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Abstract— We propose a risk-aware crash mitigation system
(RCMS), to augment any existing motion planner (MP), that
enables an autonomous vehicle to perform evasive maneuvers
in high-risk situations and minimize the severity of collision
if a crash is inevitable. In order to facilitate a smooth tran-
sition between RCMS and MP, we develop a novel activation
mechanism that combines instantaneous as well as predictive
collision risk evaluation strategies in a unified hysteresis-
band approach. For trajectory planning, we deploy a modular
receding horizon optimization-based approach that minimizes
a smooth situational risk profile, while adhering to the physical
road limits as well as vehicular actuator limits. We demonstrate
the performance of our approach in a simulation environment.

I. INTRODUCTION

Many modern vehicles already contain collision warning
and braking systems that help to reduce the number and
severity of rear-end collisions [1], [2]. However, in terms
of control, these systems are limited strictly to braking
behaviors. This work looks at developing a more complete
steering and acceleration control system capable of reducing
the number of collisions in a wider class of situations. This
system could potentially be used, like collision warning and
braking systems, as an advanced driver assistance system
(ADAS) or it could be coupled with full autonomous driving
(AD) software system as a fail-safe protection.

To motivate our work, consider the scenario presented
in Fig. 1, where an ego vehicle has vehicles traveling on
its side as well as behind. If one of the vehicles on the
adjacent lanes swerves into the ego vehicle’s lane (possibly
due to a blind spot), the ego vehicle has to perform a drastic
maneuver to avoid a collision, or minimize its severity, if
it is unavoidable. It cannot simply use emergency braking
[1] due to the trailing vehicle, and it cannot swerve into the
other lane due to the presence of the other vehicle. Therefore,
it has to finesse its way around the vehicles, depending on
the space availability and actuation limits, to take the least
risky action. To handle such intricate scenarios, we develop
a risk-aware crash mitigation system (RCMS) in this work.

The design of RMCS involves two components: (i) a
novel activation mechanism and, (ii) a trajectory generation
method. The activation mechanism considers both the instan-
taneous as well as predictive collision risk evaluation strate-
gies under a hysteresis band to trigger the trajectory gen-
eration method. The trajectory generation method performs
situational risk analysis through smooth functional evaluation
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Traffic Flow

Fig. 1. Motivational Example. The ego vehicle (in blue) is cruising on
a highway, with a vehicle following behind, and two vehicles traveling on
either side in adjacent lanes. If one of the vehicles in the adjacent lanes
suddenly swerves towards it, the ego vehicle is put in a high-risk situation
where a collision may be unavoidable. The ego vehicle will have to make
an evasive maneuver that ideally avoids a crash but if it’s inevitable, then
choose an action that minimizes the severity of collision.

and optimizes it in a receding horizon optimization-based
framework. Due to its modular nature, RCMS has the capa-
bility to augment any existing motion planning framework
while incorporating modern prediction algorithms.

While crash mitigation in an AD setting depends also
on timely detection [3] and prediction [4], we focus on
the planning and decision-making aspect of the problem.
In that regard, most existing literature focuses on risk-based
techniques. Lee and Kum [5] evaluate situational risk through
a predictive occupancy map (POM) and use a sampling-based
technique for trajectory generation. They employ a simplistic
threshold-based activation mechanism and a fixed time-
based deactivation. The sampling-based approach restricts
the solution search space to the set of predetermined samples
which may be very limiting in high-risk scenarios, where the
difference between a trajectory that avoids a collision to the
one that does not may be minimal. Moreover, the fixed time-
based deactivation runs the risk of deactivating the system
before getting the vehicle to a safe state or leaving it in an
even worse situation during the transition.

Wang et al. [6] present a real-time Model Predictive
Control (MPC) algorithm that uses a potential crash severity
index (CSI) to select the least dangerous action. However,
in an effort to improve the computational complexity, they
linearize the dynamical model and subsequently convexify
the optimization problem, potentially adversely affecting the
feasibility of the control actions, which may prove detrimen-
tal in a collision avoidance situation. Moreover, their work
does not consider when to activate the system, limiting its
usefulness for ADAS applications.

Shang et al. [7] combine artificial potential fields with
MPC and verify that against a Hamilton Jacobi reachability
(HJ) based approach. They use a non-smooth energy-based
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cost function which may adversely affect the computational
complexity, as no timing statistics for the algorithm are
provided, while the HJ-based approach notably has high
computational complexity, so a simpler unicycle dynamical
model is used. Moreover, their relatively simple rule-based
activation mechanism is prone to running into issues pertain-
ing to ineffective triggering, as discussed in Section III-A.

