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ABSTRACT: We report a scalable synthesis of high-molecular-
weight poly(arylene ether)s (PAEs) using decafluorobiphenyl
under SNAr reaction conditions and the preparation of enantiopure
(R,R)-6,11-di(tert-butyl)triptycene-1,4-hydroquinone. The non-
fluorinated biphenyl-based PAE was also synthesized using Pd-
catalyzed C−O coupling methods, and structure−property
comparisons were made from the different biphenyl-based
polymers. The integration of free-volume-promoting triptycene
moieties on the main chain gives rise to intrinsic porosity, which
can be further modulated by incorporating biphenyl or
perfluorobiphenyl comonomers. The nonfluorinated PAE exhibited
a BET surface area of 270 m2 g−1, whereas the racemic and
enantiopure fluorinated PAEs showed higher BET surface areas of 454 and 368 m2 g−1, respectively. WAXS analysis revealed that all
of the polymers tested have a greater disruption of chain packing compared to related polyimides, with the fluorinated PAEs having
the highest average interchain spacing. The fluorinated PAEs also demonstrated high gas permeability as a result of their free volume.
The triptycene-based PAEs also were resistant to plasticization even at CO2 pressures of ∼31 bar.

■ INTRODUCTION
Triptycenes and related [2.2.2] and [2.2.1] bicyclic systems are
configurationally rigid 3D structures that can promote a high
internal free volume in polymers when they are incorporated
directly within or fused to the main chain. These design
principles have been leveraged to make intrinsically micro-
porous polymers with targeted materials properties, including
materials with low dielectric constants,1−3 high fluorescence
quantum yields for efficient excitonic transport,4 superior ion
transport,5,6 attractive properties for highly active heteroge-
neous catalyst supports,7,8 and enhanced gas transport.9,10 In
terms of gas separations, when triptycene is introduced into a
polyimide backbone, the fractional free volume and rigidity
simultaneously increase,2 resulting in enhanced gas perme-
ability and reduced plasticization effects.11,12 Similar improve-
ments have been demonstrated for other polymers, as well. For
example, a triptycene-based polysulfone had improved
permeability, selectivity, and resistance to physical aging
compared to bisphenol A-based polysulfone.13 Moreover,
benzotriptycene-based polymers of intrinsic microporosity
(PIMs) recently redefined the CO2/CH4 and CO2/N2 upper
bounds.10

Similar to polyimides, poly(arylene ether)s (PAEs) are
promising materials for gas separations because of their
excellent thermal, mechanical, and chemical stability.14,15

Traditional PAE syntheses use SNAr reactions that employ
activated aryl fluoride monomers.1,16 Long et al. demonstrated
that triptycene units disrupt chain packing in PAEs, thereby
increasing the free volume of the polymer. In that study, one of

the subject PAEs was first synthesized by the SNAr reaction of
decafluorobiphenyl and 6,11-di(tert-butyl)triptycene-1,4-hy-
droquinone to make rac-PAE-F.1 The high free volume in
this system resulted in lower dielectric constants compared to a
commercial, highly cross-linked polyphenylene known as
SiLK.1,17 However, gas separations with rac-PAE-F have yet
to be investigated. In 2002, Shibasaki and Ueda developed a
Pd-catalyzed polycondensation method to synthesize PAEs
from a bisphenol and nonactivated 4,4′-dibromobiphenyl.18

Guo et al. recently optimized this Pd-catalyzed C−O
polycondensation method to also accommodate hydroqui-
nones as substrates to diversify accessible PAE structures.19

This polycondensation methodology enabled us to synthesize
rac-PAE-H (Scheme 1b), the hydrocarbon analogue to rac-
PAE-F, thereby providing two structural analogues of polymers
with systematic differences between biphenyl composition: one
sample fluorinated and the other sample hydrocarbon-based.
Previous studies on polyimides and polysulfones showed

that polymers featuring meta structural connectivity demon-
strate higher permselectivities in gas transport compared to
their para isomers, indicating a relationship between isomeric
effects and gas transport.20−24 Additionally, Aitken et al.
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observed that incorporating unsymmetric features into the
polymer chain lowered the glass transition temperatures and
promoted efficient chain packing.20 To the best of our
knowledge, the differences in porosity for racemic and
enantiopure polymer structures have not yet been considered,
so we also synthesized the (R,R)-6,11-di(tert-butyl)triptycene-
1,4-hydroquinone enantiomer ((R,R)-tBu-TRP-OH) and
polymerized it with decafluorobiphenyl to produce the

enantiopure polymer (R,R)-PAE-F (Scheme 1c). An enantio-
pure polymer may exhibit more uniform polymer chain
packing compared to the corresponding racemic polymer,
thereby impacting the porosity and separation performance.
For comparison, Scheme 1d shows the structures of three
6FDA-based polyimides reported in the literature25−28 that
have similar structural groups to those of the PAEs. This study

