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Abstract—Power systems are typically designed with resilience
against individual failures, yet the preparedness for ensuring
reliability in the face of multiple failures and cascading failures
necessitates a comprehensive understanding of the consequences
of a single line failure on the system and its components.
Various power physics-based techniques, including the line outage
distribution factor, and simulation-based approaches have been
employed to model and characterize the impact and spread of a
single line failure on power systems. In the evolving landscape of
power system analysis, the integration of Graph Signal Processing
(GSP) techniques introduces a novel perspective in such analyses.
This study focuses on characterizing the effects of a single-line
failure on power systems through multiple statistical and GSP-
based measures. By extracting relevant features from the data
using these measures, this study aims to quantify the impact
and spread of failures on graph signal values. It also examines
how the most impactful and spreadable failures contribute to
cascading failures. The insights gained from this study offer a
deeper understanding of failure impact and spread, which are
crucial for analyzing more complex scenarios, such as cascading
failures.

Index Terms—Transmission Line Failure, Failure Impact,
Failure Spreadability, Graph Signal Processing, Power Flow,
Cascading Failures

I. INTRODUCTION

Power systems are sophisticated dynamic systems, which
are reliable yet sensitive to external and internal stresses. Small
perturbations and failures, if not monitored and mitigated
in time, can result in disastrous consequences such as large
system failures and blackouts. The characterization and quan-
tification of the impact of such perturbations enable the under-
taking of appropriate mitigating measures in a timely manner.
Although such perturbations may be caused by various events,
this work considers single-line failure as a perturbation to
the grid and attempts to understand its impact and spread
of its effects on the overall system. While power systems
are generally designed to withstand a single failure (i.e., N–
1 criterion), ensuring reliability amid multiple or cascading
failures requires a thorough understanding of the impact that
a single line failure can have on the entire system and its
components, which defines the goal of this paper.

A power system can be modeled as a graph based on its
physical structure. The associated attributes to the vertices over
the defined graph form the graph signal. Such representation
of power system measurements enables the implementation of
different graph signal processing (GSP) tools and techniques

to support different functions in the power system [1] while
capturing the grid topology and the interconnection and inter-
actions among its components. Examples of GSP-based ap-
plications in power system problems include stress and cyber
attack detection [2]–[5], state estimation and recovery [6], [7],
and impact analysis for load changes [8], [9]. This work will
focus on characterizing and quantifying the impact and spread
of single-line failures on the power systems attributes through
a set of statistical analyses and GSP features. Specifically, by
investigating various GSP features including graph signal total
variation and graph Fourier transform (GFT), this work offers
new insights into how failures affect the power components’
attributes. Additionally, a novel statistical metric for measuring
the spread of failures is proposed to assess the significance and
extent of a failure’s impact on the system’s graph signal.

Here, the power system is specifically modeled as a line
graph with nodes representing the power lines in the system.
The line graph enables defining graph signals based on the
attributes of the line and avoids diconnectivities due to line
failures. Two main graph signals are considered on the derived
line graph; one defined based on the difference between
the real power values in the power lines before and after
a failure, and one based on the Line Outage Distribution
Factor (LODF) [10]. Although these graph signals are closely
similar, the measurement signal allows capturing the real
nonlinear dynamics of the system using data from sensors
and Phasor Measurement Units (PMUs) in the system for GSP
applications and the LODF serves as a benchmark based on
the DC power flow model. The GSP features including total
variation and GFT of these two graph signals are evaluated to
propose a metric to quantify the most impactful line failures. A
spreadability metric has also been proposed for measuring the
highest distance of impact, which has been compared with a
network science-based spreadability measure proposed in the
literature [11]. The analyses have been performed over the
IEEE 118 and the IEEE 300 test cases and the most impactful
and spreadable line failures have been identified. Finally, the
role of the most impactful and the most spreadable line failures
in generating large cascades has been investigated through
simulation.

