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A B S T R A C T

Cascading failures pose a significant threat to power grids and have garnered considerable research interest
in the power system domain. The inherent uncertainty and severe impact associated with cascading failures
have raised concerns, prompting the development of various techniques to study these complex phenomena.
In recent years, advancements in monitoring technologies and the availability of large volumes of data
from power systems, coupled with the emergence of intelligent algorithms, have made machine learning
(ML) techniques increasingly attractive for addressing cascading failure problems. This survey provides a
comprehensive overview of ML-based techniques for analyzing cascading failures in power systems. The survey
categorizes these techniques based on the evolutionary phases of the cascade process in power systems, as well
as studies focusing on cascade resiliency before the occurrence of cascades and problems related to cascades
after their termination. By organizing these works into relevant categories, this survey aims to identify problems
related to different phases of cascading failure in power systems that can be addressed by ML.
1. Introduction

1.1. Overview and significance

Despite the advancement of modern power grids, which are equipp-
ed with increasingly intelligent monitoring, control, and communica-
tion systems, historical data indicate that they remain susceptible to
various cyber and physical stresses. The reliability-threatening stressors
can affect all layers of these systems; however, stresses on transmission
networks can have widespread and devastating effects such as large
blackouts [1]. While the N-1 security criterion has traditionally been
used to assess the reliability of power systems, it is important to recog-
nize that power grids can still be susceptible to physical stresses, such as
multiple contingencies arising from natural disasters or deliberate sab-
otage. Such failures along with the lack of timely and effective control
actions can trigger a sequence of interdependent component failures
in power systems, called cascading failures, leading to large blackouts.
Cascading failures and diffusion phenomena manifest in a multitude
of real-life complex systems, exhibiting diverse forms and scales [2,3].
While studies have demonstrated similarities in these processes across
different systems, the contributing factors and underlying interaction
mechanisms in cascades differ among systems. Generally, cascading
failures and spreads are influenced by complex interactions of the large
number of components within the system, which are further impacted
by various attributes and characteristics unique to each system. In
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the context of power grids, analysis of historical data on cascading
failures and blackouts, such as the 2003 Northeast blackout [4] and
the 2011 Southwest blackout [5], highlights that the cascade process
is not solely determined by physical component failures or associated
physics-based interactions. Other factors, including the system’s operat-
ing settings [6], cyber vulnerabilities [7] (e.g., computer server failures
and communication issues), and human factors [8,9], also play a role
in influencing the cascade process. Moreover, it has been discussed
that failure of state estimator models and lack of situational awareness
were significant contributors to these events and a timely reaction (such
as load curtailment or islanding) could have significantly reduced the
impact of these events [10].

Considering the complexity of these phenomena and challenges
in controlling them, a large body of work has been formed in un-
derstanding cascading failures and mitigating their effects in power
grids. Particularly, cascading failures in power grids have been stud-
ied using power physics-based techniques [11,12], simulation-based
techniques [13,14], probabilistic models [15–17], and graph-based
modeling and analyses [18,19]. Despite all the studies and developed
techniques, due to the large size and geographical scale, complex
and at-distance underlying interactions among the components, and
new attributes and dynamics of modern power grids (for instance,
deployment of stochastic renewable resources), cascading failures have
remained, although not very common, but a complex and costly threat
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to these systems. With the emergence of new sensing and monitor-
ing technologies, a wealth of data previously unavailable in power
systems is now accessible. Additionally, advancements in the field of
Artificial Intelligence (AI) and Machine Learning (ML) have enabled
powerful descriptive and predictive analyses of this data, previously
unattainable. While classical techniques remain valuable, they often
rely on accurate system models which may not always be obtainable.
The objective of ML techniques is not to supplant classical methods, but
rather to complement them, enhancing their robustness, particularly
in scenarios where system models are inaccurate. Furthermore, ML
techniques facilitate the discovery of hidden patterns and relationships
within the data, potentially uncovering new vulnerabilities or oppor-
tunities for mitigating cascading effects. In summary, ML techniques
aim to expand the scope of cascade analysis beyond what is achievable
through classical approaches, encompassing descriptive, predictive, and
prescriptive analyses.