Scheme 1. Polymerization Reaction Schemes for (a) rac-PAE-F, (b) rac-PAE-H, and (c) (R,R)-PAE-F; (d) Structures of the
6FDA-Based Polymers Referenced for Comparisons25−28
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compares these related polyimides to the PAEs synthesized in
this work.
In this study, we report the optimized SNAr synthesis of rac-

PAE-F at larger (multigram) scale to produce molecular
weights considerably higher than those previously reported,1

the synthesis of the analogous rac-PAE-H that contains C−H
functionality instead of C−F functionality, and the synthesis of
an enantiopure monomer, (R,R)-tBu-TRP-OH, and its
corresponding chiral polymer, (R,R)-PAE-F. Structure−prop-
erty relationships of these PAE analogues were investigated
through comparisons of thermal properties, BET surface area,
and fractional free volume. It was found that rac-PAE-H was an
intrinsically microporous polymer because the free volume-
generating triptycene units inhibit the dense packing of the
biphenyl moieties. Perfluorobiphenyl groups boost the BET
surface area and promote greater free volume in rac-PAE-F and
(R,R)-PAE-F. Films of rac-PAE-H, rac-PAE-F, and (R,R)-PAE-
F were fabricated, but rac-PAE-H resulted in brittle films that
ruptured at ∼1 bar of pressure. As a result, we report pure-gas
performance for rac- and (R,R)-PAE-F and compare our results
to those of related structures reported in the literature.

■ EXPERIMENTAL SECTION
Materials. All materials were used as received unless otherwise

noted. Potassium phosphate was purchased from Alfa Aesar.
Decafluorobiphenyl was purchased from Alfa Aesar and recrystallized
in hexanes before use. Palladium(π-cinnamyl) chloride dimer, N,N-
dimethylacetamide (DMAc, 99.8%), ethyl acetate (≥99.5%), chloro-
form, dichloromethane, pyridine, and inhibitor-free anhydrous 1,2-
dimethoxyethane (99.5%) were purchased from Sigma-Aldrich.
tBuBrettPhos and (1S)-(−)-camphanic chloride were purchased
from Ambeed. Hexanes and methanol were purchased from Macron
Fine Chemicals. Ethanol was purchased from VWR. Anhydrous
toluene (99.85%) was purchased from Fisher Scientific. Hydrochloric
acid (37%) solution in water was purchased from Sigma-Aldrich and
diluted with deionized water to make a 3 M solution. 4,4′-
Dibromobiphenyl was purchased from Sigma-Aldrich and recrystal-
lized from petroleum ether. 6,11-Di(tert-butyl)triptycene-1,4-hydro-
quinone (rac-tBu-TRP-OH) was purchased from Akita Innovations
and purified via recrystallization with ethyl acetate and hexanes. All
gases used for testing (He, H2, CH4, N2, O2, and CO2) were of
ultrahigh purity from Airgas.
Synthetic Procedures. Synthesis of rac-PAE-F. A 100 mL resin