Qin et al. [8] integrate a high-fidelity model with tire
slip forces while considering MAIS (Maximum Abbreviated
Injury Severity) 3+ probability as CSI while using time-to-
collision (TTC) to switch between three modes of operation:
path following, crash avoidance, and crash mitigation. Al-
though promising, such an approach raises concerns regard-
ing its real-time applicability, as no timing statistics were
provided in the paper. Furthermore, as mentioned previously,
using a simplistic condition-based triggering mechanism
is not adequate for effective switching between the crash
mitigation system and the regular motion planner.

In this work, we address the aforementioned drawbacks
of existing methods by designing RCMS, composed of an
activation mechanism and a modular trajectory generation
component. The activation mechanism combines instanta-
neous as well as predictive collision risk evaluation in a
hysteresis band to facilitate a smooth transition between
RCMS and MP, which is important since the goals of the two
systems are fundamentally different, as discussed in Section
III-A. The trajectory generation component minimizes the
situational risk, evaluated through a smooth function while
considering actuation, dynamical, and road limits, as detailed
in Section III-B. We verify the performance of our approach
while providing timing statistics to ascertain its real-time
applicability in the simulation of high-risk collision-prone
scenarios in Section IV-B.

II. SYSTEM OVERVIEW

In this section, we elaborate upon the algorithmic pipeline
as well as the road, observation, and vehicle models.

A. Algorithmic Pipeline

Fig. 2 provides a visual representation of the data flow
among various algorithmic modules onboard an autonomous
vehicle (AV). The navigation stack, enclosed by the dotted
rectangle, consists of several modules whose nomenclature
follows the conventions established in [9]. This modular
architecture facilitates the seamless integration of external
modules while maintaining the overall system integrity. Ad-
ditional insights into this framework can be found in our
previous work [10]. The primary objective of this research
is to augment any existing motion planning module with a
crash mitigation system, as depicted in Fig. 2.

Notation

Throughout the manuscript, we denote the set of integers
by Z and the set of real numbers by R. For some a, c ∈ Z
and a < c, we write Z[a,c] = {b ∈ Z | a ≤ b ≤ c}. For some
e, g ∈ R and e < g, we write R[e,g] = {f ∈ R | e ≤ f ≤ g}.
We reserve the variable k ∈ R to represent the current time

Sensor & Data Input

Perception, SLAM & Prediction

Behavioral 
Planning

Vehicle 
Control

Target Lane &
Speed

Brake,
Throttle, 
Steering

Vehicular Actuators

Reference 
Trajectory

Ca
m

er
a

Li
da

r

Ra
da

r

IM
U

G
N

SS

V2
V/

V2
I

M
ap

MP

RCMS

Fig. 2. Algorithmic Pipeline. The Perception and Simultaneous Localiza-
tion and Mapping (SLAM) modules process the raw sensory input to locate
the AV within the environment. The navigation stack (outlined by the dotted
rectangle), composed of behavioral planning, motion planning, and vehicle
control modules, uses this information to control the AV through actuation
commands (brake, throttle, and steering).

instant such that any variable defined as ζ(k) represents the
evaluation of ζ at the current instant.

B. Road Model

Even though the proposed methodology can be applied
to any general setting, we limit the scope of this work to
a multi-lane highway setting, as depicted in Fig. 1. In this
setting, we define spatial coordinates (x, y) with respect to a
global Cartesian coordinate system. We assume that the road
limits B(k) ⊂ R2 in this coordinate system as well as the
speed limit V (k) can be measured.

C. Observation Model

We limit the ego vehicle’s visibility range to its field
of view, denoted by F(k). With the set of vehicles in the
environment represented by E(k) ⊂ Z>0, the set of vehicles
visible to the ego vehicle is given by:

O(k) =
{
i ∈ E(k)

∣∣ pi(k) ∈ F(k)
}

(1)

where pi(k) =
[
xi(k) yi(k)

]⊤
denotes the position of

vehicle i’s center of mass in the global Cartesian coordinate
frame, with subscript 0 reserved for the ego vehicle.

