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High-throughput sequencing (HTS) technologies have been instrumental in investigating biological questions at the bulk
and single-cell levels. Comparative analysis of two HTS data sets often relies on testing the statistical significance for the dif-
ference of two negative binomial distributions (DOTNB). Although negative binomial distributions are well studied, the
theoretical results for DOTNB remain largely unexplored. Here, we derive basic analytical results for DOTNB and examine
its asymptotic properties. As a state-of-the-art application of DOTNB, we introduce DEGage, a computational method for
detecting differentially expressed genes (DEGs) in scRNA-seq data. DEGage calculates the mean of the sample-wise differ-
ences of gene expression levels as the test statistic and determines significant differential expression by computing the P-val-
ue with DOTNB. Extensive validation using simulated and real scRNA-seq data sets demonstrates that DEGage outperforms
five popular DEG analysis tools: DEGseq2, DEsingle, edgeR, Monocle3, and scDD. DEGage is robust against high dropout
levels and exhibits superior sensitivity when applied to balanced and imbalanced data sets, even with small sample sizes.
We utilize DEGage to analyze prostate cancer scRNA-seq data sets and identify marker genes for 17 cell types.
Furthermore, we apply DEGage to scRNA-seq data sets of mouse neurons with and without fear memory and reveal eight
potential memory-related genes overlooked in previous analyses. The theoretical results and supporting software for
DOTNB can be widely applied to comparative analyses of dispersed count data in HTS and broad research questions.

[Supplemental material is available for this article.]

Following the completion of the Human Genome Project in 2001,
high-throughput sequencing (HTS) emerged as one of the most
important and fundamental techniques in the biological sciences,
supporting a wide range of research projects (Hawkins et al. 2010;
Metzker 2010; McCombie et al. 2019). Since 2003, HTS techniques
have been applied to many novel, high-throughput experiments,
including RNA-seq (Wang et al. 2009), ChIP-seq (Park 2009),
whole-genome sequencing (WGS) (Cirulli and Goldstein 2010),
ATAC-seq (Buenrostro et al. 2015), CAPTURE-3C-seq (Liu et al.
2017), and Hi-C (Dixon et al. 2012; Rao et al. 2014). These bulk
omics experiments significantly increased our understanding of
complex biological processes, including gene expression, tran-
scriptional regulation, and 3D genomic architecture. Recently,
HTS has also been applied to single-cell omics experiments, such
as scRNA-seq (Ding et al. 2020; Vandereyken et al. 2023),
scATAC-seq (De Rop et al. 2023), and scHi-C (Ramani et al. 2017;
Lee et al. 2019), enabling the study of biological systems at the sin-
gle-cell level. Single-cell applications of HTS provided us with new
insights into cellular heterogeneity, cell-to-cell variability, and rare
cell populations that are difficult to detect using bulk-based meth-
ods. Comparing data sets sampled from different experimental
conditions is a common analytical approach for both single-cell
and bulk HTS data analysis and is critical for delineating the molec-
ular dynamics underlying fundamental biological processes and
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disease pathology. In current computational tools of comparative
analysis, the negative binomial (NB) is the most widely used dis-
tribution to model the abundance of read counts within genes
or chromosomal regions (Griin et al. 2014; Svensson 2020).
Therefore, the comparison of two data sets involves testing for a
significant difference between two NB distributions. Consider
the following example of comparative analysis, which is standard
in the field: In scRNA-seq data, read counts within a gene region
are considered to represent the expression level of that gene in a
cell, and the expression levels among a group of cells (i.e., a cell
type) are fitted as an NB distribution. For each gene, the changes
in its expression between two groups of cells can be tested for stat-
istical significance by using the distribution of the difference of
two NB distributions (DOTNB). However, basic theoretical results
on DOTNB are still lacking in statistics.

The NB distribution, denoted by NB(4, p), is an important
probabilistic model that represents the distribution of the number
of trials until the first A failures in Bernoulli trials with the failure
probability p. It was first initiated by Pascal in 1679 and given its
earliest concrete formulation in 1741 by Montmort (Bartko
1962). Over the past century, NB distribution has been extensively
examined, and several generalizations have been studied (Patil
et al. 1986; Gupta and Ong 2004; Vellaisamy and Upadhye
2007; Zornig 2014). For instance, when given a finite set of proba-
bility mass functions (PMFs) of NB distributions, the weighted NB
is defined as their convex combination Y, wpi(x), where
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> % ,wi=1and w;>0. Such a convex combination of NB PMFs
preserves properties such as nonnegativity and integrating to 1,
and thus, mixture densities are themselves PMFs. However, the
nonconvex combination of PMFs is more challenging and limited
results are available for review. Specifically, if X ~ NB(A1, p1) and
Y ~ NB(Az, p2), what is the distribution for DOTNB, Z=X-Y?
In 2014, Lekshmi and Sebastian (2014) provided partial analytic
results for a special case, in which two independently distributed
NB random variables have the same dispersion parameter 1, =1,.
However, the derivation of basic analytic results of the general
case, in which 2; #1,, remains an open question. This leaves a
major gap in comparative analysis of HTS data sets, in which
the distributions of read counts for genes or chromosomal re-
gions from two experiments should be reasonably considered
independent.

The lack of theoretical results on DOTNB significantly limits
the comparative analysis of diverse bulk and single-cell omics
data types. Take scRNA-seq as an example: Various methods are
available for detecting differentially expressed genes (DEGs) in
case-versus-control scRNA-seq data sets, including SCDE (Kharch-
enko et al. 2014), scDD (Korthauer et al. 2016), D3E (Delmans and
Hemberg 2016), Monocle3 (Qiu et al. 2017), DyNB (Aijo et al.
2014), SINCERA (Guo et al. 2015), DEsingle (Miao et al. 2018),
SigEMD (Wang and Nabavi 2018), EMDomics (Nabavi et al.
2016), edgeR (Robinson et al. 2010), DESeq2 (Anders and Huber
2010), glmmTMB (Brooks et al. 2017), DEGman (Zhang et al.
2022), NEBULA (He et al. 2021), and MAST (Finak et al. 2015). Al-
though most of these methods use the NB distribution to model
gene expression levels in a group of cells, they all rely on heuristic
approximations or empirical distributions to test the significance
of the difference in gene expression between two cell groups. For
example, SCDE calculates an empirical P-value for testing differen-
tial expression, whereas MAST uses a test with asymptotic chi-
square null distribution and a false-discovery rate (FDR) adjust-
ment control to determine whether a gene is differentially ex-
pressed. DyNB uses NB distributions and Gaussian processes to
model gene expression levels and uses Markov chain Monte Carlo
(MCMC) sampling for DEG detection. edgeR models gene counts
as NB distributions and then uses an empirical test with FDR con-
trol to determine DEGs. DESeq2 is also based on NB distribution
and uses generalized linear models (GLMs) as well as a likelihood
ratio test (LRT) for detecting DEGs. However, these testing strate-
gies are affected by different noise levels, different sequencing
depths, low sensitivities for small sample/cell sizes (Wang et al.
2019), and high false-positive (FP) rates (Squair et al. 2021; Das
et al. 2022). Notably, they lead to substantial disagreement be-
tween DEG analysis methods (Mou et al. 2019; Wang et al. 2019)
and can result in different DEG sets even when using the same
method of analysis (Lytal et al. 2020). Furthermore, existing meth-
ods have limited capabilities for comparative analysis of rare cell
types for which cell numbers are in the tens, because small cell
numbers usually cannot provide effective random sampling (e.g.,
MCMC sampling) for heuristic approximations or estimating em-
pirical distributions. Finally, these methods are time-consuming
when applied to large single-cell data sets (i.e., tens of thousands
of cells) because of the large iterations in sampling processes. In ad-
dition to scRNA-seq, these technical limitations are also observed
in scHi-C and in bulk omics data such as RNA-seq, ChIP-seq, and
Hi-C.