kettle fitted with a dip tube, thermocouple, and short-path distillation
apparatus was charged with rac-tBu-TRP−OH (7.157 g, 18.0 mmol,
1.0 equiv) and decafluorobiphenyl (6.000 g, 18.0 mmol, 1.0 equiv).
Then, DMAc (60 mL) and toluene (7.5 mL) were poured into the
resin kettle, followed by K2CO3 (5.708 g, 41.3 mmol, 2.3 equiv). The
dip tube was adjusted to a position below the solvent level so argon
would sparge the solution. The receiving flask fixed to the distillation
apparatus was placed into a dry ice/acetone bath. The solution was
stirred with argon bubbling through the dip tube to distill off the
water−toluene azeotrope and concentrate the polymerization
solution. The resin kettle was heated to 145 °C for 2.5 h. Once
cooled to room temperature, the viscous solution was precipitated
into boiling HCl water (pH ∼ 2 to 3) to neutralize the remaining
carbonate and promote polymer aggregation. The polymer fibers were
collected and dried using vacuum filtration before redissolving in
THF. The THF solution was precipitated into DI water and polymer
fibers were recovered via vacuum filtration. Residual DMAc remained
in the fibers, so the fibers were dissolved in chloroform, precipitated
into methanol, and collected via vacuum filtration. The fibers were
dried in a vacuum oven at 200 °C for 48 h before characterizing
(yield: 10.87 g, 83.6%). 1H NMR (500 MHz, CDCl3) δ 7.50, 7.49,
7.39, 7.37, 7.08, 7.08, 7.07, 7.07, 6.49, 6.48, 5.99, 1.26; 13C NMR (126
MHz, CDCl3) δ 148.81, 148.43, 145.93, 144.47, 143.87, 142.81,
141.67, 140.91, 138.31, 136.69, 123.64, 122.25, 121.64, 113.81, 47.83,

34.77, 31.62, 1.17; 19F NMR (471 MHz, CDCl3) δ −137.86,
−137.88, −137.91, −137.93, −152.94, −152.95, −152.99, −153.01.

Synthesis of rac-PAE-H. Synthesis of PAE-H followed previously
reported procedures.5 For the synthesis, rac-tBu-TRP-OH (200.0 mg,
0.502 mmol, 1.0 equiv) and 4,4′-dibromobiphenyl (156.6 mg, 0.502
mmol, 1.0 equiv) were used to yield 115 mg (39.6%) of pink powder.
1H NMR (500 MHz, CDCl3) δ 7.54, 7.53, 7.52, 7.52, 7.27, 7.24, 7.22,
7.02, 7.02, 7.00, 7.00, 6.98, 6.98, 6.98, 6.97, 6.96, 6.74, 6.72, 6.71,
5.66, 5.65, 5.64, 1.24, 1.23; 13C NMR (126 MHz, CDCl3) δ 158.12,
148.39, 147.14, 147.11, 147.07, 147.04, 144.75, 142.01, 140.18,
140.15, 135.05, 134.95, 128.94, 128.53, 128.22, 128.16, 126.97,
123.58, 121.87, 121.62, 118.91, 118.84, 117.53, 117.46, 48.22, 34.75,
31.68.

Synthesis of (R,R)-tBu-TRP-OR*. A round-bottom flask under
ambient atmosphere was charged with rac-tBu-TRP-OH (3.99 g, 10.0
mmol, 1.00 equiv), and pyridine was added in portions until a clear
solution was obtained (ca. 70 mL total, the reaction was stirred for 10
min between additions due to the slow rate of dissolution). (1S)-
(−)-Camphanic chloride (5.42 g, 25.0 mmol, 2.50 equiv) was added
in one portion, and the reaction was stirred for 48 h at 20 °C.
Chloroform (250 mL) was added to the reaction mixture, and the
organic phase was washed with water (2 × 300 mL), 1 M aq HCl (2 ×
300 mL), and brine (1 × 300 mL). The organic phase was dried over
Na2SO4 and concentrated under reduced pressure. Toluene (100 mL)
was added to the residue and removed under reduced pressure to
remove residual pyridine.

The crude material was dissolved in boiling dichloromethane (ca.
500 mL). Next, the solution was concentrated to about one-third of
the volume on a rotary evaporator at 40 °C, cooled to 4 °C, and the
resulting precipitate was collected by filtration and washed with a
small amount of cold dichloromethane. This procedure was repeated
one additional time to afford (R,R)-tBu-TRP-OR* as a white solid
(3.37 g containing 15 wt % dichloromethane, 3.77 mmol, 38% yield,
>20:1 dr by 1H NMR analysis). 1H NMR (500 MHz, CD2Cl2) δ 7.38,
7.38, 7.28, 7.27, 7.09, 7.08, 7.07, 7.07, 6.87, 5.42, 2.74, 2.73, 2.72,
2.71, 2.71, 2.71, 2.69, 2.68, 2.40, 2.39, 2.38, 2.37, 2.37, 2.36, 2.35,
2.14, 2.13, 2.12, 2.11, 2.11, 2.10, 2.09, 2.08, 1.88, 1.87, 1.86, 1.85,
1.84, 1.83, 1.82, 1.27, 1.27, 1.26, 1.24, 1.22; 13C NMR (126 MHz,
CD2Cl2) δ 178.07, 166.37, 149.46, 144.05, 143.01, 141.32, 139.93,
123.92, 122.80, 121.76, 119.88, 91.33, 55.34, 55.05, 48.93, 34.90,
31.55, 29.43, 17.37, 17.27, 9.95.; MS (JEOL AccuTOF 4G LC-plus
equipped with an ionSense DART source): m/z calculated for
C48H54O8 [M]+ 758.3813, found 758.3913; O. R. [α]D20 = +16.0 (c
0.33, THF).

