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ABSTRACT

A fundamental problem of every intermittently-powered sensing

system is that signals acquired by these systems over a longer pe-

riod in time are also intermittent. As a consequence, these systems

fail to capture parts of a longer-duration event that spans over

multiple charge-discharge cycles of the capacitor that stores the

harvested energy. From an application’s perspective, this is viewed

as sporadic bursts of missing values in the input data – which may

not be recoverable using statistical interpolation or imputation

methods. In this paper, we study this problem in the light of an

intermittent audio classiÿcation system and design an end-to-end

system – SoundSieve – that is capable of accurately classifying audio

events that span multiple on-oÿ cycles of the intermittent system.

SoundSieve employs an oÿine audio analyzer that learns to iden-

tify and predict important segments of an audio clip that must be

sampled to ensure accurate classiÿcation of the audio. At runtime,

SoundSieve employs a lightweight, energy- and content-aware au-

dio sampler that decides when the system should wake up to capture

the next chunk of audio; and a lightweight, intermittence-aware

audio classiÿer that performs imputation and on-device inference.

Through extensive evaluations using popular audio datasets as well

as real systems, we demonstrate that SoundSieve yields 5%–30%

more accurate inference results than the state-of-the-art.
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1 INTRODUCTION

As batteryless computing systems continue to mature, we see a

gradual shift in research from developing tools and platforms for

energy harvesting systems [12, 21, 22, 60, 67], to devising new pro-

gramming paradigms and runtime systems [13, 14, 23, 29], to more

recently, implementing machine learning techniques and applica-

tions [26, 28, 35, 47, 70] tailored to intermittently-powered systems

that run on harvested energy from solar, kinetic, thermal, or RF

sources. A wide variety of on-device inference-capable intermittent

systems have been proposed in the recent literature [11, 17, 20, 27,

34, 35, 45, 46, 52, 53, 56, 68, 73] that perform on-device inference

of audio, image, environmental parameters, building activity, and

human activity recognition tasks.
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Figure 1: A typical intermittent system, for lack of content awareness,

misses important portions of the audio. SoundSieve samples and

analyzes an earlier segment, decides (in real-time) to conserve energy

by sleeping (and also by harvesting while in sleep mode) and use

that energy later to capture the important segment. Note that there

can be multiple non-consecutive important segments in an audio.

We only show one for illustration.

Unfortunately, existing intermittent systems have only been

demonstrated successful in classifying short-lived events that last

for about a few hundred milliseconds [52]. This limit is fundamental

to the design of intermittent systems that require a ÿxed-sized

capacitor to accumulate enough harvested energy for the system to

wake up and remain active. The system in its active mode consumes

the harvested energy to perform application-speciÿc tasks, but soon

runs out of energy and goes back to sleep. By choosing a larger

(or smaller) capacitor, the lengths of the active and sleep phases

can be increased (or decreased), but generally, there will always

be one or more sleep phases when the system is unable to acquire

any sensor data. This is why state-of-the-art intermittent systems

implicitly assume that the event of interest lasts no more than one

discharging cycle of the capacitor so that it can be captured fully

in one active phase of the system. Events that span across multiple

charge-discharge cycles of the capacitor are not fully captured by
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existing intermittent systems. Hence, specialized techniques are

required to ensure accurate classiÿcation of longer-duration events

on intermittently-powered systems.

In this paper, we take up the challenge of audio event classiÿ-

cation on intermittent systems where events may last longer than

one charging cycle (and possibly more). To achieve this, we exploit

two empirically-learned properties of audio signals: ÿrst, relevance

– i.e., not every segment of an audio clip contributes equally to

its classiÿcation; and second, imputability – i.e., many segments

within an audio clip can be imputed or estimated to a suÿcient

detail from other nearby segments.

These observations lead us to the design of SoundSieve — a

software-only, content- and energy-aware solution to seconds-long

audio event classiÿcation on intermittent systems. The key idea

behind SoundSieve is its ability to predict and control when an

intermittent system should wake up from sleep – in order to cap-

ture and process only the relevant, non-imputable segments of the

input audio. Unlike existing intermittent systems that continuously

sample and process audio until the capacitor is fully drained of har-

vested energy, SoundSieve saves energy by switching to sleep mode

when the incoming audio does not carry information that is new

or relevant to classiÿcation. This strategy increases SoundSieve’s

discharge time since the capacitor now can hold charge and use

that energy later. Because of this, SoundSieve is able to sense and

process input signals during intervals when existing intermittent

systems cannot. This contrast is illustrated in Figure 1.

Although the idea of SoundSieve is simple and intuitive, develop-

ing such a solution is challenging due to severe CPU, memory, and

energy constraints of an intermittent system. SoundSieve cannot

aÿord computationally expensive sampling techniques that are suit-

able for battery-powered, advanced mobile systems such as robotic

explorers [18, 32, 75]. SoundSieve must sample a small segment of

the input audio, analyze its content, and decide whether to con-

tinue sampling or to go to sleep (and if so, for how long). All of

these must happen in real-time, and ideally, without any additional

energy overhead. SoundSieve achieves this through a combination

of oÿine and online algorithms.

SoundSieve employs an oÿine audio analyzer that learns to iden-

tify and predict important segments of an audio clip that must be

sampled to ensure accurate classiÿcation of the audio clip. At run-

time, SoundSieve employs a lightweight, energy- and content-aware

audio sampler that decides when the system should wake up to

capture the next audio segment. The sampler’s decision algorithm

runs in parallel with the signal acquisition process to ensure that

there is no gap in signal acquisition. The decision algorithm pur-

posefully applies a convolution ÿlter on the sampled audio to make

accurate sampling decisions based on high-level acoustic features.

Since this ÿlter is also the ÿrst layer of the classiÿer (by design),

there is practically no extra energy overhead of the audio sampler.

Once an audio event ends, a lightweight, intermittence-aware audio

classiÿer performs imputation and classiÿcation.

Several salient features make SoundSieve unique of its kind. First,

SoundSieve is the ÿrst intermittent system that makes content-

aware sampling and processing decisions to enable long dura-

tion audio event recognition. Second, SoundSieve is a single-node,

software-only solution that neither requires multiple coordinated

harvesters, nor any modiÿcation to the harvester, nor any addi-

tional hardware components beyond a basic intermittent computing

system. Third, SoundSieve is agnostic to the harvester and inter-

mittence pattern. Even battery-powered systems can adopt Sound-

Sieve’s intelligent sensing mechanism to extend their battery-life.