To address the theoretical and practical limitations, we derive
the basic analytic properties of DOTNB, including its PMF, cumu-
lative distribution function (CDF), moments, and asymptotic be-

haviors. As a state-of-the-art application of DOTNB, we introduce
DEGage, a novel method for detecting DEGs between two
scRNA-seq data sets. DEGage accepts raw counts as inputs, effec-
tively avoiding biases introduced by artificial normalization steps
prevalent in existing methods. Extensive validations on both the
simulated and real scRNA-seq data sets indicate that DEGage sur-
passes the performance of five popular DEG analysis tools.
Notably, DEGage displays exceptional robustness against high
dropout noise levels, offers rapid processing for scRNA-seq data
containing large numbers of cells, and displays high sensitivity
when applied to rare cell types with small numbers. These findings
indicate that the theoretical advancements in DOTNB facilitate
more precise statistical testing and enriched result interpretations.
To promote broader application of DOTNB, we implemented basic
functions for DOTNB across several programming languages
(Python, R, Perl, MATLAB, and C++), which can be seamlessly in-
tegrated to augment existing computational methods and catalyze
the inception of novel strategies for comparative analysis in HTS
data and beyond.

Results

Analytic results for DOTNB and comparative analysis
of HTS data

Here, we first derive basic probability functions for the DOTNB
distribution that describes the difference between two indepen-
dent NB distributions X ~ NB(A1, p1) and Y ~ NB(Az, p2); that is,
Z=X-Y ~DOTNB ()\1,}11, A2, pz)

Theorem 1. Suppose that X ~ NB(Ay, p1) and Y ~ NB(Az, p2)
are independent variables, the variable Z=X -Y follows DOTNB
(A1, p1, A2, p2) distribution. We have the following:

1. Its PMF is
A
Pk p?lpgz( l)kql SF1(A1 +k, Az k+1; q1g2), k>0
—k = A ,
Pi‘lpﬁz( Z)qu 21 +k A k+1;q192), k<0

where 1 =1 —p1, @2 =1 —p», ,Fi(a, b; ¢; ) is a Gaussian hy-
pergeometric function (GHF), and (g),, is the Pochhammer sym-
bol, that is,

@), = 1, n=20
Dn=lgq+1)--@+n-1, n>0
. MG g . .
2. Its mean is E(X — Y):p—_p—' and the variance is
1 2
var(X - Y) = Mq] -i-—/\zq2

ri IZh

Theorem 1 establishes the PMF function and moments of
DOTNB (see proofs in Methods). The results describe that DOTNB
is an asymmetric distribution defined over integers. Its CDF can

be calculated as F(k) = quw P(Z =i). Because O<p; <1, we have

B(x — vy =222  Aedz | (Al—zl - M) >0; that is,
P P2 P h
its variance is greater than the mean. Thus, the DOTNB distribution
is suitable for modeling overdispersed data sets.
We also obtain two corollaries to describe DOTNB’s asymp-
totic properties, indicating that the long-tail shapes are asymptot-
ically defined by the two NB distributions respectively (see proofs

in Methods).

var(X —Y) —
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Corollary 1.
When k- +co, P(Z=k)~kM gt and k— -0, P(Z=k) ~
Kr2=1gk.

Corollary 2.
P(Z=k+1)
P(Z =k)

PZ=k+1) _

When k = +o0, PZ =0

~ ¢ and k - —oo, 2.

Here, Corollary 1 states that the probability is asymptotically
determined by the subtrahend NB when k goes to positive infinity,
whereas the probability is asymptotically determined by the min-
uend NB when k goes to negative infinity. Corollary 2 estimates
the probability changes for large k, that is, it converts to g, for pos-
itive k and to g, for negative k.

Although the DOTNB can be simulated using two NB distribu-
tions, the accuracy of empirical distribution estimations is signifi-
cantly influenced by sample sizes. In Supplemental Figure S1,
histograms show simulation examples of the random differences of
two NB distributions (black lines), and their corresponding theoreti-
cal DOTNB PMFs are shown as red lines. In particular, Supplemental
Figure S1A shows 100,000 samples of X ~ NB(2, 0.5) and
Y ~ NB(10, 0.5). The theoretical distribution DOTNB(2, 0.5, 10,
0.5) is skewed to the second quadrant and simulated by the two
NB distributions. Supplemental Figure S1B shows 100,000 samples
of X ~ NB(10, 0.1) and Y ~ NB(5, 0.1) and the DOTNB(10, 0.1, 5,
0.1). Please note that when the sample sizes are reduced from
100,000 (Supplemental Fig. S1B) to 10,000 (Supplemental Fig. S1C)
and 2000 (Supplemental Fig. S1D), the histograms of DOTNB simu-
lations show increased noise variations (black signals), which will sig-
nificantly affect the precision of fitting empirical distributions. This
observation partially explains why these comparative analysis meth-
ods usually rely on large random sampling iterations and have low
sensitivity when small samples are used. Thus, applying our closed
forms of DOTNB can achieve high sensitivity for small samples
and can avoid large runtimes for large sample sizes, improving the re-
liability and performance of comparative analysis of HTS data.

With this general framework established, we can apply
DOTNB to various HTS data types for the comparative analysis of
two independent data sets. Typical examples include but are not
limited to

1. DEG analysis for scRNA-seq. In this application, the expression
counts of each gene in two data sets are fit as independent NB
distributions. Then the DOTNB is used to estimate the theoret-
ical difference, and significance testing can be performed to
detect DEGs. As a state-of-the-art application, we introduce
DEGage in the following section for the DEG analysis of two
scRNA-seq data sets.

2. Comparative analysis of chromosomal regions/peaks across two
ChIP-seq data sets. Peak densities of ChIP-seq data are usually
estimated as NB distributions in mul-
tiple ChIP-seq analysis tools, includ-
ing MACS2 (Zhang et al. 2008).
Thus, the comparative analysis of a
chromosomal region/peak across two
ChIP-seq data sets is also a test of the
difference between two NB distribu-
tions. Here, similar to application 1,
the NB distributions of raw read
counts of peaks for multiple samples
under different conditions can be
estimated.

scRNA-seq count matrix

Fitting distributions

3. Chromatin interaction dynamics. In computational analysis of
3D chromatin interaction data, for example, Hi-C (Dixon et al.
2012) or CAPTURE-3C-seq (Liu et al. 2017), the chromatin in-
teraction strengths among bin-pairs are described as NB distri-
butions in several computational tools (Rao et al. 2014; Liu
et al. 2017; Chen et al. 2020; Sahin et al. 2021). The chromatin
interaction dynamics of enhancer—promoter interactions, or of
loop bin-pairs among two biological conditions, can be tested
by using the DOTNB model.

It is important to note that applying DOTNB to HTS data
analysis has a significant advantage in that sequence depths of
two data sets do not need to be normalized by total sequence reads.
This is important because normalization strategies employed by
existing analysis tools can introduce distinct genome-wide biases.
These biases may be further amplified when analyzing genes that
exhibit exceptionally high or low expression levels. In contrast,
DOTNB operates under the assumption that the model parameters
for the two data sets are independent, leading to a framework bet-
ter suited for calculations involving read counts. Furthermore,
DOTNB allows for the direct estimation of parameters from the
raw reads, effectively circumventing artificial effects introduced
by normalizing individual genes based on total sequencing reads.

DEGage shows high performance on simulated and real
scRNA-seq data

To demonstrate the practical application of DOTNB to analysis
of HTS data, we developed DEGage, a new computational tool
for identifying DEGs in scRNA-seq data (for further details, see
Methods) (Fig. 1). After performing quality control processes
that remove genes with lower expression and outlier cells, the ex-
pression levels of each gene (raw counts) are modeled as two inde-
pendent NB distributions for the two conditions that will be
compared. A P-value for each gene is then calculated using the
DOTNB CDF function to test the significance of differences in
gene expression. Unlike other methods that rely on approxima-
tion or empirical techniques, DEGage directly estimates NB distri-
butions for two scRNA-seq data sets and conducts significance
testing using DOTNB.