Single crystals suitable for X-ray diffraction were obtained by vapor
diffusion (dichloromethane/hexanes).

Synthesis of (R,R)-tBu-TRP-OH. A Schlenk flask was charged with
ethanol (80 mL) and sparged with argon for 20 min while stirring
rapidly. To the flask were added the diastereopure triptycene
derivative (R,R)-tBu-TRP-OR* obtained in the previous step (3.27
g, 3.65 mmol, 1.00 equiv) and potassium carbonate (1.00 g, 7.24
mmol, 1.83 equiv). The reaction was stirred at room temperature for
16 h, quenched by the addition of water (ca. 200 mL) and ethyl
acetate (ca. 300 mL), and acidified by the addition of ca. 10 mL of 1
M aq HCl (pH of the aqueous phase was about 7, checked using pH
paper). The organic layer was separated, washed with brine (1 × 150
mL), dried over Na2SO4, and concentrated to afford a brown oil.
Chloroform (50 mL) was added, the resulting suspension was
sonicated for 10 min, and the precipitate was collected by filtration,
washed with additional chloroform, and dried under vacuum. In order
to remove residual chloroform, the product was dissolved in a small
amount of ethyl acetate, the solution was concentrated under reduced
pressure, and the resulting solid was dried under vacuum at 120 °C
for 12 h to afford (R,R)-tBu-TRP-OH as an off-white/faint red
powder (1.06 g containing ca. 5 wt % ethyl acetate, 2.53 mmol, 69%).
1H NMR (500 MHz, DMSO-d6) δ 8.77, 7.40, 7.40, 7.29, 7.27, 6.97,
6.97, 6.96, 6.95, 6.30, 5.73, 1.21.; 13C NMR (126 MHz, DMSO-d6) δ
147.22, 145.76, 144.70, 143.01, 132.29, 122.98, 120.97, 120.49,
112.78, 46.49, 34.21, 31.31; O. R. [α]D20 = +18.7 (c 1.0, THF). The
enantiomeric excess was confirmed to be >99% by HPLC analysis
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(Chiralpak IA column, 25% isopropanol in hexanes, 1 mL per minute,
detection at 250 nm).
Synthesis of (R,R)-PAE-F. A flame-dried 100 mL round-bottom

flask was equipped with a reflux condenser and charged with a
magnetic stir bar, (R,R)-tBu-TRP-OH (containing ca. 5 wt % ethyl
acetate, 1.369 g, 3.26 mmol, 1.00 equiv), and decafluorobiphenyl
(1.090 g, 3.26 mmol, 1.00 equiv). The flask was evacuated and
backfilled with argon gas three times, and then anhydrous N,N-
dimethylacetamide (30 mL) was added. The reaction was stirred at
room temperature until all reagents dissolved. Potassium carbonate
(1.036 g, 7.50 mmol, 2.30 equiv) was added and the reaction was
heated to 160 °C while stirring. After 3 h, the reaction was allowed to
cool to ca. 80 °C and precipitated by dropwise addition to an aqueous
1 M HCl solution (300 mL). The precipitate was collected by vacuum
filtration, washed with aqueous 1 M HCl, dried, redissolved in
tetrahydrofuran (ca. 30 mL), and precipitated from deionized water
(300 mL). The resulting precipitate was collected by vacuum
filtration, washed with deionized water, and dried under vacuum at
140 °C for 4 h to afford the polymer as white fibers (yield: 2.18 g,
92.5%). 1H NMR (500 MHz, CDCl3) δ 7.50, 7.38, 7.08, 6.51−6.43,
5.99, 1.33−1.23; 13C NMR (126 MHz, CDCl3) δ 148.81, 148.44,
145.93, 144.48, 143.87, 142.90, 141.67, 140.90, 138.31, 136.69,
123.64, 122.25, 121.64, 113.82, 102.69, 47.84, 34.77, 31.62, 30.47; 19F
NMR (471 MHz, CDCl3) δ −137.86, −137.88, −137.90, −137.92,
−152.93, −152.95, −152.98, −153.00. O. R. [α]D20 = −32.0 (c 1.0,
THF).

