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Peer prediction mechanisms motivate high-quality feedback with provable guarantees. However, current
methods only apply to rather simple reports, like multiple-choice or scalar numbers. We aim to broaden
these techniques to the larger domain of text-based reports, drawing on the recent developments in large
language models (LLMs). This vastly increases the applicability of peer prediction mechanisms as textual
feedback is the norm in a large variety of feedback channels: peer reviews, e-commerce customer reviews,
and comments on social media.

We introduce two mechanisms, the GeneRative PeeR PRediction Mechanism (GPPM) and the Gen-
eRative Synopsis PeeR PRediction Mechanism (GSPPM). These mechanisms utilize LLMs as predictors,
mapping from one agent’s report to a prediction of her peer’s report. Theoretically, we show that when the
LLM prediction is sufficiently accurate, our mechanisms can incentivize high effort and truth-telling as an
(approximate) Bayesian Nash equilibrium. Empirically, we confirm the efficacy of our mechanisms through
experiments conducted on two real datasets: the Yelp review dataset and the ICLR OpenReview dataset. We
highlight the results that on the ICLR dataset, our mechanisms can differentiate three quality levels — human-
written reviews, GPT-4-generated reviews, and GPT-3.5-generated reviews in terms of expected scores. Ad-
ditionally, GSPPM penalizes LLM-generated reviews more effectively than GPPM.
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1 Introduction
Consider the following review for an academic paper:

“I didn’t get much out of reading this paper. Their methods do not seem very rigorous. I
don’t think the conclusions are supported very well.”

Theabove review is not very informative: its initial critique is too general, and the issueswith the
methods and conclusions should have been explained more thoroughly. If the peer review process
only gathers reviews of this quality, it will struggle to make useful and fair publication decisions.
The problem has been exacerbated by large language models (LLMs), which greatly reduce the
cost of generating reviews that closely mimic human-written reviews but often lack substantial
insight [Liang et al., 2023].

Here are two reviews of a randomly selected paper submitted to the ICLR1 2020. An interesting
exercise is to determine which was generated by an LLM and which was written by a human.

… I lean towards rejecting this paper
however, because I am not convinced
of the results’ significance. We already
know how to learn symmetric func-
tions (see Exercise 3.26 in Mohri et al.,
2018). The authors’ results show that
we can inject this knowledge into a
neural network at initialization, and
then run SGD without making things
too much worse. I do not see how
these ideas might apply to more sub-
stantial learning problems where our
prior knowledge is less precise. …

… The paper makes a valuable theoretical
contribution to the understanding of neural
network initialization, particularly in the
context of symmetric functions. The empir-
ical validation is a strong point, although
the experiments could be expanded to pro-
vide a more comprehensive evaluation. The
paper’s focus on a single hidden layer net-
work is both a strength, in terms of theoret-
ical tractability, and a weakness, in terms
of practical relevance. To move forward,
the authors should consider extending their
analysis to more complex architectures and
providing a broader empirical evaluation. …

Fig. 1. An example from our study: Two reviews of a submission at ICLR2020, the left one by a human
reviewer, and the right one by GPT-4.

Due to LLMs, it is no longer possible to filter out low-quality reviews by their length, lack of
any relation to the paper at hand, or poor grammatical constructions. In the above example, we
can observe that the AI-generated review looks informative and effectively summarizes the paper.
However, it lacks the depth and insight of the expert human review.

The need to obtain high-quality subjective human evaluation extends beyond academia to other
domains, including business, the arts, andmore. For example, if customer feedback on Amazon and
Yelp is inundated with shallow reviews or those generated by LLMs, consumers will struggle with
making well-informed decisions [Resnick et al., 2000, Tadelis, 2016]. The problem of incentivizing
high-quality reviews is more important and daunting than ever.

One approach is to provide well-designed incentives for the reviewer that, in particular, reward
high-quality reviews more than low-quality reviews [Srinivasan and Morgenstern, 2021]. How-
ever, because reviews are subjective, their correctness cannot be directly verified. This inherent
challenge complicates the evaluation of review quality.
1The International Conference on Learning Representations (ICLR), a top-tier machine learning conference, makes all of
its peer review data openly accessible on OpenReview (https://openreview.net).
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One straightforward idea is to ask other people to judge the quality of the reviews. But then we
face a new challenge: how to motivate these new judges? Moreover, an automated approach that
does not introduce additional participants and procedures is preferable.

Prior work has proposed the peer prediction mechanism, a powerful tool to elicit subjective in-
formation [Miller et al., 2005].The high-level idea is to determine the reward of a person according
to the “correlation” between her report and a peer’s report. The underlying intuition is that better,
more insightful reports will naturally align more closely with one another. In their setting, when
a person puts in the effort to understand a task, she gains a private signal such as “good” or “bad”.
She can then choose whether to report this signal honestly. Miller et al. [2005] prove that in their
setting, truth-telling is an equilibrium—if a participant believes other people will invest effort and
tell the truth, she should also do this.

However, implementing the above mechanism requires knowledge of the prior: the joint distri-
bution of the private signals. In the original peer prediction mechanism [Miller et al., 2005], agents
are asked to report their private signals such as “good” or “bad”. The mechanism then predicts a
peer’s report, such as 70% “good”, by getting a posterior based on an agent’s report and the prior.
The agent is then rewarded for the accuracy of this posterior prediction. Assuming the mechanism
has perfect knowledge of the prior, this incentivizes truth-telling because only an honest report
can lead to the optimal posterior.

The mechanism’s required knowledge of the prior has been seen as a major impediment to real-
world implementation of peer-prediction mechanisms. Significant advances, that follow two main
approaches, have enabled overcoming this limitation in several settings. Both these approaches
circumvented the requirement of knowing the prior by learning, not the prior itself, but a proxy,
usually the relationship between the agent reports, from agent reports themselves.

The first approach, often called the multitask setting, involves assigning agents to multiple a
priori similar tasks. This allows learning the structure of agent reports and enables measuring the
amount of information in common between agent responses [Dasgupta and Ghosh, 2013, Kong,
2020, Kong and Schoenebeck, 2019, Liu et al., 2023, Shnayder et al., 2016, Zhang and Schoenebeck,
2023a]. In certain settings such as multiple choice questions, even a small number of tasks may
suffice [Burrell and Schoenebeck, 2021, Kong, 2024, Schoenebeck and Yu, 2020]. The second ap-
proach called the signal-prediction framework, pioneered by Prelec [2004], which is independent
and concurrent to Miller et al. [2005], involves eliciting second-order predictions, that is asking
how they believe other agents will respond, for example, “I think 70% of my peers will answer
‘good’ ” [Chen et al., 2021, Radanovic and Faltings, 2014, Schoenebeck and Yu, 2023, Witkowski
and Parkes, 2012].

However, because both these approaches rely on learning from agent responses or predictions,
they work better when the space is simple—either categorical (such as a multi-choice question) or
numerical (such as a rating between 0 and 10). Otherwise, the structure is too involved to learn in
the multitask setting, and the forecasts can not be communicated efficiently for forecast elicitation.

However, reducing to such a simple space often loses the rich information within the textual
judgments. For example, in peer review, the decision of the editor/area chair often relies more on
the arguments and justifications in the textual reviews rather than merely on numerical ratings.
Furthermore, on online platforms, the inflation of ratings makes them less reliable and distinguish-
able, while textual reviews tend to be more stable [Filippas et al., 2018].

Given these limitations and the recent success of large language models (LLMs), our research
question is: canwedevelop automatedmechanisms that effectively incentivize high-quality,
informative textual feedback by rewarding it more than generic or low-quality content?

Intuitively, eliciting textual feedback is inherently more difficult than eliciting numerical or
categorical responses. However, the recent rise of powerful Large Language Models (LLMs) has
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surprisingly flipped this script. LLMs, more or less, estimate the probability distribution of the
entirety of human language. Thus, our goal is to instead run the original peer-prediction mecha-
nism by using LLMs to gain access to the prior. We use the LLM’s ability to analyze the structure
of textual responses and predict the probability of one text given another text (LLM-prediction).
This directly addresses the “knowing prior” problem and eliminates the need for multiple tasks or
second-order predictions (common for categorical/numerical responses). It is somewhat paradox-
ical that moving to this much more complex domain actually may make the entire task easier! In
essence, LLMs make eliciting textual responses easier than simpler formats, as textual responses
offer more complexity that LLMs can leverage, while simpler formats lack this richness.

Directly employing LLMs may reward superficial similarities, such as matching speaking styles,
or reviews that offer no more than a reiteration of the paper’s abstract, which may benefit LLM-
generated reviews. Ultimately, the goal is to encourage reviewers to delve deeper, providing unique
perspectives. A related question is can we distinguish the valuable, unique human expert
reviews from the coherent yet potentially superficial reviews generated by AI?

To answer the above research question and not reward superficial similarities, when using LLMs
to compute the correlation, it is important to effectively condition out “shortcut” information such
as language styles and information contained in any synopsis of the reviewed item. We borrow
the term from “shortcut learning”, where a machine learning algorithm learns the undesired infor-
mation from data that is strongly correlated with labels on the training data but lacks generality
[Geirhos et al., 2020]. In our setting, for example, a human-written review can have a high correla-
tion with an LLM-generated review because they mentioned several particular terms in the paper.
However, such “shortcut” information may lead to unintended rewards for shallow reviews (e.g.,
LLM-generated reviews) and noise caused by different language styles. By conditioning out “short-
cut” information, we aim to filter out these superficial aspects and focus on rewarding reviews that
demonstrate a deeper level of engagement.

1.1 Our Contribution
We apply the LLM-prediction to peer prediction and propose two mechanisms—the GeneRative
PeeR PRediction mechanism (GPPM) and the GeneRative Synopsis PeeR PRediction mecha-
nism (GSPPM). At a high level, the former rewards a review based on how much it helps predict
the contents of another review. The latter, however, rewards a review based on how much more
it helps predict the contents of another review than a mere synopsis of the item to be reviewed,
such as the abstract of a paper, thereby conditioning out the ”shortcut” information derived from
superficial information contained in the synopsis.

We first use theory to present the main idea of our method, where we consider a model with
three layers of effort: high, low, and no effort. We show that when the LLM prediction is suffi-
ciently accurate, both mechanisms can incentivize high effort and truth-telling as an (approximate)
Bayesian Nash equilibrium. By conditioning on a synopsis of the item to be reviewed, GSPPM can
further shrink the gap of expected scores between low-effort and no-effort reporting while pre-
serving the gap between high-effort and low-effort reporting.

We then propose two implementations for getting the LLM-prediction—ToKen and Judgment.
ToKen predicts the content of a response by using the ’predicting next word’ mechanism of a lan-
guage model, while Judgment first summarizes one textual response into individual judgments
and then estimates a prediction for each judgment by querying an LLM. We highlight that for a
robust implementation, it is necessary to preprocess the responses. We propose a straightforward
yet effective heuristic preprocessing method. This involves using an LLM to rephrase and summa-
rize the initial responses, aiming to standardize the language style and remove superficial content,
and consequently, mitigate the impact of the “shortcut”.
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Moreover, we conduct experiments on the mechanisms using an ICLR dataset and a Yelp review
dataset and observed the following results:

Result 1: GPPM can effectively penalize report degradations. We apply three report
degradation methods, which degrade the information of an agent’s report. In both ICLR
and Yelp datasets, we observe that the expected score computed by the GPPM significantly
decreases after all degradations.

Result 2: Both GPPM and GSPPM can differentiate three quality levels—human, GPT-
4, and GPT-3.5. In the ICLR dataset, we replace an agent’s review with a GPT-4-generated
review and a GPT-3.5-generated review respectively, representing a decreasing level of effort.
We observe that the expected scores computed by both GPPM and GSPPM significantly
decrease. Furthermore, the decrease of the GPT-3.5-generated review is larger than that of
the GPT-4-generated review.