1.2. Motivation and contribution

Several surveys have reviewed various aspects of cascading failure
studies, including historical cascade events [20,21], cascade method-
ologies and mechanisms [22], cascade models [20], public datasets
and test cases available on cascading failures [20,23], tools for cas-
cade analysis [24], risk assessment of grid components [25], and grid
protection [21]. The reviewed works encompass various techniques
for cascade analysis in power systems, including traditional power
physics-based methods, power flow and contingency analysis, graph
and game-theoretic approaches, and optimization techniques. Such
classical solutions for cascade analysis, have been long-established and
utilized for decades for their robustness and reliability under accurate
system model assumptions, compliance with the existing grid stan-
dards, and scalability and integration with growing technologies for
cascade analysis. However, unlike these conventional techniques, ML
techniques facilitate the discovery of hidden patterns and relationships
within the data, potentially uncovering new vulnerabilities or oppor-
tunities for mitigating cascading effects. Due to the intricate nature of
cascading failures, characterized by complex interactions among system
entities including physical, cyber, and human components, conven-
tional models may struggle to adequately capture and analyze these
interactions. Consequently, ML-based approaches emerge as promising
candidates for capturing the intricate patterns of such complex inter-
actions. As the use of such ML and AI-based intelligent algorithms in
cascade analysis is on the rise, it is important for the scientific commu-
nity to have a birds-eye view of the possible routes in addressing the
complex problems related to cascading failures in power systems using
such techniques. As power systems become more complex and exhibit
stochastic behavior due to their expanding scale and the integration of
renewable resources, and as the deployment of measurement devices
generates vast volumes of data, the utilization of data-centric, ML-based
techniques becomes crucial to support monitoring and decision-making
processes before, during, and after cascading failures. Furthermore,
the incorporation of stochastic renewable resources and energy storage
systems adds more complexity to the dynamics of power systems. The
utilization of ML techniques in analyzing cascading failures presents
a great opportunity to enhance our comprehension of such complex
dynamics and relationships. As such, the objective of this survey is
to examine the utilization of data analytics and ML techniques in the
analysis of cascading failures within power systems, while also address-
ing the existing gaps and unresolved issues pertaining to cascading
failures in power systems that can be potentially addressed using these
techniques. In addition to their application in cascading failures, ML
techniques have been widely employed in various other domains within
power systems such as system monitoring [26], state estimation [27],
fault diagnosis and prediction [28], load forecasting [29], power sys-
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tem security [30], and energy management, and optimization [31,32]. h
Surveys exploring the application of ML and deep learning in diverse
power system applications can be found in Refs. [33,34].

One of the primary contributions of this paper lies in its sys-
tematic organization of the review and the discussions, guided by
different phases of cascading failures. Historical data and simulations
of cascading failures have revealed that the time evolution of cascades
exhibits three phases [4,5,8]. The first phase, known as the precur-
sor phase, is characterized by a slow progression of failures. During
this phase, control actions such as dispatching, load shedding, and
intentional/controlled islanding can effectively mitigate the impact of
disturbances. The second phase is the escalation phase, in which failures
occur rapidly and preventing blackouts becomes significantly more
challenging. The third and final phase is the cascade phase-out, where
the rate of failures slows down as a significant number of components
have already failed. In addition to reviewing works focused on various
analyses during the cascade process, this paper also examines the
application of different ML techniques developed for cascade resiliency
before the cascade occurs, as well as problems related to cascades
after their termination. Supervised, unsupervised, and reinforcement
learning are the three major categories of ML that have been applied
in cascading failure analysis, harnessing the distinct benefits that each
category of algorithm has to offer. Supervised learning is mostly used
with simulated or historical cascading failure datasets, where the labels
of the attributes are available. On the other hand, unsupervised and re-
inforcement learning are more suited for unlabeled data, which requires
the ML model to discover the inherent patterns and interactions within
a given environment.

In this survey, a comprehensive overview of the state-of-the-art
applications of ML in analyzing cascading failures in power systems
is presented by reviewing a large number of journal and conference
articles from reputable databases and categorizing them according to
the problem they address related to different phases of the cascade and
the type of ML algorithms used. This categorization based on cascade
phases proves to be more useful in discussing the existing gaps in
supporting critical functions for cascade mitigation and resiliency. The
research studies incorporated in this review were sourced from various
review papers, journals and conference papers, scientific books, and
reports. A variety of databases, including IEEE Xplore, IET, Science Di-
rect, Springer, Wiley publishers, Taylor & Francis, and MDPI have been
considered for the exhaustive search. In order to maintain the quality
of the research, it is ensured that the majority of the literature surveyed
in this study is recent and has been published in peer-reviewed journals
or conferences. Keywords such as ‘‘cascading failure’’, ‘‘machine learn-
ing’’, ‘‘outage’’, ‘‘blackout’’, and ‘‘power systems failure’’ have been
utilized in the searching phase of the research. From a vast literature
on power system failure, works on ML applications in power system
cascading failure has been considered. Approximately forty reviewed
works specific to ML-based analysis of cascades in power systems
were categorized into four classes as illustrated in Fig. 1 and Table 1.
he depiction of the categories and their association with different
hases of the cascade are shown in Fig. 1. The upcoming sections
rovide a detailed discussion of the definition of each category and
he applications of ML within those categories. The applications of ML
n cascade analysis within these categories are summarized in Table 1
ollowing the discussion of cascade phases.

. ML-based cascade analysis in normal phase

This category reviews research that focuses on using ML to address
ssues related to cascades within the normal operating conditions of
he power system, where no disturbances or disruptions are present.
hese works are further classified into vulnerability analysis, network

ardening, and cascade modeling and simulations.



Electric Power Systems Research 232 (2024) 110415N.M. Sami and M. Naeini
Fig. 1. Taxonomy of cascading failure analysis supported by ML techniques based on different phases before, during, and after cascading failures. The section numbers associated
with the categories and sub-categories are marked in each element.
c
p

2.1. Vulnerability analysis

Vulnerability analysis in power grids involves identifying critical
components in the system that carry a high risk of failure or that
their failures can lead to higher reliability concerns including triggering
or fueling cascading failures. The focus of the review in this section
is particularly on the works for identifying vulnerable components
that can lead to cascading failures in power systems. Identifying such
components before failure is important to eradicate potential risks
of system and service impairments and to implement protection and
mitigation mechanisms.