■ RESULTS AND DISCUSSION
The syntheses of rac-PAE-F and rac-PAE-H using SNAr and
Pd-catalyzed C−O coupling conditions, respectively, are

shown in Scheme 1a,b. Toluene was added to the SNAr
reaction mixture to form an azeotrope with water produced
during the polymerization, which was removed from the
reaction mixture via distillation. Effective removal of the water
is important to prevent potential hydroxide reactions with the
perfluorobiphenyl monomer and to maintain a 1:1 monomer
equivalence to maximize molecular weight. Our scale-up of the
polymerization makes use of a stainless-steel dip tube that was
inserted with its outlet below the solvent line to bubble argon
in situ through the reaction mixture. For the reaction, 19.5 w/v
% of monomer and a short-path distillation apparatus were
used to collect the distillate (Figure S1). During the
polymerization, toluene and water are distilled from the
reaction and into the receiving flask, resulting in an increase in
the concentration of the reaction solution to approximately
26% over the course of the polymerization. Under these
conditions, we obtainedMn = 74.2 kDa for rac-PAE-F (Scheme
1a). When employing the dip tube method on small scales,
rapid concentration of the reaction occurs, leading to solvent
loss that hinders proper reagent mixing and results in a low-
molecular-weight polymer (Mn = 6.76 kDa). Other attempts
starting with more concentrated solutions and/or without use
of the dip tube yielded polymer at or below ∼32 kDa for Mn,
which is consistent with the previously reported polymer-
ization.1 Thus, these improved reaction conditions enable us to
access high molecular weights that are required for membrane
film formation, which will be discussed later.

Scheme 2. (a) Synthesis of (R,R)-tBu-TRP-OH and (b) Side- and Bottom-View ORTEP Diagrams of (R,R)-tBu-TRP-OR*a

aAtomic displacement parameters at 100 K are drawn at 70% probability level. Hydrogen atoms and dichloromethane molecules are omitted for
clarity.
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4,4′-Dibromobiphenyl is an unactivated aryl bromide and
unsuitable for SNAr reactions, so we followed the previously
reported Pd-catalyzed polycondensation19 to polymerize rac-
tBu-TRP-OH and 4,4′-dibromobiphenyl and yielded Mn =
15.6 kDa rac-PAE-H (Scheme 1b). Scheme 2a shows the chiral
separation of (R,R)-tBu-TRP-OH, which is inspired by the
separation of chiral iodotriptycenes.29 First, (1S)-(−)-cam-
phanic chloride (R*-Cl) was installed through an esterification
reaction with rac-tBu-TRP-OH to produce a mixture of tBu-
TRP-OR* diastereomers. The tBu-TRP-OR* diastereomers
were readily separated via recrystallization in dichloromethane,
eliminating the need for chromatographic purification. The
chiral auxiliary was then removed through ethanolysis to yield
the (R,R)-tBu-TRP-OH enantiomer. The enantiomer’s abso-
lute configuration was determined via single-crystal X-ray
analysis of the intermediate (Scheme 2b). Since we synthesized
a limited amount of (R,R)-tBu-TRP-OH, we performed the
SNAr polymerization with (R,R)-tBu-TRP-OH at a small scale
following the previously reported procedure1 without a dip
tube to afford Mn = 16.0 kDa of (R,R)-PAE-F (Scheme 1c).
Unlike rac-PAE-H, films of (R,R)-PAE-F were stable up to 51
bar.
Thermal Properties of PAEs. The synthesized polymers

displayed high thermal stability characteristics of PAEs with
degradation temperatures (Td) above 450 °C (Figure 1a). The
glass transition temperature (Tg) is higher in rac-PAE-H than
in rac-PAE-F or (R,R)-PAE-F (Figure 1b). This feature may be
indicative of the tighter packing of polymer chains for rac-PAE-
H relative to both PAE-F polymers, and potentially from