To evaluate the performance of DEGage, we analyzed multi-
ple large-scale scRNA-seq data sets and compared the results to
those obtained with five popular methods for DEG analysis:
DEsingle, DESeq2, edgeR, Monocle3, and scDD (Supplemental Ta-
ble S1). Initially, we benchmarked the performance of DEGage on
simulated data sets with varying gene expression levels across two
conditions by generating 10 data sets containing 2000 DEGs and
18,000 equivalently expressed (EE) genes using scDD’s simulation
framework (Korthauer et al. 2016). We applied these six DEG anal-
ysis tools to the simulated data and computed their average perfor-
mances. The benchmarking results demonstrate the superior
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Figure 1. Computational workflow of DEGage. DEGage takes two scRNA-seq data sets as inputs and
utilizes the DOTNB distribution as the core statistical model to test the significance of gene expression
profiles of the two data sets. It outputs multiple types of information suitable for downstream analysis.
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performance of DEGage across multiple critical evaluation metrics,
including the number of detected DEGs, sensitivity, specificity,
precision, accuracy, and the F1 score (Supplemental Table S2). No-
tably, DEGage stands out with the highest sensitivity score (0.812),
highlighting its ability to correctly identify a substantial portion of
DEGs. Furthermore, DEGage achieves the highest F1 score (0.765),
effectively striking a harmonious balance between sensitivity and
specificity. In contrast, edgeR, Monocle3, and scDD exhibit the
lowest sensitivities among all evaluated packages, each falling be-
low the 0.600 threshold. Additionally, Monocle3 presents notably
low specificity and a markedly low F1 score (0.222), emphasizing
its limitations in correctly classifying DEGs. To provide a visual
representation of the performance, we calculated the receiver char-
acteristic curves (ROCs) (Fig. 2A) to illustrate the trade-off between
true-positive (TP) and true-negative (TN) rates. Among the area un-
der the curve (AUC) values for the six methods, DEGage emerges
with the highest AUC value (0.968). Conversely, Monocle3 records
the lowest AUC value (0.733), mirroring its suboptimal sensitivity
and specificity. The elevated sensitivity demonstrated by DEGage
aligned with our expectations, as the theoretical foundations of
DOTNB are designed to yield enhanced statistical power, bolster-
ing its ability to identify DEGs accurately.

In addition to the simulated data analysis, we also evaluated
the six tools on positive and negative control data sets derived
from real scRNA-seq experiments. The positive control data set
contained 48 mouse embryonic stem cells and 44 mouse embryon-
ic fibroblasts (Islam et al. 2011). We used a gold-standard gene set,
which contains DEGs validated by PCR experiments (Moliner et al.
2008; Kharchenko et al. 2014), to evaluate the sensitivity of each
tool. DEGage displays strong performance by identifying 6626
genes with an FDR < 0.05 in the positive control data set, achieving
an acceptable level of sensitivity (0.501) (Supplemental Table S3).
Although the sensitivity of DEGage ranks slightly lower than that
of DEsingle (0.610), it is important to note that DEsingle returns
significantly more DEGs, surpassing DEGage by 2003 genes. This
increased sensitivity of DEsingle comes at the cost of lower specif-
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Figure 2. Computational performance of DEGage. (4) ROCs show the
performances of six methods on simulated data. (B) The effect of dropout
proportions on the sensitivities of the six methods. (C) Runtimes of each
method with varying numbers of cells. (D) Sensitivities of each method
with different numbers of cells.

icity, as indicated by its results. In the context of the negative con-
trol data set, DEGage returns a minimal number of detected DEGs
(198.5) and a high specificity score (0.984). This highlights the
ability of DEGage to accurately discern the absence of differential
gene expression and prevent FP identifications. In summary,
DEGage demonstrates robust and reliable performance in distin-
guishing true differential gene expression from random noise.

DEGage is robust against dropouts and supersensitive
to DEGs in rare cell types

Dropout counts occur when a gene is detected in one cell but not
in another cell of the same type, a phenomenon caused by the low
capture efficiency of scRNA-seq methods. This creates count spar-
sity, limiting the view of the transcriptomic characteristics of a
gene and posing a major challenge in scRNA-seq data analysis
(Qiu 2020; Xu et al. 2022). We evaluated the robustness of the
six methods against different levels of dropout noise using data
simulated according to an NB distribution with zeros randomly in-
troduced to simulate dropout events. Among the six methods,
DEGage is the most robust against dropout noise across all propor-
tions (Fig. 2B). Monocle3 is the second most robust method
against dropouts and performs better than DEsingle. Notably,
methods that are specifically designed for scRNA-seq data
(DEGage, DESingle, Monocle3, and scDD) tended to show linear
rates of decline in sensitivity. Meanwhile, methods that were de-
veloped for bulk RNA-seq (DESeq2, edgeR) show steeper rates of
decline initially and leveled out at larger dropout proportions, sug-
gesting they may be less suitable for use on scRNA-seq data sets
with high proportions of dropouts.

Next, we investigated the effect of cell numbers on run-
times, as scRNA-seq data sets can include tens of thousands of
cells. Because DEGage leverages the advantages of the closed
forms of DOTNB, it is expected to offer fast runtimes in data pro-
cessing. We compared the runtimes of the six packages on simu-
lated data sets and found that DEGage is faster than other DEG
analysis tools. We varied cell numbers from 20 to 2500, where
20 represents the typical number of cells for rare cell types.
Results show that DEGage has similar runtimes to those of
edgeR and Monocle3 across all numbers of cells (<20 min per
2500 cells), which are based on heuristic testing methods.
Meanwhile, DESingle and scDD are significantly slower than oth-
er packages (Fig. 2C). Additionally, we observed that DEGage ex-
hibits very small variation among runtimes for different cell
numbers, whereas other methods show larger variances. Taken
together, the results show that DEGage is robust against dropout
noise while maintaining relatively high running speed for pro-
cessing scRNA-seq data sets.

Although scRNA-seq data has been used to identify rare cell
types (Wegmann et al. 2019; Fa et al. 2021), DEG analysis for those
rare cell types remains challenging because the limited sample siz-
es reduce the power to detect statistically significant differences
(Das et al. 2022). With the introduction of DOTNB distribution,
we predict that DEGage will remain sensitive even for rare cell
types with small sample sizes. To test this, we benchmarked the
sensitivities of six tools on cell numbers ranging from 20 to 2500
(Fig. 2D). DEGage has the highest sensitivity between 20 and
250 cells, suggesting it is an effective tool for detecting DEGs in
rare cell populations. Furthermore, the sensitivities of all packages
increased with cell numbers, and the curves come to mature
around 1000 cells, indicating that 1000 could be an ideal sample
size for testing with these methods.
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DEGage performs well on imbalanced data sets

Many biological experiments frequently obtain different sample
sizes, leading to imbalanced scRNA-seq data sets for comparative
analysis. This imbalance presents a significant issue as it can im-
pact statistical power and reduce reproducibility across different
runs (Mou et al. 2019; Lytal et al. 2020). Subsampling strategy is
frequently used in many available tools for comparative analysis
to address the imbalance in sample sizes (Anders and Huber
2010; Robinson et al. 2010). However, subsampling can leave a nu-
merous cell in a large data set unused. To address this challenge, we
implemented two sampling strategies with DEGage: One, by de-
fault, involves subsampling the large data set to pair with each
cell in the small data set (named subsampling), whereas the other
involves pairing each cell in the large data set with a randomly se-
lected cell in the smaller data set (named random assignment). We
conducted tests to assess how these two sampling strategies affect
DEGage’s performance on imbalanced sample sizes, ranging from
10 to 100 cells. To better mimic the complexity in real scRNA-seq
data, we also included three other parameters in the simulation: ef-
fect size, dispersion, and dropout levels. The effect size is defined as
the log, fold changes of expression levels of a gene between two
conditions, and the dispersion controls the variability or spread
of the data around the mean of an NB distribution (Love et al.
2014). Here, the effect size was uniformly sampled in the range
of (1, 7.5), and the dispersion was uniformly sampled in the range

of (0.1, 10). Meanwhile, each gene in all data sets was randomly as-
signed dropout levels in the range of (0.1, 0.5). The validation re-
sults demonstrate that DEGage performs well with both
sampling strategies but exhibits slight differences across different
imbalanced data sets (Fig. 3A; Supplemental Tables S4-S6). First,
we confirmed that, for both sampling strategies, DEGage achieves
high performance according to the criteria of F1, sensitivity, and
specificity while maintaining small variances in 10 replicates.
Specifically, in all seven combinations of different cell sizes, sensi-
tivity scores exceed 0.8. Specificity scores exceed 0.8, and F1 scores
exceed 0.65, except for very small cell sizes of 10 versus 10 (specif-
icity of 0.79 and F1 of 0.51). Second, we observed slightly varied
performance in imbalanced data sets when employing different
sampling strategies. Specifically, the subsampling strategy yielded
generally higher sensitivity scores than the random assignment
strategy, and the random assignment strategy exhibits slightly
higher specificity scores. F1 scores, which balance both sensitivity
and specificity, show that the random assignment strategy per-
forms slightly better than the subsampling for imbalanced data
sets. However, no significant difference in F1, sensitivity, and spe-
cificity scores was obtained between the two subsampling strate-
gies (Student’s t-test, two-sided) (Fig. 3A). These results suggest
that random assignment is a useful approach for fully utilizing
gene expression signals across all cells in the large data set when
comparing with a relatively small data set.
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Figure 3.