Result 3: GSPPM penalizes LLM-generated peer review more than GPPM. We find that
the GSPPM applies a more significant expected score penalty on the LLM-generated peer
reviews, including both GPT-4 andGPT3.5, compared to GPPM,which indicates its improved
capacity to distinguish high-quality reports from low-quality reports.

We further note that our mechanisms can serve not only to assess the quality of reviews which
can inform decision-making, but also to incentivize effort from agents. This can be interpreted
by considering GPT-3.5, GPT-4, and human-written reviews as representing three levels of effort.
Thus, by rescaling the scores of the mechanisms into payments, we can reward high-effort reviews
much more than low-effort reviews.

Omitted Material. Due to space constraints, a more comprehensive literature review, detailed
theoretical analysis (Section 3), prompts used in mechanism implementations (Section 4), and ex-
periment details (Section 6) are provided in the full version at: https://arxiv.org/abs/2405.15077.

2 Preliminaries
This section introduces the classic information elicitation model and the preliminaries that guide
the design of our method.

2.1 Model
In our setting, a set of items (e.g., papers or restaurants) are reviewed by a set of agents, where
each item is assigned to multiple agents for review. We reduce the problem to the setting where
there is only one item to be reviewed by two agents and emphasize that our method can be applied
to any item and any pair of agents. Let 𝐼 = {1, 2} be the set of agents reviewing the same item.

Item and Signal. Agents’ judgments of the item are influenced by the inherent characteristics
of the item and other related background knowledge used to generate the judgment. Let 𝑍 ∈ Z
denote an item such that observing 𝑍 = 𝑧 is sufficient for an agent to form her judgments about
the item. Suppose 𝑍 is sampled from an unknown common prior 𝜋 .

Given an item 𝑍 = 𝑧, each agent receives a subjective signal 𝑋𝑖 ∈ X when evaluating the item.
We use 𝑥𝑖 to denote a potential value for 𝑋𝑖 . Similar to prior literature [Dasgupta and Ghosh, 2013,
Miller et al., 2005], we adopt the common assumption that signals are i.i.d. conditioned on the item,
i.e., Pr[𝑋𝑖 | 𝑍 = 𝑧] is identical for any agent 𝑖 . Furthermore, the signals related to the same item
are expected to be correlated in some meaningful way. We thus adopt the following assumption,
which is required to guarantee that truthful information is elicitable [Crémer and McLean, 1985].
Assumption 2.1 (Stochastic Relevance). For any 𝑥𝑖 , 𝑥 ′𝑖 ∈ X, 𝑥𝑖 ≠ 𝑥 ′𝑖 , there exists 𝑥 𝑗 ∈ X such that

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] ≠ Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥 ′𝑖 ] .
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Fig. 2. An Overview of Our Information Elicitation Model

Reporting Strategy. We assume the report of agent 𝑖 , denoted as 𝑋̃𝑖 ∈ X, shares the same domain
as the signal. Agents can truthfully report their signals or manipulate their signals as reports.
However, only reports (not signals) are observable to the mechanism. Let 𝜎𝑖 : X → ΔX denote the
reporting strategy of agent 𝑖 so that 𝑋̃𝑖 = 𝜎𝑖 (𝑋𝑖 ). Let 𝜏 denote the truthful reporting strategy such
that 𝜏 (𝑋𝑖 ) = 𝑋𝑖 for any signal.

Fig. 3. An Example of the Three-Level Effort Model

Effort Model. We assume that agents can obtain signals with different qualities if they exert
different levels of effort. We focus on a three-level effort model: exerting no effort with a cost of
0, low effort with a cost of 𝑐𝑙 ≥ 0, and high effort with a cost of 𝑐ℎ > 𝑐𝑙 . We use 𝑐𝑖 to denote the
agent 𝑖’s cost.

For each agent 𝑖 , if she exerts high effort, she observes a high-quality signal 𝑋𝑖 = 𝑥𝑖 . If she
exerts low effort, she observes a low-quality signal 𝑋 𝑙𝑖 = 𝑓 (𝑥𝑖 ), which is part of the high-quality
signal. Here, 𝑓 is a deterministic function, so Pr[𝑋 𝑙𝑖 = 𝑓 (𝑥𝑖 ) | 𝑋𝑖 = 𝑥𝑖 ] = 1. However, given 𝑋 𝑙𝑖 ,
the high-quality signal 𝑋𝑖 is uncertain. If an agent exerts no effort, they observe an uninformative
signal Null all the time. In this case, Pr[𝑋 = 𝑥 | Null] = Pr[𝑋 = 𝑥] for all random variables 𝑋 .
The above model implies that the conditional entropy2 𝐻 (𝑋 𝑙𝑖 | 𝑋𝑖 ) = 0, and 𝐻 (𝑋𝑖 | 𝑋 𝑙𝑖 ) ≥ 0.

This effort model, called the hierarchical effort model [Kong and Schoenebeck, 2018], suggests
that the high-effort signals are strictly more informative than the low-effort signals. For example,
in the setting of peer review, a low-effort reviewer might focus solely on surface-level aspects
such as the writing quality of the paper. In contrast, a high-effort reviewer can assess not only the
writing quality but also other aspects, such as the novelty of the idea, the soundness of the method,
and the validity of the experiments.

2The conditional entropy 𝐻 (𝑋 | 𝑌 ) measures the average amount of uncertainty in 𝑋 ∈ X given the value of another
random variable 𝑌 ∈ Y, i.e., 𝐻 (𝑋 | 𝑌 ) = −∑

𝑥 ∈X
∑

𝑦∈Y 𝑃 (𝑥, 𝑦) log
(
𝑃 (𝑥,𝑦)
𝑃 (𝑦)

)
.
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Fig. 4. An Example of the Synopsis-determined Low-effort Signals

Note that our model can also capture a binary effort setting which is assumed in some previous
work [Gao et al., 2016, Miller et al., 2005], by assuming 𝑋 𝑙𝑖 = 𝑓 (𝑥𝑖 ) = Null for any 𝑥𝑖 ∈ X. In this
setting, the agent either receives an informative signal or a Null signal.

Synopsis. In some applications, we are able to find a commonly known synopsis Θ = 𝜃 of the
item 𝑧. We use Σ to denote the space of the synopsis. The synopsis may determine the low-effort
signals. For example, in peer review, when a low-effort reviewer writes a review based solely on the
introduction of the paper, the paper introduction can be regarded as a commonly known synopsis
that fully determines the low-effort signal.

Definition 2.2 (Synopsis-determined Low-effort Signals). We say the low-effort signal is synopsis-
determined if 𝑋 𝑙𝑖 = 𝑔(𝜃 ) where 𝑔 is a deterministic function that maps the synopsis to the low-effort
signal (Figure 4).

In some cases, the low-effort signal𝑋 𝑙𝑖 may containmore information about𝑋𝑖 than the synopsis
𝜃 , and the synopsis 𝜃 does not reveal more information about 𝑋𝑖 than 𝑋 𝑙𝑖 . In the peer review
example, a low-effort reviewer may write a review based on the whole introduction and a glance
at the rest of the paper.

Definition 2.3 (Synopsis-covering Low-effort Signals). We say the low-effort signal is synopsis-
covering if Pr[𝑋𝑖 = 𝑥 | 𝑋 𝑙𝑖 = 𝑥𝑙𝑖 ,Θ = 𝜃 ] = Pr[𝑋𝑖 = 𝑥 | 𝑋 𝑙𝑖 = 𝑥𝑙𝑖 ] for any 𝑥 ∈ X.

Note that Synopsis-determined and Synopsis-covering are not mutually exclusive. We will use
these definitions in Corollary 3.6, but Propositions 3.4 and 3.5 do not require them.

Peer Prediction Mechanism and Agents’ Incentive. A peer prediction mechanism𝑀 : X |𝐼 | → R |𝐼 |

takes all agents’ reports as input and outputs a performance score 𝑠𝑖 to each agent 𝑖 , i.e., 𝑠𝑖 =
𝑀 (𝑋̃𝑖 , 𝑋̃ 𝑗 ). Then, agent 𝑖 is paid according to a linear function 𝑝𝑖 = 𝛼 · 𝑠𝑖 + 𝛽 , where 𝛼 > 0 and 𝛽
are constant parameters. The utility of agent 𝑖 is thereby 𝑢𝑖 = 𝛼 · 𝑠𝑖 + 𝛽 − 𝑐𝑖 .

Each agent aims to maximize her expected utility by choosing a reporting strategy 𝜎𝑖 and an
effort 𝑐𝑖 . We focus on pure effort strategy 𝑐𝑖 and mixed reporting strategy 𝜎𝑖 . Let tuple (𝜎𝑖 , 𝑐𝑖 ) be
agent 𝑖’s strategy and {(𝜎𝑖 , 𝑐𝑖 )}𝑖∈𝐼 be the strategy profile of all agents. Under a peer prediction
mechanism, an agent’s performance score and utility depend on the other agent’s strategy. There-
fore, we sometimes write agent 𝑖’s expected utility as a function of the strategy profile of both
agents, i.e.,𝑈𝑖 ((𝜎𝑖 , 𝑐𝑖 ), (𝜎 𝑗 , 𝑐 𝑗 )).

2.2 Mechanism Design Goal
Definition 2.4. A strategy profile {(𝜎𝑖 , 𝑐𝑖 )}𝑖∈𝐼 is an 𝜖-BNE if, for any agent 𝑖 and for any alternative
strategies (𝜎 ′𝑖 , 𝑐′𝑖 ), we have:

𝑈𝑖 ((𝜎𝑖 , 𝑐𝑖 ), (𝜎 𝑗 , 𝑐 𝑗 )) ≥ 𝑈𝑖 ((𝜎 ′𝑖 , 𝑐′𝑖 ), (𝜎 𝑗 , 𝑐 𝑗 )) − 𝜖.
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In other words, no agent can gain more than 𝜖 in expected utility by unilaterally deviating from
her strategy in an 𝜖-BNE. At a high level, our goal is to design a mechanism that (approximately)
maximizes an agent’s expected performance score if she exerts high effort and reports truthfully.
We call such a mechanism (𝜖-)potent.

Definition 2.5 (Potent Mechanism). A peer prediction mechanism 𝑀 is 𝜖-potent if there exists a
linear payment scheme with parameters 𝛼, 𝛽 , such that exerting high effort (𝑐𝑖 = 𝑐ℎ) and reporting
truthfully (𝜎𝑖 = 𝜏) is an 𝜖-Bayesian Nash equilibrium.

2.3 Miller et al. [2005]’s Peer Prediction Mechanism
Miller et al. [2005] propose the first peer prediction mechanism. We refer to this as the original
peer prediction mechanism.The original mechanism scores an agent based on howwell her report
predicts a randomly selected peer’s report. They use the log scoring rule (LSR) [Cooke, 1991] to
quantify the quality of the prediction.

Definition 2.6 (Log Scoring Rule (LSR)). Given a set of outcomes, Y, and a prediction over the
outcomes 𝑝 ∈ ΔY, the log scoring rule maps the prediction and an outcome 𝑦 ∈ Y to a score
LSR(𝑝,𝑦) = log(𝑝 (𝑦)). Furthermore, for 𝑞 ∈ ΔY, let LSR(𝑝, 𝑞) =

∑
𝑦∈Y 𝑞(𝑦) LSR(𝑝,𝑦) denote the

expected log score when the outcome is sampled from the distribution 𝑞.

The Log Scoring Rule is strictly proper [Gneiting and Raftery, 2007, Selten, 1998], i.e.,

LSR(𝑝, 𝑞) < LSR(𝑝, 𝑝), ∀𝑝, 𝑞 ∈ ΔY and 𝑝 ≠ 𝑞,

meaning that reporting the true belief of the outcome maximized the score. The idea of Miller
et al. [2005]’s peer prediction mechanism is thus very straightforward: scoring agent 𝑖 based on
how well her report can predict her peer’s report according to a proper scoring rule.