Identifying combination of components that their simultaneous fault
can trigger cascading failures [70–72] as well as identifying sequence
of failures or attacks that can cause cascades [35,73], both in power
systems and interdependent power and other critical infrastructures,
such as communication systems [74] and gas systems [13], have been
considered in the studies of cascading failure vulnerabilities. Moreover,
the vulnerability of cyber components related to cascading failures has
also been studied in the literature [75,76]. Another closely related
problem to vulnerability analysis is identifying critical components,
the protection of which can reduce the risk of cascades [36,39,74,77].
Although such components may not be the vulnerable ones triggering
the cascade, their vulnerability can fuel the cascade process. Overall,
various forms of cascade vulnerability analysis have been studied in
the literature using simulation-based techniques [13,35,36,39], graph-
theoretic techniques [78,79], game-theoretic techniques [76,80], and
optimization techniques [72,74,81]. The research on the application of
ML to vulnerability analysis has been classified into three categories,
based on the modeling approach used for vulnerability analysis. These
categories are search, classification, and regression.

Search Techniques: Searching power grids for vulnerable compo-
nents that can trigger or fuel cascading failures is a daunting task due
to the large number of combinations of failures that can be considered
and can occur in cascades. The goal of ML-based techniques is to
support these analyses for a more accurate and efficient search process
over power systems. A large number of data-driven and intelligent
algorithms for efficient search of vulnerable components and the most
impactful attack sequences including greedy search algorithms [71],
3

particle swarm optimization techniques [73], genetic algorithms [82] r
and random chemistry techniques [81] as well as reinforcement learn-
ing [35,36] and deep learning techniques [37,38] have been developed,
creating a solid scope for the application of similar algorithms for
efficient search over the power grids. Although the mentioned heuristic
algorithms perform direct search over the grid topology, reinforcement,
and deep learning-based search techniques took data-centric techniques
for pattern learning. The work in [36] suggests a temporal difference
reinforcement learning mechanism to learn the relation between faults
and load loss to identify the fault chain that leads to the largest load
loss. The authors in [35] use a Q-learning technique to search for
the critical lines when the grid is under sequential attack. When the
grid topology changes under such an attack, the technique learns the
sequence of the lines that will lead the grid to a specific blackout size.
In [37], a search framework with the aid of a graph convolutional
network (GCN) is developed to identify critical cascading failures. The
GCN model guides the search by classifying between normal and load
shedding outcomes based on the state of the system defined through in-
put features including the state of the lines. The work in [38] develops
a deep convolutional neural network to classify the risk level of trans-
mission lines based on their topological and operational characteristics,
and the depth-first search algorithm is used to identify the critical lines
that can trigger cascading outages.

Classification Techniques: Another group of works models the
cascade vulnerability analysis as a classification problem to classify
the components of the system as, for example, robust, normal, and
vulnerable groups. For instance, the work presented in [39] utilizes
features such as the centrality of the buses (i.e., betweenness central-
ity), and power flow information for vulnerability classification of buses
using XGboost, which is an optimized distributed gradient boosting
library. The latter approach has been compared with classification with
logistic regression, support vector machine, and k-nearest neighbors
in [39]. In [13], a steady-state energy flow model for a combined
power-gas system has been considered and a random forest hybrid
classification-regression is formulated to classify the vulnerable power
and gas components. Specifically, the regression model is used to
predict the vulnerability metric for each of the components enabling
the classification of the vulnerable components.

Regression Techniques: Regression-based analysis of vulnerable
omponents focuses on learning vulnerability metrics for the com-
onents of the system. Similar to the work in [13], which used a

egression model to predict the vulnerability metric for each of the
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Table 1
Classification of the references with a focus on the application of ML in cascading failure analysis based on the proposed categories and taxonomy in Fig. 1. The cascade escalation
phase is not shown in the table as there is no current development relevant to this phase.
Phases Applications Categories Algorithms with references

Search-based techniques Q-learning [35,36], Graph Convolutional Network [37], Deep
Convolutional Neural Network [38]

Vulnerability
Analysis

Classification-based techniques Random Forest [39], Logistic Regression, Support Vector Machine,
and k-Nearest Neighbors [13]

Regression-based techniques Logistic Regression, Support Vector Machine, and k-Nearest
Neighbors [13], Graph Neural Network [40], Neural Network [41]

Normal Phase Network
Hardening

—

Power Flow and Failure
Propagation Calculations

Graph Neural Network [42], Artificial Neural Network [43],
Logistic Regression [44]

Model and
Simulation

Modeling and Characterizing
Interactions in Cascading Process

Deep Convolutional Generative Adversarial Network [45],
Spatiotemporal Graph Convolutional Network [46], Logistic
Regression [44]

Modeling Triggers and Cyber
Attacks

Q-learning [47,48]

Initial Fault
Analysis

Support Vector Machine [15],
Feed-forward Neural Networks and Graph Neural Networks [49],
Decision Tree, Support Vector Machine, and Multilayer Perceptron
[50]