Remark 1: Active perception through the receding hori-
zon approach (Section III-B) enables the ego vehicle to
handle challenges pertaining to partial information, resulting
from occlusion, sensory limitations, etc., as demonstrated
in [11]. Moreover, various streams of input data, e.g. V2X
communication methods, can provide additional information
to overcome such challenges, as shown in [12].

D. Vehicle Model

We utilize the nonlinear kinematic bicycle model which
provides a good balance between efficiency and accuracy
[13]. Thus, the states, X(k), and control inputs, U(k), of
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the ego vehicle at time instant k are defined as:

X(k) =
[
x0(k) y0(k) θ0(k) v0(k)

]⊤ ∈ X(k), (2)

U(k) =
[
a(k) δ(k)

]⊤ ∈ U(k), (3)

where x0(k), y0(k), θ0(k), and v0(k) respectively denote the
x-coordinate (m), y-coordinate (m), yaw angle with respect
to the x-axis (rad), and speed (m/s), whereas a(k) and δ(k)
respectively denote acceleration (m/s2), and steering angle
(rad). The sets X(k) = B(k) × R[0,2π) × R[0,2V (k)] and
U(k) = R2

[Umin,Umax]
respectively denote the feasible states

and actuation limits. Then, the system dynamics read:

x0(k + 1) = x0(k) + Ts · (v0(k) cos(θ0(k)),
y0(k + 1) = y0(k) + Ts · (v0(k) sin(θ0(k)),

θ0(k + 1) = θ0(k) + Ts ·
(
v0(k)

L
tan(δ(k))

)
,

v0(k + 1) = v0(k) + Ts · a(k),

(4)

where Ts corresponds to the sampling time. Further details
regarding this model can be found in [13].

Remark 2: The set of feasible speeds is expanded to twice
the speed limit as it may be necessary to exceed the speed
limit in order to avoid a crash and maintain safety.

Remark 3: In our dynamical model, we do not incorporate
the tire model or friction forces [14]. Although these factors
may play a significant role in extreme situations, we have
to be mindful of the efficiency-accuracy tradeoff. Since our
focus here is on the motion planning layer, rather than the
control layer (refer to Fig. 2), where challenges arise from the
inclusion of collision avoidance constraints (Section III-B)
and a longer planning horizon, incorporating higher fidelity
models comes at a cost of degraded computational efficiency.

III. APPROACH

This section describes the activation mechanism respon-
sible for triggering the RCMS and the receding horizon
optimization-based trajectory generation module, together
with its various components, that outputs a reference tra-
jectory to the low-level modules.

A. Activation Mechanism

An essential component of RCMS is its activation mech-
anism which decides when and how to activate it. This is
because the objective of RCMS is fundamentally different
from that of MP which operates under normal (low-risk)
operating conditions. Unlike MP, RCMS places minimal
emphasis on auxiliary metrics such as waypoint following,
travel time minimization, passenger comfort maximization,
etc., and focuses solely on the fundamental need to ensure
the safety of the ego vehicle.

Being cognizant of the underlying differences in the ob-
jectives of the two modules and the potential undesirable
consequences of improper switching, we propose a novel
activation mechanism that facilitates a smooth transition
between the two systems. In the existing literature, we
notice the use of either instantaneous or predictive risk
evaluation strategies to determine the necessity to activate

the crash mitigation system. In terms of the instantaneous
and predictive risk evaluation methods respectively, Gaussian
overlap [15] and time-to-collision (TTC) [2], [8], [16] appear
to be the preferred choices of the research community due
to their simplicity and efficiency. However, these methods
are usually deployed standalone in a ‘bang-bang’ fashion
which runs the risk of constant switching between the two
systems, adversely affecting passenger comfort as a result.
Moreover, having them deployed independently also runs
the risk of underestimating the risk in certain situations due
to their underlying formulations. To elaborate, consider the
following two scenarios. In the first case, the ego vehicle
is traveling behind a human-driven vehicle (HDV) with
negligible headway and 0 relative velocity, leading to ∞-
TTC. If the leading vehicle decides to brake suddenly, it
will lead to a crash so this is a high-risk situation that is not
captured by the TTC metric but is captured by the Gaussian
overlap metric due to the close proximity of the two vehicles.
On the other hand, consider the previous scenario but with
considerable headway between the two vehicles. In this case,
if the HDV decides to brake, the Gaussian overlap will not
have a high enough value until the two vehicles get into
close proximity of each other, but by that time, it may be too
late to take any evasive actions, so TTC, with its predictive
nature, has a better chance of anticipating the developing
high-risk situation. To counter these drawbacks and ensure
smooth operation, we combine instantaneous and predictive
risk evaluation methodologies in a unified hysteresis-based
activation mechanism.