Definition 2.7 (Original Peer Prediction Mechanism). Given agent 𝑖’s report 𝑥𝑖 , and the peer agent
𝑗 ’s report 𝑥 𝑗 . The performance score of agent 𝑖 is

LSR(Pr[𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ], 𝑥 𝑗 ) = log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] .

Proposition 2.8 (Proposition 1 of [Miller et al., 2005]). In the binary effort model, if the common
prior 𝜋 and Pr[𝑋𝑖 | 𝑍 = 𝑧] are known, the above mechanism is potent.

Intuitively, this mechanism incentivizes effort and truth-telling because only the prediction in-
duced by the informative true signal can maximize the expected score under a strictly proper
scoring rule.

3 Peer Prediction Mechanisms for Textual Signals
As discussed, the original peer prediction mechanism requires knowledge about the prior distri-
bution over the items and signals. However, the conditional distribution over signals Pr[𝑋 𝑗 =
𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] can often be complex and difficult to learn from historical data, especially when
eliciting textual signals. To address the textual settings, we propose leveraging Large Language
Models (LLMs) to create an estimator of this distribution. We design two new mechanisms — the
GeneRative PeeR PRediction Mechanism (GPPM) and GeneRative Synopsis PeeR PRediction
Mechanism (GSPPM). Assuming a sufficiently accurate LLM estimator, we theoretically prove that
both mechanisms are (approximately) potent and show that GSPPM can better differentiate exert-
ing high effort from exerting low effort by reducing the difference between exerting low effort
and exerting no effort.
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3.1 Main Assumption: the LLM-Prediction
We first integrate LLMs into the information elicitation model and discuss the key assumption
that builds the theoretical foundations of our mechanisms. Given a prompt 𝜓 and a response 𝑥 , a
pre-trained LLM can produce a prediction indicating the likelihood of the response being 𝑥 . We
denote the distribution of responses generated by an LLM with a prompt 𝜓 as PrLLM(𝜓 ) and refer
to it as the LLM-prediction. Thus, PrLLM(𝜓 ) [𝑥] denotes the probability that response 𝑥 is predicted
by LLM via prompt𝜓 .

Sometimes, the prompt itself depends on some input 𝑦 (e.g., the review from a different agent),
in which case we write the prompt as𝜓 (𝑦). If the input to the prompt itself is a random variable 𝑌 ,
to be consistent with the classic information elicitation model, we use PrLLM(𝜓 ) [𝑋 𝑗 = · | 𝑌 = 𝑦] to
denote the LLM-prediction PrLLM(𝜓 (𝑦) ) [·]. We are particularly interested in two predictions. First,
PrLLM(𝜓 ) [𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] is the LLM-prediction of agent 𝑗 ’s report while integrating agent 𝑖’s
report into the prompt. Second, PrLLM(𝜓 ) [𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ] is the LLM-prediction of agent
𝑗 ’s report given agent 𝑖’s report 𝑥𝑖 and a commonly known synopsis 𝜃 .

Our theoretical results require the following (strong) assumption about the fidelity of the LLM-
prediction to that of the model:
Assumption 3.1 (LLM-Prediction). We assume that for an information elicitation task of interest,
there exist sets of prompts {𝜓 (𝑥)}𝑥∈X , {𝜓 ′ (𝑥, 𝜃 )}𝑥∈X,𝜃 ∈Σ, and 𝜖, 𝜖′ ≥ 0 such that for any pair of signal
𝑥𝑖 ∈ X and synopsis 𝜃 ∈ Σ:

𝐷𝐾𝐿

[
Pr[𝑋 𝑗 = · | 𝑋𝑖 = 𝑥𝑖 ]




 Pr
LLM(𝜓 )

[𝑋 𝑗 = · | 𝑋𝑖 = 𝑥𝑖 ]
]
≤ 𝜖,

𝐷𝐾𝐿

[
Pr[𝑋 𝑗 = · | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ]




 Pr
LLM(𝜓 ′ )

[𝑋 𝑗 = · | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ]
]
≤ 𝜖′,

where 𝐷𝐾𝐿 [𝑃 ∥ 𝑄] denotes the KL-divergence3 between two distributions. Furthermore, this fact is
common knowledge for all agents.

Assumption 3.1 implies that the prediction of an (idealized) LLM can accurately estimate the
underlying information structure of the high-effort signals, allowing us to leverage the vast knowl-
edge embedded within LLMs to predict the probability of a new review 𝑥 𝑗 given an existing review
𝑥𝑖 . Such an LLM provides a data-driven way of computing this distribution. In Section 4, we will
detail various implementations for computing an approximation to PrLLM(𝜓 (𝑥𝑖 ) ) .

We now turn toward defining our two mechanisms by assuming that we have access to some
way of computing the LLM-prediction.

3.2 The Generative Peer Prediction Mechanism (GPPM)
To define our GeneRative PeeR PRedictionMechanism (GPPM), we combine the idea of an LLM
prediction with Miller et al.’s mechanism in the textual setting.
Definition 3.2 (GeneRative PeeR PRediction Mechanism (GPPM)). Given the peer’s report 𝑥 𝑗 ,
the performance score of agent 𝑖 with report 𝑥𝑖 is

LSR( Pr
LLM(𝜓 )

[𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ], 𝑥 𝑗 ) = log Pr
LLM(𝜓 )

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]

If Assumption 3.1 holds and the peer’s report 𝑥 𝑗 is of high effort and truthful, GPPM will be
able to successfully differentiate between different effort levels. We defer the formal theory to
Section 3.4 while providing the high-level intuitions of why GPPM is potent here.
3The KL-divergence between two distributions over the same probability space is 𝐷KL (𝑃 ∥𝑄 ) =∑

𝑥 𝑃 (𝑥 ) log (𝑃 (𝑥 )/𝑄 (𝑥 ) ) .
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First, GPPM should be able to reward an effortful signal more than a no-effort signal. This is
because even a low-effort signal 𝑋 𝑙𝑖 helps predict some of the terms in 𝑋 𝑗 . For example, if 𝑋 𝑙𝑖
merely makes it clear that the reviewed paper proposes a new machine learning algorithm, then
the words “loss function” and “training” will (correctly) be much more likely.

In addition, we anticipate that the GPPM should be able to reward a high-effort signal more
than a low-effort signal. Intuitively, this is because some insights/critiques can only be predicted
by high-effort signals. Consider the peer review example again, a low-effort signal may report
common features of a machine learning paper but could overlook specific details of the particular
paper such as an elegant proof and a potential broader impact of the method.

3.3 The Generative Synopsis Peer Prediction Mechanism (GSPPM)
Intuitively, the above GPPM pays both high and low-effort signals. However, in some applications
where low-effort signals may be easily generated by LLMs, such as academic peer review shown
in fig. 1, we only want the high-effort signals. This raises the question: Is it possible to further
penalize the reporting of low-effort cheap signals?

We propose the GeneRative Synopsis PeeR PRediction Mechanism (GSPPM). The idea is to
condition the LLM-prediction on the commonly known synopsis, such as a summary of the re-
viewed item. As the low-effort signal can be fully characterized by the synopsis, reporting the
low-effort signal brings no extra information on predicting agent 𝑗 ’s report when the synopsis
is conditioned out. In the above peer review example, if the abstract of the reviewed paper has
already been inputted into the LLM as prompts, then a low-effort signal simply reiterating the
abstract’s contents would be redundant.
Definition 3.3 (Generative Synopsis Peer Prediction Mechanism (GSPPM)). Suppose we have a
synopsis 𝜃 of the item being reviewed. Given the peer’s report being 𝑥 𝑗 , the performance score for
agent 𝑖 with report 𝑥𝑖 is

LSR( Pr
LLM

[𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ], 𝑥 𝑗 ) = log Pr
LLM

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ] .

In practice, we hypothesize that GSPPM can generally decrease the scores of low-effort signals
to that of no-effort signals. This is because the low-effort signal is unlikely to offer additional
insights beyond those already present in the synopsis.

For the same reason, we hypothesize that GSPPM can outperform GPPM in distinguishing be-
tween low-effort and high-effort signals. Because the scores of low-effort signals are pushed closer
to the baseline of no-effort, the reduction in entropy by providing more specific insights that ap-
pear in both 𝑋𝑖 and 𝑋 𝑗 should be more salient. In other words, we hypothesize that it will improve
the signal-to-noise ratio by making insights more prominent and vocabulary alignment less im-
portant. This intuition is very similar to that in Kong and Schoenebeck [2018], which also used
conditioning to motivate high-effort signals above low-effort signals.

3.4 Theoretical Results: GPPM and GSPPM are 𝜀-Potent
Here, we provide formal theoretical guarantees of our mechanisms under Assumption 3.1. Due
to space constraints, we present only the main propositions here, deferring all lemmas, intuitions,
and proofs to Appendix B. For a comprehensive discussion, please refer to the full version.

Wefirst present several important notations before introducing our propositions.We use 𝐼 (𝑋𝑖 ;𝑋 𝑗 )
to denote the Shannon mutual information [Shannon, 1948] between two signals,𝑋𝑖 and𝑋 𝑗 . It pro-
vides a quantitative measure of the information shared between them.

𝐼 (𝑋𝑖 ;𝑋 𝑗 ) =
∑

𝑥𝑖 ,𝑥 𝑗 ∈X
Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ] log

Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ]
Pr[𝑋𝑖 = 𝑥𝑖 ] Pr[𝑋 𝑗 = 𝑥 𝑗 ]
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Furthermore, we use 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) to denote the conditional mutual information.

𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 )

=
∑
𝑋 𝑙
𝑖 ∈X

Pr[𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ]

∑
𝑥𝑖 ,𝑥 𝑗 ∈X

Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ] log

Pr[𝑋 𝑗 = 𝑥 𝑗 , 𝑋𝑖 = 𝑥𝑖 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ]

Pr[𝑋𝑖 = 𝑥𝑖 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ] Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋

𝑙
𝑖 = 𝑥

𝑙
𝑖 ]

Then, we have the following propositions for GPPM and GSPPM respectively.

Proposition 3.4. For the GeneRative PeeR PRediction Mechanism (GPPM), when Assumption 3.1
holds with parameter 𝜖 ≥ 0. When 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) > 0, GPPM is 𝛼𝜖-potent, where

𝛼 = max

(
𝑐ℎ − 𝑐𝑙

𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 )
,

𝑐ℎ
𝐼 (𝑋𝑖 ;𝑋 𝑗 )

)
.

Proposition 3.5. For the GeneRative Synopsis PeeR PRediction Mechanism (GSPPM), when As-
sumption 3.1 holds with parameter 𝜖′ ≥ 0. When 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) > 0, GSPPM is 𝛼𝜖′-potent, where

𝛼 = max

(
𝑐ℎ − 𝑐𝑙

𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 )
,

𝑐ℎ
𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ)

)
.

These two propositions show that better LLM-prediction approximations will lead to better in-
centive properties. On the other hand, to achieve any desired incentive property, there’s a corre-
sponding threshold for the error of the LLM-prediction approximation.

Additionally, we compare GPPM and GSPPM. Let Gap(ℎ, 𝑙) denote the difference in the expected
score of agent 𝑖 between exerting high effort and exerting low effort while both agents report
truthfully. Let Gap(ℎ,Null) be the analogous notation for the gap between exerting high effort
and exerting no effort. We have the following corollary.

Corollary 3.6. If the low-effort signals are synopsis-determined (definition 2.2) and synopsis-covering
(2.3), and 𝜖′ = 𝜖 , Gap(ℎ, 𝑙) has the same lower bound, 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖 , in both GPPM and GSPPM.
In contrast, Gap(ℎ,Null) has a smaller lower bound 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖 < 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) − 𝜖 in GSPPM than
in GPPM.