Fourth, SoundSieve’s signal processing framework is generalizable

beyond audio. It can inspire future intermittent systems that detect

complex patterns in time-series signals [77, 78] such as video [41]

and motion sensors [40, 42, 79].

In order to evaluate SoundSieve, we conduct dataset-driven ex-

periments as well as real-world deployments with these systems.

In the dataset-driven experiments, we compare the performance

of SoundSieve against three baseline solutions, including state-of-

the-art intermittent system [52], over four datasets that contain

over 140,000 audio clips from over 125 categories of sounds hav-

ing the duration of up to 4 seconds. We observe that SoundSieve

outperforms all baselines by a signiÿcant margin — SoundSieve

successfully captures 5%–30% more (relevant) audio segments, and

as a result, achieves 5%–25% higher inference accuracy than the

baseline solutions. For the real-world deployments, we develop a 16-

bit TI MSP430FR5994-based intermittent system that senses audio

in real-time and performs on-device inference while being powered

by solar or RF energy. We implement two applications that involve

recognizing voice commands and household activities, respectively.

We demonstrate that SoundSieve captures and accurately classiÿes

20% more events than the baseline intermittent systems which do

not perform content-aware sampling.

2 EMPIRICAL STUDY

In order to understand the eÿect of missing values caused by inter-

mittence, we conduct an empirical study on three popular audio

datasets: Urban8K [64], ESC-50 [61], and GSC [71]. These datasets

contain over 115,000 audio clips of over 95 diÿerent categories.

2.1 Dealing With Missing Values

A classiÿer that does not explicitly handle missing values performs

extremely poorly when it encounters such inputs. This is evident

in Figure 2 – conÿrming similar prior studies [58] – where we see

20%–50% drop in inference accuracy (referred to as do nothing)

when 75% of the data are missing.

Figure 2: Imputation and augmentation increase accuracy, but cannot

maximize the gain in accuracy by themselves. The percentage of

missing values in the experiment is 75%.

To address this issue, there are two generic classes of solutions in

the literature: (a) estimating (imputing) the missing values (before

classiÿcation) using statistical or neural methods, and (b) training

the classiÿer on an augmented dataset where missing values are

synthetically introduced in the training examples. Although imple-

menting any or both of these techniques improve the classiÿcation
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accuracy – referred to as imputation and augmentation, respectively

– there is still a large gap of 5%–40% in accuracy that cannot be

regained. Furthermore, the classiÿer used in this experiment is

a state-of-the-art CNN having 1008 ÿlters, which is not feasible

for intermittent systems. In conclusion, data imputation and/or

data augmentation cannot completely solve the intermittent

audio classiÿcation problem. We need to complement them

with audio content-aware intelligent sampling at the front

to maximize their performance.

2.2 Feasibility of Content-Aware Sampling

Although an intermittent system does not have complete control

over the harvesting (charging) cycles, which depend on the en-

ergy source, once charged, the system can decide when to use that

harvested energy. This creates an opportunity for the system to

selectively sample segments of the audio that are more informative

and relevant to audio classiÿcation.

We conduct another study to understand what percentage of an

audio clip must be sampled so that we have enough information to

classify a clip correctly. To conduct this study, we (logically) divide

each clip into non-overlapping 100ms segments and search for the

smallest set of K most informative segments that must be sampled

to correctly classify the clip.We keep theK selected segments intact,

and impute the rest of the segments prior to classifying the clip.

The outcome of this experiment is summarized in Table 1.

Sound Category #Clips K=10% K=30% K=50% K=70% K=90%

Voice Command 600 64.20% 81.50% 88.70% 100.00% 100.00%

Vibration 120 56.62% 81.18% 92.31% 93.47% 94.20%

Alarm 85 54.62% 85.09% 91.91% 93.11% 93.50%

Children 80 56.62% 88.82% 92.19% 94.61% 95.95%

Music 76 48.52% 82.29% 89.61% 91.47% 94.14%

Pet 76 52.27% 83.61% 92.10% 94.27% 95.10%

Animal 65 54.68% 90.63% 92.21% 93.00% 100.00%

Bursts 16 51.13% 65.90% 81.81% 85.20% 92.00%

Laundry 16 54.10% 69.70% 83.10% 89.40% 98.00%

Sleep 16 56.21% 72.27% 80.53% 88.96% 100.00%

Wellness 16 64.32% 85.42% 88.78% 100.00% 100.00%

Bathroom 12 61.11% 83.33% 90.00% 100.00% 100.00%

Drink 12 55.32% 67.40% 84.18% 86.24% 95.00%

Overall 1190 51.47% 85.91% 89.60% 92.30% 96.60%

Table 1: The percentage of clips that are classiÿed correctly
when we sample K% most informative segments.

Each row of Table 1 is a cumulative distribution of K for a certain

audio category, where K denotes the minimum number of most

informative segments to sample to classify an audio correctly. For

example, the last number of the ÿrst row tells us – if we sample the

most informative 90% segments (and impute the remaining 10%),

we can correctly classify 93.5% of the alarm sounds from Urban8k

dataset. Figure 3 shows the same information as in Table 1 but

separately for each dataset.

This result provides insights into the redundancy in audio clips

for classiÿcation purposes. For an intermittent system, from its

charge and discharge times, we can estimate what fraction of the

time the system can sample, and then estimate their expected infer-

ence accuracy from these distributions. These datasets, however,

are trimmed and preprocessed to remove unwanted sounds. In

real-world audio, we expect more redundancy and thus an inter-

mittent system is expected to have more room for selecting infor-

mative segments to achieve higher accuracy than the estimated

(a) Urban8k (b) ESC-indoor

(c) ESC-animal (d) GSC

Figure 3: The distribution of correctly-classiÿed clips in each dataset

when K most informative segments are sampled.

values in this study. In conclusion, not all audio segments being

equally informative, a content-aware sampler on a resource-

constrained sensing system can select a subset of informative

audio segments to maximize their ability to correctly classify

long-duration audio clips.

2.3 Sparsity of Audio Events

Using a large capacitor for intermittent audio event classiÿcation

ensures continuous energy supply, but can result in missed events

if charging time is longer than gaps between consecutive events.

Figure 4: Percentage of audio events that are missed for diÿerent

capacitor sizes at diÿerent energy harvesting rates. C denotes the

ratio between charging and discharging times of the capacitor.