As for instantaneous collision risk evaluation, motivated
by [15], we model the risk associated with vehicle i as
a bivariate Gaussian distribution p̃i(k) ∼ N (pi(k),Σi(k)).
Here, the mean corresponds to the position of the vehicle
while the variance matrix is determined by the length, width,
and orientation of the vehicle as follows:

Σi(k) = Rθi(k)

[
βlLi 0
0 βwWi

]
R⊤

θi(k)
, (5)

where Li and Wi define the length and width of vehicle
i with βl and βw corresponding to the respective scaling
factors while Rθi(k) represents the 2D rotation matrix with
the rotation angle θi(k).

We then evaluate the ego vehicle’s overall collision risk
κ(k) as the maximum of its pairwise collision risk, κi(k),
with vehicle i where κi(k) is given as the product sum
of their distributions [15]. This is analogous to likelihood
since when two distributions are completely overlapped, the
likelihood is highest and when the distributions are not
overlapped, the likelihood is very low. We evaluate κ(k)
analytically as follows:

κ(k) = max
i∈O(k)

κi(k), (6)

κi(k) = ηi(k) · e
1
2 (ω

⊤
i Ω−1

i ωi−p⊤
0 Σ−1

0 p0−p⊤
i Σ−1

i pi), (7)

where Ωi =
(
Σ−1

0 +Σ−1
i

)
, ωi = Ωi

(
Σ−1

0 p0 +Σ−1
i pi

)
, and

ηi(k) is a normalizing/scaling factor.
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P

Fig. 3. Time-to-Closest-Encounter (TTCE) Calculation. With the ego
vehicle shown in blue and the vehicle i shown in orange, the TTCE
is calculated based on the relative velocity (v̄i) as well as the relative
displacement (p̄i) between the two vehicles.

Remark 4: For the sake of brevity, we do not show the
dependence of variables in (7) on time instant k.

Remark 5: To keep the formulation generalized, we let
ηi(k) be vehicle i and time k dependent which gives us the
flexibility to modify the risk based on a vehicle’s class, e.g.
truck, emergency, bicycle, etc., and its behavior over time.

Regarding the predictive collision risk metric, TTC is
typically evaluated based only on longitudinal displacement
between vehicles [2]. However, for the crash mitigation
system in a highway setting, lateral motion plays as much
of a role, if not more, as longitudinal motion. Due to the
direction of motion in the longitudinal direction, the motion
planner already tends to maintain a desired safety margin
in that direction, but the lane width typically restricts the
safety margin in the lateral direction. For instance, it is
easier to anticipate and react to the behavior of a vehicle
traveling further ahead, even if it is acting erratically, but
it’s harder to react to a vehicle traveling in the adjacent
lane that suddenly decides to swerve in the direction of the
ego vehicle. Therefore, we formulate our predictive collision
risk evaluation metric τ(k), based on the pairwise Time-
to-Closest-Encounter (TTCE) τi(k), in terms of the relative
velocity between the ego vehicle and vehicle i as follows:

τ(k) = max
i∈O(k)

1

τi(k)
(8)

τi(k) =
∥p̄i(k)∥ cos(ϑi(k))

∥v̄i(k)∥
=
p̄i(k) · v̄i(k)
∥v̄i(k)∥2

(9)

where p̄i(k) = pi(k) − p0(k) and v̄i(k) correspond respec-
tively to the relative displacement and velocity between the
ego vehicle and vehicle i, as shown in Fig. 3, while the
second equality in (9) follows from the fact that:

p̄i(k) · v̄i(k) = ∥p̄i(k)∥∥v̄i(k)∥ cos(ϑi(k)).