Prediction of Cascade Size Linear and Polynomial Regression, Decision tree, and Deep Neural
Network [18], Expectation Minimization [51], Logistic Regression,
k-Nearest Neighbor, Decision Tree, Random Forest, Support Vector
Machine, and Adaboost [52], Random Forest, Decision Tree,
k-Nearest Neighbor, and Artificial Neural Network [53],
Attention-based Graph Neural Network [54]

Cascade
Precursor Phase

Cascade
Prediction

Prediction of Cascade Evolution
and Temporal Aspects

Markov chain [17], Neural Network [55], Attention-based Graph
Neural Network [54]

Prediction of Cascade Path and
Areas at Risk

Markov chain [56], Bayesian Belief Network [57], Markov Search
[58], Graph Recurrent Neural Network [59]

Dispatching as Cascading
Corrective Measure Adaptive Immune Reinforcement Learning [60]

Cascade
Corrective
Measures

Load Shedding as Cascading
Corrective Measure

Deep Reinforcement Learning [14], Deep Neural Network [61],
Neural Network [62], Graph Convolutional Network [63], Markov
Decision Process [64]

Islanding as Cascading Corrective
Measure

Density-Based Spatial Clustering of Applications with Noise [65],
Graph Convolutional Network [66]

Cascade
Restoration
Phase

Failure Recovery Q-learning [67–69]

Root Cause
Analysis

—

components, the work in [40] uses a graph neural network-based
prediction of avalanche centrality, which is the measure of the impact
of a node on the avalanche dynamics of a Motter-Lai cascading failure
model. A probabilistic risk index based on load shedding, voltage
violation, and hidden failure is predicted in [41] using decorrelated
neural network ensemble to understand 𝑁 − 𝑘 contingency analysis
considering potentially cascade-inducing outages.

2.2. Network hardening

The primary objective of network hardening in power systems is to
enhance the resilience of the system against faults, attacks, and stresses
that have the potential to trigger cascading failures. In this field, exist-
ing research includes various approaches to network hardening, some
of which involve strengthening the system’s structure through methods
such as increasing redundancy (e.g., adding extra components and
connections) [83] or resilient structure design [84,85], and improving
the protective and preventive maintenance of vulnerable and critical
components in the cascade process [70,86]. It is important to note that
not all network hardening studies solely focus on cascading failures
and they may have a broader scope that includes hardening efforts
for the distribution systems [87,88]. Additionally, the literature on
4

this topic includes investigations into severe weather impact analy-
sis [89,90] and smart vegetation management [91,92] as means to
harden grid components. The network hardening problem has been
addressed through different techniques including optimization [84,93–
95], network theoretic techniques [70,84,96], and game-theoretic tech-
niques [97]. Nonetheless, as far as the authors are aware, the utilization
of ML in the transmission network hardening against cascading failures
remains an area to be explored.

2.3. Cascade modeling and simulations

Data plays a pivotal role in ML-based research, and the availability
of cascade datasets is crucial for developing efficient ML models for
cascade analysis. Notable publicly available power system test cases
have been compiled in literature such as [20,23] to serve as bench-
marks or validation sets for different cascading models. For example,
Table I in [20] offers a thorough compilation of publicly available
test cases, while Table III in [23] details cascade models and their
related sources of cascade data. These literatures list several datasets
with their corresponding references. Such available datasets serve as
valuable resources for simulating cascade scenarios and generating or
augmenting test case data, which can then be used to train ML models.
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However, these data are in general limited and do not include a
large variety of complex cascade scenarios. Cascading failures, which
are infrequent occurrences resulting from rare interactions in large-
scale power transmission networks, present a challenge when it comes
to modeling and simulating them with the necessary level of detail
for analysis. To address this, several cascade models and simulation
platforms have been developed over the years [23,98–100]. Further-
more, numerous studies have focused on simulating various events like
cyber attacks, natural disasters, and physical damages that can trigger
cascading failures. This section provides a comprehensive review of ML-
based techniques utilized in the modeling and simulation of cascading
failures. As there is limited available public data related to cascading
failure events to support developing ML models, developing representa-
tive databases from historical datasets through modeling, simulations,
and testbeds is essential; both for understanding and studying cascading
failures in general and also for developing ML models to address the
related problems. Here, the review of the application of ML in the
simulation and modeling of cascade in power systems is categorized
into three main sections:

2.3.1. ML application in power flow and failure propagation calculations
Some research in the field of modeling and simulating cascading

failures has primarily focused on efficient and rapid power flow calcu-
lations, as well as simulations of failure propagation, for example, based
on line overloading mechanisms. For instance, in the work referenced
as [42], a physics-informed cascade model is developed using a graph
neural network. This model enables faster and more accurate calcula-
tion of the power flow values for dynamic power systems. In another
study presented in [43], an ML approach is adopted to predict power
flow values for all branches after each step of cascading failures. This is
achieved by utilizing an artificial neural network in an iterative man-
ner, where the output is fed back as input, enhancing the simulation
of cascade evolution. Furthermore, in the research outlined in [44],
a time series interaction model is learned using logistic regression
to determine the interaction matrix for changes in line states. The
obtained results are then subjected to a binary decision-making process
to determine the line status at subsequent time steps to model failure
propagation.