We conduct an experiment using the DCASE SELD dataset [62]

to measure the percentage of missed audio events due to capaci-

tor charging and discharging times in intermittent systems with

varying capacitor sizes (100`� to 10<� ) and energy harvesting pa-

rameters (1 to 3). The dataset contained 600 audio scenes, recorded

in diÿerent environments with real-world background noise. The

results are used to quantify what fraction of the audio events are

missed (completely) by a typical intermittent system.

Figure 4 shows that with larger capacitors, e.g., 10<� , as many

as 70% of the audio events are missed in real-world scenarios. In

contrast, smaller capacitors, e.g., 100`� , results in as low as 4%

missed audio events, but the captured audio events have many

missing samples or holes in them – which calls for an intelligent

audio sampling and processing technique that deals with missing

samples in intermittent audio sensing systems.
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Figure 5: SoundSieve consists of two phases: (a) an oÿline phase for audio analysis and modeling, and (b) an online (real-time) phase for audio

sensing and inference on an intermittent system.

3 OVERVIEW OF SOUNDSIEVE

SoundSieve is an audio sensing and inference framework that

enables seconds-long audio event recognition on intermittently-

powered systems. At the heart of SoundSieve is a lightweight,

content-aware sampling algorithm that decides (in real-time) when

the system should wake up from sleep to actively sample the next

few segments of the incoming audio. SoundSieve’s sampling ob-

jective is to maximize the classiÿcation accuracy by capturing the

most informative audio segments, given the remaining charge in

the capacitor, which limits the maximum number of segments the

system can sample before it runs out of harvested energy.

SoundSieve is a software-only solution which does not require

specialized hardware or multiple collaborating nodes. The frame-

work consists of two phases: (a) an oÿine phase for audio analysis

and modeling, and (b) an online (real-time) phase for audio sensing

and inference on an intermittent system. The oÿine phase involves

processing a large dataset of audio recordings to extract features

and train machine learning models for both audio event sampling

and classiÿcation. The online phase involves deploying the trained

models to an intermittent system, where the system can detect

audio events in real-time. The online phase operates on a continu-

ous cycle of energy harvesting, sensing, and classiÿcation. Figure 5

shows both phases along with the major processing steps in them.

3.1 Audio Analysis and Modeling

Audio Segment Importance. SoundSieve logically divides au-

dio clips into non-overlapping 100ms segments, and processes one

segment at a time. The segment size is empirically determined

to optimize the system’s ability to extract acoustic features un-

der diÿerent energy harvesting conditions. Each audio segment

is assigned an importance score that denotes how important that

segment is for accurate classiÿcation of the clip. During the oÿine

phase of SoundSieve, the importance score of each 100ms segment

of every audio clip in the dataset is computed.

Predicting Segment Importance Scores. In order for SoundSieve

to decide which segments to capture next, the system must be able

to predict the importance of the next few segments in the incoming

audio. To enable this, during the oÿine phase of SoundSieve, a

simple regression network (which runs on the intermittent platform

in real-time) is trained. The predictor predicts the importance score

of up to 5 next segments, given the frequency domain features of

the audio segment that has just been read.

3.2 Audio Sensing and Inference

Sampling. SoundSieve’s audio processing system is triggered by

the microphone, which remains in ultra-low-power listening mode

and sends an interrupt to the microcontroller whenever a sound is

detected. SoundSieve reads an audio segment and extracts its spec-

tral features. The sampling controller uses these features and the

oÿine-trained importance predictor to identify potential candidate

segments to read, and based on the remaining charge in the energy

buÿer, it decides whether (and for how long) it should go into to

the low-power mode before it samples the next segment.

Imputation. Once the audio event ends, prior to classifying, the

missing segments in the sampled audio are imputed to estimate the

missing values. A lightweight, hierarchical interpolation technique

is used to impute the missing segments. Note that even though

the missing segments are less important (according to the segment

importance score predictor), SoundSieve still imputes them to form

a continuous audio clip which can be fed to a neural network.

Classiÿcation. An oÿine-trained convolutional neural network

(CNN) is used to classify the audio. The classiÿer is trained on an

augmented dataset where missing values are synthetically intro-

duced at random locations in the audio clip and then the audio is

imputed. To be able to classify audio signals of arbitrary lengths, a

global max pooling layer is used after the ÿnal convolution layer

which sums out the spatial information, making it robust to the

arbitrary spatial dimension of the input.
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4 AUDIO ANALYSIS AND MODELING

During the oÿine phase, SoundSieve analyzes each audio clip in the

dataset to estimate the importance of each segment and to generate

a predictor that is able to predict the importance scores.

4.1 Audio Segment Importance

Since harvested energy is scarce, SoundSieve aims to sample only

the highly informative segments to make the best use of the energy.

Hence, there has to be an objective measure that quantiÿes the

importance of each segment of an audio clip – which the sampling

controller can use in its segment selection process.

Approach. A naive way to identify important segments of an

audio clip is to remove that segment, estimate its value using the

remaining segments, and then test if this modiÿed audio clip can

still be classiÿed correctly by a classiÿer that correctly classiÿes the

unmodiÿed original clip. This technique, however, does not provide

a score that quantiÿes the importance of the segment.

SoundSieve determines the importance of each segment of an

audio clip by analyzing its relative contribution towards the classi-

ÿcation of the clip. The idea is similar to feature selection problem

when each segment is treated as a feature. A linear regressor takes

these features as the input and tries to predict the output – which

is a value as predicted by a baseline classiÿer (e.g., a neural net-

work). The weights of the linear regressor indicates the relative

importance of each feature (i.e. segment) when it tries to mimic the

behavior of the baseline classiÿer.

Algorithmic Details. Given, a baseline classiÿer, 5 , that is trained

on the entire dataset; and an audio clip, x, consisting of = segments,

following algorithmic steps are followed to quantify the importance

of each segment:

Step 1 – Generate a large number of audio clips having missing

values, z8 , by randomly turning on and oÿ arbitrary number of

segments in x.

Step 2 – Impute all missing values in z8 using a fast, lightweight

imputation algorithm described later in this paper (Section 5.3).