Performance evaluation of DEGage on imbalanced data sets. (A) Comparison of DEGage’s performance between the random assignment and

the subsampling strategy. F1, sensitivity, and specificity scores were calculated for 10 combinations of balanced and imbalanced data sets. Each boxplot
represents the scores across 10 replicates. The P-values were calculated using a two-sided Student'’s t-test. Performance of DESeq2 (B), edgeR (C), GLM.NB
(D), and Wilcoxon test (E) on imbalanced data sets. Detailed scores are presented in Supplemental Tables S4-S6.
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Comparative analysis of two NB distributions

We compared DEGage’s performance with four other popular
methods (DESeq2, edgeR, the Wilcoxon test, and the GLM.NB
method) using different parameter settings for effect size, disper-
sion, and imbalanced sample sizes. We included the Wilcoxon
test because it is a nonparametric method widely used for compar-
ing two imbalanced data sets. Meanwhile, MASS’s GLM offers a re-
gression-based LRT for the difference in the mean rates of two NB
distributions (named GLM.NB) (Venables and Ripley 2002). First,
we observed that DEGage achieves the highest F1 and sensitivity
scores across combinations of small and strong imbalanced data
sets: 10 versus 10, 25 versus 10, 25 versus 25, 50 versus 10, 50 ver-
sus 25, 50 versus 50, and 100 versus 10 (Fig. 3A-E; Supplemental
Tables S4-56). Meanwhile edgeR has slightly better F1 scores for
two relatively large data sets: 100 versus 50 and 100 versus 100
(Fig. 3C), and DESeq2 has better sensitivity scores for 100 versus
25, 100 versus 50, and 100 versus 100 (Fig. 3B). Additionally, we
observed that edgeR maintains better F1 scores than DESeq2 across
most combinations. The Wilcoxon test exhibits the highest specif-
icity across all combinations, but the poorest sensitivity (Fig. 3E),
eventually resulting in lower F1 scores than those of parametric
test methods like edgeR, DESeq2, and DEGage. The GLM.NB meth-
od achieves fair sensitivity and specificity scores (Fig. 3D), resulting
in slightly better F1 scores than Wilcoxon but lower than DEGage
and edgeR. Considering that both DEGage and GLM.NB utilize the
same procedure to estimate gene expression levels as NB distribu-
tions, the better performance of DEGage across all 10 combina-
tions indicates that the usage of closed forms of DOTNB is more
effective than the LRT in testing the difference between NB-based
scRNA-seq data sets.

We then investigated how different effect sizes and disper-
sions affect the performance of DEG detection by plotting the
F1, sensitivity, and specificity scores for different parameter combi-
nations. First, we observed that DEGage generally achieves better
F1 scores for different dispersion settings of 0.1, 0.5, one, five,
and 10, especially for small effect sizes of 1.5 and small sample siz-
es of 10 versus 10 (Supplemental Fig. S2). The GLM.NB shows de-
creasing F1 scores for large dispersions of five and 10, whereas
Wilcoxon has the poorest F1 scores for small dispersions of 0.1
and 0.5. Second, all methods show increasing sensitivity for larger
dispersions (Supplemental Fig. S3). DEGage and GLM.NB have bet-
ter sensitivity scores than edgeR, DESeq2, and Wilcoxon on small
sample sizes, that is, 10 versus 10 and 25 versus 10. Wilcoxon has
the poorest sensitivity scores, especially for small dispersions of
0.1. Third, all methods generally show good specificity scores for
different dispersions, sample sizes, and effect sizes (Supplemental
Fig. S4). Among them, Wilcoxon has the best and most stable spe-
cificity scores (greater than 0.99) for different dispersions. Notably,
GLM.NB achieves decreased F1 and specificity for large dispersions
(Supplemental Figs. S2, S4). Taken together, these results on small
imbalanced data sets (100 or fewer cells) and different parameter
settings indicate that both the subsampling strategy and random
assignment strategy integrated in DEGage outperform other meth-
ods. Moreover, these findings corroborate our observations in
Figure 2D, further demonstrating DEGage’s superior performance
in detecting DEGs when comparing small data sets.

DEGage detects marker genes across diverse cell types
in prostate cancer
To further assess the potential value of DEGage for analyzing real

scRNA-seq data, we tested it on a data set of human prostate cells
taken from patients and healthy controls (Heidegger et al. 2022).

After quality control, a total of 24,926 cells remained. First, we an-
notated cell types with SingleR (Aran et al. 2019), resulting in a to-
tal of 17 cell types for both cancerous and healthy conditions (Fig.
4A). Next, we used DEGage to assess DEGs under two scenarios: (1)
in the same cell types under cancerous and healthy conditions and
(2) across different cell types within same condition (Fig. 4B). It is
worth noting that the sample sizes of these cell types vary greatly,
ranging from 25 (HSC CD34" cells) to 8404 (epithelial cells). This
includes five cell types with fewer than 100 cells and five cell types
with more than 1000 cells (Supplemental Table S7). Thus, the
comparisons among these cell types represent varying degrees of
imbalance, particularly between frequent and rare cell types.

Results for the first scenario reveal six cell types that exhibit a
significantly higher number of DEGs: fibroblasts (716), dendritic
cells (6135), epithelial cells (266), macrophages (178), chondrocytes
(99), and endothelial cells (99) (Fig. 4C; Supplemental Table S8).
Because of the relatively large number of DEGs in these cell types
compared with others, we categorized them as highly variable cell
types (HVCTs) in prostate cancer. Upon manual examination of
these DEGs, we discovered that many of them had been previously
detected in other research studies (Supplemental Table S9). Out of
all these markers, we consistently observed overexpression of NPY
across HVCTs under cancerous conditions (Fig. 4D). Additionally,
other markers were associated with more cell type-specific process-
es, such as CACNA1D overexpression, which modulates androgen
receptor transactivation in fibroblasts (Chen et al. 2014), resulting
in transcriptional regulation of cancer-associated fibroblast activa-
tion (Clocchiatti et al. 2018).

When comparing different cell types, DEGage consistently
detects reasonable numbers of DEGs in line with the dissimilarity
between the cell types (Fig. 4E). For instance, 2517 DEGs are iden-
tified between epithelial cells and common myeloid progenitors,
indicating substantial differences in gene expression patterns be-
tween these two distinct cell types. In contrast, T cells and NK cells,
known to have similar expression patterns (Narni-Mancinelli et al.
2011), yield only 118 DEGs between them. Full DEG lists for each
of the cell type comparisons are available in Supplemental Table
S10. These comparisons allow DEGage to identify well-known
marker genes for each cell type. For example, IGHA1, IGHGS3,
IGKC, IGLC2, IGLC3, and JCHAIN are established markers for B
cells (Fig. 4F). These markers primarily consist of immunoglobulin
isotypes, with the exception of JCHAIN, which plays a pivotal role
in the formation of immunoglobulin multimers (Castro and
Flajnik 2014). The comprehensive sets of marker genes detected
by DEGage for tumor-positive and tumor-negative cells can be
found in Supplemental Figures S5 and Sé6.