2.3.2. ML application in modeling and characterizing interactions in the
cascade process

Comprehending the interactions among system components during
the cascade process is crucial for understanding the cascade behavior
within the system. Interactions among system components during cas-
cading failures have been studied and modeled using various forms of
interaction graphs [19]. ML techniques have been employed to capture
the structures and patterns of interactions among components in power
systems’ cascades. For instance, in the study presented in [45], a deep
convolutional generative adversarial network is used to learn the failure
interaction matrix at each step of the cascading failures. It is discussed
that the predicted matrix can either help recover missing data due to
the lack of information during cascading failures or can help discover
new interactions that can provide information about interactions in the
next steps. In another instance, detailed in [46], a spatiotemporal GCN
model is developed to learn the importance matrix to reveal power
system interconnections for cascade predictions. Furthermore, in the
research presented in [44], a logistic regression model is designed to
learn indirect interactions between the states of lines in order to model
failure propagation trajectories after the initial failures.

2.3.3. ML application in modeling triggers and cyber attacks
The design of failure and attack models, as well as the identifi-

cation of the most impactful triggers for cascading failures, are key
problems in cascade modeling and simulation. This problem is closely
related to vulnerability analysis discussed in Section 2.1. Modeling
5

such triggers for generating cascading failure has been explored using
different approaches such as physics-based [101] and game-theoretical
techniques [80]. For example, [102] provides a general overview of
how cyber attacks on power grids can lead to cascading failures and
blackouts. This study highlights critical cyber–physical factors includ-
ing the loss of transmission lines, synchronization disruption, and
voltage and frequency instability, which attackers can exploit to initiate
cascading failures. ML techniques have emerged as a recent approach
to detect triggers and potential attacks capable of inducing cascading
failures within power systems. As another example, in the study ref-
erenced as [47], reinforcement learning techniques, specifically double
Q-learning, are employed to model sequential attacks that have a signif-
icant impact. The work proposes an attacking scheme that determines
the minimum number of attacks needed to cause large cascades, taking
into account factors such as line tolerance, the probability of line
disconnection, and hidden failures. To enhance the efficiency of the
search process, the approach described in [48] utilizes candidate pool-
based Q-learning to shrink the search space by focusing on the nodes
with the highest loads and degrees.

3. ML-based cascade analysis in precursor phase

This category includes studies that focus on addressing challenges
related to cascades occurring after the system has undergone distur-
bances. This phase of the cascade is one of the most critical stages to
react to the process, prompting extensive investigations and studies to
support crucial functions during this period. The aim of these efforts is
to enhance the understanding of cascade risks and facilitate informed
decision-making regarding corrective actions. Studies falling within
this category can be further classified into three classes: initial fault
analysis, cascade prediction, and cascade corrective measures.

3.1. Initial fault analysis

After the occurrence of initial failures in a power system, it be-
comes crucial to evaluate the system’s state and identify potential
risks of cascading failures. Analyzing the impact of initial stresses on
the cascade process has been studied using a probabilistic method
in [103] and using physics-based techniques in [104]. Examples of
ML approaches to stability assessment [105–107] include transient
stability assessment [108–111], and the acceleration of N-1 contin-
gency screening [112]. Another related problem is identifying the risk
of cascade after the initial failures. For instance, research presented
in [113] proposes a combined GCN and long short-term memory model
to approximate risk parameters as regression targets to evaluate the
risk of cascading failures in real time after the initial failures. The
work presented in [49] proposes using feed-forward neural networks
and graph neural networks to perform binary classification of a given
graph into safe or unsafe to estimate the risk of cascading failure after
the initial failure. Classification of the system state datasets enables
proactive early warning for cascades. For instance, the work in [15]
suggests a Support Vector Machine (SVM)-based classification method
to classify a given power loading level into normal or potential blackout
cases. A binary classification of normal versus cascade scenarios given
the loading level of the lines and the outage stages is performed in [50]
using decision tree, support vector machine, and multilayer perceptron
techniques.

3.2. Cascade prediction

When the power system experiences initial disturbances and the risk
of cascading failures is assumed, the prediction of cascade attributes
can facilitate the understanding of the state of the system and identify
potential mitigation strategies to subdue the failures. Predictive analy-
sis of the cascade in power systems involves the prediction of cascade
size, cascade evolution and its temporal aspects, and propagation path
and regions. Although the utilization of ML for outage prediction and
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power system resilience has been reviewed in [105,114], respectively,
to the best of the authors’ knowledge, there is no review of data-driven
and ML applications in predictive analytics related to cascade attributes
in power systems to date. This section is focused on reviewing such
literature.