We combine the instantaneous (6) and predictive collision
risk evaluation metrics with a hysteresis band, depicted in
Fig. 4, to come up with an overall activation mechanism,
outlined in Algorithm 1. With the hysteresis band, higher
activation thresholds (κa and τa) prevent unnecessary activa-
tion of the crash mitigation system while lower deactivation
thresholds (κd and τd) allow for the ego vehicle to get to
a much safer state before handing the control back over to

RCMS ON

RCMS OFF RCMS 
ACTIVATED

RCMS 
DEACTIVATED

Fig. 4. Hysteresis Band for RCMS Activation. Different activation and
deactivation thresholds enable a much smoother transition between MP and
RCMS compared to a ‘bang-bang’ approach.

the motion planner. Moreover, the two conditions in line 6
of Algorithm 1 ensure that the predictive collision risk is
evaluated only when necessary. Specifically, v̄i(k)·p̄i(k) < 0
ensures that the ego vehicle and vehicle i are moving towards
each other while ∥p̄i(k)∥ sin(ϑi(k)) < L0 + Li + ϵ ensures
that at the point of closest encounter (‘P’ in Fig. 3), the
vehicles are in close proximity to each other where ϵ governs
how close of a proximity to consider. In the 2D Cartesian
coordinate system, we can evaluate ∥p̄i(k)∥ sin(ϑi(k)) using
the following relation:

p̄i(k)× v̄i(k) = ∥p̄i(k)∥∥v̄i(k)∥ sin(ϑi(k))

∥p̄i(k)∥ sin(ϑi(k)) =
p̄i(k)× v̄i(k)
∥v̄i(k)∥

.

Algorithm 1 RCMS Activation Mechanism
1: κ(k)← 0
2: τ(k)←∞
3: while system running do
4: for i ∈ O(k) do
5: κi(k)← (7)
6: if v̄i(k) · p̄i(k) < 0 and

∥p̄i(k)∥ sin(ϑi(k)) < L0 + Li + ϵ then
7: τi(k)← (8)
8: else
9: τi(k)←∞

10: end if
11: end for
12: κ(k)← (6)
13: τ(k)← (8)
14: if κ(k) > κa or τ(k) > τa then
15: Activate RCMS
16: else if κ(k) < κd and τ(k) < τd then
17: Deactivate RCMS
18: end if
19: end while

B. Trajectory Generation

Once the crash mitigation system has been activated, its
job, just like that of the motion planner, is to provide a
reference trajectory comprised of future waypoints (position
as well as speed profile), for the low-level modules (see
Fig. 2) to track and follow. For trajectory generation, we
utilize a receding horizon optimization [17] based formalism
that allows us to minimize the situational risk profile while
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accounting for vehicular dynamics, actuator limits, and road
boundaries, ensuring the feasibility of output trajectory.

Situational Risk Model

To quantify the spatially distributed situational risk per-
ceived by the ego vehicle at time instant k, we formulate the
instantaneous risk function ρ(k) as an aggregate of individual
agent-specific risk functions ρi(k), for each i ∈ O(k), as
well as road boundary risk ρr(k). We choose parametric
continuous smooth functions to model ρ(k). In particular,
taking inspiration from a skewed Gaussian distribution [18],
we formulate a skewed hyperbolic quadratic function to
represent ρi(k), and we model ρr(k) with a univariate
Gaussian function. Before expanding on the functional form
of ρi(k), we first shed some light on the density function
ϕs(ps) of a skewed Gaussian distribution, outlined below:

ϕs(ps) = 2ϕ(ps;µs,Σs)Φ(q
⊤
s ps), (10)

where ps ∈ R2 and qs ∈ R2 correspond respectively to
the position and direction-oriented skew parameter in the
Cartesian coordinate frame while ϕ and Φ represent the
density and distribution functions of a bivariate Gaussian
distribution parametrized by mean µs and covariance Σs.

To obtain a situational risk profile with its spatial density
similar to that of a Gaussian mixture while ensuring that
each agent has a barrier around that prevents the ego vehicle
from ‘going through’ it, we opt to use a reciprocal quadratic
function ψi instead of ϕ. Moreover, to orient and scale the
symmetric risk distribution in the direction of an agent’s
motion, we use a simpler Sigmoid function σi instead of
Φ which requires the evaluation of the error function. Then,
having p̄(k) = {p̄i(k) | i ∈ O(k)}, ρ(k) is given by:

ρ(k; p̄(k)) =
∑

i∈O(k)

ρi(k; p̄i(k)) + ρr(k) (11)

ρi(k; p̄i(k)) = ψi(k; p̄i(k))σi(k; p̄i(k)) (12)

ψi(k; p̄i(k)) =
η̃i(k)

αg + p̄⊤i (k)Σ̃
−1
i (k)p̄i(k)

(13)

σi(k; p̄i(k)) =
1

1 + exp(−αsp̄⊤i (k)vi(k))
(14)

