the bandwidth demands W(t) over a long period

of time. Considering that ui(t) = 1 if and only if the demand

Wi(t) is met, then we wish to satisfy the following constraint:

lim inf
T→∞

1

T

T∑
t=1

ui(t) ≥ PH
i , ∀i. (1)

Constraint (1) states that NS i needs to receive its desired

QoS for a high percentage of time PH
i . This type of constraints

are known as availability constraints and are widely used

in real networks for bandwidth provisioning purposes, as in

Google’s software-defined network B4 [12].

Next, we consider that the scheduler provisions W r
i band-

width at the BS for each NS i. Therefore, regardless of the

traffic in the other NSs, the demand of NS i is always met if

it is less than W r
i . Thus, bandwidth W r

i affects the degree of

performance isolation that NS i enjoys. Here, we consider the

following performance isolation constraint:

lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤W r
i
≥ PL

i , ∀i, where PL
i < PH

i . (2)

Note that PL
i is the guaranteed percentage of time that

NS i receives its desired QoS regardless of unexpected traffic

surges in other NSs. Thus, PL
i can be viewed as the degree of

performance isolation that NS i enjoys. The values of PH
i and

PL
i are specified in the SLA between tenant i and the NO.

Next, note that since ui(t) = 1 if Wi(t) ≤ W r
i , constraint

(1) is equivalently reformulated as follows:

lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤W r
i
+ ui(t)1Wi(t)>W r

i
≥ PH

i , ∀i. (3)

Fig. 2. Whenever Wi(t) ≤ W r
i , the demand of NS i is met regardless of

traffic in other NSs. In case Wi(t) > W r
i , the scheduler may allocate the

unused resources of the other NSs to NS i. Here, the unused resources of NS
2 do not suffice for the excess demands of both NS 1 and NS 3. Thus, the
scheduler needs to decide which one to satisfy. Note that the larger W r

i is,
the less frequently NS i needs to rely on the unused resources of other NSs.
Thus, increasing W r

i increases performance isolation. However, increasing
W r

i also increases the provisioned bandwidth, hence the tradeoff.

In case Wi(t) ≤ W r
i , we allow the scheduler to allocate the

unused bandwidth provisions W r
i − Wi(t) of NS i to some

other NS j that needs it, where Wj(t) > W r
j . Thus, we allow

the scheduler to multiplex the bandwidth demands of NSs.

Note that NS i may reduce its W r
i provisions by relying

on the unused provisions
∑

j �=i(W
r
j − Wj(t)) of the other

NSs. Thus, multiplexing increases resource efficiency since

the overall provisioned bandwidth is reduced. On the other

hand, if a NS relies heavily on the unused resources of other

NSs, unexpected traffic surges in the other NSs will affect its

performance, which degrades performance isolation.

In the multiplexing paradigm, the scheduler decides at each

time t which excess bandwidth demands to satisfy given the

available bandwidth. Thus, the scheduler is constrained by1:

u(t)� [W(t)−Wr]
+ ≤ W c + 1� [Wr −W(t)]

+
, ∀t, (4)

where W c is an auxiliary bandwidth that is under the full

control of the scheduler. Although the introduction of W c

is not necessary, it helps with the analysis later on. The

multiplexing paradigm is shown in Fig. 2.

Next, note that W(t) may be a random vector given by

some traffic forecasting model. Thus, to find the scheduler that

needs the least provisioned bandwidth to meet each availability

(3) and isolation (2) constraint, we need to solve:

minimize
W c,Wr,{u(t)}t∈N

W c + 1�Wr

s.t.: Pr

(
lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤Wr
i
+ ui(t)1Wi(t)>Wr

i
≥ PH

i

⋂
lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤W r
i
≥ PL

i

)
= 1, ∀i,

u(t)� [W(t)−Wr]
+ ≤ W c + 1� [Wr −W(t)]

+
, ∀t,

u(t) ∈ {0, 1}N , ∀t. (5)

The probabilistic constraint allows us to neglect extreme

cases that occur w.p.0 that may result in over-provisioning in

practice. Next, to simplify the first constraint, we assume the

existence of a function FWi that satisfies:

Pr

(
lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤W r
i
= FWi

(W r
i )

)
= 1, ∀W r

i , ∀i.
(6)

1We use the shorthand notation [·]+ for max{·, 0}.
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Assumption (6) states that the time-average converges w.p.1

to a constant that depends on W r
i . It implies that a single

realization provides information for all time-averages over all

sample paths. All ergodic processes W(t) satisfy (6). We note

that although FWi
is not readily available to the NO, it must be

an increasing function. Next, consider the following quantity:

WL
i � min{W r

i ∈ R : FWi
(W r

i ) ≥ PL
i }. (7)

Bandwidth WL
i can be obtained through binary search by

computing the time-average in (6) through simulations due to

the monotonicity of FWi . Next, note that the probability in the

first constraint does not change if we intersect its events with

the event in (6). Thus, it can be seen that (5) is equivalent to:

minimize
W c,Wr,{u(t)}t∈N

W c + 1�Wr

s.t.: lim inf
T→∞

1

T

T∑
t=1

ui(t)1Wi(t)>W r
i
≥PH

i −FWi
(W r

i ), w.p.1, ∀i,

W r
i ≥ WL

i , ∀i,
u(t)� [W(t)−Wr]

+ ≤ W c + 1� [Wr −W(t)]
+
, ∀t,

u(t) ∈ {0, 1}N , ∀t. (8)

Problem (8) is a joint scheduling and bandwidth provision-

ing problem with probabilistic time-average constraints. Its

solution involves the determination of a scheduler {u(t)}t∈N

that satisfies the constraints with the least total bandwidth

W c + 1�Wr and the derivation of bandwidths W c and Wr.

Lastly, note that by adjusting the degree of performance

isolation PL
i , we affect WL

i in (7) which in turn affects

the optimal value of (8), i.e., the provisioned bandwidth.

Thus, problem (8) allows us to study the resource efficiency

vs performance isolation tradeoff. In the next section, we

transform (8) to simpler forms until it becomes tractable.

V. EQUIVALENT TRANSFORMATIONS

From now on, we use the shorthand notation u for

{u(t)}t∈N. Due to the second constraint in (8), all feasible

solutions can be written as (W c,WL + e,u), where e is

a vector with non-negative components. To simplify (8), we

observe that the existence of W c allows us to set Wr = WL

and proceed without loss of optimality. To prove this, we first

show the following proposition.

Proposition 1. Let e ∈ RN
+ . If (W c,WL + e,u) optimally

solves (8), then (W c+1�e,WL,v) also optimally solves (8),
where vi(t) = 1 if ui(t)1Wi(t)>WL

i +ei = 1 or WL
i ≤ Wi(t) ≤

WL
i + ei, otherwise vi(t) = 0.

Proof: See Appendix A.

Proposition 1 states that if the provisioned bandwidth W r
i

is bigger than WL
i by some ei, this ei can be instead added to

the auxiliary bandwidth W c and still there exists a scheduler

v that satisfies the constraints. Let W e
i (t) � Wi(t) − WL

i

denote the excess demand of NS i when W r
i = WL

i , and let

PM
i � FWi(W

L
i ). We mention that if FWi is continuous, then

PM
i = PL

i due to (7). By adding the constraint Wr = WL

in (8), we obtain the following problem:

minimize
W c,u

W c

s.t.: lim inf
T→∞

1

T

T∑
t=1

ui(t)1W e
i (t)>0 ≥ PH

i − PM
i , w.p.1, ∀i,

u(t)� [We(t)]
+ ≤ W c + 1� [−We(t)]

+
, ∀t,

u(t) ∈ {0, 1}N , ∀t. (9)

Proposition 2. If (W c,Wr,u) optimally solves (8), then
(W c + 1�e,v) optimally solves (9), where e = Wr − WL

and v as defined in Proposition 1. If (W c,u) optimally solves
(9), then (W c,WL,u) optimally solves (8).
Proof: See Appendix B.