3.2.1. Cascade size prediction
Once the risk of a cascade has been identified, a key challenge is

to predict the potential size or magnitude of the cascade. This problem
can be approached by characterizing the distribution of cascade sizes
as a function of the number of component failures (e.g., transmission
lines, generators), the amount of load shed, or the number of affected
customers. The study of cascade size distribution has been exten-
sively explored in the context of power systems, taking into account
both historical and simulation data. Researchers have investigated
the general form of the distribution of cascading failures and have
observed its heavy-tailed power-law nature [17,51,52,115,116]. Sim-
ilarly, the study of interdependent power and communication systems
has also contributed to the understanding of cascade size distributions
in interdependent systems [18,117]. Characterizing the cascade size
distribution unique to each state of the system and the initial distur-
bances is one of the focuses in this category of problems. In a study
presented in [118], the cascade size distribution is examined based on
the location of initial failures in various communities identified within
the power system. A Markov chain model is utilized to analyze and un-
derstand the cascade size distribution in this context. The cascade size
distribution and the effects of influential component failures on cascade
size distribution are studied using an influence-based model in [119].
The prediction of cascade sizes allows operators and decision-makers
to assess the severity of the system’s state and initial disturbances to
mitigate cascade and improve grid resilience.

The majority of the work in characterizing the probability distri-
bution of cascade sizes primarily relies on data-driven and statistical
methods, while the direct application of ML to this problem remains
limited. From the available works, the work in [18], applies linear
and polynomial regression, decision tree, and deep neural network to
predict the total number of components that failed after the initial
faults while considering the topological features such as degree and
betweenness among the nodes. In [51], the interaction among the
lines of the grid is learned by the expectation minimization algorithm
to characterize the probability of small, medium, and large cascade
sizes for the number of line failures. In [52], the size of the cascade
is predicted through a classification problem with three classes of
cascades including no cascade, small, and large cascades using dif-
ferent ML algorithms including logistic regression, k-nearest neighbor,
decision tree, random forest, SVM, and Adaboost. The work in [53]
performed the prediction of cascade severity and minimum cascade
size as classification tasks using various ML models such as random
forest, decision tree, k-nearest neighbor, and artificial neural network.
This study illustrated that the prediction accuracy is unsatisfactory at
the very beginning of the cascade but gradually improves, eventually
reaching an acceptable level after just a few initial steps.

3.2.2. Prediction of cascade evolution and temporal aspects
As mentioned in Section 1.2, the analysis of historical data indicates

that the propagation of cascading failures can be categorized into
distinct phases over time. Understanding the temporal aspects and the
evolution process of cascades is crucial for operators to recognize the
temporal division between these phases and estimate the remaining
time available to respond to the situation effectively. This knowledge
becomes particularly valuable in assessing the urgency of the situation
and taking appropriate actions before the cascade transitions into the
escalation phase. Despite its significance, there is a limited body of
existing research in this domain. For instance, the work in [17] uses a
data-driven Markov model to characterize the evolution of the blackout
6

probability over time. In another work, [55], a neural network-based
classifier is applied to predict the onset time of the cascading acceler-
ation phase. The problem is formulated as a multi-class classification
task, where a neural network is employed to classify a given scenario
into urgent, relatively urgent, or non-urgent categories based on the
predicted onset time. The authors in [54] predicted the failed status
of branches within each cascade time step and determined the final
grid status using an attention-based graph neural network. The cascade
failure size is then evaluated as the total number of failed branches from
the predicted final grid status. While this work focuses on categorizing
the temporal urgency of cascade scenarios, the detailed exploration of
onset time itself and the broader evolution aspects of cascades remain
relatively unexplored. The limited existing work highlights the need for
further research and development in understanding and predicting the
temporal dynamics and evolution process of cascading failures.

3.2.3. Predicting cascade path and areas at risk
Given the non-local nature of cascade propagation and the complex

interactions among components in power systems [116], accurately
predicting the specific areas and components that will be affected
by the cascade process poses a significant challenge. Consequently,
research in this category is dedicated to predicting the components or
regions in the system that are at a higher risk of failure following the
initiation of a cascade. Within this area, there are various subproblems
that researchers address. For instance, [57] focuses on predicting the
next component failure, while [56] aims to predict the next 𝑘 failures.
Additionally, [58,59] seek to predict the complete path of the cascade,
including all subsequent failures.

In the work presented in [118], the focus is on identifying the
locality of cascading failures in relation to the underlying commu-
nities within data-driven interaction graphs of the power system. By
examining the interaction patterns among components, the localized
areas where failures tend to occur are identified. Another observation
regarding the localization of failures can be seen in the tree structure
of the power grid [120]. It has been noted that when a non-cut set
of lines fails simultaneously, the resulting failure tends to be localized
within that non-cut area. On the other hand, if the failure occurs in
an interconnecting line between multiple trees within the grid, it has
the potential to propagate globally and impact a wider area of the
system [120].