DEGage detects memory-related genes in engram neurons

After demonstrating the efficacy of DEGage for analyzing large
scRNA-seq data sets, we further tested its performance for detect-
ing DEGs on small cell numbers by using a neuronal data set con-
taining only 38 Arc::dVenus mouse neurons from Rao-Ruiz et al.
(2019). In their paradigm, mice were subjected to three conditions:
fear-conditioned with foot shock (FC), no shock (NS), and home
cage (HC), which each includes 24, eight, and six brain frontal cor-
tex cells, respectively, with half of the cells in each condition ex-
pressing dVenus (dVenus*), and the other half not expressing
dVenus (dVenus™). In Arc::dVenus mice, a destabilized fluorescent
reporter (dVenus) is coupled to the promoter for Arc, whose expres-
sion is strongly associated with memory formation (Gouty-
Colomer et al. 2016). Therefore, dVenus® cells express Arc in
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Figure4. DEGage detects canonical prostate cancer markers across multiple cell types. (A) t-SNE embeddings of 24,926 human prostate cancer cells. (B)
Organization of analyses with DEGage on the Heidegger data set. (C) The number of DEGs detected between cancerous and healthy conditions of the same
cell type. The HVCTs are indicated in red. (D) Prostate cancer marker genes detected by DEGage in HVCTs. Expression levels of each gene are shown for
both cancerous and healthy conditions of each cell type. (E) The number of DEGs detected between each cell type under cancerous and healthy conditions,

respectively. (F) Marker genes detected by DEGage in healthy B cells.

response to conditioning, whereas dVenus™ cells do not. In Rao-
Ruiz’s initial analysis, comparisons between dVenus* and
dVenus™ cells were sought individually. Here we apply DEGage
to not only reproduce the author’s initial analysis but also compare
dVenus* and dVenus~ between FC and HC mice and between FC
and NS mice (Fig. 5A).

In comparisons between the dVenus* and dVenus™ cells,
DEGage identified 1717 FC DEGs, 1655 HC DEGs, and 1803 NS
DEGs, whereas the Rao-Ruiz analyses found 1082 FC DEGs, 639
HC DEGs, and 175 NS DEGs (Fig. 5B; Supplemental Table S11).
Among these DEGs, the two analyses shared 69.5% of their FC
DEGs, 24.1% of their HC DEGs, and 4.0% of their NS DEGs. Rao-
Ruiz’s analyses were performed with DESeq2, and these discrepan-
cies are likely attributable to methodological differences in han-
dling small sample sizes. We plotted the P-values of genes
outputted by DEGage and DESeq2, respectively (Fig. 5C). We
found that DESeq2 calculated P-values mainly ranging from
107%° to one, whereas DEGage outputted more even smaller P-val-
ues, ranging from 107'%° to 107*° (Fig. 5C, y-axis). This suggests
that DEGage is quite sensitive, particularly for genes with log,

fold-changes between two and six (Fig. 5C, x-axis). Additionally,
we observed that DEGage is also sensitive to genes with larger
fold-changes. For upregulated genes with log, fold-changes greater
than six, DEGage detects 15 DEGs, which is five more than DESeq2
(i.e., Cavinl, Sdk1, Gng4, Fmnl3, and Acadl) (Fig. 5C). Because these
genes exhibit significant fold-changes exceeding six between the
two conditions, they are more likely to be true DEGs. Furthermore,
for down-regulated genes with log, fold changes less than -6,
DEGage identified three DEGs that were missed by DESeq2 (i.e.,
Ccdc103, Itih3, and Acotl). Among these eight genes, we found
that seven of them could be potentially involved in memory func-
tions or neural circuits, leaving only Cavin1 functionally uncharac-
terized (Supplemental Table S12). For example, Ccdc103 enables
protein homodimerization in axonemal dynein complex assembly
and cilium movement, and such cilium-related genes play a sub-
stantial role in remote memory (Jovasevic et al. 2021). Itih3 en-
codes the heavy chain subunit of the pre-alpha-trypsin inhibitor
complex, stabilizing the extracellular matrix by binding hyaluron-
ic acid. Its variants have been associated with memory consolida-
tion and hippocampal connectivity deficits in autism (Xie et al.
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Figure 5. DEGage detects DEGs related to remote memory formation. (A) Organization of the analyses performed by Rao-Ruiz and DEGage. (B)
Comparison of the numbers of DEGs detected by DEGage and Rao-Ruiz. (C) Volcano plots of DEGs showcase DEGs detected by DEGage and Rao-Ruiz.
Subfigures highlight DEGs with log, fold changes (LFCs) less than —6 and greater than six. DEGs uniquely identified by DEGage are marked in gold.
(D) The enrichment of GO biological process of the DEGs identified by both DEGage and Rao-Ruiz. The bar plot shows the number of GO biological
process hits for each of the previously listed conditions. (E) Networks retrieved from STRING, with their corresponding BioGrid annotations, derived
from DEGs uniquely identified by DEGage. These genes primarily fall into three major functional groups of GO biological processes (shown in light

blue, red, and green). LFCs of these genes are presented in F.

2020). Acot1 catalyzes the hydrolysis of acyl-CoAs into free fatty ac-
ids and coenzyme A, regulating their respective intracellular levels.
Although Acot1'’s relationship to fear memory formation has not
been directly characterized, the regulation of acetyl-CoA during
histone acylation in neurons plays a critical role in memory forma-
tion (Alexander et al. 2022). These results indicate that DEGage
demonstrates higher sensitivity than DESeq2 for detecting DEGs
in real applications.

To assess the biological relevance of the identified DEGs in
each analysis, we conducted an evaluation of GO biological pro-
cess annotations for the following subsets of FC DEGs: genes de-
tected by both methods, genes exclusively detected by Rao-Ruiz,
and genes exclusively detected by DEGage. Both methods uncov-
ered DEGs strongly associated with neural functioning and mem-
ory formation. DEGs detected only by DEGage exhibit specificity
toward various metabolic processes, whereas Rao-Ruiz’s DEGs
map to less specific GO terms with lower significance levels (Fig.
5D). Among the DEGs unique to each method, DEGage’s DEGs
are associated with a broader range of GO terms, suggesting a high-
er level of biological relevance compared with DEGs unique to
Rao-Ruiz’s analysis (Fig. 5D, right side). Furthermore, we construct-
ed the network associations among DEGs uniquely detected by
DEGage through the STRING database (Szklarczyk et al. 2021).
These associations are subsequently annotated based on available
information from the BioGrid database (Oughtred et al. 2019). We
identified three networks with reasonably high-confidence levels
(>0.650), each seemingly related to a distinct metabolic process
(Fig. SE). These processes appear to be upregulated primarily in
dVenus™ cells (Fig. S5F), suggesting that non-memory-forming cells

may engage in additional metabolic functions alongside memory-
forming cells.