The paper is organized as follows. Section II discusses the
literature review on the impact and spread analysis on graphs.
Section III elaborates on the power systems graph signals used
in this paper. Section IV defines the proposed impact and
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spread measures alongside other available metrics for compar-
ison. Section V performs the comparative analysis of different
impact and spread metrics discussed in the previous section,
and provides insights into the impactful and spreadable failures
on cascade sizes. Finally, Section VI summarizes the research
with the notions of future works.

II. LITERATURE REVIEW

The study of how perturbations impact and spread across
various graphs or networks has long been an important area
of research in different applications including social network
information diffusion, epidemics, and system failures [1].
The analysis of the impact and spread subjected to single
perturbation in power systems has also been explored from
different avenues. For example, LODF has been introduced to
quantify the changes in the power flow in the transmission
lines given the failure of a single line [12]–[14].

As power grids can be interpreted as graphs, there are
several GSP-based works currently being investigated to ob-
tain new insights into the intensity of a change in node
and its spread across the power network. For example, the
authors in [8] performed the analysis of single-bus perturbation
characterized by a change in real power load or demand in
the bus. The work performed a GSP-based analysis of the
perturbation due to such changes with respect to the global
and local smoothness of the graph signals and parameterized
the spreadability of the load or demand change in a single
bus. Although the analysis of single-line failure with respect
to GSP can help select important lines for vulnerability and
reliability analysis, limited works are available on such impact
and spread analysis.

Moreover, some works are focused on investigating the
failures to identify vulnerable nodes/edges based on network-
based centrality measures [15]–[17]. For example, [15] has
compared notable centrality-based metrics with a proposed
heuristic metric for determining the most critical node in the
power system graph. The work in [16] performed a structural
analysis of the power grid and communication system graphs
using centrality-based vertex and edge importance metrics
to leverage their connectivity, spectral, and bottleneckness
properties. The authors in [17] have performed the spread
analysis of single line failure using the Moore-Penrose pseu-
doinverse of power grid admittance matrix, and resistance
distance, and compare the performance with epidemic and
percolation-based models. However, these purely network-
based centrality metrics are highly dependent on the structure
of the topology and fail to take the intensity of the signal
values into consideration. In this paper, the proposed impact
and spread metrics will provide insights into the significance of
changes in power values and the largest distance that a single-
line failure may result in notable changes in power values.
This analysis can further aid in the understanding of multiple
failures, such as cascading failure scenarios. Specifically, the
relation between the cascade size and the impact and spread
of the line failures based on the proposed metrics are verified
through simulation.

III. POWER SYSTEM GRAPH SIGNALS

As mentioned before, electric power systems can be pre-
sented in the form of graphs. In the GSP-based analyses of
line failures presented in this work, the power system has
been modeled as a line graph G′ of the original topology
of the system G. The original topology of the system with
N buses and M transmission lines can be modeled as graph
G = (V, E). In the line graph G′, the nodes represent the
branches in the original topology, i.e., V ′ = {e1, e2, ..., eM},
where ei ∈ E . The nodes in the line graph are connected
if they share a node end-point in the original topology. The
values associated with the nodes of the line graph can represent
different attributes including the power flow through the power
lines in the system. By considering the line graph instead of
the topology graph, when a power line fails in the system, it
does not cause any disconnectivity in the line graph as it only
changes the value associated with a particular node of the line
graph.

To define the graph signals over the line graph G′, two node
attributes are considered. First, the difference between the real
power values in the power lines before and after each failure
is simulated and considered as the attribute of the nodes in
the line graph. This graph signal is named, difference line
flow measurement (DLFM) graph signal. Secondly, the Line
Outage Distribution Factor (LODF) [10] due to a specific
failure is derived theoretically and considered as the attribute
of the nodes in the graph signals. This graph signal is named,
LODF graph signal.

The difference line flow measurement signal due to failure
of the line n at time t is denoted by xn(t) with value at
node xn(t, em), or xn(t,m) in short, for m ∈ V ′ defined as
xn(t,m) =

|pn
m(t+ϵ)−pm(t−ϵ)|

pm(t−ϵ) , where pm(t) is the power flow
value at node m at time t and ϵ is a small real number.