secondary interactions such as π−π stacking.30,31 The preferred
solid-state conformation for biphenyl has been reported to be
approximately coplanar,25,30,32,33 and this coplanar conforma-
tion is stabilized by the delocalization of π-electrons34 and/or
by an attractive H−H bonding interaction between the 2,2′-Hs
of the biphenyl.35 A coplanar conformation can promote π−π
stacking arrangements31 in rac-PAE-H. In contrast, the 2,2′-F
atoms in perfluorobiphenyl experience steric repulsion, which
causes perfluorobiphenyl to adopt a conformation with an
∼45° dihedral angle between the phenyl groups.25 The similar
Td’s and Tg’s of rac-PAE-F and (R,R)-PAE-F suggest both
PAE-F polymers likely have a similar morphology.

Free Volume and Packing Structure Analysis. To
evaluate the packing structure of rac-PAE-H, rac-PAE-F, and
(R,R)-PAE-F, we measured the BET surface areas and
calculated the fractional free volume (FFV). BET is often
used as an indirect but highly correlated indicator of the
microporosity of a PIM material, and surface areas typically
scale with increasing free volume. FFV describes the “empty
space” resulting from inefficient chain packing. All of the PAEs
have characteristic Type I isotherms (Figure 2a) with
increasing pressure, indicating that these materials are high
free volume polymers. There is also pronounced hysteresis
upon depressurization, suggesting a potential dilation effect at
high N2 activities or potentially some mesoporous character-
istic in the packed polymer powder. The measured surface area
of rac-PAE-F was 454 m2 g−1, (R,R)-PAE-F was 368 m2 g−1,
and rac-PAE-H was 270 m2 g−1 (Table S1), indicating that the
PAE-F polymers have more porosity to accommodate small

Figure 1. Heating curves for (a) TGA and (b) last heating cycle of DSC for rac-PAE-H, rac-PAE-F, and (R,R)-PAE-F.

Figure 2. (a) N2 adsorption isotherms at 77 K for rac-PAE-H, rac-PAE-F, and (R,R)-PAE-F. (b) WAXS spectra results for rac-PAE-H, rac-PAE-F,
and (R,R)-PAE-F.
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molecules relative to rac-PAE-H. A similar interpretation was
found by calculating FFV through group contribution
methods,36 with the PAE-F polymers having a higher FFV
than that of rac-PAE-H (Table S1). We anticipate that these
findings relate to the nonplanar conformation of perfluor-
obiphenyl inhibiting chain packing. Wu et al. investigated the
difference in morphology and transport for polyimides that
contained either fluorinated or hydrocarbon-based biphenyl
residues and reported a 50% increase in FFV for a polyimide
with a fluorinated biphenyl group (6FDA-OFB) compared to
the nonfluorinated analogue (6FDA-OHB).25 The greater free
volume was attributed to the nonplanar conformation of
perfluorobiphenyl. Zhang et al. also noted an increase in FFV
and d-spacing in a copolyimide containing 2,2′-bis-
(trifluoromethyl) biphenyl compared to one containing
unsubstituted biphenyl.37 We note that the FFV of rac-PAE-
H, rac-PAE-F, and (R,R)-PAE-F is higher than that of 6FDA-
OFB, 6FDA-OHB,25 and 6FDA-DATRI,28 affirming that tBu-
triptycene as a residue enhances free volume in addition to the
enhanced FFV effects from fluorine.
To investigate the physical packing structure of the

polymers, we collected WAXS spectra for each sample. The
polymers were amorphous, and the films were optically clear.
In WAXS, diffuse scattering from voids between polymer
chains is responsible for the peaks at lower q values, whereas
scattering from intersegmental spacing produces peaks at
higher q values (Figure 2b).38 The peak centered at 14.5 Å in
rac-PAE-F shifts to 11.8 Å in rac-PAE-H in accordance with
the BET and free volume trends noted previously. (R,R)-PAE-
F exhibits more defined peaks than the racemic PAEs and the

largest d-spacing at 16.5 Å, indicating that (R,R)-PAE-F has a
weaker packing structure compared to rac-PAE-F. All of these
amorphous halos are centered at d-spacing values that are
larger than those observed for the related 6FDA-based
polymers (Scheme 1d).25,28 Again, this finding indicates the
free-volume-generating feature of tBu-triptycene residues. We
attributed the secondary signal at 5.21 Å for rac-PAE-H and
5.25 Å for the PAE-F polymers to interchain correlations as
these distances are longer than would be expected for cofacial
π−π stacking.39 This finding is also consistent with the
triptycene moieties inhibiting close packing of the polymer
chains and with triptycene moieties providing access to
configurational free volume for molecular transport.39−41