Discussion

In this study, we introduced DOTNB, a novel distribution family
with analytical results and supportive software. Development of
DOTNB successfully bridges a longstanding theoretical gap sur-
rounding the exploration of NB distributions. We derived statistical
properties of the DOTNB, including its PMF, CDF, and moments,
providing a new discrete distribution to model and analyze dis-
persed count data. It is worth noting that the DOTNB PMF can be
partially expressed using the ,F; GHF. Therefore, more analytic
properties of the DOTNB PMF could be explored by applying
the available theories related to GHF (Aomoto and Kita 2011).
In Theorem 1, the DOTNB PMF is represented using the
,Fi1(a, b; ¢; z) function with the four parameters a, b, ¢, z, which
are different for k>0 and k<O; that is, a= A1 +k, b= Ay,
c=k+1,andd =qiqz fork>0;a= A, +k, b=A;,c=k+1,and
d = q1q for k<0. Although the ,F; GHF provides a mathematical
description of the DOTNB PMF, it is hard to provide a direct biolog-
ical interpretation for the GHF parameters outside of the PMF’s con-
text. We also obtained two asymptotic behaviors that describe how
the dynamic changes of DOTNB probability can be determined by
the two NB distributions for large k values. We hope these results
can help researchers understand properties of DOTNB and continue
theoretical research in the future. By implementing basic functions
for DOTNB across several programming languages (Python, R, Per],
MATLAB, and C++), we aim to facilitate its widespread use in
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computational methods and catalyze the development of novel
strategies for comparative data analysis. Based on this work, it is
also valuable to study the difference of two “zero-inflated” NB
(ZINB) distributions, which were recently used as an alternative dis-
tribution to fit scRNA-seq counts with dropouts (Lopez et al. 2018;
Risso et al. 2018; Eraslan et al. 2019). The ZINB distribution is a
mixture of an NB distribution and inflated zeros that are
affected by a latent variable interpretation (Garay et al. 2011;
Miao et al. 2018). Let X ~ Pyp(A, p), and the ZINB PMF is
presented as P(Y|6, A, p) = 6-1(n = 0) + (1 — 6) - Pnp(X|A, p). Here
Y = (1 - E)X, and E denotes the zero-inflation indicator, taking
the value of one with a probability of 6 and zero otherwise, indepen-
dently of X. Please note the NB part can also have zero values, and
the observed zero values are the mixture of inflated zeros and
zeros from the NB distribution. Given two ZINB variables,
Y, = (1 — E1)X; and Y, = (1 — E;)X>, their difference Z =Y, — Y,
can be rewritten as (X; — Xz) — (E1 X1 — E2X5). The first part follows
a DOTNB, and the second part is the difference of zeros between
two conditions. Thus, we can still test the significance of the
DOTNB part; however, more analytic results about the difference
of two ZINBs are yet to be derived.

Using the DOTNB model, we developed DEGage, a novel NB-
based method for identifying DEGs. Rigorous benchmarking of
DEGage against five popular DEG analysis methods utilizing
both simulated and control data sets shows that DEGage has the
highest sensitivity and F1 scores, especially for comparing small
data sets. Furthermore, DEGage, advanced in the closed forms of
the DOTNB model, boasts expedited runtimes for processing large
data sets. As imbalanced data sets are frequently encountered in bi-
ological experiments, we equipped DEGage with two sampling
strategies: random assignment and subsampling. Upon testing
them on imbalanced data sets, we observed that the subsampling
strategy has slightly higher sensitivity on imbalanced data sets,
whereas the random assignment strategy performs better for small
imbalanced data sets in terms of specificity. However, neither of
them consistently yields better performance in terms of F1, sensi-
tivity, and specificity across all scenarios. Thus, the results suggest
that users can select a suitable sampling strategy based on perfor-
mance preference and data scale. As an NB model-based method,
DEGage may have reduced power when the true distributions ex-
hibit two peaks or two classes (Hebenstreit et al. 2011). By default,
DEGage fits an NB distribution for each gene in a cell population,
even if the ground truth exhibits a bimodal distribution.
Consequently, this fitting process may reduce the testing precision
in such scenarios. Another practical consideration for improving
DEGage’s performance is to control covariates and confounders
in scRNA-seq data sets, such as sequencing depth, cell cycle effects,
and lowly and highly expressed genes (Chen and Zhou 2017; Lun
and Marioni 2017; Hafemeister and Satija 2019; Choudhary and
Satija 2022). DEGage uses the GLM method to directly esti-
mate the parameters of NB distributions (Venables and Ripley
2002); however, such estimation may lead to overfitting, mainly
owing to covariates and confounders in the sequencing data
(Hafemeister and Satija 2019). To obtain precise and stable param-
eter estimates, an alternative procedure could involve “regularized
NB regression,” which can efficiently remove the influence of co-
variates while preserving biological heterogeneity in scRNA-seq
data (Hafemeister and Satija 2019). For example, we can initially
fit model parameters for each gene using a GLM, with sequencing
depth as a covariate. Kernel regression can then be applied to the
resulting parameter estimates to learn regularized parameters
that depend on a gene’s average expression and are robust to sam-

pling noise. A second round of NB regression can be performed to
constrain the model parameters to those learned in the previous
step. Consequentially, DEGage can utilize the regularized parame-
ters of two NB distributions for the DOTNB-based test and further
improve performance.

Although the DOTNB model has been applied in scRNA-seq
data analysis, we believe it can be integrated for comparative anal-
ysis of other single-cell or bulk omics data, such as scHi-C (Ramani
etal. 2017; Lee etal. 2019), bulk RNA-seq (Wang et al. 2009), ChlIP-
seq (Park 2009), and more. Taking bulk RNA-seq as an example, it
is methodologically feasible to directly prepare gene expression
profiles from case and control RNA-seq data sets and input them
into DEGage for DEG analysis. However, preprocessing and nor-
malization procedures for raw RNA-seq data sets differ from those
for scRNA-seq and require careful consideration for controlling
confounding factors such as count normalization, age, gender, dis-
ease status, and others (Oshlack et al. 2010; Kumar et al. 2018).
This is important for comparative analysis of real clinical data
sets, such as large samples from the TCGA database (The Cancer
Genome Atlas Research et al. 2013). In summary, DOTNB is a nov-
el discrete distribution for modeling dispersed count data, and we
expect that it can be widely utilized not only in sequencing data
analysis but also in various research questions for the comparison
of count data between groups to test significant differences.

Methods

Theorems and proofs of DOTNB distribution

Given X ~ NB(A1, p1) and Y ~ NB(Xz, p2), we consider the differ-
ence between two independently distributed NB random vari-
ables, which is defined as Z = X — Y ~ DOTNB (A1, p1, A2, p2). It
is worth noting that although X and Y are nonnegative variables,
Z is a variable defined on all integers. To calculate its PMF, we start
with the derivation of the necessary formulas.

Theorem 1. Suppose that X ~ NB(Aq, p1) and Y ~ NB(A;, p;) are
independent variables; the variable Z = X — Y follows DOTNB (4,
P1, Az, p2) distribution. We have

1. Its PMF is
A
PZ=k = ooy g K da Kt 1 ), K0
=k = ) ,
p?lpgz ( Z)k qZ 2F1()\2 +Kk A k+1; qlqz) k<0

whereqi =1—p1,q2 =1 —p, ,Fi(a, b; ¢; z)isaGHF, and (g),, is
the Pochhammer symbol, that is,

@) = 1, n=0
Dn=laq+1) - @+n-1, n>0"
M1 Ao . .
2. Its mean is E(X-Y)= ’ ! and the variance is
1 2
var(X —Y) = My +—)\ZZZ.
v 123
Proof.
1. Because X ~ NB(A1,p1) and Y ~ NB(Az, p2), we have
PX=n)= ()‘1)" piqh and P(Y =m) = ()\z)m g, We shall

calculate the moment generating functlon of X-Y.
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Note that

A
Mx(0) = E[e”] = <#) , 0 <log(q1)
Az
—Ee = (L2
My (6) = E[e”] = <1 — qze*"> , 0 <log(qz).

Then,

Mx_y(0) = E[e?® V] = E[e® e~ ] = Mx(6)My(—6)

(o (e \E 1 <9<l
=iz qe) Goga) - 08(q2) og(q1)-

We next calculate the generating function of X —Y. Note

that
Gx-v(2) = Elz%] = EIZIE[(z Y)"] = Gx @Gy (2 1),
Recall that
"
Gx0 =B = (1)
G0 =i = (22 )"
1-qz)
Then,
Az
A
_ —1y _ p1 P2
Gy = GxaGre ) = (1) | L
z
= Z ann;
where
Gx_ y(Z)
Pn 2771 Zn+1
Note that
( l)n
Gx(2) = Z (@12)"
n=0 !
Gra)=p Yo U2 g
m=0 :
Then,
- /\ n n - )‘ m — m
Gx-y(2) :pq'pgzz(nl!) (q12) Z%(fhz h
)\2 ()\l)n()‘Z)m n_m _n—m
ZO n'm! q q z
a2 (/\l)m+k(A2)m m+k m _k
—P] Pz k;m,;) (m+k)'m' q1 qZ".
Then,
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If k>0, then
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By symmetry, when k<0, we have

A (/\z)k k

P(Z=k) =pi'p; 9z 2F1(A2 + K, A; k+ 15 q1q2).