Corollary 3.6 suggests that comparedwith GPPM, GSPPM shrinks the gap between no-effort and
low-effort, while preserving the gap between low-effort and high-effort. This property of GSPPM
offers two advantages over GPPM: 1) in practice, it is harder for agents to “cheat” themechanism by
submitting a low-effort signal and getting a partial payoff, which consequently further incentivizes
high-effort signals; 2) it reduces the noise caused by low-effort signals and produces more reliable
scores, better differentiating between low-effort and high-effort.

Although this comparison concerns the lower bounds of the gaps, we will confirm this the-
oretical insight by empirically showing that GSPPM can distinguish low-effort and high-effort
reports better. We demonstrate this by using GSPPM and GPPM to score human-written and LLM-
generated reviews in Section 6.4.

4 Estimating the Posterior Prediction via LLMs
Although our mechanisms, at this point, may appear to be straightforward generalizations from
prior work, implementing them in practice with textual reports presents distinct challenges. In this
section, we present the implementations of our mechanisms, which crucially involve estimating
the underlying distribution Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] via LLMs. We introduce two heuristic implemen-
tation methods, each leveraging the capabilities of the LLM in different ways and degrees.
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• The first implementation, denoted as ToKen, leverages the LLM by directly accessing its
output layer to obtain the log probability feedback of the next token, which requires access
to the neural network (NN) of the LLM. It has two variants:
– ToKen-Raw: We directly use the log probability to predict agents’ raw reports.
– ToKen-PRepRocess: We first use the LLM to preprocess agents’ reports and use the log

probability to predict the pre-processed reports. The goal is to standardize the language
styles and extract essential information.

• The second implementation, denoted as Judgment, uses the LLM to first distill each report
into a set of “judgments” and further apply the LLM chatbot to estimate the likelihood of each
judgment with textual response. This implementation is particularly useful when it is hard
to access the output layer of the LLM, since logprob feedback usually cannot be obtained
from commercial LLM APIs, such as GPT-4 Chat Completion.

Note that both implementations can be used for zero-shot estimation, meaning that estimating
Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] only requires 𝑥𝑖 and 𝑥 𝑗 without any historical data. We alternatively of-
fer a non-zero-shot implementation that estimates judgment distributions by clustering historical
data. We primarily focus on the zero-shot implementations in the main body, while we defer the
discussions of the clustering implementation to Appendix C.

All implementation details including the prompt design, along with example inputs and outputs,
are available in the full version.

4.1 Token: Implementation by LLM Token-Prediction
As discussed, the idea of ToKen is to use the log-probability (logprob) feedback of an LLM to
predict a given report 𝑥 𝑗 . This is possible because LLMs are fundamentally designed to estimate
the likelihood of a subsequent token in a sequence based on a distribution induced by the prompt.
This inherent capability is deeply embedded in their pre-training datasets. Consequently, with
access to an open-source LLM, such as Llama-2 [Touvron et al., 2023] or ChatGLM [Du et al., 2022,
Zeng et al., 2023], it becomes feasible to compel the LLM to generate a specific output and report
the logprob for each output token.

Formally, we view the textual signal 𝑋 = {𝑋 (𝑘 ) }𝑘∈[𝑛] as a sequence of 𝑛 tokens, where 𝑋 (𝑘 )

denotes the 𝑘-th token of 𝑋 . Again, we denote 𝑥 (𝑘 ) as the value of the 𝑘-th token in a report 𝑥 .
Given a prompt 𝜓 and the first 𝑘 − 1 tokens, an open-source LLM can provide the conditional

distribution for the subsequent token via logprob feedback, denoted as PrLLM(𝜓 ) [𝑋 (𝑘 ) | 𝑋 (𝑙 ) =
𝑥 (𝑙 ) ∀𝑙 ∈ {1, 2, . . . , 𝑘 − 1}]. With Bayes’ rule, we can write the probability of the occurrence of a
given report 𝑥 as:

Pr
LLM(𝜓 )

[𝑋 = 𝑥] = Pr
LLM(𝜓 )

[
𝑋 (1) = 𝑥 (1)

] 𝑛∏
𝑘=2

Pr
LLM(𝜓 )

[
𝑋 (𝑘 ) = 𝑥 (𝑘 )

��� 𝑋 (𝑙 ) = 𝑥 (𝑙 ) ∀𝑙 ∈ {1, 2, . . . , 𝑘 − 1}
]
.

4.1.1 ToKen-Raw. The most straightforward idea is to integrate the raw report of agent 𝑖 into
the prompt𝜓token (𝑥𝑖 ) and compute PrLLM(𝜓token (𝑥̃𝑖 ) ) [𝑋 = 𝑥 𝑗 ] with the log probability output by the
LLM. We view this probability as an approximation for Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]. Finally, agent 𝑖’s
performance score is

ToKen-Raw(𝑥𝑖 , 𝑥 𝑗 ) = log Pr
LLM(𝜓token (𝑥̃𝑖 ) )

[𝑋 = 𝑥 𝑗 ] .

4.1.2 ToKen-PRepRocess. In practice, agents’ raw reports can vary significantly in language style,
such as vocabulary usage, sentence structure, and grammatical errors. Additionally, reports may
contain superficial information, such as a summary of the paper, in cases of peer review.
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Note that even low-quality reviews can be well correlated with superficial information or lan-
guage style. However, we aim to reward agents based on the quality of the reports’ semantics,
rather than the correlation on superficial information or language style. Such information may
provide “shortcuts” that confound the LLM predictions and consequently lead to unintended re-
wards. Therefore, we filter out the shortcut information, including language style and superficial
information, before applying LLMs to predict the responses.

To address these issues, we propose a simple yet effective preprocessing technique that employs
a uniform LLM (Itmay be the same as or different from the LLMgenerating logprob) to rephrase the
text signal into a pre-set format. Note that the preprocessing step should be tailored for different
tasks, considering the trade-off between retaining details and distilling the essential information.

Formally, the performance score of agent 𝑖 using ToKen-PRepRocess can be defined as:
ToKen-PRepRocess(𝑥𝑖 , 𝑥 𝑗 ) = ToKen-Raw(PRepRocess(𝑥𝑖 ), PRepRocess(𝑥 𝑗 )) .

We will provide evidence comparing ToKen-Raw and ToKen-PRepRocess and discuss this fur-
ther in Appendix B.1. Generally, we find that ToKen-PRepRocess is likely to effectively filter out
such shortcut information and provide scores according to the semantic quality. Therefore, our
main paper will mainly discuss the variant ToKen-PRepRocess.

4.2 Judgment: Implementation by LLM Judgment-Prediction
Accessing the output layer of an LLM can sometimes be impossible, especially when the LLM is
not open-source, e.g., the OpenAI GPT-4 API. To address this limitation, we propose an alternative
method that uses an LLM as a black box: we first summarizes each report as a set of judgments
and then predicts a report by estimating the probability of each judgment and taking the product.

Formally, suppose the set of all possible judgments is 𝐽 = {𝑤1,𝑤2, . . . ,𝑤𝑚}. Suppose each signal
𝑥 (and report 𝑥 ) is a subset of judgments, i.e., 𝑥 ⊂ 𝐽 . We assume that the event of whether each
judgment belongs to a report is independent, thus, we have

Pr[𝑋̃ 𝑗 = 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖 ] =
∏
𝑤∈𝑥̃ 𝑗

Pr
[
𝑤 ∈ 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖

]
·

∏
𝑤∈ 𝐽 \𝑥̃ 𝑗

Pr
[
𝑤 ∉ 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖

]
.

In the zero-shot setting, it is hard to access the full universe of judgments 𝐽 , making it infeasible
to estimate the probability Pr

[
𝑤 ∉ 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖

]
. Therefore, we use

∏
𝑤∈𝑋̃ 𝑗

Pr
[
𝑤 ∈ 𝑋̃ 𝑗 | 𝑋̃𝑖 = 𝑥𝑖

]
as

a heuristic predictor of Pr[𝑋̃ 𝑗 = 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖 ].
Furthermore, we discretize the prediction space for LLMs’ responses. In particular, given a re-

view 𝑥𝑖 and a target judgment𝑤 , we ask the LLM to score how much𝑤 contradicts or supports 𝑥𝑖
with the score ranging from −3 (strong contradiction) to 3 (strong support). We view this score as
the gain in log probability, i.e., log Pr

[
𝑤 ∈ 𝑋̃ 𝑗 | 𝑋̃𝑖 = 𝑥𝑖

]
− log Pr

[
𝑤 ∈ 𝑋̃ 𝑗

]
.

By taking the sum over the judgments in 𝑥 𝑗 , we obtain an estimate of the conditional log prob-
ability, which we use as the performance score, i.e.

Judgment(𝑥𝑖 , 𝑥 𝑗 ) = log Pr[𝑋̃ 𝑗 = 𝑥 𝑗 | 𝑋̃𝑖 = 𝑥𝑖 ] − log Pr[𝑋̃ 𝑗 = 𝑥 𝑗 ] .
Note that the performance score is not exactly the log of the conditional probability (the first term)
as defined in definition 3.2. However, subtracting the second term which is independent of agent
𝑖’s strategy will not disturb the incentive of agent 𝑖 .

We emphasize that this method is not an accurate estimate of the goal probability Pr[𝑋 𝑗 =
𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] in general. However, it is a plausible and feasible solution given a black-box LLM.
As we will see in the experiments, this heuristic simplification can still capture key information
within agents’ reports. We note that the performance of our method may be improved with future
versions of LLMs that can output more calibrated and accurate predictions.
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5 Evaluation
This section presents the methods we use to empirically evaluate the efficacy of our mechanisms.
We are primarily interested in testing whether replacing the original high-quality reports with
less informative low-quality reports leads to an expected performance score decrease with our
mechanisms. We hypothesize that these low-quality reports can be viewed as reports by low-effort
agents, and thus, a decrease in performance scores would indicate the empirical effectiveness of
our mechanisms in eliciting high effort.

Toward this goal, we first introduce a general workflow and then propose several methods to
create low-quality reports, including degrading the original reports and replacing the original re-
ports with LLM-generated fictitious reports, which are regarded as lower quality than the original
human expert reports. Note that these methods generating low-quality reports are not necessarily
to be restricted in the effort model in Section 2.1 as we focus on testing the efficacy in a realistic
scenario without relying on the theoretical assumptions.

Specifically, let 𝑧 represent an item randomly selected from the dataset. We randomly draw two
reports related to 𝑧, denoted as 𝑥𝑖 and 𝑥 𝑗 . Given the mechanism 𝑀 , the computed score of agent
𝑖 is 𝑠+ := 𝑀 (𝑥𝑖 , 𝑥 𝑗 ). We then replace 𝑥𝑖 with a low-quality report 𝑥𝑙𝑖 and recalculate the score
𝑠− := 𝑀 (𝑥𝑙𝑖 , 𝑥 𝑗 ). Our hypothesis is that the expected score will decrease.

To test this hypothesis, we repeat the process 𝐾 times and apply a t-test to evaluate whether the
mean decrease in score from 𝑠+ to 𝑠− is statistically significant, thereby confirming the sensitivity of
our methods to manipulations. Our empirical distributions (Appendix B.2) show that the measured
differences (𝑠+−𝑠−) are approximately normally distributed, confirming our data is suitable for the
t-test. Details about the above workflow and the statistical tests are provided in the full version.

5.1 Reports Degradations
We regard the original responses from human agents as truthful and high-effort reports and create
three degradation methods, which obviously degrade the information within agents’ reports and,
consequently, should lead to lower scores. We use these degradations as a “sanity check”, implying
that any mechanisms that fail to penalize these degradations are unlikely to be useful in practice.

Random Report Replacement We replace a report 𝑥𝑖 with a new report 𝑥𝑖′ , which is ran-
domly selected from a different randomly selected item 𝑧′. This process is denoted as 𝑥𝑙𝑖 = 𝑥𝑖′ .
Note that 𝑥𝑖′ can also be viewed as a zero-effort signal as the information is likely to be irrel-
evant. For example, this method corresponds to the behaviors of malicious customers who
upload irrelevant reviews in exchange for a restaurant’s discount rewards.