Pure-Gas Permeation Analysis. Increases in permeability
correlate with higher FFV, and as expected, the PAE-F
polymers demonstrate higher permeability than 6FDA-OFB,
6FDA-OHB,25 and 6FDA-DATRI28 (Figure 3). Notably,
(R,R)-PAE-F exhibited higher permeability than rac-PAE-F
despite having an FFV within error of rac-PAE-F. Correspond-
ingly, selectivity was inversely correlated with FFV. We
observed a decrease in N2/CH4, CO2/CH4, CO2/N2, and
O2/N2 selectivity for both PAE-F polymers relative to the
6FDA-based polymers. This finding suggests an increase in
diffusivity for all gases within the higher-free-volume PAE
materials; therefore, we calculated the diffusion coefficients
using the time-lag method (Table S3). Interestingly, a small
difference between the diffusivities was observed for (R,R)-
PAE-F and rac-PAE-F and both have greater than 8-fold
increase in CH4 diffusion compared to 6FDA-OFB and 6FDA-
DATRI. According to free volume theory, the logarithm of

Figure 3. Robeson upper bounds for pure-gas permeation of rac-PAE-F and (R,R)-PAE-F compared to 6FDA-OHB,25 6FDA-OFB,25 and 6FDA-
DATRI28 for (a) N2/CH4, (b) CO2/CH4, (c) CO2/N2, and (d) O2/N2.
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diffusivity, logD, is a linear function of 1/FFV.42−45 Figure S2
contains semilog diffusivity plots that show the increasing
magnitude of the slopes ((0.255) O2 < (0.304) CO2 < (0.334)
N2 < (0.414) CH4) correspond to the effective permeability
diameter of the gas (O2 (3.44 Å) < CO2 (3.63 Å) < N2 (3.66
Å) < CH4 (3.81 Å)). Furthermore,diffusion correlations for
(R,R)-PAE-F and rac-PAE-F are similar to those observed for
the isomeric effects between meta and para connectivity in
polysulfones and polyimides.20−24

The (R,R)-PAE-F polymer had higher diffusivities for all
gases considered compared to the rac-PAE-F sample. These
trends correlated with the small difference in FFV, but they
were in contrast to the lower BET surface area values for
(R,R)-PAE-F. This finding suggests that transport is dominated
by diffusion, but that there is also a subtle trade-off in sorption
and diffusion for enantiopure and racemic polymers that
contributes to the overall permeabilities and permselectivities
for these samples. Sorption of all gases is higher in 6FDA-OFB
compared to 6FDA-DATRI, indicating that octafluorobiphenyl
residues provide a greater boost in sorption than triptycene.
CH4 sorption back-calculated from time-lag analysis is 52%
higher in rac-PAE-F than in 6FDA-OFB, but both polymers
exhibit the same CO2 sorption. (R,R)-PAE-F shows 44%
higher CH4 sorption and 21% lower CO2 sorption. Figure S3
depicts the gas sorption plotted against the critical temper-
ature, Tc, of each gas at 1 atm for the PAEs and 6FDA-based
polymers considered in this study. A smaller slope is typically
observed for perfluorinated polymers compared to hydro-
carbon-based polymers, which have an expected baseline slope
of ∼0.019 K−1 at infinite dilution.42,46,47 We observed slopes
that were lower than that observed for hydrocarbon-based
polymers but were similar between each polymer considered in
this study (Figure S3). This finding indicates that there is no
correlation between sorption or Tc with fluorine content in
these materials, likely because these materials are highly glassy.
Fluorinated polymers typically exhibit N2/CH4 selectivity