ρr(k) = γr exp
(
−αrp̄

⊤
r (k)Γ(k)p̄r(k)

)
(15)

where αg controls the relative gradient of the agent dis-
tribution; αs controls skewness of the agent distribution;
η̃i(k) serves a similar normalization purpose to ηi(k) in
(7); Σ̃i(k) is defined analogously to Σi(k) in (5) but the
distinction is made since the scaling and rotation parameters
need not be the same; γr controls the scaling for road
distribution; αr controls the gradient for road distribution;
p̄r(k) = pr(k) − p0(k), with pr(k) ∈ B(k), denotes the
relative coordinates of road boundary; and Γ(k), with the
help of Frenet coordinates system, ensures that the road risk
is effective only in the lateral direction.

Prediction Model

Given the extensive literature on motion prediction meth-
ods for autonomous vehicles [19], there exists a range of

approaches that can be integrated into the RCMS framework.
However, the lack of data for high-risk near-miss or collision
scenarios raises doubts about the applicability of many state-
of-the-art methods. To avoid making assumptions about the
nature of neighboring agents as it may lead to degraded over-
all behavior, we opt to use a constant acceleration prediction
model for RCMS. Making assumptions about the behavior
of agents, such as attributing aggressive (adversarial) or
defensive (cooperative) intent to them, increases the risk of
misjudging the true nature of the agent’s behavior in such
stressful scenarios. This can lead to undesirable outcomes,
such as focusing on minimizing the severity of a crash but
ultimately causing the crash when it was actually avoidable
or opting for a collision avoidance strategy but eventually
increasing crash severity when it was indeed unavoidable. In
practice, most high-risk situations result from human drivers’
negligence [20], [21] which justifies the use of our simple
behavior-agnostic prediction model formalized below:

xki (j + 1) = xki (j) + Tsv
k
i (j) cos(θi(k)) (16)

yki (j + 1) = yki (j) + Tsv
k
i (j) sin(θi(k)) (17)

vki (j + 1) = vki (j) + Tsai(k) (18)

where θi(k) and ai(k) are vehicle i’s estimated heading and
acceleration values at time instant k while xki (j), y

k
i (j) and

vki (j) are vehicle i’s predicted x-coordinate, y-coordinate and
speed values at a future time step j w.r.t. time instant k,
with xki (0) = xi(k), yki (0) = yi(k) and vki (0) = vi(k).
Then, the relative predicted position is denoted by p̄ki (j) =[
xki (j) yki (j)

]⊤ − p0(k) and p̄k(j) = {p̄ki (j) | i ∈ O(k)}.
Remark 6: The modular nature of RCMS allows for the

incorporation of modern prediction algorithms in case better
models become available for the task at hand.

Objective Function

The objective function is formulated to minimize the accu-
mulative predictive situational risk, defined in (11), over the
planning horizon H while placing relatively low emphasis on
control actions regulation as the priority is to ensure safety.

J(k) =
H∑
j=1

ρk(j; p̄k(j)) + Uk⊤(j)R(k)Uk(j), (19)

where R(k), chosen such that maxUk⊤(j)R(k)Uk(j) <<
max ρk(j), places a time-varying penalty on control actions
which in turn ensures passenger comfort.

Remark 7: R(k) is allowed to be time varying so that its
value is set inversely proportional to the sum of normalized
instantaneous and predictive collision avoidance risks i.e.

1

R(k)
∝ 2κ

κa + κd
+

2τ

τa + τd
,

which ensures that the emphasis on control action mini-
mization (or passenger comfort) is further decreased with
an increased risk of collision with other agents.
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t = 0 s t = 1.5 s t = 2.2 s t = 2.7 s

14 m/s

14.7 m/s

11.2 m/s 8.7 m/s

Fig. 5. Scenario I. With the on-road agents depicted in orange, and the situational risk contour plot depicted in red, the ego vehicle (in blue) notices
a moving object (animal, pedestrian etc.) approaching laterally from the end of the road, leading to a high collision risk, which activates the RCMS at
t = 0s. The ego vehicle then swerves right to avoid a collision with the object when suddenly two of the vehicles traveling ahead in the right and center
lanes successively stop abruptly in the middle of the highway at t = 1.5s, maintaining the high collision risk. Then, the ego vehicle swerves smoothly to
the left-most lane to place the ego vehicle in a relatively safe state before handing the control over to the MP at t = 2.7s.