Thus, problems (8) and (9) are equivalent. However, prob-

lem (9) has N less optimization variables than (8). To solve

(9), we need to find a scheduler u that satisfies the constraints

using the smallest possible amount of bandwidth W c and com-

pute this bandwidth W c. Let G(W c,PH,PM, {We(t)}t∈N)
denote the set of schedulers u that satisfy the constraints of (9)

for a fixed value of W c. We use the shorthand notation GW c

for G(W c,PH,PM, {We(t)}t∈N). Then, problem (9) can be

rewritten more compactly as:

minimize
W c,u

W c s.t. u ∈ GW c . (10)

As mentioned before, problem (10) is a joint scheduling and

bandwidth provisioning problem. A possible solution approach

is to first find a feasible scheduler that requires the least

bandwidth possible, and then solve the resulting provisioning

problem only for this scheduler. This observation leads us to

the following proposition.

Proposition 3. Consider the optimization problem:

minimize
W c,u

W c s.t. u ∈ FW c . (11)

Suppose ∃{uW c}W c∈R s.t. ∀W c ∈ R, if uW c /∈ FW c , then
FW c = ∅. Next, consider optimization problem:

minimize
W c

W c s.t. uW c ∈ FW c . (12)

If W c∗ optimally solves (12), then (W c∗,uW c∗) optimally
solves (11). Also, if (W c∗,v∗) optimally solves (11), then W c∗

optimally solves (12).
Proof: See Appendix C.

Proposition 3 implies that if there exists a set of schedulers

parameterized by W c s.t. for every bandwidth W c, either its

scheduler corresponding to W c can satisfy the constraints or

no other scheduler can, then it suffices to consider only that

set of schedulers and solve only for W c as shown in (12).
Thus, our goal now is to identify a scheduler that satisfies

the premise of Proposition 3 for FW c = GW c , and then solve

provisioning problem (12) for that scheduler for FW c = GW c .

Therefore, the original joint scheduling and bandwidth provi-

sioning problem can be divided into a scheduling problem and

a bandwidth provisioning problem.
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In Sec. VI, we show that the well-known Max-Weight

scheduler [13] solves the scheduling problem, i.e., it satisfies

the premise of Proposition 3 for FW c = GW c , under the

assumption that bandwidth demands W(t) follow an ergodic

MC. Although in practice the markovian assumption may be

violated, it still motivates us to use the Max-Weight scheduler

in general settings. Later in Sec. VII, we address the bandwidth

provisioning problem for the Max-Weight Scheduler.

VI. SCHEDULING PROBLEM

To identify a set of schedulers that satisfies the premise of

Proposition 3, note that the second and third constraint in (9)

specify a set of allowed control actions U(t) that depends on

We(t) and W c. Thus, problem (9) can be rewritten as:

minimize
W c,u

W c

s.t.: lim inf
T→∞

1

T

T∑
t=1

ui(t)1W e
i (t)>0 ≥ PH

i − PM
i , w.p.1, ∀i,

u(t) ∈ U(We(t),W c), ∀t. (13)

Given that schedulers operate online, we consider only

causal schedulers, i.e., schedulers that at time t do not know

the future bandwidth demands Wi(τ), τ > t. Therefore at time

t, the control decisions u(t) may depend only on past stored

information such as W e
i (τ) and u(τ) where τ < t. Here, we

consider that the scheduler computes u(t) based on a state

x(t) that summarizes the system’s history at time t.
To determine the information that the state x(t) should

include, note that the knowledge of We(t) and W c is needed,

otherwise the set of feasible control actions cannot be found.

Thus, (We(t),W c) ∈ x(t). Next, note that the first constraint

(13) is a time-average constraint. Thus, Lyapunov optimization

is applicable [13]. For this reason, we introduce the following:

di(t+1) = [di(t)− ui(t)1W e
i (t)>0]

+ +PH
i −PM

i , ∀i. (14)

Quantities di(t) can be viewed as deficits; in each timeslot

the deficit to NS i increases by PH
i − PM

i unless there is

a positive excess demand and the scheduler satisfies it, i.e.,

W e
i (t) > 0 and ui(t) = 1, in which case the deficit decreases.

Deficits have been widely used for scheduling packets with

deadlines where the goal is to meet delivery ratios [14].