The second graph signal (i.e., LODF graph signal) is derived
following the approach presented in [13]. Specifically, the
LODF graph signal, wn for the failure of the line n is the
n-th column of the matrix W ∈ RM×M , which is expressed
with respect to the power outage distribution factor (PTDF),
K ∈ RM×N and the incident matrix, C ∈ RN×M , of
the original graph G. The k-th element of the signal wn

is calculated as wk
n = [K×C]kn

1−[K×C]nn
. The PTDF matrix is

defined based on the diagonal branch susceptance matrix
Bd ∈ RM×M , pseudoinverse of the nodal susceptance matrix
B ∈ RN×N , and the incident matrix C, and is expressed as
K = BdC

TB−1, where T indicates the transpose matrix.
While these graph signals are similar in capturing the

changes due to failures, the signals based on the system
measurements capture the nonlinear dynamics of the system
more closely as they can be obtained from the AC power
flow model and the system sensors and PMU measurements;
whereas the LODF graph signal is derived based on the
DC power flow model. The impact and spread analyses of
failures are performed on these signals to verify that the direct
application of such measures including GSP and statistical
features on collected measurement data from the system can
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lead to a similar analysis from the analytical derivation of
LODF values, which requires the system model.

IV. IMPACT AND SPREAD MEASURES

In this section, the measures related to the impact and spread
of a single failure in the graph values of the power system
are presented. In the following sections, these measures are
applied to the DLFM graph signal to characterize lines with
significant impact and spread and the LODF graph signal is
used for the verification of the results.

A. Impact Measures

We start by reviewing some statistical measures on the
signals and later introduce GSP-based measures.

Mean of the graph signal: The mean of the graph signals
(i.e., the DLFM and the LODF graph signals) is the first
statistical measure of the average amount of change in the
attributes of the nodes in the line graph after a failure. It is
a simple aggregated measure; however, it does not provide
information on the spread of the effects of the failures.
Nonetheless, a high mean value of these graph signals can
indicate a high impact of a failure.

Number of significant values (NSV): In addition to the
mean of the changes in values due to a failure, the number of
significant value changes can indicate the impact of a failure.
As such, this statistical measure counts the number of values
beyond a threshold value for the graph signals.

Total variation (TV): The TV is a GSP-based feature of
the graph signal, which provides a notion of the smoothness
of the graph signal. TV of the graph signal vector x (i.e., the
vector representation of the graph signal values indexed by
nodes) quantifies the changes in the signal as TV (x) = xTLx,
where L is the graph Laplacian defined as L = D − A and
D being the degree matrix and A being the adjacency matrix
of the graph [18].

High graph frequency content (HGFC) of the graph
signal: GFT is an analogous concept similar to the classical
Fourier transform that describes the spectral characteristics
of the graph signal. For an undirected graph, the GFT of
the signal x(n) is defined as X(λk) =

∑N
n=1 x(n)uk(n),

where uk(n) is the k-th eigenvectors of the Laplacian ma-
trix L forming the basis for the graph frequency domain,
n is the index of the n-th node in the graph, and λk is
the k-th eigenvalue of the Laplacian matrix L. The sorted
eigenvalues of the Laplacian matrix L for a connected graph
are 0 = λ1 < λ2 < ... < λN and represent the graph
frequencies. In general, larger values corresponding to higher
frequencies indicate a signal with larger variations. The high
graph frequency content measure denoted by r is defined as
r =

∑
k X(λk)H(λk), where H(λ) is a high-pass graph filter,

and its frequency response is H(λ) =

{
0 if λ ≤ λk

1 if λ > λk

, where

λk is the cutoff graph frequency. This GSP-based measure
is also an aggregated measure and does not directly provide
information on the spread of the effects of the failure.

B. Spread Measures

While the impact measures quantify the amount and signif-
icance of changes in the values of the signal due to a failure,
spread measures incorporate the distance of the changes with
respect to the failure location as well. Here, we present a
spread measure to capture the pattern of changes over distance.
A network-science-based spread measure is also reviewed at
the end of this section, which is used in the presented analysis
for comparison.