Step 3 – Train a linear ridge regressor, 6 that minimizes a mea-

sure of how unfaithful6 is in approximating 5 in the locality deÿned

by a cosine distance metric. The loss function is as follows:

argmin
w

9

8

3 (x, z8 )
å

5 (z8 ) − 6(z8 ;w)
å2

Here, 3 (x, z8 ) is a distance measure between the original clip, x

and the augmented clip, z8 ; w is the learned weight vector whose

elements {F: } are the desired importance scores of the segments

in x.

These three steps described above are repeated for each audio

clip in the dataset.

4.2 Predicting Segment Importance Scores

Since the sampling controller in SoundSieve has to predict the

importance of the next few segments that are yet to be sampled, it

requires a predictor that can do so from the knowledge of recently

sampled audio. As this predictor has to run on the intermittent

system in real-time, it must be lightweight and low-overhead.
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Figure 6: Segment Importance Predictor.

Approach.Given an observed audio segment at any instant, Sound-

Sieve employs a lightweight neural network to predict the impor-

tance scores of the next few segments of the audio. The network is

trained during the oÿine phase and used in the online (real-time)

phase of SoundSieve.

The network consists of fully connected layers – which makes

it fast and low-overhead. The network, however, takes spectral

features of the audio segment as the input since they carry unique

signatures of various types of audio events. Even though the pre-

dictor uses spectral features, these features are identical to the ÿrst

layer of the audio classier (described in Section 5.4) which are reused.

This is why they do not add extra overhead to the end-to-end audio

processing cost in SoundSieve.

Algorithmic Details. The development and training process of

the segment score predictor is as follows:

Step 1 – For each audio clip in the dataset, we randomly take a

segment from the clip and take the importance scores of the next

5 segments. Depending on the length of the audio, the number of

segments in a clip can be anything. SoundSieve’s goal is to predict

the next 5 segments’ importance scores, given the current segment.

To train this predictor, from each =-segment clip, (=−6+1) training

examples are generated.

Step 2 – Segments chosen in the previous step undergo a feature

extraction process where a 1x4 convolution operation is applied

after taking the short-time Fourier transform of the segment.

Step 3 – The regression neural network is trained using the

spectral features as the input and the importance scores as the

output.

Rationale behind Convolution. The convolution layer has a ÿl-

ter of dimension (1x4); hence, the ÿlter only convolves along the

frequency axis but not the time axis. The reason behind this design

is three-fold. First, a ÿlter that convolves along the time domain is

not feasible since a segment is observed only for a very short period

in time. Second, due to memory constraints, the dimensions of the

sampled data needs to be lowered, which is achieved by convolu-

tion. Third, by using a convolution layer which overlaps with the

audio classiÿer – we are able to extract ÿne-grained information

for predicting the importance of next few segments.

4.3 Global Segment Importance

After computing the local importance of each segment for each

audio clip, we aggregate the scores to compute a global importance

score of the audio segments over the entire dataset. The process

of computing global importance score of the audio segments is as

follows:
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Step 1 – The importance score of each segment of each clip are

normalized to the range [-1, +1].

Step 2 – The average of all importance scores for each segment

over all audio clips in the whole dataset is computed. This gives

us a global importance score of each audio segment for the entire

dataset.

Both global and local importance scores are used by SoundSieve

to decide which segment to sample next. The rationale behind hav-

ing a global importance score for each segment is that when none

of the next few segments have signiÿcantly high local importance

scores or there is a lot of uncertainty in the prediction of the local

importance scores, but the system has energy to sample one or more

segments, it needs another means to be able to rank the segments.

This technique complements the local score-based sampling and

improves SoundSieve’s ability to sample informative segments.

5 AUDIO SENSING AND INFERENCE

During the online (real-time) phase, SoundSieve intelligently sam-

ples audio segments, imputes the missing values, and performs

on-device inference.

5.1 Sensing and Preprocessing

SoundSieve remains in its ultra-low-power sleep mode when there

is no sound in the environment and it has no pending tasks. This is

enabled by the ultra-low-power listening mode of the microphone

which continuously listens to the environment while being powered

by harvested energy and sends an interrupt signal to the microcon-

troller only when audio activities are detected in the environment.

This is when the microcontroller wakes up and switches to active

mode (subject to availability of adequate harvested energy) to start

its real-time audio sensing and inference processes.

SoundSieve samples audio data at the unit of 100ms segments.

After reading an audio segment, it analyzes the segment (as part of

the sampling controller algorithm that is described next) to decide

whether to read the next segment or to go to sleep. This analy-

sis process involves computing the spectral features of the audio

segment that takes signiÿcant amount of time. Hence, SoundSieve

samples and pre-processes a segment in parallel, so that sampling

decisions can be made in real-time.

This is implemented by maintaining a four-element FIFO buÿer

queue, where each buÿer holds 25ms of audio. The key idea is to

pre-process data from a subset of the buÿers in the low-energy

accelerator (LEA) co-processor while the other buÿer ÿlls in with

new data. The steps are as follows:

Step 1 – Initially, the ÿrst two buÿers ÿll up (25ms + 25ms =

50ms).

Step 2 –While the spectral features are extracted on buÿers 1

and 2, in parallel, the third buÿer ÿlls up.

Step 3 –While the spectral features are extracted on buÿers 2

and 3, in parallel, the fourth buÿer ÿlls up.

Step 4 – The spectral features are extracted on buÿers 3 and 4.

By using these buÿers, we compute FFT of 50ms audio, which

means the window length for the STFT is 50ms. We are also moving

our window by one buÿer during each iteration, meaning we are

using a hop length of 25 ms. Additionally we are also using a

convolution layer of shape (1x4), which means the convolution is

done only in the frequency axis and not in the time axis. Hence it

is not dependent on the previous or next temporal information.

5.2 Sampling Strategy

SoundSieve makes sampling decisions at runtime based on both the

global as well as the local importance scores of the segments. The

global importance scores are used to have an initial plan for segment

selection and sampling. This initial sampling plan is modiÿed as

the system acquires new segments and gets more insights into the

importance of the segments based on their local importance scores.

Parameter C. SoundSieve keeps track of its energy harvesting rate

by computing the ratio, á between the charging and discharging

times of the capacitor. This ratio characterizes the dynamics of an

intermittent system. For example, a continuously-powered system

has á = 0, while any intermittent system has á > 0. If á = 1,

an intermittent system has to charge for the duration of exactly

one segment in order to fully recover the energy it lost by sensing

one segment. Therefore, the value of á = 1.0, 1.5, 2.0, 3.0 refers to

50%, 60%, 67%, 75% missing values in the data, respectively. Gener-

ally, á = 1 represents outdoor light (1200 lux), á = 2 represents

indoor light (800 lux), andá = 3 represents dimly lit room (500 lux)

and weak RF sources. Recent works on intermittent sensing have

used a value of á within similar ranges. For example, [52] used

1 < á < 3, and [7] used 0.8 < á < 1 (outdoor solar), 1.1 < á < 3

(indoor solar), and 1.0 < á < 3.2 (indoor RF).