Sentence-Level Degradation We degrade original reports by deleting every other sentence.
Judgment-Level Degradation We degrade the list of judgments by deleting every other judg-

ment. This can only be performed with the ToKen-PRepRocess and Judgment implementa-
tions, as the preprocessing step has already provided a well-structured list of the judgments.

The sentence-level and judgment-level degradation methods only depend on the agent’s report.
Thus, they can be viewed as not only creating a low-effort signal but also untruthfully reporting a
high-effort signal. The same experiments here (Section 6.2) can also be used to test whether they
can incentivize truth-telling.

5.2 LLM-generated Reviews.
Furthermore, we employ the LLMs to create synthetic text reports based on a given item, simulat-
ing the scenario of the creation of fictitious academic peer reviews. We conduct the experiment on
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the ICLR2020 OpenReview dataset4. Specifically, we provide the paper 𝑧 as input to both GPT-3.5
and GPT-4 [Achiam et al., 2023, Brown et al., 2020], requesting them to generate comprehensive
reviews following Liang et al. [2023]’s method.

We compare three types of reviews: the human-written review, the GPT-4-generated review,
and the GPT-3.5-generated review. Given that GPT-4 is commonly considered a stronger AI than
GPT-3.5, and both models are considered worse than human expert reviewers, we hypothesize
that we can utilize the LLM-generated reviews to simulate low-quality human reviews, thereby
simulating three levels of quality.

It is worth noting that, unlike the degradations discussed in section 5.1, the LLM-generated
review does not only depend on the agent’s signal 𝑥𝑖 since the reviewed paper is input into the
LLMs to create reviews. It can not be regarded as untruthfully reporting the original signal. Thus,
our focus remains on assessing the effectiveness of differentiating various quality levels of reports
across different mechanisms.

6 Experiments
This section presents an overview of the setup of our experiments and the empirical results. We
provide more experiment setup details in the full version and all the codes in the Github repo.

6.1 Experiment Setup
6.1.1 Datasets. We use two datasets for our experiment.

Yelp Online Review Data (Yelp) is publicly available online review data from Yelp. We con-
struct our dataset by randomly sampling 1000 items (restaurants) from the entire dataset.
For these 1000 items, we have 198,444 text reports (customer reviews) in total, i.e., averaged
about 200 reviews per restaurant.

ICLR Peer Review Data (ICLR) includes peer review data from the International Confer-
ence on Learning Representations (ICLR) 2020, accessed via the OpenReview API.5 Given
the typically longer and more informative nature of ICLR reviews compared to Yelp reviews,
we choose a smaller sample size of 300 items (papers) randomly sampled from the entire
ICLR dataset to manage computational demands efficiently. For these 300 items, we have
911 text reports (peer reviews) in total, i.e., averaged about 3 reviews per paper.

The Yelp dataset represents a crowdsourcing setting where reviews are completed by the public.
On the other hand, the ICLR dataset can be viewed as an example of expert sourcing, involving
reviews provided by experts in a highly specialized field.

6.1.2 LLMs.

GPT-4 / GPT-3.5 We employ the gpt-4-1106-preview [Achiam et al., 2023] model for prepro-
cessing the reports on the ICLR dataset and the gpt-3.5-turbo-1106 [Brown et al., 2020]model
for preprocessing the reports on the Yelp dataset.6 For the Judgment implementation, we
use gpt-4-1106-preview to predict judgments.

Llama-2 For the ToKen implementations, including both ToKen-PRepRocess and ToKen-
Raw (As discussed in Section 4.1, we defer the results for ToKen-Raw to Appendix B.1),

4As in 2020, the generative AI is not as widely used as now, we assume all the academic peer reviews in the dataset are
written by humans.
5The reason for using the ICLR 2020 dataset is to exclude the chance that reviewers use LLMs to generate their reports, as
we discussed in Section 5, in 2020, AI-generated reviews were rare.
6This selection is based on the nature of the texts in each dataset: Yelp reviews tend to be shorter and less complex, thus
not requiring the advanced capabilities of a more powerful language model. In contrast, ICLR reviews are more intricate,
justifying the use of the higher-capacity gpt-4-1106-preview model for effective rephrasing.
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we use the llama-2-70b-chat [Touvron et al., 2023] model with 4-bit quantization to calcu-
late log probabilities for token prediction.The open-source nature of Llama-2 allows for local
execution and access to the log probability for each token in a text report.

6.1.3 Mechanisms.

GPPM. We test the GPPM on both the Yelp and the ICLR datasets with ToKen-PRepRocess and
Judgment implementations.We perform the report degradation evaluation (Section 5.1) and
LLM-generated-review evaluation (Section 5.2).

GSPPM. We test the GSPPM on the ICLR dataset. This is because the Yelp dataset lacks de-
tailed features of the items (restaurants) and thus there is not a suitable synopsis of each
item. For the ICLR dataset, we consider the abstract of a paper as the commonly-known
synopsis. In addition, we are primarily interested in comparing its performance differentiat-
ing high-quality and low-quality reports, thus, we only perform the LLM-generated-review
evaluation (Section 5.2) to test the GSPPM.

Baseline. Additionally, we present a baseline mechanism (Definition 2.7) that uses only the
numerical ratings from reports. This approach rebuilds the joint distribution of two ratings7
based on historical data and assigns. Since it is not clear how to degrade numerical scores
to the same degree as sentence/judgment-level degradations, this baseline is only applicable
to the experiment of Random Report Replacement.

6.2 Result 1: GPPM Effectively Penalizes Report Degradations.
Wenow delve into ourmain results.We first describe the results of evaluating the GPPMwith three
report degradations defined in Section 5.1. We apply sample sizes of 𝐾 = 500 and 𝐾 = 1000 for the
experiments on the ICLR and the Yelp datasets respectively. We use both ToKen-PRepRocess and
Judgment to compute the estimated conditional probability. We visualize the p-values in Figure 5
and defer the comprehensive statistics metrics to Appendix B (Table 3, 4 and 5).

GPPM significantly outperforms the baseline. We observe a positive 𝑑 in all experiments:
for three degradation methods, two datasets, and two implementations. Moreover, in the case of
“random report replacement”, although all tested mechanisms, including the baseline, exhibit a
significance score (− log10 (p-value)) well above the threshold of 1.30 (equivalent to p-values <
0.05), the significance score associated with the GPPM are significantly higher compared with the
baseline. This observation matches our intuition that there exists a substantially larger amount of
information within agents’ textual responses, and our GPPM — with either implementation — can
successfully extract it.

ToKen outperforms Judgment on the ICLR dataset. Compared with the Judgment im-
plementation, we observe a higher significance score (equivalent to lower p-values) of ToKen-
PRepRocess implementations on the ICLR dataset. However, ToKen-PRepRocess does not perform
well on the “judgment-level degradation” test conducted on the Yelp dataset.

Additionally, one may be interested in the performance of Judgment with Llama-2. As GPT-
4 has better inference capacity than Llama-2, the performance of Judgment with Llama-2 is
worse than Judgment with GPT-4. We provide detailed results in Appendix B. Hence, the ToKen-
PRepRocess implementation can be considered superior to Judgment, as it consistently outper-
forms Judgment when both are applied with the same LLM model. However, Judgment is still
valuable when there is no access to the LLM’s log probability feedback.

7There are 4 possible ratings in ICLR dataset and 5 possible ratings in Yelp dataset.
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Fig. 5. Report Degradation Evaluation Result for GPPMwith ToKen-pRepRocess and Judgment Implementa-
tions, as well as the Baseline Mechanism: Significance (− log10(p-value)) of the expected score difference
𝑑 > 0, higher is better. Typically, a significance score − log10 (p-value) > 1.3 (equivalent to p-value < 0.05)
is regarded as significant difference.

6.3 Result 2: Both GPPM and GSPPM Differentiate ThreeQuality Levels — human,
GPT-4, and GPT-3.5

Wenow show the results of testing the GPPM andGSPPMwith LLM-generated reviews introduced
in Section 5.2.We focus on the ICLR dataset and use the ToKen-PRepRocess implementation, given
that the previous section shows that it is more efficient and performs better than Judgment on
the ICLR dataset. We apply a sample size of 𝐾 = 500. We visualize the p-values in Figure 6 and
provide the statistics metrics in Table 1.

Mechanism Review-Generating LLM 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)

GPPM
GPT-3.5 10.020 19.290 0.863 11.603 5.0e-28 27.297
GPT-4 2.904 20.489 0.916 3.166 8.2e-04 3.086

GSPPM
GPT-3.5 9.197 14.173 0.634 14.495 2.7e-40 39.562
GPT-4 5.357 14.716 0.658 8.131 1.7e-15 14.770

Table 1. Statistics Metrics of LLM-Generated Review Evaluation for GPPM/GSPPM implemented with
ToKen-PRepRocess. 𝑑 represents the mean of the score differences, 𝜎 (𝑑) represents the standard deviation
of the score differences, and 𝑆𝐸 (𝑑) = 𝜎 (𝑑)/

√
𝐾 represents the standard error of the mean difference.
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Fig. 6. LLM-generated Review Evaluation Result for GPPM and GSPPM with ToKen-pRepRocess Implemen-
tation: Significance (− log10(p-value)) of the expected score difference 𝑑 > 0, higher is better. Typically,
− log10 (p-value) > 1.30 (equivalent to p-value < 0.05) is regarded as significant difference.

In Table 1, we observe that, with both mechanisms and the ToKen-PRepRocess implementation,
replacing human-written reviews with either GPT-3.5 or GPT-4-generated reviews leads to a sta-
tistically significant decrease in scores, as the significance score are all more than the threshold of
1.30 indicating p-values are all less than the threshold of 0.05.

Comparing the first row and the second row of Table 1, the scores are on the same scale as they
are computed by the same mechanism. Thus, we observe that while the standard deviation 𝜎 (𝑑)
remains similar, replacing the human-written reviews with GPT-3.5-generated reviews leads to a
greater reduction in the expected score, 𝑑 , than replacing with GPT-4-generated signals. Similarly,
comparing the third row and the fourth row, we have the same observation.

Therefore, with both GPPM and GSPPM, we can observe three score levels, from high to low:
human-written, GPT-4-generated, and GPT-3.5-generated. This observation suggests that both
our mechanisms can effectively differentiate among these three quality levels. Furthermore, as
hypothesized in Section 5.2, GPT-generated reviews can be viewed as low-effort responses. As
GPT-4 generates higher-quality reviews than GPT-3.5, we can thus infer three effort levels: high
(human-written), medium (GPT-4-generated), and low (GPT-3.5-generated). Therefore, our results
also show the effectiveness of our mechanisms in differentiating various effort levels.

6.4 Result 3: GSPPM Penalizes LLM-Generated Peer Peview More than GPPM.
We compare the efficacy of GSPPM and GPPM in differentiating between human-written and LLM-
generated reviews. As shown in Corollary 3.6, we expect GSPPM to perform better than GPPM.

Note that the performance scores are no longer on the same scale. Therefore, we focus on the
significance scores in Figure 6. We observe that the GSPPM has higher significance scores (lower
p-values) in differentiating both GPT-3.5 and GPT-4-generated reviews, indicating its better perfor-
mance at penalizing the LLM-generated reviews. Furthermore, note that the GPPMmerely obtains
a p-value of 8.2e-04 for the GPT-4-generated reviews, which is much larger than the GSPPM’s p-
value under the same condition, indicating a much lower significance.