Deviation of changes from exponential decay (DCED):
Similar to how waves decay as they move away from where
a rock is dropped into water, changes in the graph signal
also diminish with distance to the location of the failure
[17]. However, due to nonlinear and at-distance interactions
among the components in power systems, this decay does not
necessarily follow a smooth decreasing pattern, and failures
with more spread may result in more significant changes at
distance, which is also observed from our simulations. To
capture these aspects of spread, this measure focuses on the
average changes at each hop distance with respect to the
location of the failure and compares its pattern of decay to
an exponential decreasing decay to quantify its deviation.

Specifically, for the graph signal xn(t) due to failure of
line n in the system, the average of the signal values at each
hop k is calculated as v̄nk =

∑
i∈Nn

k
xn(t, i), where Nn

k is
the set of nodes at k-hop distance from the failed line n (i.e.,
node n in the line graph). The deviation of v̄nk beyond an
exponentially decaying function y(k) = ae−b(k) (with a and
b being the parameters of the model after fitting the curve
to v̄nk ) are calculated as the measure of spread denoted by
s =

∑K
i=1 max((v̄ni − y(i)), 0), where K is the diameter of

the network. Note that this function only adds up the positive
deviation from the exponential fitted curve; emphasizing the
more significant changes at distance as a measure of spread.

Closeness centrality-based spread (CCS): This measure
refers to the metric introduced in [11] based on the centrality
measure of the nodes and is used in our analysis for compari-
son purposes. This spread measure denoted by s′(n) is defined
as:

s′(n) = φ′(n)
M∑
i=1

xn(t, i)∑M
j=1 x

n(t, j)
D(n, i), (1)

where D(n, i) is the shortest path length between the failed
line n and all other lines i in the line graph. The modified nor-
malized closeness centrality, φ′(n) is expressed as M∑M

i=1 D(n,i)
.

V. RESULTS AND DISCUSSIONS

In this section, the measures presented in Section IV are
evaluated and compared using the IEEE 118 and the IEEE
300 bus test cases, which have 179 and 409 transmission
lines, respectively (excluding duplicate lines). The experi-
ments are performed using MATPOWER [19] for power
flow calculations. Due to the similarity of the results for
the IEEE 118 and 300 test cases and the space limit, the
detailed analyses of these measures are presented only for the
IEEE 118 bus system; however, the aggregated analyses and
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comparisons through the Pearson correlation coefficient (PCC)
are presented for both the IEEE 118 and 300 bus systems.
The analyses have been performed on both graph signals
(i.e., the DLFM and the LODF graph signals) to identify
the impactful and spreadable failures. Furthermore, the effects
of the identified impactful and spreadable lines on cascading
failure size are evaluated using a cascading failure simulation
model following [20], [21]. The comparison of the existing
metrics with the proposed metrics for both the impact and
spread analysis will provide a new perspective on interpreting
the power values as graph signals from the lens of GSP.

A. Line Failure Impact Analysis

In this section, the mean, NSV, TV, and HGFC of both
the DLFM and the LODF graph signals have been evaluated
and compared to determine the most impactful failures in the
system. Figure 1 shows the mean, NSV, TV, and HGFC for
the DLFM graph signal for the IEEE 118 bus.

Fig. 1: Measure of the mean, NSV, TV, and HGFC of the
DLFS graph signal for the IEEE 118 test case.

Based on these results, it can be observed that these
measures (except for the NSV in some cases) agree on the
most impactful lines (which are lines 7, 51, and 93 according
to the results). These analyses have also been performed on
the LODF graph signal and the similarity of the measures
for these two signals is summarized using PCC in Table I
for both the IEEE 118 and 300 bus systems. Although these
measures show notable correlation, the largest correlation is
between the HGFC measure on the DLFM signal with all the
measures applied to the LODF signal. This suggests that when

using measurement signals from the power system, GSP-based
measure HGFC can provide more robust analyses similar to
the analytically derived LODF signal and can serve as a better
metric for measuring the impact of the failures.