Initial Sampling Strategy. SoundSieve uses the parameter á to

formulate an initial sampling strategy as follows:

Step 1 –At ÿrst themaximumnumber of segments, C<0G that can

be sampled is estimated from the current charging-to-discharging

ratio, á . For instance, if á = 2, the system has to wait twice the

amount amount of time in low-power sleep mode to recharge the

capacitor to gain back the same amount of energy that is used for

sampling and processing audio. This sets a limit on the number

of segments that the system can sample and use in classifying the

audio event.

Step 2 – A binary mask is created that tells the system which

segment to sample and which to skip. Using both the charge-to-

discharge ratio, á and the global segment importance scores, the

mask values for the most important C<0G segments are set to 1.

These are the segments that the system should sense in order to

maximize its classiÿcation performance.

Step 3 – In order to account for energy constraints, the mask

values (i.e., the current sampling strategy) are checked to ensure

that in no point in time the stored energy is completely exhausted,

and if so, the mask value for that position is set to 0. This is a

situation when the system must stop sampling for lack of energy

even though the segment is important.

Adapting the Initial Sampling Strategy. SoundSieve relies on

the low-power listening mode of the microphone to remain in

low-power mode waiting for an audio event to occur. Once the

microphone interrupts SoundSieve, the system transitions from

low-powermode to activemode, and starts sampling and processing

audio segments of length, CB46<4=C .

The system starts with the initial sampling strategy, but the plan

changes as it encounters new audio segments. The process is as

follows:
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Step 1 – STFT of the audio segment is computed and a 1x4 con-

volution is performed on the frequency axis to extract the frequency

domain features.

Step 2 – The segment importance predictor is used to predict

the importance of the next = segments. There are two cases: ÿrst, if

the importance scores of any segment is higher than an empirically

obtained threshold, or if the system is sitting idle with full charge,

it decides to sample that segment that is locally important but may

not have been included in the initial sampling plan. Second, if none

of the importance scores is higher than the threshold, the system

follows the initial sampling plan as the default.

After deciding which segment to sample next, unless it is the

very next segment, SoundSieve switches to low-power sleep mode

and wakes itself up when that segment arrives. This process is

repeated until the end of audio event.

5.3 Imputation

Although SoundSieve’s intelligent sampling algorithm has control

over which segments to sample, it cannot avoid missing segments

in the captured audio. Prior to classifying an audio clip that has

missing values, SoundSieve estimates the missing values using a

frequency domain imputation technique.

Approach. Prior to imputation, SoundSieve transforms time do-

main audio signals into frequency domain signals using the fast

Fourier transform (FFT). The rationale behind imputing signals in

the frequency domain is that audio events are characterized by their

frequency components and the unique characteristics of diÿerent

types of audio events are easily observable in the frequency domain.

Furthermore, the frequency components of an audio event typically

do not change drastically within a short period. Hence, interpolat-

ing the signal in the frequency domain is much more eÿective than

doing so in the time domain.

Algorithmic Details. Given a sequence of audio segments where

some of the segments are null (missing valued), following steps are

performed to estimate the missing values:

Step 1 – Suppose, there are missing segments from time step,

CB to time step, C4 . Hence, the length of the missing segments is

CB − C4 + 1. The imputation process starts from these two ends, CB
and C4 .

Step 2 – At each time step, C , the frequency domain components

are interpolated using following equations:

- (C, 5 ) =
å

1 − A (C)
å

- (CB − 1, 5 ) + A (C)- (C4 + 1, 5 ) (1)

A (C) =
C − (CB − 1)

(C4 + 1) − (CB − 1)
(2)

Step 3 – The previous step is repeated after the value of CB has

been increased and the value of C4 has been decreased, until CB < C4 .

5.4 Inference

SoundSieve employs a convolutional neural network (CNN) to clas-

sify the audio event. The CNN consists of a combination of con-

volution, max pooling, and fully connected layers. The network

architecture is shown in Table 2.

Iteration 1 Iteration 2

�� �� �� ��

Figure 7: Illustration of imputation: during the ÿrst iteration, audio

segments at time CB and C4 are interpolated, leaving only one segment

left for imputation. The process is repeated until all segments are

imputed.

# Layer Dimensions Parameters

1 Conv2D 60x32x1 5

2 Conv2D 29x30x2 20

3 Conv2D 12x13x8 152

4 Conv2D 4x4x32 2336

5 Dense 256 8448

6 Dense 10 2056

Table 2: Neural network architecture (13,017 parameters).

Approach. The inference process starts when sampling the audio

event has completed as determined by a period of silence by the

microphone in its ultra-low-power listening mode.

After sampling has completed and the missing audio segments

have been imputed, the resultant short-time Fourier transform

(STFT) values are converted to Mel-frequency spectrogram to re-

duce the dimension of the input signal. The spectrogram passes

through to a sequence of convolution and max pooling layers. Af-

ter the last convolution layer, a global max pooling layer is used —

which takes the maximum value across time and frequency domains

for each channel, and outputs one value for each of the channels.

This design makes it possible for the model to handle audio signals

of arbitrary lengths. Since audio events may have arbitrary lengths,

a global max pooling layer is used to handle the variable-length in-

put, instead of zero-padding. This makes the classiÿer model robust

to audio events of arbitrary length.

The network is trained oÿine using both original audio clips

as well as augmented audio clips where missing values are ran-

domly introduced. The augmented audio clips are imputed using

the method described in Section 5.3, before using them for training

the network. This is done to ensure that the model is robust to

missing audio segments.

6 EVALUATION ON DATASETS

6.1 Experimental Setup

Dataset.We use two popular audio classiÿcation datasets that con-

tain audio clips of several seconds containing environmental sounds.