t = 0 s t = 0.9 s t = 1.2 s t = 2.4 s

4 m/s 7.1 m/s 5.8 m/s
0 m/s

Fig. 6. Scenario II. With the on-road agents depicted in orange, and the situational risk contour plot depicted in red, the ego vehicle (in blue) traveling
slowly in the center lane notices a fast-moving vehicle approaching rapidly from behind, leading to a high collision risk, which activates the RCMS at
t = 0s. With two other vehicles traveling close up ahead towards its right, the ego vehicle accelerates and swerves left simultaneously to minimize the
severity of the collision, leading to a near-miss situation at t = 1.2s. Due to the drastic maneuver, the ego vehicle has to make use of the shoulder to
stabilize before handing the control back to the MP at t = 2.4s.

Complete Optimization Problem

The receding horizon optimization problem is posed as a
nonlinear program with its formulation provided below:

min
Xk, Uk

J(k) (20)

subject to:
Xk(0) = X(k) (21)

Xk(j + 1) = f(Xk(j), Uk(j)) ∀j ∈ Z[0,H−1], (22)

Xk(j) ∈ X(k) ∀j ∈ Z[0,H−1], (23)

Uk(j) ∈ U(k) ∀j ∈ Z[0,H−1], (24)

where X k = {Xk(j) | j ∈ Z[0,H]} and Uk =
{Uk(j) | j ∈ Z[0,H−1]}, respectively representing the future
states and controls, denote the optimization variables, while
f(Xk(j), Uk(j)) serves as a compact representation of the
system dynamics outlined in (4).

Remark 8: A crucial requirement for timely collision
avoidance and crash severity mitigation is a high algorithmic
computational efficiency which is achieved by the smooth-
ness and continuity of the objective function [22], as verified
in Section IV-B.

Remark 9: Our experimentation showed a minimal im-
provement in the computational efficiency of the non-linear
program upon linearizing the dynamics. Therefore, we opt
to use the non-linear dynamical model as its higher fidelity
ensures the feasibility of outputs even in high-risk situations.

IV. EVALUATION

This section details the experimental setup and demon-
strates the performance of RCMS in our test case scenarios.

A. Experimental Setup

The experimentation is conducted on a computer equipped
with an AMD Ryzen 7 5800h × 16 processor and NVIDIA
GeForce RTX 3080 graphics card, running Ubuntu 20.04
LTS. To solve the non-linear program for RCMS, we employ
the interior point optimizer IPOPT [23] using MA27 linear
solver, from the HSL library [24], within a CasADi [25]
environment. The optimization process requires 0.06s on
average and 0.08s in the worst case, with H = 30 and Ts =
0.1, showcasing the potential for real-time applicability.

For the CARLA-based simulation in Section IV-B.2, the
experimental setup is depicted in Fig. 8. It is composed of the
CARLA Simulator and Scenario Runner (Versions 0.9.11)
[26], Lane Selector module [27], RCMS module (Section
III), and MP and Controller modules [28].

B. Results

We first demonstrate our approach on scenarios developed
in a Python-based simulation environment in Section IV-
B.1 before moving on to the demonstration in a CARLA
simulation environment in Section IV-B.2.

1) Python Simulation: To evaluate the performance of
RCMS, we consider two scenarios: (i) Scenario I: Object
approaching laterally (Fig. 5); (ii) Scenario II: Fast-ap-
proaching rear-end vehicle (Fig. 6). These scenarios are
designed to evaluate different properties of RCMS. Scenario
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Fig. 7. Control Plots for Scenarios 1 and 2. The actuation limits are given by Umin =
[
−5 −0.5

]⊤ and Umax =
[
3.5 0.5

]⊤, with negative steering
(δ) values representing steering to the right. In scenario 1, the ego vehicle initially switches between acceleration and deceleration while assessing the
situation before deciding to slam on the brakes and steer aggressively to avoid the laterally moving object as well as the stopping vehicles. In scenario 2,
the ego vehicle operates at the steering and acceleration limits to barely escape the rear-end speeding vehicle. The numbers indicated on the plots highlight
the values at different time instances recorded in Fig. 5 and Fig. 6.

    sbae@honda-ri.comConfidential

Implementation setup

1/2
3

Target Lane & Speed

MP RCMS

Fig. 8. CARLA Simulation Setup. Scenario Runner configures the
scenario for the CARLA Simulator, which communicates with the Lane
Selector as well as the Planning and Control ROS nodes via the ROS bridge
node. The Planning and Control node incorporates both the MP and the
RCMS modules, with the activation mechanism determining which of the
two is operational.