B. Line Failure Spread Analysis

The spreadability measures of failures based on the DLFM
and LODF graph signals are presented in this subsection. To
better clarify the spread measure DCED, the exponential decay
function for the value changes at different hops is shown for
line failures 50 (in the IEEE 118 test case) as an example in
Fig. 2. The deviation of the average values at each hop distance
beyond the fitted exponential function, in this case, indicates
a more significant impact at a distance and thus more spread.

Fig. 2: An exponential function fitted to the average values of
the signal at different hop distances for line 50 failure in the
IEEE 118 test case.

The DCED value for each of the failures for the DLFM
graph signal of the IEEE 118 bus system is shown in Fig.
3(a). To compare the proposed metric with the CCS spread
measure from [11], the CCS of the same graph signal is shown
in Fig. 3(b). It can be observed that they are similar and share
a PCC of 0.8424. The spread measures for both the DLFM
and LODF graph signals for both the IEEE 118 and 300 bus
systems are enlisted in Table II. Similar to the impact analysis,
a notable correlation is observed between both the DCED and
CSS metrics on both the DLFM and LODF graph signals;
particularly, between the DCED measure on the DLFM graph
signal with all the measures applied to the LODF graph signal.
Thus the DCED measure can be interpreted as an effective
metric for quantifying the spread of the failures.

C. Effects on Cascading Failures

The new insights into impactful and spreadable failures in
power systems can enhance our understanding of the complex
cascading phenomena within these systems. In this section, we
test the hypothesis that impactful and spreadable failures play
a more significant role in cascading failures and show up in
cascade scenarios with a larger size or number of failures.

Following [20], cascading failures are simulated based on
the line overloading due to failure and redistribution of the
power flow in the system calculated using MATPOWER [19].
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TABLE I: Pearson Correlation Coefficients of various impact measures for the IEEE 118 and 300 bus systems.

IEEE 118 Bus System
Mean-DLFM NSV-DLFM TV-DLFM HGFC-DLFM Mean-LODF NSV-LODF TV-LODF HGFC-LODF

Mean-DLFM 1.00 0.8167 0.9314 0.9585 0.9398 0.8361 0.8903 0.9765
NSV-DLFM 0.8167 1.00 0.6509 0.6774 0.7629 0.9825 0.5289 0.7142
TV-DLFM 0.9314 0.6509 1.00 0.8809 0.8710 0.6757 0.9193 0.9117

HGFC-DLFM 0.9585 0.6774 0.8809 1.00 0.9093 0.6986 0.9403 0.9943
Mean-LODF 0.9398 0.7629 0.8710 0.9093 1.00 0.7806 0.8414 0.9235
NSV-LODF 0.8361 0.9825 0.6757 0.6986 0.7806 1.00 0.5561 0.7375
TV-LODF 0.8903 0.5289 0.9193 0.9403 0.8414 0.5561 1.00 0.9404

HGFC-LODF 0.9765 0.7142 0.9117 0.9943 0.9235 0.7375 0.9404 1.00
IEEE 300 Bus System

Mean-DLFM NSV-DLFM TV-DLFM HGFC-DLFM Mean-LODF NSV-LODF TV-LODF HGFC-LODF
Mean-DLFM 1.00 0.8417 0.8940 0.9549 0.7344 0.8509 0.7745 0.9831
NSV-DLFM 0.8417 1.00 0.5953 0.7197 0.7167 0.9790 0.6085 0.7710
TV-DLFM 0.8940 0.5953 1.00 0.8364 0.7025 0.6139 0.9611 0.8870

HGFC-DLFM 0.9549 0.7197 0.8364 1.00 0.7279 0.7392 0.7480 0.9815
Mean-LODF 0.7344 0.7167 0.7025 0.7279 1.00 0.7132 0.6470 0.7349
NSV-LODF 0.8509 0.9790 0.6139 0.7392 0.7132 1.00 0.7349 0.7883
TV-LODF 0.7745 0.6085 0.9611 0.7480 0.6470 0.7349 1.00 0.7892

HGFC-LODF 0.9831 0.7710 0.8870 0.9815 0.7349 0.7883 0.7892 1.00

(a)

(b)

Fig. 3: Measure of (a) the DCED spread measure and (b) CCS
spread measure [11] for the DLFS graph signal for the IEEE
118 test case.