We also use two datasets containing short speech commands and

phrases. We divided these datasets into multiple sub-classses de-

pending on the type of the sound. For example, ESC-50 [61] dataset

covers a large variety of sound types such as animal sound, human

activity, indoor noises etc. A brief summary of the datasets used

in our study is shown in table 3. The duration of these clips are

1–5 seconds. Since we want to demonstrate SoundSieve’s ability to

classify multi-second audio, we collected some of our own data by

recording as well as from online sources. Furthermore, we divided

the dataset according to the sound types.
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Dataset Clips Classes Examples

Urbank8k [64] 8,732 10 Human, nature, mechanical.

ESC-50 [61] 2,000 50 Human activity, animal, indoor

GSC [71] 105,829 35 Speech commands.

Fluent Speech [44] 23,132 31 Short phrases.

Table 3: Datasets used in our study.

Modeling Intermittence. We use two parameters to model inter-

mittence during our evaluation. First parameter is + which denotes

the maximum number of audio segments the system can process

without power failure. In our experiments all the audio segments

have a length of 100<B . We also use another parameterá to denote

the ratio between charging and discharging time to process one

audio segment of 100<B . In this way, we discretize the energy pat-

tern of an intermittent system. We start with an initial budget of

+ and each time we read and process audio segment of 100<B , we

decrease the value of +. Additionally, whenever the system skips

an audio segment and waits in low-power mode, we increase the

energy budget by 1
á . However since á can be ÿoating point value,

we consider only the lower bound while checking for available

energy budget. Whenever the budget becomes zero, the system can

not sense and process an audio segment, even if the importance of

that segment is high.

Baseline Solutions.We use three baseline solutions for compar-

ison: Vanilla, Periodic, and CIS [10]. In the vanilla approach, we

emulate how an intermittent system normally works, i.e., sensing

until the energy buÿer is completely depleted and then waiting for

it to be ÿlled again. The periodic sampler samples every =th audio

segment, where = depends on the value ofá . CIS [10] uses multiple

sensor nodes to capture and classify 283ms audio. We implement

this approach by sensing 3 consecutive segments (3 × 100 = 300ms)

and then waiting for the energy buÿer to be full again. We denote

this baseline as CIS1 in our experiments.

Evaluation Metrics. We use inference accuracy to quantify the

performance of the classiÿer. Accuracy refers to the portion of

correctly classiÿed instances on a dataset. We use detection of

sound events for environmental sound classiÿcation dataset such

as UrbanSound8k and ESC-50, and detection of certain phrases for

GSC and Fluent Speech dataset. We also divide these dataset into

multiple categories depending on the types of sound.

6.2 Comparison with the State-of-the-Art

In Figure 8, we compare SoundSieve’s performance with that of

state of the art approaches when the energy harvesting pattern is

modeled by settingá = 1. We also show the original accuracy of the

classiÿer when there is no missing audio segment at all. Although

the classiÿcation accuracy drops when there are missing audio

segments due to power failure in an intermittent system, we see

that conserving energy to sense when there are more information

available improves the overall classiÿcation accuracy by 3%-17%

than other approaches.

Eÿectiveness of Importance Predictor. In order to demonstrate

why SoundSieve can produce better classiÿcation accuracy than

other approaches, we show the average coverage of the most infor-

mative segments in audio clips using both SoundSieve and vanilla

approach in Figure 9. We use the term recall – the ratio between

Figure 8: Comparison among diÿerent sampling approaches.

(a) C=1 (b) C=1.5

(c) C=2 (d) C=3

Figure 9: Comparison of coverage of the most informative audio

segments at diÿerent energy harvesting rate

the number of positive samples correctly labeled as positive to the

total number of positive samples.

A420;; =
CAD4 ?>B8C8E4

CAD4 ?>B8C8E4 + 5 0;B4 =460C8E4
(3)

Here, a positive sample refers to an informative segment whereas

a negative sample refers to a segment of lower importance. We use

the true importance scores of each segment of an audio clip and the

energy harvesting pattern to compute the most optimal sampling

strategy and use that to measure the recall.

The values of recall clearly demonstrate that SoundSieve can

sense as much as 25% more important audio segments compared to

the vanilla approach. As we decrease the energy harvesting rate by

setting the value of á higher, we observe greater improvement in

covering only the most informative blocks compared to the vanilla

approach.

6.3 Eÿect of Energy Harvester

We change the energy harvesting pattern in our simulation by vary-

ing the value of á . A higher value of á refers to a larger amount

time required to harvest the energy of sensing one audio segment.

It also means that a higher percentage of audio is missing in the

audio clip. Figure 10 demonstrates that as we decrease the energy

harvesting rate, the classiÿcation accuracy drops slightly. How-

ever since SoundSieve is able to cover more informative blocks

as mentioned in 6.2, the drop in classiÿcation performance due to

change in energy harvesting pattern is minimal compared to other

approaches.
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Figure 10: Eÿect of Harvesting Pattern

In Figure 11, we observe that SoundSieve achieves up to 25%

higher classiÿcation accuracy than the uniform sampling strategy

of the vanilla approach.

(a) C=1 (b) C=1.5

(c) C=2 (d) C=3

Figure 11: Comparison of SoundSieve and Vanilla approach at diÿer-

ent energy harvesting rate

6.4 Eÿect of Audio Length

(a) C=1 (b) C=1.5

(c) C=2 (d) C=3

Figure 12: Eÿect of audio length at diÿerent energy harvesting rates.

We vary the length of audio clips from 2–4 seconds to test the

robustness of SoundSieve. In Figure 12, we observe that SoundSieve

outperforms vanilla across all energy harvesting rates for all audio

(a) C=1 (b) C=1.5

(c) C=2 (d) C=3

Figure 13: Comparison of recall of the most informative audio seg-

ments for diÿerent audio lengths and energy harvesting rates

lengths. This is because as the length of the audio increases, the

intermittent system goes through more charge and discharge cy-

cles, and consequently misses more audio segments. Sensing more

informative segments becomes crucial as the length of the audio

increases. This is evident in Figure 13 which compares their recall,

i.e., the coverage of the most informative blocks by SoundSieve and

the vanilla. The recall for SoundSieve remains consistent for audio

clips of all lengths while it gets worse for the vanilla.

Note that 80% of the audio clips used in this experiment are about

2 seconds long and there are very few audio clips that are more

than 3 seconds long. This creates an imbalance in the dataset and

causes a drop in the accuracy as the audio length increases.