2. We next calculate the moments of X — Y. Note that

/\2 Z ()‘1)11()\2)}‘" n me(n m)e
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)41 P2

var(X — Y) = var(X) + var(y) = 194 +)‘2#
p? P

EX —Y)? =var(X — Y) + (E(X — Y))2.

EX-Y)=EX)—EY) =

End of proof.

When the observations X and Y are available, the parameters
of the DOTNB distribution can be obtained by estimating the NB
parameters of the two data sets accordingly. In this study, the pa-
rameters are calculated using NB regression with MASS’s GLM
(Venables and Ripley 2002). Additionally, we consider the asymp-
totic behaviors of DOTNB distribution.

Corollary 1.
When k- +c0, P(Z=Kk) ~kM"1¢5 and k—-co, P(Z=k) ~
kl2=1gk.

Proof. When k>0, we have

A
P(Z=k= P?‘PQZ( l)k% 2F1(A1+k, A2k + 15 q142)
a0k o Y _ . .
=P 1 (1—q192) 2F1<1 A, Az k415 q1q2_1>
o TR+1) &
=p'py ﬂ di(1—q1g2) ™" Tkt D) s Y qn(zo)(1 = Ap) k"
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where qo(zo) =1 and g,(zo), n>1 are defined by

F-1\" S k
< . ) (A-20+20¢) ™ =) qu(z0)7".

k=0
Then, we have
PZ =k ~Kk"lgk, k»1
P(Z =k ~Kk1g8, k<« 1.

End of proof.
Corollary 2.
P(Z=k+1) P(Z=k+1)
When k = +o0, PZ=F ¢1 and k > —oo, PZ =0 q2.

Proof. When k> 1, we have
PZ=k+1) q(\1+Kk),F1(\1 +k+1, A2, K+ 2; q192)
P(Z:k) - k 2F1(/\1 +Kk, A2, k+1; qlqz)
_ (k+DM'T(k+2) T(k+A)

k+1

VT Tk DTk+na+ 1) Tkea, — 0
. PZ=k+1)
Similarly, we have PZ=k q2, when k< —1.
End of proof.
DEGage workflow

NB distributions are widely used in analyzing bulk RNA-seq data
and, more recently, scRNA-seq data. In scRNA-seq experiments,
gene expression levels are quantified by counting the number of
sequencing reads that align to each gene in a cell. The resulting
counts represent discrete, nonnegative data. Fach gene’s counts
(successes) can be modeled as a random variable following an NB
distribution. For example, if a gene’s counts follow NB(10, 0.1)
for a cell population under one condition, the parameters 2=10
and p=0.1 could be intrinsically determined by the biological con-
ditions and experimental procedures. Once the scRNA-seq experi-
ments are completed and the data are obtained, these two
parameters can be estimated. Furthermore, if a gene’s counts fol-
low NB(10, 0.1) and NB(S, 0.1) in two different experiments, the
expression difference of the gene is also a variable that follows
DOTNB(10, 0.1, 5, 0.1). Therefore, DOTNB(10, 0.1, 5, 0.1) can be
employed to calculate the probability for the observed expression
difference of the gene between the two scRNA-seq data sets.

In this study, we propose a novel method called DEGage to
detect DEGs from paired scRNA-seq data sets by utilizing the the-
oretical results of the DOTNB model (Fig. 1). Initially, DEGage
takes the raw count matrices of two scRNA-seq conditions that
could correspond to two samples, cell types, or one cell type on
two biological conditions (i.e., two groups of cells, C; and C,).
Low-quality cells with a low number of detected genes will be fil-
tered as suggested in Seurat (Butler et al. 2018; Hao et al. 2021).
Initial filtering takes place to remove genes with low or undetect-
able expression levels. Genes are prefiltered with a nonparametric
permutation test (i.e., shuffle test) (Moore 1999), so that only
those genes below a significance level are kept for downstream
analysis. Specifically, cells in two data sets are randomly relabeled,
and the difference between the means of the two relabeled data
sets is calculated. Subsequently, the cells from the two data sets
are pooled, and the difference in sample means is calculated and
recorded for 2000 permutations of the pooled values into two
groups of equal size. Each time the difference between means ex-
ceeds that of the mean difference under the original labels, it is

considered extreme. The proportion of occurrences in which this
happens out of the total number of permutations determines the
P-value. Genes below a significance level (¢=0.1 by default) are
then selected for downstream analysis. For each remaining gene,
the expression levels (raw counts) are fitted as NB distributions
for both conditions using the MASS’s GLM (Venables and Ripley
2002). Once the parameters have been estimated, a P-value for
each gene will be calculated using the DOTNB CDF to test the sig-
nificance of gene-wise expression differences. Specifically, we ran-
domly select and order the same numbers of cells in C; and C; (i.e.,
min(|Cy|, |Cy|)), calculate the difference for the ordered pairs of
cells of the X and Y, and then determine the mean of the differenc-
es. Next, the P-value for the mean of the ordered difference is cal-
culated by using DOTNB CDF. If the P-value is less than a
prespecified threshold (e.g., 0.05), the gene is considered as signifi-
cantly differentially expressed. To control the FDR, P-values are ad-
justed according to the Benjamini adjustment for multiple tests
(Benjamini and Hochberg 1995). The detailed results of DEGage
calculations are outputted, including the lists of DEGs, their ex-
pression profiles, P-values, FDRs, and the regression parameters
in estimating the NB distributions.

The DEGage software was implemented in R language (R Core
Team 2023) with user-friendly operations. Its input consists of two
scRNA-seq data sets, and the software outputs the DEG list along
with their calculated P-values, which can be utilized for downstream
enrichment analysis and other applications. To process large data
sets, DEGage employs CPU + GPU hybrid parallel computing tech-
niques by utilizing the “gpuR” package (Rupp et al. 2016). The
source code, demo examples, and detailed usage instructions for
DEGage are publicly available at GitHub (https://github.com/
chenyongrowan/DEGage). To promote the broad usage of
DOTNB, its PMF, CDF, mean, and variance functions have been im-
plemented using several languages (Python, R, Perl, MATLAB, and
C++) and are publicly available at GitHub (https://github.com/
chenyongrowan/DOTNB). All the code for DOTNB and DEGage
was implemented and tested under the Linux environment
(Ubuntu 22.04) and Windows system (Windows 11 pro).

Simulated data

In biological data, it is not possible to fully validate TP and TN
rates, so simulated data sets are generated to assess absolute TPs
and TNs. We used the simulateSet() function from scDD
(Korthauer et al. 2016), a method previously used in several bench-
marking studies (Wang et al. 2019; Squair et al. 2021; Das et al.
2022). We used a data set containing information about pluripo-
tent stem cells from previous research (Tung et al. 2017) as seed
data for scDD package to model counts. Then, we randomly gener-
ated 10 data sets, each containing 2000 DEGs and 18,000 EE genes.
The data sets had a total of 150 cells, with 75 cells allocated to each
of the two respective conditions.

To further assess the performance and runtimes of DEGage and
several popular DEG analysis tools, we also generated scRNA-seq
data sets with different numbers of cells. The number of cells in
each data set ranged from 20 to 2500 cells. For each cell population
size, we generated five replicate data sets that each had 2000 DEGs
and 18,000 EE genes. Runtimes were measured on a laptop with an
Intel Core i7 processor and 16 GB memory. We calculated the aver-
age runtimes of five replicates to represent the speed performance
for different cell sizes, respectively.

Simulation for testing robustness against dropout noise

To test the robustness of DEGage against dropout noise, we imple-
mented a novel simulation framework by generating counts
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according to NB distributions with specified dropout proportions.
This framework generates integer counts that follow an NB distri-
bution and introduces a predetermined proportion of dropout
counts. To introduce dropouts, a number of counts equal to the de-
sired dropout proportion were replaced with artificial zeros. We in-
dependently generated a total of 13 data sets, with dropout
proportions ranging from zero to 0.6 in increments of 0.1. Five rep-
licates of each data set were generated, and each data set had a total
of 150 cells with 75 cells allocated to two respective conditions.
Furthermore, each data set contained 1500 DEGs and 15,000 EE
genes.