Deficits di(t) can also be viewed as virtual queue lengths

where in each timeslot, the number of arrivals is PH
i − PM

i

and the amount of service received is ui(t)1W e
i (t)>0 for each

queue. The introduction of deficits di(t) is useful due to the

following implication [13, Theorem 2.8b]:

lim sup
T→∞

T∑
t=1

E[di(t)] < ∞

⇒ lim
T→∞

1

T

T∑
t=1

ui(t)1W e
i (t)>0 ≥ PH

i − PM
i , w.p.1.

(15)

Implication (15) states that if deficits di(t) are strongly

stable, then the time-average constraints in (13) are satisfied.

Consequently, the knowledge of deficits d(t) may be useful

to the scheduler. Thus, we consider schedulers that produce

u(t) at each timeslot t based on x(t) = (We(t),d(t),W c).
Now, consider a scheduler that observes x(t) and chooses

to satisfy the combination of NSs with the largest sum of

deficits given the available bandwidth. Equivalently, consider

a scheduler whose decisions u∗
W c(t) are obtained by solving:

maximize
u(t)

u(t)�d(t)

s.t.:
∑

i:W e
i (t)>0

ui(t)W
e
i (t) ≤ W c +

∑
i:W e

i (t)<0

|W e
i (t)|,

u(t) ∈ {0, 1}N . (16)

The scheduler obtained by solving (16) at each timeslot t
is called the Max-Weight scheduler. Note that (16) is a binary

knapsack problem in each timeslot t. Although, the binary

knapsack problem is known to be NP-Hard, there exist fully

polynomial time approximation schemes. Thus, in practice,

close to optimal solutions can be obtained fast.

Intuitively, we expect that if the Max-Weight scheduler u∗
W c

cannot stabilize the deficits for bandwidth W c, then no other

scheduler can, since the Max-Weight scheduler reduces the

sum of deficits as much as possible at each timeslot. Indeed,

it can be shown that the Max-Weight scheduler satisfies the

premise in Proposition 3 when the bandwidth demands W(t)
follow an ergodic MC [13, Chapter 4.9.2]. Thus, it holds:

Proposition 4. Let u∗
W c be the Max-Weight scheduler for

bandwidth W c obtained by solving (16) for ∀t. Suppose W(t)
follows an ergodic MC. If u∗

W c /∈ GW c , then GW c = ∅.
Proof: See Appendix D.

We note that the Max-Weight scheduler not only satisfies

the premise of Proposition 3 for FW c = GW c as stated in

Proposition 4, but also it does not require any knowledge of

the statistics of bandwidth demands W(t). This is a major

advantage since in case of incorrect estimation of the statistics

of W(t), the scheduler does not need to be re-adjusted.

Another benefit of the Max-Weight scheduler is its simplic-

ity. When used as the NS-level scheduler in Fig. 1, it computes

the excess demands We(t) = W(t) − WL(t) and decides

which ones to satisfy by solving (16). Clearly, all negative

excess demands are satisfied. Then, based on these decisions

u∗
W c(t), it updates the deficit di(t) owed to each NS i using

(14). This process is repeated online at each timeslot t.

VII. BANDWIDTH PROVISIONING PROBLEM

Due to Proposition 3 and Proposition 4, the original joint

scheduling and bandwidth provisioning problem is equivalent

to a bandwidth provisioning problem for the Max-Weight

scheduler, if the bandwidth demands W(t) are markovian.

Consequently, in that case, it suffices to solve:

minimize
W c

W c s.t. ∀i:

lim inf
T→∞

1

T

T∑
t=1

u∗
W c,i(t)1W e

i (t)>0 ≥ PH
i −PM

i , w.p.1.
(17)
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Although we proved the optimality of the Max-Weight

scheduler under the assumption of ergodic markovian demands

W(t), it still motivates us to consider the Max-Weight sched-

uler in general settings, where the markovian assumption may

not hold. Thus, in all cases, we are interested in solving (17).

However, the derivative of the probability in the constraint

w.r.t. W c is not readily available. Thus, derivative-free meth-

ods are needed. Since u∗
W c,i(t) is increasing w.r.t. W c, then

(17) is a monotonic optimization problem. Thus, binary search

or polyblock outer approximation [15] can be used to solve it.