Therefore, GSPPM has more significant score gaps among these three quality levels–human,
GPT-4, and GPT-3.5. This is because much of the superficial information in the LLM-generated
reviews is already contained in the synopsis (abstract). Therefore, GSPPM mitigates the ability of
the LLMs to obtain a high score. Consequently, the more informative signals that require high
effort to access but are necessary for a high-quality report tend to have a higher impact on the
score computed by the GSPPM. As mentioned above, we take this as evidence that GSPPM can
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likely better differentiate high versus low-effort signals and thus better elicit high-effort reports
than GPPM in the peer review scenario.

So far, we have been focused on the expected performance scores. However, in practice, the
distribution of the performance matters. For example, risk-averse agents may be concerned with
the frequency of receiving negative scores, and the variance in performance scores often reflects
the fairness of the mechanism. Therefore, we visualize the empirical distribution of 𝑑 = 𝑠+ − 𝑠− ,
the change of the performance score after applying the degradation in Appendix B.2.

7 Limitation, Future Work, and Conclusion
Limitations. As the first paper, to our best knowledge, exploring eliciting subjective textual data

with LLMs, our work has several limitations, and each of them may lead to a future direction.
First, the theoretical effectiveness of the GPPM and GSPPM highly depends on how well the

LLM prediction estimates the real underlying distribution (Assumption 3.1). The quality of this
prediction can be influenced by many factors, including prompt engineering, the capacity of the
LLMs, etc. The LLM predictions generated by state-of-the-art models like GPT-4 and Llama-2 may
not offer perfect estimates. Nonetheless, we anticipate improvements in the efficacy of our mech-
anisms in the future, considering the rapid advancements in LLM technology.

Second, our empirical findings confirm that the GPPM and GSPPM can effectively penalize sev-
eral degradations of the quality of agents’ reports. However, the performance of our mechanisms
in addressing more sophisticated manipulation strategies or even malicious strategies remains un-
studied. Therefore, how to model and understand human agents’ strategies in the textual world is
an open question.

Third, we focused on integrating LLMs with Miller et al. [2005]’s mechanism. Future directions
may apply our method to a broader set of classic peer prediction mechanisms, especially in the
multi-task setting. It might be interesting to test whether the properties of these mechanisms in
the classic setting can be generalized to the textual setting. Additionally, fine-tuning LLMs to learn
the structure of agent responses in multi-task scenarios might be another promising approach.

Yet another approach is to further explore ways to use LLMs tomap text into smaller dimensions.
Independent work [Wu and Hartline, 2024], explores using known high-quality texts to determine
such a mapping. Their approach shares a similar intuition to our Judgment implementation. Fur-
ther discussion and comparison are provided in the full version.

Furthermore, in addition to the potent property, prior work has investigated other desiderata,
including fairness [Burrell and Schoenebeck, 2021] and efficiency [Xu et al., 2024, Zhang and
Schoenebeck, 2023b]. We view the comparisons of different text-elicitation mechanisms in terms
of these properties as an interesting future work.

Future Work in Benchmarking LLMs with Peer Review Tasks. Building on our current research,
there is significant potential for benchmarking LLMs in peer review tasks to mitigate data contam-
ination and data leakage. More detailed discussions are available in the full version.

Conclusion. In summary, our research introduces a pioneering framework for eliciting high-
quality textual judgment. To the best of our knowledge, our work is the first to design peer predic-
tion mechanisms for eliciting high-quality textual reports. We propose two mechanisms, GPPM
and GSPPM, which utilize the LLM-derived prediction, two implementations for estimating the
LLM-derived prediction, and an evaluation workflow. The use of LLM prediction could extend to
other peer prediction mechanisms, given that prediction is the foundation of most peer prediction
mechanisms. Our empirical results demonstrate the potential of the GPPM and GSPPM tomotivate
quality human-written reviews over LLM-generated reviews.
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A Omitted Proofs
We now discuss the potent properties of the GPPM and GSPPM. Intuitively, if a mechanism can
lead to a positive gap between the performance scores, by linearly rescaling the performance scores
as payments with parameters 𝛼 and 𝛽 , it can motivate effort and truth-telling as long as the gap
between exerting high effort and exerting low (or zero) effort overcomes the gap between the cost
of effort, and consequently, it is potent. Thus, we propose the following propositions.

Proposition A.1. For the GeneRative PeeR PRediction Mechanism (GPPM), when Assumption 3.1
holds with parameter 𝜖 ≥ 0, for any agent 𝑖 , given the peer agent 𝑗 exerting high effort and reporting
truthfully, any untruthful reporting strategy 𝜎̂ ≠ 𝜏 or effort 𝑐𝑖 ∈ {0, 𝑐𝑙 } (no-effort or low-effort)
implying signal Null or 𝑋 𝑙𝑖 won’t bring more than 𝜖 score increase. Specifically, we have

E[GPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GPPM(𝜎̂ (𝑋𝑖 ), 𝑋 𝑗 )] > −𝜖.
(High effort, truthful v.s. High effort, untruthful)

E[GPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GPPM(𝜎 (𝑋 𝑙𝑖 ), 𝑋 𝑗 )] ≥ 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) − 𝜖.
(High effort, truthful v.s. Low effort, either truthful or untruthful)

E[GPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GPPM(𝜎 (Null), 𝑋 𝑗 )] ≥ 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) − 𝜖.
(High effort, truthful v.s. No effort, either truthful or untruthful)

Note that the mutual information 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) and 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) are non-negative.

Proposition A.2. For the GeneRative Synopsis PeeR PRediction Mechanism (GSPPM), when As-
sumption 3.1 holds with parameter 𝜖′ ≥ 0, for any agent 𝑖 , given the peer agent 𝑗 exerting high effort
and reporting truthfully, any untruthful reporting strategy 𝜎̂ ≠ 𝜏 or effort 𝑐𝑖 ∈ {0, 𝑐𝑙 } (no-effort or
low-effort) implying signal Null or 𝑋 𝑙𝑖 won’t bring more than 𝜖 score increase. Specifically, we have

E[GSPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GSPPM(𝜎̂ (𝑋𝑖 ), 𝑋 𝑗 )] > −𝜖′ .
(High effort, truthful v.s. High effort, untruthful)

E[GSPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GSPPM(𝜎 (𝑋 𝑙𝑖 ), 𝑋 𝑗 )] ≥ 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) − 𝜖′ .
(High effort, truthful v.s. Low effort, either truthful or untruthful)

E[GSPPM(𝜏 (𝑋𝑖 ), 𝑋 𝑗 )] − E[GSPPM(𝜎 (Null), 𝑋 𝑗 )] ≥ 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖′ .
(High effort, truthful v.s. No effort, either truthful or untruthful)

Note that the mutual information 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) and 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) are non-negative.

To prove the above results, we analyze agent 𝑖’s expected scores obtained by each strategy,
given that agent 𝑗 exerts high effort and reports truthfully. When agent 𝑖 exerts a high effort and
reports truthfully, we provide a lower bound of her expected score based on the LLM-Prediction
Assumption (Assumption 3.1), which is the negative entropy of agent 𝑗 ’s high-effort signal, condi-
tioning on agent 𝑖’s high-effort signal. For other strategies, we provide an upper bound of agent
𝑖’s expected score based on the fact that the log scoring rule is proper. The expected score will be
at most the the negative entropy of agent 𝑗 ’s high-effort signal, conditioning on agent 𝑖’s signal.
Finally, because the high-effort signal is more informative than the low-effort signal, we prove that
exerting high effort and reporting truthfully provides approximately the highest expected score.
The gap between the negative conditional entropy can be interpreted as mutual information, as
stated in the propositions.

PRoof of PRoposition A.1. For agent 𝑖 , we analyze her expected score under each strategy
given that agent 𝑗 exerts high effort and reports truthfully.
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If agent 𝑖 also exerts high effort and reports truthfully, her expected score is∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr
LLM(𝜓 )

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] (Assumption 3.1)

≥
∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] − 𝜖

= − 𝐻 (𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ) − 𝜖,
Taking the expectation of 𝑋𝑖 , her expected score is∑

𝑥𝑖

Pr[𝑋𝑖 = 𝑥𝑖 ]
∑
𝑥𝑖

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr
LLM(𝜓 )

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]

≥
∑
𝑥𝑖

Pr[𝑋𝑖 = 𝑥𝑖 ] ©­«
∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] − 𝜖ª®¬ (Assumption 3.1)

=
∑
𝑥𝑖 ,𝑥 𝑗

Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] − 𝜖

= − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ) − 𝜖,
where 𝐻 (𝑋 𝑗 | 𝑋𝑖 ) is the conditional entropy.∑

𝑥𝑖

Pr[𝑋𝑖 = 𝑥𝑖 ]
∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]

=
∑
𝑥𝑖 ,𝑥 𝑗

Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]

= − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ),
If agent 𝑖 exerts high effort but reports non-truthfully 𝜎 ≠ 𝜏 , her expected score is∑

𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr
LLM(𝜓 )

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝜎 (𝑥𝑖 )]

≤
∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] (Log scoring rule is proper.)

= − 𝐻 (𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ).
With the stochastic relevance assumption and the fact that LSR is strictly proper, the inequality is

strict when 𝑥𝑖 ≠ 𝜎 (𝑥𝑖 ). Notice that theremust exist 𝑥𝑖 such that 𝑥𝑖 ≠ 𝜎 (𝑥𝑖 ) with positive probability
as 𝜎 ≠ 𝜏 . Therefore, taking the expectation of 𝑋𝑖 and 𝜎 (𝑋𝑖 ), her expected score is striclty less than
−𝐻 (𝑋 𝑗 | 𝑋𝑖 ). Thus, if agent 𝑖 also exerts high effort, reporting truthfully will be at least −𝜖 better
than reporting non-truthfully.

If agent 𝑖 exerts low effort and observes 𝑋 𝑙𝑖 , and she reports truthfully or non-truthfully with
𝜎 (𝑋 𝑙𝑖 ), then with an analogous derivation, her expected score is∑

𝑥𝑙𝑖

Pr[𝑋 𝑙𝑖 = 𝑥𝑙𝑖 ]
∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥𝑙𝑖 ] log Pr
LLM(𝜓 )

[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝜎 (𝑥𝑙𝑖 )] ≤ −𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ).

This inequality is based on the fact that Log scoring rule is proper.
Notice that according to our hierarchical effort model, 𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ) < 𝐻 (𝑋 𝑗 | 𝑋𝑖 ) as 𝑋 𝑙𝑖 is

determined by 𝑋𝑖 . Therefore, the difference in the expected scores between exerting high effort
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and reporting truthfully compared to exerting low effort is at least 𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ) −𝐻 (𝑋 𝑗 | 𝑋𝑖 ) − 𝜖 =
𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) − 𝜖 .

With analogous analyses, the difference in the expected scores from investing in no-effort com-
pared to high-effort is at least 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) − 𝜖 = 𝐻 (𝑋 𝑗 ) − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ) − 𝜖 ≥ 𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ) − 𝐻 (𝑋 𝑗 |
𝑋𝑖 ) − 𝜖 = 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) − 𝜖 .

□

PRoof of PRoposition A.2. In GSPPM, with analogous analyses, if agent 𝑖 also exerts high ef-
fort and reports truthfully, her expected score is at least −𝐻 (𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ) − 𝜖′. Taking the
expectation over 𝑋𝑖 and Θ, the expected score is −𝐻 (𝑋 𝑗 | 𝑋𝑖 ,Θ) − 𝜖′. If agent 𝑖 also exerts high
effort and reports non-truthfully, her expected score is strictly less than −𝐻 (𝑋 𝑗 | 𝑋𝑖 = 𝑥𝑖 ,Θ = 𝜃 ).
Taking the expectation over 𝑋𝑖 and Θ, the expected score is strictly less than −𝐻 (𝑋 𝑗 | 𝑋𝑖 ,Θ).