higher than 1;42,48,49 however, both PAE-F polymers
demonstrate a selectivity less than 1 for N2/CH4. From the
framework of the dual-mode sorption model,50 this finding
indicates that the higher CH4/N2 sorption selectivity is likely
attributed to the nonequilibrium sorption mode, which
overwhelms contributions from N2/CH4 diffusivity selectivity.
The N2/CH4 diffusivity selectivity is approximately 2-fold
lower in rac-PAE-F compared to 6FDA-OFB and 6FDA-
DATRI, indicating that the greater free volume in rac-PAE-F
reduces its size-sieving capabilities and thus results in a switch
in permselectivity for the N2/CH4 pair. A similar difference in
CO2/CH4 diffusivity selectivity is observed in (R,R)-PAE-F
compared to 6FDA-OFB and 6FDA-DATRI. The CO2/CH4
sorption selectivity of rac-PAE-F and (R,R)-PAE-F polymers is
similar to that of 6FDA-DATRI and 34 to 44% lower than
6FDA-OFB, respectively, suggesting decafluorobiphenyl and
6FDA moieties increase selectivity for CO2 more than
triptycene. Additionally, rac-PAE-F exhibits a CO2/N2 sorption
selectivity that is 23% higher than that of 6FDA-DATRI and
24% lower than that of 6FDA-OFB. The CO2/N2 sorption
selectivity of (R,R)-PAE-F was 28% higher than that of 6FDA-
OFB and 2 factors higher than that of 6FDA-DATRI,
respectively. Although diffusion was a clear correlating variable
with transport properties (Figure S2), we did not observe a
correlation between the sorption selectivity and volume
fraction of fluorine (Figure S4).

The enhanced sorption selectivity may arise from
interactions of CO2 with the free volume generated by the
6FDA moieties, which are known to produce some of the
highest CO2-sorptive polyimides.51 In fact, 6FDA-based
polyimides are easily plasticized by CO2 due to strong gas−
polymer affinity.27,52 This phenomenon results in a pure-gas
CO2 plasticization pressure of 8 bar for 6FDA-DATRI.27

Subjecting rac-PAE-F to high-pressure sweeps of CO2 reveals a
plasticization pressure point of ∼31 bar (Figure 4), a nearly 4-

fold improvement from that of 6FDA-DATRI, demonstrating
that pairing perfluorobiphenyl with triptycene motifs can
enhance resistance to CO2-induced plasticization. The
plasticization pressure point of (R,R)-PAE-F was observed at
∼24 bar. Although subtle, the slight difference in these
plasticization pressure points correlates with the higher BET
surface area and higher CO2 sorption coefficient (cf., Figure 2a
and Table S3) for rac-PAE-F. It is well known that
plasticization pressure points occur when increases in diffusion
overcome decreases in sorption for glassy polymers.53−55 The
slightly higher sorption of CO2 in rac-PAE-F likely obscures
the rise in diffusion for this polymer until higher pressures. In
addition to the normalized plasticization pressure response in
Figure 4, Figure S5 includes the full-scale CO2 permeability
versus pressure response. Solid-state dynamics characterization
will elevate our understanding of changes in packing structure
that occur in the presence of CO2 in addition to mixed-gas
permeation and sorption experiments, which will be the focus
of future studies of the PAE-F motif.

■ CONCLUSIONS
We report a synthetic method in this study to improve the
molecular weight of a previously reported PAE1 in addition to
the synthesis of the nonfluorinated analogue using recently
developed Pd-catalyzed polycondensation. We also detail a
method that yields enantiopure triptycene-based monomers
used to produce (R,R)-PAE-F. Furthermore, we performed a
comparative characterization study between the fluorinated
and nonfluorinated PAEs formed through the same synthetic
mechanism to assess structure−property relationships. Tripty-
cene moieties dependably enhanced the free volume and
microporosity, as demonstrated by FFV and BET analysis. Our
WAXS results also indicated that perfluorobiphenyl structures
further disrupt chain packing compared to nonfluorinated
biphenyl analogues. Both PAEs have higher FFVs compared to

Figure 4. Pure-gas CO2 permeabilities for the high-pressure sweep of
rac-PAE-F and (R,R)-PAE-F.
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polyimide counterparts, resulting in increased permeability for
rac-PAE-F and (R,R)-PAE-F. No plasticization pressure effects
were observed up to ∼24 bar for (R,R)-PAE-F and ∼31 bar for
rac-PAE-F, demonstrating resistance to plasticization for this
class of materials.
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