VIII. OVERALL SOLUTION APPROACH

Here, we summarize the overall solution approach for the

original joint scheduling and bandwidth provisioning problem

(8). Regarding scheduling, we use the Max-Weight scheduler

motivated by its optimality under ergodic markovian demands

W(t). The scheduler’s decisions are found by solving (16)

online at each timeslot t. Since (16) is a binary knapsack

problem, we can solve it fast using approximation algorithms.

Next, we need to find quantities WL
i and PM

i to solve

provisioning problem (17). To do so, we consider that when-

ever a new NS needs to be deployed, a data collection period

begins during which we observe previous bandwidth demands

and generate future bandwidth demands {W(t)}t∈N based

on some traffic forecasting model. Then, since FWi
is an

increasing function, we find WL
i by applying binary search

on this sequence {W(t)}t∈N. Note that during the process of

finding WL
i , we also obtain PM

i as follows from (7).

Once WL
i and PM

i are obtained, problem (17) can be

solved using binary search. Once this is done, both the

scheduler u and the required bandwidths Wr = WL, W c

are specified. Thus, a feasible solution to (8) has been found.

In case demands the sequence {W(t)}t∈N was generated by

an ergodic MC, this feasible solution is the optimal solution.

This overall process is repeated each billing cycle to update

the forecasting model and charge each tenant accordingly.

Some forecasting models for RANs can be found in [16], [17].

IX. EXPERIMENTATION IN NS-3

Here, we test our overall solution approach on bandwidth

demands obtained using the LTE module of ns-3 [18, Chapter

19]. All simulations were run on a home computer with an

Intel i7-10700K processor using 16 GB of RAM running on

Windows 10. Our simulation setup is depicted in Fig. 3 and

the associated Radio Enviroment Map (REM) in Fig. 4. We

deploy one voice, one video streaming and two web-browsing

NSs. The simulation time in all scenarios is 10 minutes due to

time complexity. The User Equipment (UE) activity changes

every few seconds instead of minutes to observe various traffic

patterns within this short simulation time.

For the voice NS, we create 100 UEs receiving traffic from

the remote host with 1kBps data rate and 20B packet size

to simulate the G.729A codec. Each UE’s call duration is

modeled by a Pareto random variable with a mean of 2s. The

idle duration of each UE follows the exponential distribution

with a mean of 5s. Hence, each UE is active 29% of the time.

Fig. 3. In our ns-3 simulation setup, we consider a sector of an LTE BS
covering a square area. A building was placed to simulate channel conditions
in urban areas. The UEs move with 1.5m/s speed within this square and their
propagation losses are computed by the ”OhBuildings” model [18, p. 40]. The
system bandwidth is 100 PRBs. We collect the bandwidth demands for each
NS by executing an instance of this setup with a different number of UEs and
a different application on the remote host generating downlink traffic.
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Fig. 4. The resulting REM of the considered network topology at 1m above
the ground. The UEs move within this area and their downlink SNR changes
accordingly. The BS is placed at (0, 0) and 20m above the ground. The
building’s dimensions are 50m x 50m x 10m and placed at (-100, -100).

We model the traffic of the video streaming NS as previously,

however we consider 15 UEs with average idle duration of

10s, 8Mbps data rate and 1kB packet length.

The two web-browsing NSs were simulated by the default

model in the 3GPP HTTP applications module of ns-3 [18,

Chapter 5]. This model considers random byte sizes required

to load objects of a website, random parsing times of these

objects, and random reading times during which the UE

remains idle. For the first web-browsing NS, we consider 10

UEs and for the second one 20 UEs.

Since we have not yet developed a bandwidth demand

estimator as in Fig. 1, we approximate the bandwidth demand

of a NS by the number of PRBs that the MAC scheduler

allocated to the NS. Here, we encounter a challenge. Most

MAC schedulers in ns-3 always allocate all 100 PRBs since

it is wasteful not to do so [18, Chapter 19.1.7]. For instance,

even if there is only one UE in the voice NS that requires just

1kBps to receive good QoS, all PRBs are allocated to that UE.