I tests whether the proposed framework has the ability to
perform multiple evasive actions successively while Scenario
II evaluates the ability of RCMS to operate at the actuation
limits to minimize the severity of a potential collision. The
corresponding speed, acceleration, and steering profiles are
illustrated in Fig. 7.

In Scenario I, with the object approaching laterally from
the end of the road, the ego vehicle first assesses the situation
to see if it can brake and swerve left to go behind the object.
However, with the imposed actuation limits making that
impossible, it then decides to accelerate and swerve right,
while accessing the shoulder, to escape the object from its
front at t = 1.5s. Upon noticing the successively stopping
vehicles thereafter, it decides to brake and swerve left to
avoid those vehicles before ending up in a safe zone at
t = 2.7s and handing the control back to MP. In Scenario II,
the ego has to first accelerate while swerving left to avoid
the fast-approaching rear-end vehicle. Once it barely escapes
at around t = 1s, it slams on the brake while steering back
right to avoid ramming into the road barrier before reaching

a safe state at t = 2.4s and handing the control back to MP.

1 2 3

4 65

Fig. 9. CARLA Simulation Scenario. On a stretch of a multi-lane
highway, lanes 0 (left), 1 (center), 2 (right), and 3 (right-most) are all
available for traveling, while shoulder access is also available for emergency
situations. The ego vehicle’s motion over the course of the simulation is
depicted through the numbered frames. The turquoise-colored lines represent
the ego vehicle’s planned trajectory at any given instant.

2) CARLA Simulation: To effectively evaluate the utility
of RCMS in a realistic setting, we implement the motiva-
tional scenario outlined in Fig. 1 in a CARLA simulation
environment. The scenario implementation, demonstrated in
Fig. 9, consists of a four-lane highway segment, with lanes
labeled as 0−3 from left to right, relative to the direction of
traffic. The ego vehicle, as depicted in Frame 1, is initialized
to travel on lane 1 with no leading vehicle, a tailgating
vehicle, and two relatively slow vehicles traveling ahead on
adjacent lanes 0 and 2. As the ego vehicle is approaching to
overtake the vehicles in adjacent lanes, the vehicle in lane
0 suddenly swerves in front of the ego vehicle, as shown
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in Frame 2, rendering the MP infeasible. In the absence of
the RCMS module, the two backup strategies for MP, i.e.
emergency braking and continuing on the current trajectory,
both lead to a collision. In the case of emergency braking,
there is a collision with the trailing vehicle while in the case
of continuing on the current trajectory, there is a collision
with the vehicle swerving in from lane 0.

With the integration of RCMS, the ego vehicle carefully
navigates around the surrounding vehicles, considering space
availability and actuation limits, to safely avoid a collision,
as depicted through Frames 3 − 6. First, the ego vehicle
cautiously maneuvers to the right to see if it can exploit the
available space to pass between the vehicles, as observed
in Frame 3. However, with the actuation limits preventing
that, it decides to slow down slightly to accommodate the
swerving vehicle, as seen in Frame 4. Wary of the negligible
distance to the now leading vehicle, RCMS carefully steers
the ego vehicle towards the left, as seen in Frame 5, to
place it in a safe state while accessing the shoulder, as seen
in Frame 6, before handing the control back to MP. This
highlights the efficacy of RCMS in handling challenging
collision-prone scenarios.

V. CONCLUSION

In conclusion, we have developed a novel risk-aware crash
mitigation system that comprises an activation mechanism
and a modular trajectory generation component to perform
evasive maneuvers in high-risk collision-prone situations.
The activation mechanism effectively combines instanta-
neous and predictive collision risk evaluation within a hys-
teresis band to facilitate a smooth transition between RCMS
and MP, with their distinct objectives, to maintain passenger
comfort. Meanwhile, the trajectory generation component
minimizes situational risk through a smooth function while
considering actuation, dynamical, and road limits. We have
validated the real-time applicability and performance of our
approach by conducting simulations of two high-risk scenar-
ios which assessed the ability to perform successive evasive
maneuvers at the vehicle’s actuation limits. Our future work
entails the implementation of RCMS on a physical small-
scale setup to evaluate its robustness to various real-world
uncertainties before deploying it on actual vehicles.
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