Predicting the next 𝑘-failures and predicting the next immediate
failure (which is a special case of the next 𝑘-failures) in the cascade
process in power systems have been studied in the literature using ML
techniques. For instance, the work in [56] develops a general event
precedence model, which builds a first-order absorbing Markov chain
over the event streams and a run-time causal inference mechanism,
which learns causal relationships between the events to predict 𝑘
failures that are most likely to occur next. The work in [57] performs
next-step failure prediction in the cascades in general networks via a
Bayesian belief network and a multi-attribute decision-making method
to perform a ranking of the lines based on a scoring strategy relative to
the features of the lines. Prediction of the complete path of the cascade
after the initial trigger is also studied in the literature. For instance,
in [58], the authors formulate the path prediction as a Markov search
problem, which is built based on a large number of failure scenarios
and DC power flow calculations. Prediction of the sequence of failures
based on fault chains is proposed in [59] using a time-varying graph
recurrent neural network. In this work, the search for the sequence of
failures is formulated as a partially observable Markov decision process
and the temporal features are captured through a graph recurrent Q-
learning algorithm to predict vulnerable fault chains with respect to

the amount of cumulative load loss in the system.
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3.3. Cascade corrective measures

Corrective measures play a crucial role in preventing the spread of
failures and mitigating their impact on power systems. Implementing
these measures during the slow precursor phase is particularly effective
in enhancing the resilience of the system. The corrective measures
include power dispatching and load shedding with the aim of bal-
ancing the load and demand within the system and maintaining a
stable frequency [121]. Another control action that can be employed
to prevent the propagation of failures is intentional islanding. This
involves isolating a specific portion of the power system to prevent
further cascading effects. The related research on these three corrective
measures is reviewed in the subsequent subsections.

3.3.1. Dispatching as the corrective measure
Dispatching is the process of managing the output levels of power

generators to meet the real-time demand for electricity. It can help
prevent further damage due to cascading failures by bringing additional
generation capacity online to compensate for the loss due to out-
ages. Implementing the dispatching decisions can take several minutes;
hence, it is essential to make dispatching decisions and identify its
necessary parameters quickly to prevent the situation from escalat-
ing [122]. ML-based algorithms can play a key role in searching the
best dispatching parameters (e.g., generator variables and set points)
and profiles (e.g., generator combination and schedule) with respect to
specific circumstances. Some of the existing work, such as [123,124],
have considered dispatching as an optimization problem to offer a
preventive and resilient solution to cascading failures. ML-based opti-
mization for generation dispatch is also used for generation control, and
smart dispatching, as seen in the review presented in [125]. However,
the application of ML in generation dispatching to address cascading
failures is limited. One example is the application of an adaptive
immune system reinforcement learning-based algorithm, which is pre-
sented in [60]. Similar to the response of an immune system to destroy
an antigen by an antibody, an overloading in the power system is
treated as an antigen, and the success of the generation dispatching
is treated as an antibody, based on which a reward-penalty scheme is
built to select the combination of the generators for optimum power
dispatching.

3.3.2. Load shedding as the corrective measure
Load shedding can play a critical role in stopping the propagation of

failures by preventing the overloading of transmission lines and genera-
tors and restoring the balance between supply and demand. Automating
and optimizing the load shedding decision process and improving the
accuracy and speed of the decision-making process are examples of the
problems in this category. These problems have been studied in the
literature using various techniques including game theory [126], opti-
mization algorithms [127], and heuristic algorithms [128,129]. In the
literature, ML has been used for determining the optimal load shedding
amount [61–63], optimal load shedding policy (i.e., sequence of load
shedding actions) [14,64] and the location of load shedding [62] for
mitigating cascading failures. For instance, the work in [61] employs
a deep neural network with a specialized loss function for predicting
the required load shedding amount. The proposed network captures
the non-linear and non-convex relationship of the real-time operating
states and acts as a multi-input multi-output model for the risk-averse
emergency load shedding (ELS) scheme. Similarly, [62] uses a neu-
ral network for ELS to capture the relation between the generation
and load loss, spinning reserve capacity, and sustaining frequency of
the system to determine the total required load shedding amount.
The work in [63] proposes a GCN model for predicting the optimal
load-shedding for minimizing the line overload. GCN captures the
correlation between AC power flow values along with the topological
information to determine the values of power dispatch and suggest
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the appropriate amount of required load shedding. The work in [14]
proposes a deep reinforcement learning framework to guide the control
processes including generator dynamic braking and under voltage load
shedding events. The work involves modeling the power system as a
Markov decision process (MDP) and using a deep neural network as the
Q-function approximator to estimate the control parameters. In [64], an
MDP is developed to learn the optimal load shedding policy to minimize
the expected cumulative cost in terms of the number of line failures and
load shedding.

3.3.3. Controlled islanding as the corrective measure
Controlled islanding is the process of dividing the power system into

smaller, independent sections, which can continue operating indepen-
dently using local resources. Such islanding can help mitigate cascading
failures by containing the effects of the disturbance to a localized area
and preventing the spread to other parts of the system. Controlled
islanding to prevent cascading failures has been studied in the literature
in different forms including as an optimization problem [130,131]
and graph-theoretic problem [132,133]. ML techniques have also been
applied to the problem of controlled islanding to improve the decision-
making process and speed it up instead of relying on time-consuming
calculations of a large number of real-time variables. For instance, [65]
suggests a density-based spatial clustering of applications with noise
(DBSCAN) combined with non-linear programming to identify groups
of coherent generators. The clustered generators are considered the
core of the islands and the nearby generators and loads are identified to
construct the sub-network of the islands using the Dijkstra algorithm.
The work in [66] proposes a deep GCN for graph partitioning to mit-
igate the load-generation imbalance within the islands. A specialized
loss function is designed to cluster each bus into an island based on the
generator coherency and to assign independent components in different
islands depending on their distances in the topology.