Then, the bandwidth demand of each NS is a horizontal line

at 100 PRBs which nullifies the benefits of multiplexing.

To tackle this issue, we need a MAC scheduler that does

not always use all 100 PRBs. We found that the Token Bank

Fair Queueing (TBFQ) MAC scheduler possesses this desired

behavior [18, p. 217]. Specifically, this MAC scheduler stops

allocating extra PRBs if the already allocated ones are enough

to empty the packet buffers of all UEs. Thus, using the TBFQ

MAC scheduler, we can approximate the resource demand of a

NS when the desired QoS is to transmit all packets of all UEs

within 1 ms. Although this is an extreme QoS requirement, it
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Fig. 5. The bandwidth demands of all four NSs for a 10 minute simulation.
Since their peaks are not synchronized, multiplexing can be highly beneficial.
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Fig. 6. Here, we consider PL = PH = 1 for all NSs except from the
voice NS whose degree of isolation PL we vary. The figure also shows that
the Max-Weight scheduler requires as much bandwidth as the best scheduler,
even though the bandwidth demands are not generated by a MC.

allows us to obtain bandwidth demands that vary over time.

Since the simulation time is 10 minutes, we obtain 600K

bandwidth demands for each NS. Then, we find the maximum

every 100 ms and obtain the bandwidth demands in Fig. 5.

Given the obtained sequence of bandwidth demands, we

can study the tradeoff of interest by following Sec. VIII for

various PH
i and PL

i values. Some such results are depicted

in Fig. 6. More extensive results are provided in Fig. 7 where

we consider the voice, web-browsing and video NSs.

In the Fig. 6, we also compare the Max-Weight scheduler

to the best scheduler. The best scheduler is found by solving

(9) for the obtained sequence of bandwidth demands which

is a mixed integer linear program. To solve it, we use the

scipy.optimize.milp function in python which uses the HiGHS

optimization software [19]. Note that the best scheduler de-

pends on the perfect forecasting of all future bandwidth

demands and thus is non-causal. Clearly, its computation and

performance is susceptible to errors in forecasting.

Lastly, we measure the execution time of the Max-Weight

scheduler, which requires the solution of a binary knapsack

problem. To do so, we use the branch and bound algorithm

from google OR-tools that obtains an optimal solution [20].

The average execution time over 10K tests for a varying

number of NSs and arbitrary demands is shown in Fig 8.

X. CONCLUSION

In this paper, we studied the tradeoff between resource

efficiency and performance isolation in network slicing. We

showed that for bandwidth demands following an ergodic MC,

the optimal multiplexing policy is the Max-Weight sched-
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Fig. 7. The effect of the performance isolation vector PL on the provisioned
bandwidth. Point (0, 0, 0) corresponds to the case where no isolation is
required and all NSs fully rely on multiplexing. Point (1, 1, 1) corresponds
to full isolation for each NS where multiplexing is not allowed. The first case
requires 74 PRBs and the second case requires 116 PRBs. Hence, multiplexing
in this scenario reduces the provisioned bandwidth by 7.56 MHz or by 36.2%.
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Fig. 8. The Max-Weight scheduler supports 1 ms time-granularity for a large
number of NSs deployed at the same BS. Thus, the timeslot length in Fig. 1
is affected by the timescale that the bandwidth demand estimator can support.

uler. We then tested the scheduler’s performance in a non-

markovian setting and observed that it is still optimal. Also,

when no performance isolation was required, the Max-Weight

scheduler reduced the provisioned bandwidth by 36.2%.

We note that multiplexing in general requires the operation

of a bandwidth demand estimator as in Fig. 1. The bandwidth

savings for the simple scenarios studied in this paper motivates

its development. For future work, we wish to develop such a

bandwidth demand estimator using online learning methods.

APPENDIX A

PROOF OF PROPOSITION 1

First, note that the first point (W c,WL + e,u) and the

second point (W c + 1�e,WL,v) have the same objective

function value. Thus, it suffices to show that if the first point

satisfies the constraints, then the second point satisfies them as

well. Clearly, if the first point satisfies the second and fourth

constraints of (9), then so does the second point.