If agent 𝑖 exerts low effort and observes 𝑋 𝑙𝑖 , and she reports truthfully or non-truthfully with
𝜎 (𝑋 𝑙𝑖 ) her expected score is∑

𝑥𝑙𝑖

Pr[𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ]

∑
𝜃

Pr[Θ = 𝜃 |𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ]

∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ,Θ = 𝜃 ] log Pr

LLM(𝜓 )
[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝜎 (𝑥𝑙𝑖 ),Θ = 𝜃 ]

=
∑
𝑥𝑙𝑖 ,𝜃

Pr[𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ,Θ = 𝜃 ]

∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ,Θ = 𝜃 ] log Pr

LLM(𝜓 )
[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝜎 (𝑥𝑙𝑖 ),Θ = 𝜃 ]

≤
∑
𝑥𝑙𝑖 ,𝜃

Pr[𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ,Θ = 𝜃 ]

∑
𝑥 𝑗

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥
𝑙
𝑖 ,Θ = 𝜃 ] log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋 𝑙𝑖 = 𝑥

𝑙
𝑖 ,Θ = 𝜃 ]

= − 𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ,Θ)

The inequality is based on the fact that LSR is proper.
Thus, if agent 𝑖 also exerts low effort, her expected score is at most −𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ,Θ). Therefore,

the difference in the expected scores between exerting high-effort compared to low-effort is at
least 𝐻 (𝑋 𝑗 | 𝑋 𝑙𝑖 ,Θ) − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ,Θ) − 𝜖′ = 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) − 𝜖′.

With analogous analyses, the difference in the expected scores from investing in no-effort com-
pared to high-effort is at least 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖′ = 𝐻 (𝑋 𝑗 | Θ) − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ,Θ) − 𝜖′ ≥ 𝐻 (𝑋 𝑗 |
𝑋 𝑙𝑖 ,Θ) − 𝐻 (𝑋 𝑗 | 𝑋𝑖 ,Θ) − 𝜖′ = 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) − 𝜖′.

Therefore, whenever 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) > 𝜖′, exerting high effort and reporting truthfully is an 𝜖′-
Bayesian Nash equilibrium in GSPPM. □

With the above propositions, we prove Proposition 3.4 and Proposition 3.5.

Proposition 3.4. For the GeneRative PeeR PRediction Mechanism (GPPM), when Assumption 3.1
holds with parameter 𝜖 ≥ 0. When 𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) > 0, GPPM is 𝛼𝜖-potent, where

𝛼 = max

(
𝑐ℎ − 𝑐𝑙

𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 )
,

𝑐ℎ
𝐼 (𝑋𝑖 ;𝑋 𝑗 )

)
.

PRoof of PRoposition 3.4. Proposition A.1 lower bounds the gap of the expected performance
score between (truth-telling, high effort) and any strategy of an agent in three cases. To prove that
the mechanism is 𝛿-potent, we have to show that there exist constants 𝛼 > 0, 𝛽 such that the gap
of agent’s expected utility between (truth-telling, high effort) and any strategy in the above three
cases is always lower-bounded by −𝛿 .
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Suppose agent 𝑖 plays (𝜎𝑖 , 𝑐ℎ) where 𝜎𝑖 is an arbitrary reporting strategy. In this case,

𝑈𝑖 ((𝜏, 𝑐ℎ), (𝜏, 𝑐ℎ)) −𝑈𝑖 ((𝜎𝑖 , 𝑐ℎ), (𝜏, 𝑐ℎ))
=𝛼

(
E[GPPM(𝑋𝑖 , 𝑋 𝑗 )] − E[GPPM(𝜎 (𝑋𝑖 ), 𝑋 𝑗 )]

)
≥ − 𝛼𝜖. (Proposition A.1)

Suppose agent 𝑖 plays (𝜎𝑖 , 𝑐𝑙 ). In this case,

𝑈𝑖 ((𝜏, 𝑐ℎ), (𝜏, 𝑐ℎ)) −𝑈𝑖 ((𝜎𝑖 , 𝑐𝑙 ), (𝜏, 𝑐ℎ))

=𝛼
(
E[GPPM(𝑋𝑖 , 𝑋 𝑗 )] − E[GPPM(𝜎 (𝑋 𝑙𝑖 ), 𝑋 𝑗 )]

)
− 𝑐ℎ + 𝑐𝑙

≥𝛼𝐼 (𝑋𝑖 ;𝑋 𝑗 | 𝑋 𝑙𝑖 ) − 𝛼𝜖 − (𝑐ℎ − 𝑐𝑙 ). (Proposition A.1)

Suppose agent 𝑖 plays (𝜎𝑖 , 0). In this case,

𝑈𝑖 ((𝜏, 𝑐ℎ), (𝜏, 𝑐ℎ)) −𝑈𝑖 ((𝜎𝑖 , 0), (𝜏, 𝑐ℎ))
=𝛼

(
E[GPPM(𝑋𝑖 , 𝑋 𝑗 )] − E[GPPM(𝜎 (Null), 𝑋 𝑗 )]

)
− 𝑐ℎ

≥𝛼𝐼 (𝑋𝑖 ;𝑋 𝑗 ) − 𝛼𝜖 − 𝑐ℎ . (Proposition A.1)

Take these together, we have that when 𝛼 = max
{

𝑐ℎ−𝑐𝑙
𝐼 (𝑋𝑖 ;𝑋 𝑗 |𝑋 𝑙

𝑖 )
, 𝑐ℎ
𝐼 (𝑋𝑖 ;𝑋 𝑗 )

}
we can obtain a unified

lower bound 𝛿 = 𝛼𝜖 . This completes the proof.
□

Proposition 3.5. For the GeneRative Synopsis PeeR PRediction Mechanism (GSPPM), when As-
sumption 3.1 holds with parameter 𝜖′ ≥ 0. When 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 ) > 0, GSPPM is 𝛼𝜖′-potent, where

𝛼 = max

(
𝑐ℎ − 𝑐𝑙

𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ, 𝑋 𝑙𝑖 )
,

𝑐ℎ
𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ)

)
.

PRoof of PRoposition 3.5. With analogous analyses of proof of Proposition 3.4, we have Propo-
sition 3.5. □

Corollary 3.6. If the low-effort signals are synopsis-determined (definition 2.2) and synopsis-covering
(2.3), and 𝜖′ = 𝜖 , Gap(ℎ, 𝑙) has the same lower bound, 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖 , in both GPPM and GSPPM.
In contrast, Gap(ℎ,Null) has a smaller lower bound 𝐼 (𝑋𝑖 ;𝑋 𝑗 | Θ) − 𝜖 < 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) − 𝜖 in GSPPM than
in GPPM.

PRoof of CoRollaRy 3.6. When 𝑋 𝑙𝑖 = 𝑋 𝑙𝑗 = 𝑔(Θ), 𝜖 = 𝜖′, given the fact that 𝑋 𝑙𝑖 and 𝑋 𝑙𝑗 contain
partial information of𝑋𝑖 and𝑋 𝑗 respectively, and the assumption that the synopsis does not reveal
more information about 𝑋𝑖 than 𝑋 𝑙𝑖 and 𝑋 𝑙𝑗 , the statements of the formulas for Gaps in Proposi-
tion A.1 and Proposition A.2 directly imply the results. □

B Additional Results
In this section, we demonstrate the additional results of our experiments, which are omitted in the
main text.

B.1 Token-Raw v.s. Token-Preprocess
In this subsection, we delve into the effectiveness of preprocessing by contrasting the performance
of ToKen-Raw and ToKen-PRepRocess. Intuitively, ToKen-PRepRocess provides scores reflecting
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the semantic quality better since it removes ‘shortcut” information confounding the LLM predic-
tion, such as the paper summary or the reviewer’s language style. We present and explain our
observations as follows.

First, we observe that ToKen-Raw outperforms ToKen-PRepRocess on two degradation tasks
(Figure 7). We conjecture that the success of ToKen-Raw relies on the superficial information
commonly found in different reviews of the same item. One example is the paper summary, which
most reviewers write before considering the pros and cons. When we use one review to predict
tokens in another review of the same item, such common superficial information can significantly
increase the performance score. Therefore, as the random replacement degradation and sentence-
level degradation remove or reduce the superficial information, ToKen-Raw can capture such a
change more effectively than ToKen-PRepRocess, since the latter removes the superficial informa-
tion in both reviews.
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Fig. 7. Report Degradation Evaluation Result for GPPM with ToKen-Raw and ToKen-pRepRocess Implemen-
tations: Significance (− log10(p-value)) of the expected score difference 𝑑 > 0, higher is better. Typically,
a significance score − log10 (p-value) > 1.30 (equivalent to p-value < 0.05) is regarded as significant differ-
ence. We defer the comprehensive statistics metrics to Table 3 and Table 4.

Our conjecture is further confirmed by the fact that the performance of GPPM implemented
with ToKen-Raw significantly drops when facing more complex tasks like distinguishing GPT
reviews from human reviews, especially for GPT-4 generated reviews (Figure 8(a)). As GPT can
successfully generate reviews with plausible superficial information, we conjecture this is because
the superficial information can successfully fool ToKen-Raw.
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Fig. 8. Evaluation Result for GPPM and GSPPM with ToKen-Raw and ToKen-pRepRocess Implementations
in LLM-generated Review: Significance (− log10(p-value)) of the expected score difference 𝑑 > 0, higher
is better. Typically, a significance score − log10 (p-value) > 1.30 (equivalent to p-value < 0.05) is regarded
as significant difference. The comprehensive statistics metrics are in Table 1 and Table 2.
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Mechanism Review-Generating LLM 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)

GPPM GPT-3.5 8.074 31.891 1.426 5.656 1.3e-08 7.884
GPT-4 -0.511 31.689 1.417 -0.360 6.4e-01 0.193

GSPPM GPT-3.5 13.776 23.687 1.059 12.992 9.5e-34 33.024
GPT-4 12.912 23.557 1.054 12.244 1.3e-30 29.898

Table 2. Statistics Metrics of LLM-Generated Review Evaluation for GPPM/GSPPM implemented with
ToKen-Raw. Note that GPPM with ToKen-Raw has a p-value 0.64 > 0.05, indicating a failure in differen-
tiating GPT-4-generated review from human-written review.

Furthermore, whenwe condition on the synopsis (papers’ abstract) usingGSPPM, ToKen-PRepRocess
can again successfully distinguish GPT-generated reviews from human-written reviews. This is
because the superficial information is primarily included in the synopsis, conditioned out by the
mechanism. However, in Table 2, we observe that replacing human reviews with GPT-3.5 or GPT-
4 reviews leads to a similar expected score decrease, indicating that GSPPM with ToKen-Raw
cannot distinguish GPT-3.5 reviews from GPT-4 reviews as effectively as GSPPM with ToKen-
PRepRocess (as shown in Sections 6.3 and 6.4). We conjecture this is because the language style
greatly influences LLMs’ predictions on raw reviews.8 AsGPT-3.5 andGPT-4 have similar language
styles but are very different from human reviewers, ToKen-Raw fails to separate the two types of
GPT-written reviews well though it succeeds in separating GPT reviews from human reviews.

B.2 Empirical Distribution of the Performance Score Change
Here, we use kernel density estimation (KDE)9 to visualize the empirical distribution of 𝑑 = 𝑠+−𝑠− ,
the change of the performance score after applying the degradation. We observe that the score
change follows a bell-shaped distribution. Furthermore, although the score changes are predomi-
nantly positive in all the cases, the probability sometimes approaches half, especially in the Yelp
dataset. We hypothesize that this is because Yelp reviews tend to be shorter, more diverse, and less
standardized, which greatly decreases the quality of the LLM predictions.

We emphasize that a positive score change in expectation is sufficient to incentivize high-quality
reports. However, future research may seek to use the performance score as a metric for assessing
data quality, in which case it is crucial to minimize the probability of getting a negative score
change. We note that fine-tuning an existing LLM (which is not zero-shot) and the development
of more advanced language models may contribute to potential improvements.
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Fig. 9. Empirical Distribution of the Performance Score Change of Random Signal Replacement Evaluation.