Performance testing for different sampling strategies on
imbalanced data sets

DEGage includes two different subsampling strategies for han-
dling imbalanced data sets. By default, it randomly selects the
same numbers of cells in the large data set to pair with those in
the small data set for testing. Additionally, to fully utilize the cells
in the large data set, DEGage offers another sampling option: ran-
dom assignment, which pairs each cell in the large data set with a
randomly selected cell in the smaller data set. We evaluated
DEGage’s performance using both sampling strategies on simulat-
ed scRNA-seq data sets with both balanced and imbalanced cell
numbers. Ten cases of balanced/imbalanced data sets were simu-
lated, each with the following numbers assigned to the first condi-
tion versus the second condition: 100 versus 100, 100 versus 75, 75
versus 75, 100 versus 50, 50 versus 50, 100 versus 25, 25 versus 25,
100 versus 10, 50 versus 10, and 10 versus 10. Here, the balanced
data sets with reduced sample sizes, including 75 versus 75, 50 ver-
sus 50, 25 versus 25, and 10 versus 10, served as balanced controls
for the imbalanced cases. DEGage’s simulation framework was
used to control effect sizes, dispersions, and imbalance across the
simulated NB distributions for two samples. We constructed two
types of simulation data sets using grid combinations of parame-
ters and merged combinations of parameters. First, the parameter
grid-combination analysis surveyed dispersions of 0.1, 0.5, one,
five, and 10. DEGs were simulated with log, fold changes of 1.5,
2.5, 3.5, 4.5, 5.5, 6.5, and 7.5, whereas non-DEGs had no effect
size differences. Sample sizes for each condition were either 10,
25,50, or 100. Simulation data were constructed for each combina-
tion of dispersion, effect size, and imbalance sample size. Second,
dispersions and effect sizes were uniformly sampled and merged in
each of the 10 imbalanced sample size combinations. This serves
to average the dispersion and effect sizes, which are preliminarily
used to investigate the effects of imbalanced sample sizes. Both
types of simulation data sets included dropout proportions that
were randomly sampled on a gene-wise basis and ranged from
0.1 to 0.5. Ten replicate data sets were generated for each grid com-
bination of three parameters. Each data set was simulated with
10,000 genes, 1000 of which were differentially expressed.
DEGage versions with the random assignment and subsampling
protocols were compared with edgeR, DESeq2, the Wilcoxon
test, and the GLM.NB LRT test. Each tool was run 10 times on
each of the 10 data cases, and sensitivity, specificity, and F1 scores
were calculated for performance evaluation. The performance dif-
ference between the two sampling strategies was tested by using a
two-sided Student'’s t-test.

Real positive and negative control data sets

Although simulated data are useful for evaluating the performance
of DEG analysis packages and controlling for true positives and
negatives (Gagnon et al. 2022), they fail to capture the heterogene-
ity present in real data sets. Therefore, we used multiple real data

sets to further examine the selected DEG analysis packages. To as-
sess TP rates in real data, we used a positive control data set provid-
ed by Islam et al. (2011), which contains 22,928 genes across 48
mouse embryonic stem cells and 44 mouse embryonic fibroblasts.
The data set is available from the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE29087. The TPs of the data set were assessed with the top
1000 DEGs validated with qRT-PCR experiments (Moliner et al.
2008; Kharchenko et al. 2014).

To assess FP rates, we employed a procedure similar to previ-
ous research (Wang et al. 2019). We retrieved a negative control
data set, which contains 80 pool-and-split cells under the same
condition (GEO; GSE54695) (Griin et al. 2014). We randomly se-
lected 40 cells to represent condition-1 and 40 cells to represent
condition-2. We repeated this process 10 times to generate 10 ran-
dom data sets.

Applications to real scRNA-seq data sets

We further assessed DEGage’s performance by applying it to two
scRNA-seq studies, one on cancer cells and one on neurons. First,
we collected the data set containing cancerous and healthy cells
from human prostate cancer samples across four patients (GEO;
GSE193337) (Heidegger et al. 2022). After performing basic quality
control, we clustered 24,926 cells with Seurat and generated cell
type annotations with SingleR (Aran et al. 2019). We used
DEGage to assess differential gene expression for two scenarios:
(1) on same cell types under cancerous and healthy conditions
and (2) across different cell types within same condition. The sec-
ond data set is from Rao-Ruiz et al. (2019) and contains 38 engram
neurons from fear-conditioned mice (GEO; GSE129024). These
neurons are classified into three treatment categories: mice that
were fear-conditioned and subjected to recall conditions (FC),
mice that were not fear-conditioned but subjected to recall (NS),
and mice that were neither conditioned nor subjected to recall
(HC). For each of these three conditions, neurons were marked
as dVenus* or dVenus~ to note activation in response to recall
stimuli. Genes with an FDR<0.05 were labeled significant. We
used PANTHER (Mi and Thomas 2009; Mi et al. 2019; Thomas
et al. 2022) to retrieve pathway and functional enrichment anno-
tations for the DEGs of both data sets. The complete lists of FC
dVenus*/~ DEGs generated by both DEGage and Rao-Ruiz’s analy-
ses were separately entered into PANTHER. Enriched GO terms
were identified using the built-in statistical overrepresentation
test (Fisher’s exact test, FDR<0.05), with the default gene list for
Mus musculus from PANTHER used as the background gene set.
To construct DEG networks, all DEGs from the FC dVenus*/~ sub-
set were queried in the STRING database (Szklarczyk et al. 2021).
Only edges with confidence scores greater than 0.75 were retained,
and any isolated DEG nodes were filtered out. For each remaining
DEG, functional profiles in the BioGRID database (Oughtred et al.
2019) were manually examined to identify predator/prey relation-
ships between DEGs and to confirm their interactions. The final
network visualization was created using Cytoscape (Shannon
et al. 2003).

Comparative analysis and benchmarking metrics

We compared DEGage to five popular DEG analysis packages,
namely, DEGseq2, DEsingle, edgeR, Monocle3, and scDD (for de-
tails, see Supplemental Table S1). We also evaluated the perfor-
mance of DEG detection using a Wilcoxon test, a nonparametric
method widely employed for comparing two imbalanced data
sets. The “wilcox.test” function in R was utilized to compute P-val-
ues, which were subsequently adjusted using the FDR procedure
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with “p.adjust.” Furthermore, we compared DEGage with the
GLM.NB method from the MASS R package that can test for the
difference in the mean rates of two NB distributions by LRT
(Venables and Ripley 2002). No subsampling occurred during
the preparation of any benchmarking or real data sets. The sub-
sampling procedure contained within the DEGage pipeline
was not applied to any other methods for any data set. We assessed
the performance of each package on the data sets described earlier,
following the example workflows published in their respective
Bioconductor links. For each data set, we ran all seven methods
to identify DEGs. We classified any EE gene identified as a DEG
as a FP, while classifying any DEG identified as an EE gene as a false
negative (FN). The sensitivity, specificity, precision, accuracy, and
Fl-score were calculated using the following formulas: (1)

sensitivity = L (2) specificity= A (3) precision
Y= T N pecliaty=gn 1 ) P
P TP+ TN

prpp P ARy =g I N

27P
F1 = TP+ FP L EN' We also calculated the ROCs and AUCs for

each package by using the package pROC (Robin et al. 2011).

and (5)

Software availability

The DOTNB implementation is available at GitHub (https://github
.com/chenyongrowan/DOTNB), and DEGage is available at
GitHub  (https://github.com/chenyongrowan/DEGage).  The
DEGage tutorial, which includes descriptions of the functionali-
ties, installation, usage instructions, demo examples, and data
sets, is publicly released on RPubs by RStudio at https://rpubs
.com/aliciaprowan/1043456. The demo code for running and
comparing DEGage with other methods is publicly released at
https://rpubs.com/aliciaprowan/1202999. All the source code of
DOTNB and DEGage, demo examples, usage instructions, and cus-
tom scripts for data analysis is also available as Supplemental Code.
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