Next, we consider the third constraint. Suppose the first

point satisfies it. We need to show that (W c + 1�e,WL,v)
also satisfies it. Equivalently, by re-arranging terms and using

the definition of v, we need to show:∑
i:ui(t)=1,Wi(t)≥WL

i +ei

Wi(t)−WL
i

≤ W c +
∑
i

ei +
∑

i:Wi(t)≤WL
i +ei

WL
i −Wi(t).

(18)
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Note however that if the first point (W c,WL + e,u) satisfies

the third constraint, it holds:∑
i:ui(t)=1,Wi(t)≥WL

i +ei

Wi(t)−WL
i − ei

≤ W c +
∑

i:Wi(t)<WL
i +ei

WL
i + ei −Wi(t).

(19)

We prove (18) by moving the sum of ei in the left-side of (19)

and by increasing its right-side by
∑

i:ui(t)=0,Wi(t)≥WL
i +ei

ei.

Lastly, we need to show that if the first point satisfies the first

constraint, so does the second one. From (6), we need to show:

lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤WL
i
+ vi(t)1Wi(t)>WL

i

≥ lim inf
T→∞

1

T

T∑
t=1

1Wi(t)≤WL
i +ei + ui(t)1Wi(t)>WL

i +ei .

(20)

By definition of v, inequality (20) holds with equality.

APPENDIX B

PROOF OF PROPOSITION 2

We start with the first statement. Since (W c,Wr,u) fea-

sible, then Wr = WL + e, where e ∈ RN
+ . Due to

Proposition 1, it follows that (W c + 1�e,WL,v) is also an

optimal solution to (8). Next, note that the feasibility region

of (9) is a subset of the feasibility region of (8). Thus, since

(W c+1�e,WL,v) optimally solves (8), then (W c+1�e,v)
must be an optimal solution to (9).

We prove the second statement by contradiction. Suppose

∃(W c′ ,Wr′ ,u′) s.t. W c′+1�Wr′ < W c+1�WL. If Wr′ =
WL, it follows that (W c′ ,u′) is a feasible solution to (9)

with W c′ < W c. Thus, (W c,u) does not optimally solve (9),

which is a contradiction. If Wr′ = e+WL, where e ∈ RN
+ ,

due to Proposition 1, ∃(W c′ + 1�e,WL,v) that optimally

solves (8). Thus, (W c′ +1�e,v) feasible solution to (9) with

W c′ + 1�e ≤ W c, which is a contradiction.

APPENDIX C

PROOF OF PROPOSITION 3

Suppose the first statement does not hold, i.e., ∃(W c′ ,u′)
that optimally solves (11), where W c′ < W c∗. Then, u′ ∈
FW c′ , thus ⇒ FW c′ 
= ∅. Due to the premise, it follows

that uW c′ ∈ FW c′ . Thus, W c′ and W c∗ optimally solve (12)

which is a contradiction. For the second statement, (W c∗,v∗)
optimally solves (11), thus FW c∗ 
= ∅. Due to the premise, it

follows that uW c∗ ∈ FW c∗ . Thus, (W c∗,uW c∗) also optimally

solves (11). Therefore, W c∗ optimally solves (12).

APPENDIX D

PROOF OF PROPOSITION 4

Due to page limitations, the complete proof is available

in [21, Appendix D]. Here, we provide a sketch of the

proof. Our proof follows the same methodology described over

several chapters in [13]. By noticing that We(t) and d(t)
correspond to quantities ω(t) and Q(t) in [13] respectively, it

is straightforward to apply the methods in [13] to our problem.

Our proof consists of two parts.

First, we consider a class of schedulers that make decisions

based only on bandwidth demands We(t) called We(t)-only

schedulers. Using [13, Theorem 4.5], we show that there exists

a set of schedulers of this class that satisfies the premise of

Proposition 3 for ergodic markovian demands.

Second, by following the steps in [13, p.34-p.36], we

show that the Max-Weight scheduler strongly stabilizes the

deficits di(t) whenever that set of We(t)-only schedulers

stabilizes them. Thus, the Max-Weight scheduler also satisfies

the premise of Proposition 3 for ergodic markovian demands.
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