8Previous prompt engineering studies have provided evidence that the language style in the prompt can impact LLMs’
output [Arora et al., 2022]
9We use seaborn.kdeplot (seaborn.pydata.org/generated/seaborn.kdeplot.html) with default parameters to plot the KDEs.
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Fig. 10. Empirical Distribution of the Performance Score Change of Sentence-Level Degradation Evaluation.
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Fig. 11. Empirical Distribution of the Performance Score Change of Judgment-Level Degradation Evaluation.
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Fig. 12. Empirical Distribution of the Performance Score Change of LLM-Generated Review Evaluation. This
result corresponds to Table 1.

B.3 Statistics Metrics of Evaluations
In this subsection, we provide all statistics metrics omitted in the main text (Tables 3 to 5).

B.4 Evaluation Results of Implementation Judgment with Llama-2
As we discussed in Section 6.2, here we present the evaluation results for the implementation
Judgment with Llama-2 (referred to as Judgement-Llama-2), detailed in Tables 6 and 7. Since
Llama-2 is a weaker model compared to GPT-4 and exhibits issues with adherence to prompt
instructions, the results are as expected that Judgement-Llama-2 yields worse results in both
evaluations.

C Alternative Implementation Based on Clustering
In this section, we explore an alternative implementation named ClusteR. This implementation
employs clustering of judgments to estimate Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]. The rationale behind the Clus-
teR implementation is to address situations where LLMs lack specific task knowledge, resulting
in inaccurate log probabilities or judgment predictions.
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Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)

ICLR
ToKen-Raw 55.444 31.736 1.419 39.026 5.0e-154 153.305

ToKen-PRepRocess 20.784 20.483 0.916 22.666 5.0e-79 78.298
Judgment 4.522 8.813 0.394 11.462 1.8e-27 26.735
baseline 0.207 0.613 0.027 7.532 1.2e-13 12.928

Yelp
ToKen-Raw 9.975 15.323 0.485 20.576 5.2e-79 78.284

ToKen-PRepRocess 5.007 10.915 0.345 14.500 1.1e-43 42.955
Judgment 1.055 5.438 0.172 6.131 6.3e-10 9.202
baseline 0.018 0.195 0.006 2.982 1.5e-03 2.834

Table 3. Statistics Metrics of Random Report Replacement Evaluation for GPPM. 𝑑 represents the mean of
the score differences, 𝜎 (𝑑) represents the standard deviation of the score differences, and 𝑆𝐸 (𝑑) represents
the standard error of the mean difference.

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)

ICLR
ToKen-Raw 11.192 17.337 0.775 14.421 5.8e-40 39.233

ToKen-PRepRocess 5.117 15.261 0.683 7.490 1.6e-13 12.803
Judgment 1.662 5.396 0.241 6.880 9.0e-12 11.046

Yelp
ToKen-Raw 1.778 7.873 0.249 7.137 9.2e-13 12.038

ToKen-PRepRocess 0.497 7.316 0.231 2.146 1.6e-02 1.794
Judgment 0.148 3.131 0.099 1.494 6.8e-02 1.169

Table 4. Statistics Metrics of Sentence-Level Degradation Evaluation for GPPM.

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)

ICLR ToKen-PRepRocess 8.860 10.487 0.469 18.872 1.2e-60 59.928
Judgment 2.150 5.133 0.230 9.357 1.4e-19 18.857

Yelp ToKen-PRepRocess 0.399 5.606 0.177 2.252 1.2e-02 1.911
Judgment 0.362 2.524 0.080 4.534 3.2e-06 5.489

Table 5. Statistics Metrics of Judgment-Level Degradation Evaluation for GPPM.

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)
ICLR Judgement-Llama-2 0.815 10.634 0.336 2.422 7.9e-03 2.103
Yelp Judgement-Llama-2 0.513 5.474 0.173 2.962 1.6e-03 2.806
Table 6. Statistics Metrics of Random Report Replacement Evaluation (Judgement-Llama-2)

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)
ICLR Judgement-Llama-2 -0.246 11.152 0.353 -0.697 7.6e-01 0.121
Yelp Judgement-Llama-2 0.407 4.451 0.141 2.890 2.0e-03 2.706
Table 7. Statistics Metrics of Sentence-Level Degradation Evaluation (Judgement-Llama-2)
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Implementation. We present the pseudocode of the ClusteR implementation in Algorithm 1.
Similar to the Judgment implementation (Section 4.2), we reload each report 𝑥 as a set of judg-
ments. In the preparation, we structure the dataset as a list of paired sets of judgments 𝐷 =
{(𝑥𝑖𝑡 , 𝑥 𝑗𝑡 )}𝑡 ∈[𝑁𝐷 ] , where each pair (𝑥𝑖𝑡 , 𝑥 𝑗𝑡 ) indicates two reviews of the same item.Then, we lever-
age all the judgments in 𝐷 to fine-tune a short-text embedder, applying the technique introduced
by Zhang et al. [2023]. This embedder takes a judgment as input and generates a high-dimensional
vector as its embedding, which allows us to employ the Minibatch K-means algorithm to build
a clustering structure to classify judgments into a fixed number 𝑁𝑐 of clusters10. Consequently,
We introduce 𝑥 [𝑘] to denote a binary cluster indicator for the existence of a judgment of cluster
𝑘 ∈ [𝑁𝑐 ] in 𝑥 , and 𝑋 [𝑘] as the random variable indicating the existence of a judgment of cluster
𝑘 in 𝑋 .

To calculate the score of GPPM, it is necessary to estimate the conditional probability Pr[𝑋 𝑗 =
𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]. We make two assumptions to simplify the estimation.

(1) First, we assume the clusters capture all the information a review has. This means the joint
distribution between two reviews can be represented as the joint distribution between all
𝑋𝑖 [𝑘] and 𝑋 𝑗 [𝑘], i.e.,

Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ] = Pr
[
𝑋𝑖 [1] = 𝑥𝑖 [1], 𝑋 𝑗 [1] = 𝑥 𝑗 [1], . . . , 𝑋𝑖 [𝑁𝑐 ] = 𝑥𝑖 [𝑁𝑐 ], 𝑋 𝑗 [𝑁𝑐 ] = 𝑥 𝑗 [𝑁𝑐 ]

]
.

(2) Second, we assume indicators of different clusters are independent. That is, for any subset
K ⊆ [𝑁𝑐 ], such that,

Pr

[⋂
𝑘∈K

𝑋𝑖 [𝑘] = 𝑥𝑖 [𝑘], 𝑋 𝑗 [𝑘] = 𝑥 𝑗 [𝑘]
]
=

∏
𝑘∈K

Pr
[
𝑋𝑖 [𝑘] = 𝑥𝑖 [𝑘], 𝑋 𝑗 [𝑘] = 𝑥 𝑗 [𝑘]

]
With these two assumptions, we can compute the conditional probability as

Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ] =
Pr[𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗 ]

Pr[𝑋𝑖 = 𝑥𝑖 ]
=

∏
𝑘∈[𝑁𝑐 ] Pr[𝑋𝑖 [𝑘] = 𝑥𝑖 [𝑘], 𝑋 𝑗 [𝑘] = 𝑥 𝑗 [𝑘]]∏

𝑘∈[𝑁𝑐 ] Pr[𝑋𝑖 [𝑘] = 𝑥𝑖 [𝑘]]
.

Furthermore, the numerator can be estimated by the empirical frequency,

Pr[𝑋𝑖 [𝑘] = 𝑥𝑖 [𝑘], 𝑋 𝑗 [𝑘] = 𝑥 𝑗 [𝑘]] ≈
1
|𝐷 |

∑
(𝑥̃𝑖𝑡 ,𝑥̃ 𝑗𝑡 ) ∈𝐷

1[𝑥𝑖𝑡 [𝑘] = 𝑥𝑖 [𝑘], 𝑥 𝑗𝑡 [𝑘] = 𝑥 𝑗 [𝑘]] .

Results. Tables 8 and 9 present the performance results of the ClusteR implementation. Our
results suggest that the performance of ClusteR is dominated by ToKen-PRepRocess and Judg-
ment, suggesting a large space of improvement. We hypothesize that this is because the clustering
step incurs a significant information loss. The development of better context-specific clustering al-
gorithms can potentially improve the performance of ClusteR.

Discussions and Limitations. We acknowledge several limitations with the ClusteR implemen-
tation. First, it relies on historical data and thus is not zero-shot. Second, without non-trivial adap-
tations, ClusteR is not compatible with the GeneRative Synopsis PeeR PRediction Mechanism.
Lastly, it relies on certain (strong) assumptions. In particular, Assumption (1) drops a lot of infor-
mation within the textual data and only captures the information about what categories of judg-
ments the review contains. Moreover, Assumption (2) overlooks the correlations between clusters,
thereby weakening the predictive power of the judgment cluster information. These limitations
suggest large spaces for improvements.
10We set 𝑁𝑐 = 30 in the implementation.
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ALGORITHM 1: ClusteR: Peer Prediction Score by Clustering judgments

Initialization: Initialize(𝐷);
Input: Review dataset 𝐷 = {(𝑥𝑖𝑡 , 𝑥 𝑗𝑡 )}𝑡 ∈[𝑁𝐷 ]
begin

// Each (𝑥𝑖𝑡 , 𝑥 𝑗𝑡 ) contains two reviews of the same item.

Train a short text embedder based on the set of judgments 𝐷 ;
𝑁𝑐 := 30;
Map judgments to 1, 2, . . . , 𝑁𝑐 using Minibatch K-means clustering with the short text embedder.;
Denote 𝑥 [𝑐] as a binary indicator for the existence of a judgment with label 𝑐 in report 𝑥 ;

for 𝑐 = 1 to 𝑁𝑐 do
for 𝑏0 = 0 to 1 do

for 𝑏1 = 0 to 1 do
𝑝𝑏0,𝑏1 (𝑐) :=

1
|𝐷 |

∑
(𝑥̃𝑖𝑡 ,𝑥̃ 𝑗𝑡 ) ∈𝐷 1[𝑥𝑖𝑡 [𝑐] = 𝑏0, 𝑥 𝑗𝑡 [𝑐] = 𝑏1];

end
end

end
end

Query of GPPM score: Query(𝑥𝑖 , 𝑥 𝑗) ;
Input: textual reports 𝑥𝑖 and 𝑥 𝑗
Output: Score for agent 𝑖: ClusteR(𝑥𝑖 , 𝑥 𝑗 )
begin

// 𝑠𝑐𝑜𝑟𝑒 ≜ log Pr[𝑋 𝑗 = 𝑥 𝑗 | 𝑋𝑖 = 𝑥𝑖 ]
𝑠𝑐𝑜𝑟𝑒 := 0;
for 𝑐 = 1 to 𝑁𝑐 do

𝑠𝑐𝑜𝑟𝑒 := 𝑠𝑐𝑜𝑟𝑒 + log
𝑝𝑥̃𝑖 [𝑐 ],𝑥̃ 𝑗 [𝑐 ] (𝑐 )

𝑝𝑥̃𝑖 [𝑐 ],0 (𝑐 )+𝑝𝑥̃𝑖 [𝑐 ],1 (𝑐 )
;

end

ClusteR(𝑥𝑖 , 𝑥 𝑗 ) := 𝑠𝑐𝑜𝑟𝑒 ;
end

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)
ICLR ClusteR 0.084 0.397 0.013 6.659 3.6e-11 10.438
Yelp ClusteR 0.482 1.032 0.033 14.774 4.0e-45 44.396

Table 8. Statistics Metrics of Random Report Replacement Evaluation (ClusteR)

Dataset Implementation 𝑑 𝜎 (𝑑) 𝑆𝐸 (𝑑) t-statistic p-value − log10 (p-value)
ICLR ClusteR 0.015 0.219 0.007 2.203 1.4e-02 1.853
Yelp ClusteR 0.044 0.474 0.015 2.955 1.6e-03 2.796

Table 9. Statistics Metrics of Judgment-Level Degradation Evaluation (ClusteR)
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