6.5 Eÿect of Segment Size

Figure 14: Performance of SoundSieve at diÿerent segment size

SoundSieve analyzes and processes audio in the units of ÿxed-

length segments. In this experiment, we study how the segment

size aÿects SoundSieve’s classiÿcation accuracy under diÿerent

energy harvesting conditions. We use the ESC-50 [61] dataset for

this experiment. The result is summarized in Figure 14.

We observe that when the percentage of missing data is less,

i.e., á ≤ 1.5, the classiÿcation accuracy increases as we increase

the length of each segment. This is because, with larger segments,

the system gets a longer window of audio signals to compute the

Fourier transform and extract useful acoustic features. In contrast,

when the percentage of missing data is very high, e.g., á > 2, the

system is highly likely to completely miss important segments

if the segment length is large. Large segments give the system
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less control over its sampling decisions, which causes a drop in

classiÿcation accuracy when a large portion of the data is missing.

This is why we see that the trend is reversed for higher values of

á in Figure 14. From this experiment, we learn that it is better to

use shorter segments when the percentage of missing data is very

high, and larger segments when the percentage of missing data is

low in an intermittent system.

6.6 Beyond Audio

Although SoundSieve is speciÿcally designed for audio signals,

we conduct a dataset-driven, limited-scale study to understand its

potential in other types of signals.

Figure 15: Comparison between our approach and the vanilla algo-

rithm on UCI-HAR [4] dataset.

We use the UCI-HAR [4] dataset, which contains accelerometer

and gyroscope readings from 30 participants performing six types

of activities. The dataset is split into train (70%) and test (30%) sets.

Figure 15 compares the classiÿcation accuracy of our approach

with that of the vanilla approach for diÿerent values of á . We

observe that our approach achieves 12% − 20% more accuracy than

the Vanilla approach, and the gap increases when there are more

missing data – showing the resilience of the proposed technique in

extreme energy harvesting conditions.

7 SYSTEM IMPLEMENTATION

7.1 Hardware Setup

We use TI MSP430FR5994 [2] MCU having 256KB FRAM, 8KB

SRAM, direct memory access (DMA), and an operating voltage

range of 1.8V to 3.3V at 8MHz CPU clock speed.

We use both solar and RF harvesters. The solar panel has poly-

crystaline solar cells [25] that outputs up to 5V at 40mA, which is

regulated to 3.3V using [1]. The RF harvester consists of a TX91501

powercaster transmitter and a P2110 powerharvester receiver. A

470`� capacitor is used for energy storage.

A PMM-3738-VM1010-R piezoelectric MEMSmicrophone is used

for audio sensing. Thismicrophone has a zero-power listeningmode

which allows it to continuously sense for audio event triggers at

extremely low-power. Whenever an audio event is triggered, the

microphone sends an interrupt to the MSP430 and the microphone

is set to active listening mode. During this active mode, the system

continuously samples audio at 5KHz, performs FFT, executes the

ÿrst convolution layer of the classiÿer in the frequency axis and

writes the data to the FRAM using the low energy accelerator (LEA)

and direct memory access (DMA).

Energy Source

Solar Panel

Voltage Regulator

Capacitor

MSP430

Microphone

(a) Solar Harvester Setup

Microphone

MSP430

Capacitor

RF Transmitter

RF Receiver

(b) RF Harvester Setup

Figure 16: Hardware Setup.

7.2 Embedded System Software

We modify an open source Python tool [76] to convert a Tensor-

Flow model to a C header ÿle which contains the weights and the

neural network architecture. This header ÿle is combined with

platform-speciÿc C implementation of neural network modules to

obtain the audio classiÿer. We develop a complete C program that

implements audio sensing, pre-processing, sampling, imputation,

and classiÿer modules, and cross-compile to produce executable

binary for the target system. We employ the static checkpoint calls

similar to [3], where we proÿle the energy consumption at diÿerent

states of sensing and when the capacitor voltage drops below 2.2V,

the complete system state is copied to the FRAM.

7.3 Microbenchmarking

Execution Tracing. The intermittent system senses audio using a

low-powermicrophonewhile it harvests energy from a RF harvester.

We trace the operating voltage of the capacitor using a monitor [16].

After sensing each segment, SoundSieve decides whether to sense

the next segment or to skip some segments, and wait in low-power

mode to conserve energy and to ÿll up the energy buÿer. This

decision is made based on the current energy level, global segment

importance, and local segment importance – predicted based on

the current segment that is being observed.

A breakdown of all the steps of SoundSieve for classifying one

audio clip is visualized in Figure 17. A breakdown of the sampling

decisions is shown in Table 4. Initially, when there is no audio event

to sense, the microphone remains in the low-power mode, and the

system periodically wakes up and checks its energy harvesting rate.

Using this information, a sampling strategy based solely on the

global importance scores and energy harvesting rate is created. This

step corresponds to the ÿrst row of Table 4. When an audio event

triggers, the system wakes up and starts sensing and processing

the ÿrst audio segment. At the end of processing this segment, the

system has the local importance scores of next 5 blocks as well as the

global sampling strategy. If the local importance score of a segment

is higher than a threshold and there is enough energy to spend,

the system samples that segment; otherwise, it waits for a more

informative segment according to the global sampling strategy. For

example, at time C2, even though the G5 has the highest importance

score, the system decides to sense G3 since its importance score was

greater than the pre-determined threshold. After the audio event
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ends, the system starts executing the DNN to classify the audio

event.

Audio

Sampling

Impute 

+ Classify

Time (ms)

V
o

lt
a

g
e

 (
V

)

Figure 17: Execution steps of SoundSieve

Time State Segments by Importance Decision

C0 init (G2, G7, G5, G8, G1, · · · ) Create Initial Sampling Strategy

C1 sample (G2, G5, G3, G6, G4) Sense at C2
C2 sample {G5, G3, G7, G4, G6} Sense at C3
C3 sample {G7, G4, G8, G5, G6} Sense at C4
C4 sample {G5, G7, G8, G9, G6} Sense at C5
C5 sample {G8, G7, G9, G10, G6} Wait until C7
C6 wait Wait until C7
C7 sample {G9, G8, G11, G12, G10} Wait until C9
C8 wait Wait until C9
C9 sample {G13, G12, G11, G10, G14} Wait until C12
C10 wait Wait until C12
C11 wait Wait until C12
C12 sample {G13, G16, G14, G17, G15} Wait until C13
C13 sample {G14, G18, G15, G16, G17} Wait until C18

Table 4: Sampling strategy for an example audio clip

Overhead Measurement. Table 5 summarizes the time and en-

ergy overhead breakdown of on-device audio processing. Sensing

and sampling decisions are made sporadically throughout the dura-

tion of the audio. The time overhead of the sampling algorithm is

negligible since FFT and feature extraction for sampling decision

are computed in parallel. The DNN runs when the microphone

signals the end of audio. It takes less than a second (uninterrupted)

to classify the audio—which can be interrupted 2-3 times due to

intermittence.