TABLE II: Pearson Correlation Coefficients of various spread
measures for the IEEE 118 and 300 bus systems.

IEEE 118 Bus System
DCED-
DLFM

CCS-
DLFM

DCED-
LODF

CCS-
LODF

DCED-DLFM 1.00 0.8424 0.9334 0.7775
CCS-DLFM 0.8424 1.00 0.7848 0.9784

DCED-LODF 0.9334 0.7848 1.00 0.7399
CCS-LODF 0.7775 0.9784 0.7399 1.00

IEEE 300 Bus System
DCED-
DLFM

CCS-
DLFM

DCED-
LODF

CCS-
LODF

DCED-DLFM 1.00 0.6135 0.7568 0.6285
CCS-DLFM 0.6135 1.00 0.7831 0.9950

DCED-LODF 0.7568 0.7831 1.00 0.7675
CCS-LODF 0.6285 0.9950 0.7675 1.00

The operating parameters [21] including the stress level on
the system (i.e., total load over the generation capacity) have
been varied to generate a large number of cascade scenarios
(10,000 cascading) initiated with two random initial failures
in the IEEE 118 and 300 systems. Next, the frequency of
appearance of the identified impactful and spreadable lines in
different sizes of generated cascades is evaluated. As can be
seen in Fig. 4, the frequency of appearance of impactful lines
(lines 7 and 51) based on the HGFC on the DLFM graph signal
in the IEEE 118 case increases with the size of the cascade
compared to lines with small impact measure such as lines 1
and 2. Similarly, the frequency of appearance of spreadable
line failures (lines 66 and 67) based on the DCED on the
DLFM graph signal increases with the size of the cascade
compared to lines with small spread measures such as lines
28 and 44. A similar behavior has been observed for the IEEE
300 test case with impactful lines being lines 240 and 241
based on the proposed HGFC on the DLFM graph signal and
spreadable lines being 169 and 176 based on the proposed
DCED measure on the DLFM graph signal respectively.
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(a) Impactful lines of IEEE 118 (b) Spreadable lines of IEEE 118

(c) Impactful lines of IEEE 300 (d) Spreadable lines of IEEE 300

Fig. 4: Effects of impactful and spreadable lines on cascading
failures in IEEE 118 and 300 bus systems.

VI. CONCLUSION

The analysis of the effects of a single line failure on
the power system graph signals is crucial for understanding
the grid’s resilience and reliability as well as more complex
phenomena such as cascading failures. This article explored
the impact and spread of a single-line failure in the power
system from the perspective of GSP-based and statistical
measures. Novel metrics to measure the impact and spread
have been proposed, evaluated, and compared with existing
statistical and network-theoretical metrics. The results of this
study demonstrate a notable correlation between the existing
statistical metrics and the proposed measures. The results also
suggested that the identified most impactful and spreadable
lines based on the proposed metrics show a higher influence
on the size of the cascading failure. Specifically, it is observed
that the selected impactful and spreadable lines are present
in scenarios that cause large cascading failures, corroborating
their contributions to the increasing size of the cascades. The
insights gained from this study provide a deeper understanding
of failure impact and spread with respect to graph signals,
which will be essential for analyzing and quantifying more
complex scenarios, such as cascading failures from a GSP
perspective, in future research.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2238658.

REFERENCES

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
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[11] A. Büttner, J. Kurths, and F. Hellmann, “Ambient forcing: Sampling
local perturbations in constrained phase spaces,” New Journal of Physics,
vol. 24, 05 2022.

[12] T. Guler, G. Gross, and M. Liu, “Generalized line outage distribution
factors,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 879–
881, 2007.

[13] H. Ronellenfitsch, D. Manik, J. Hörsch, T. Brown, and D. Witthaut,
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