Module Time (ms) Energy (`J)

Sensing + Preprocess 100 510

Sampling Decision 7 60

DNN CONV (3 layers) 707 5850

DNN FC layer 5 100
Table 5: Execution time and energy overhead breakdown

8 EVALUATION ON REAL SYSTEM

8.1 Experimental Setup

Applications. After validating the sampling technique, imputation

method, and the classiÿer using dataset-driven experiments, we

design two real-world deployment scenarios using both solar and

radio frequency (RF) harvesters. We implement two realistic appli-

cations: household activity detection, and voice phrase recognition.

Each application has 10 classes of audio events and their lengths

are shown in table 6. We use the DNN architecture shown in the

Table 2 for classiÿcation. The DNN is split into three sub-networks

to enable intermittent execution. After executing each sub-network,

the intermediate results are stored in the FRAM. Then the system

waits in the low-power mode while the capacitor charges, and peri-

odically monitors the energy level. Finally, when enough energy is

accumulated, the next sub-network of the DNN begins execution.

Application Classes Length (s)

Voice Phrases 10 1-3

Household Activities 10 2-4

Table 6: Two applications used for real system deployment. Voice

phrases include ten diÿerent phrases such as “go left", “go right" etc.

Household activities include sound events such as brushing teeth,

pouring water, washing machine etc.

Methodology. For each application, we randomly select 30 clips for

test – 1 clip for each of the 10 sound categories. We create a playlist

with these 30 clips and play each clip from a mobile device every

10 second. Hence, the duration of the experiment is 300 seconds.

Playing the sounds from a mobile device makes it possible to repeat

the experiments and compare the results under diÿerent operation

conditions such as mobility and energy variation.

To account for mobility and variation in harvested energy, we

divide the 300 seconds into three 100 seconds phases. In the ÿrst

phase, we keep both the sound source and the energy source ÿxed

relative to the microphone. In the second and the third phases,

we move the sound source and the energy source, respectively, at

constant velocity. We use the solar setup for the voice application

and the RF setup for the household application.

8.2 Experimental Results

Eÿect of Harvested Energy. In order to observe the eÿect of

harvested energy we increase the distance between the RF harvester

and the RF source when harvesting energy from RF, and change

the light intensity when harvesting energy from solar. In Figure 18

between 100 seconds to 200 seconds, we observe that the classiÿer

is able to maintain similar classiÿcation performance across both

application for varying energy harvesting rates. During this period,

we observe 4 out of 10 incorrect classiÿcations for voice phrases

and 3 out of 10 incorrect classiÿcations for household activities,

resulting in an accuracy of 60% and 67%, respectively.

Eÿect of Sound Source Mobility. We vary the distance between

the sound source and the low-power microphone from 40 cm to 60

cm. The microphone is able to consistently wake up to the sound

event and the classiÿcation accuracy remains similar as shown in

Figure 18 from 200 seconds to 300 seconds. During this period, we

observe 3 out of 10 incorrect classiÿcations for voice phrases and 2

out of 10 incorrect classiÿcations for household activities, resulting

in an accuracy of 67% and 80%, respectively.

Eÿect of Audio Length. We experiment with audio clips of vary-

ing lengths – ranging from 1 second to 3 seconds for voice phrases,

and 2 seconds to 4 seconds for household activity sounds. Since
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Figure 18: Eÿect of mobility and energy harvester in a real intermittent system.

SoundSieve is able to identify more informative segments in an

audio, the classiÿcation performance remains consistently similar

for audio clips of all lengths. Overall, we observe 10 out of 30 in-

correct classiÿcations for voice phrases and 7 out of 30 incorrect

classiÿcations for household activities, resulting in an accuracy of

67% and 76%, respectively.

9 RELATED WORK

Intermittent Computing. Intermittently powered systems experi-

ence frequent power failure that resets the software execution and

results in repeated execution of the same code, and inconsistency

in non-volatile memory. Previous works address the progress and

memory consistency using software check-pointing [9, 24, 30, 43,

51, 54, 63, 69, 69], hardware interruption [5, 6, 55], atomic task-

based model [13, 14, 50], non-volatile processors (NVP) [48, 49],

and adaptive inference [36–38, 74].

Recently SONIC [19, 20, 34] proposes a unique software sys-

tem for intermittent execution of deep neural inference combining

atomic task-based model with loop continuation. None of the pre-

vious works perform intelligent sampling like SoundSieve.

Modeling Energy Harvesting Systems. [65] analytically model

the trade-oÿ associated with backing up data to maximize forward

propagation. Even though energy harvesting system for a speciÿc

energy source has been analyzed and modeled before [15, 31, 66],

none of the prior works focus on modeling the intermittence of

sensor data on an intermittent system.

Intermittent Audio Sensing. In [52] authors demonstrated audio

sensing in energy harvested devices, however, they only sense

audio events of 283ms in length, which is not adequate for many

real-world applications. In [39], authors simulated intermittency

in audio sensing, however, they run post-processing and speech

recognition networks on high-end devices without considering any

computation and energy constraints.

Adaptive Informative Sampling. Resource constraint systems

often need to monitor and sense large volume of data including

video [8, 57], RF [18, 59] and audio [32]. In order to perform time

and cost eÿective monitoring of the environment, many tiny robots

and automated machines utilize adaptive informative sampling [18,

32, 33]. These robots model the environmental phenomena using

Gaussian process regression (GPR) [72]. However GPR is an useful

technique for modeling spatial uncertainty, not temporal uncer-

tainty.

10 CONCLUSION

In this paper, we develop an intermittent audio sensing system that

classiÿes audio events that are longer than the discharging cycle

of the system. We leverage inherent properties of audio signals to

design a lightweight audio sampler, an imputation method, and

a classiÿer network to classify audio events. We show the eÿec-

tiveness of the system using both dataset-driven and real-world

evaluations. In the future, we plan to explore the possibility of

designing content-aware intermittent sensing and classiÿcation

systems that deal with complex data such as camera images.
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