4. ML-based cascade analysis in escalation phase

The escalation phase in the cascade process of power systems is
characterized by the rapid propagation of failures throughout the sys-
tem, limiting the available options for intervention. Due to the severity
of the escalation phase, there is a scarcity of studies specifically focused
on addressing this particular phase. However, the importance of study-
ing and addressing the escalation phase should not be underestimated.
Despite the challenges, gaining insights into the dynamics and behavior
of cascades during this phase is crucial for enhancing the resilience and
robustness of power systems. By understanding the underlying mech-
anisms and identifying potential measures to halt or slow down the
cascade’s progression, operators can improve their response capabilities
and enhance the overall resilience of power systems.

5. ML-based cascade analysis in post termination phase

The focus of this category is on addressing the challenges that
arise after the cascade process has concluded and a blackout has
already occurred. The primary focus of these studies is on cascade
fault recovery, service restoration, and conducting root cause analysis
of the cascade event. Cascade fault recovery and service restoration
include assessing the extent of the cascade and identifying the root
causes of the failures, restoring the power through black-starting the
generators using auxiliary power sources, repairing or replacing dam-
aged components such as transmission lines and transformers, and
synchronizing the restored sections of the system [134]. The utilization
of ML techniques to support post-cascade operations is still relatively
limited. In this section, the existing work related to cascade restoration
has been reviewed under two categories of failure recovery process and

root-cause analysis.
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5.1. Cascade failure recovery

In the cascade recovery process, one of the key challenges is de-
termining the optimal order for restoring the failed components. Iden-
tifying the order of restoration is critical, and involves considering
various factors, such as the criticality of the component, the availability
of resources and personnel, the time required for repairs, the depen-
dencies between components, and the overall system stability. This
problem has been studied in the literature through optimization-based
techniques [124] and heuristic techniques [135]. ML techniques can
also be employed to address this problem by analyzing historical data,
system topology, and real-time information to identify patterns and
dependencies among the failed components and to predict the optimal
order of component restoration. For instance, the works in [67–69]
find the bus/branch recovery sequences after a cascading failure using
a Q-learning mechanism, to achieve topological restoration with the
minimum number of repairing steps. The purpose of the Q-learning is
to obtain maximum restoration with minimum component recovery.

5.2. Cascade root cause analysis

Root cause analysis (RCA) is an important process, which enables
understanding the causalities in the system and supports fault mitiga-
tion, system upgrade, and investment decisions. The ML-based tech-
niques to RCA can allow tracing the potential chain of cascade to
identify the causes, triggering, and fueling factors by extracting and in-
ferring causality and interaction information from large, complex, and
incomplete cascade and system data. Many RCA approaches are based
on statistical analysis to infer association among variables and iden-
tify dependencies among time-series [136,137]. Probabilistic graphical
models [138,139] have also been adopted for RCA; however, they
require specifying conditional dependency structure among variables.
Recently, various ML models have been used to enable inferring the
dependencies and interactions in data for RCA [140]. In power systems,
many of the RCA approaches are focused on fault cause identification.
The examples include RCA for power transformers fault [141], trans-
mission line fault [142], and fault cause identification using waveform
measurements in distribution networks [143]. These works mainly
perform individual waveform or time-series analyses for RCA to classify
the causes of faults and do not consider interactions or dependencies
among components and their failures. RCA has also been applied to
cascading failure problems in interdependent power and communica-
tion systems with an algorithmic approach in [144]. In the latter work,
the node measurements are not considered and instead, the RCA is
carried out over interdependency relations in the form of Boolean Logic
relations, which are assumed to be known. The application of ML to
RCA in power systems with regard to cascading failures is still very
limited and has significant scope to be explored further.

The applications of ML in cascade analysis across the mentioned
categories are summarized in Table 1. It is to be noted that the cascade
escalation phase is not outlined in the following table as there is
currently no literature available on this phase.

6. Challenges and recommendations

Within this review, key functions in the analysis of cascading fail-
ures in power systems have been identified that can benefit from or be
complemented by ML techniques. These functions have been system-
atically classified based on the corresponding phases of the cascade.
However, it is noteworthy that the application of ML to support these
functions is a recent advancement and still warrants further explo-
ration. Consequently, each of the identified problems represents an
open and promising domain for further investigation. Next, some of the
challenges and opportunities associated with refining ML techniques for
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the purpose of cascade analysis are discussed.
High Dimensional Data and Feature Selection: Cascading failures
are complex phenomena with large contributing factors to their com-
plex interactions. Considering various sources of data, including mea-
surement data, simulation data, and historical data, about various
power system components and their attributes, the cascade analysis
models often deal with high dimensional data. In general, dimen-
sionality reduction and feature selection are important functions that
can improve ML models. The examination of the existing literature
has unveiled that the ML algorithms employed in cascade analysis
heavily rely on the type and mode of the data being utilized. Effective
feature selection is highly beneficial in excluding redundant features
and extracting relevant and important features for ML models.

For instance, [18] involves utilizing a recursive feature elimination
algorithm to identify crucial features for pinpointing critical nodes,
with the objective of protecting these nodes and enhancing network ro-
bustness. In [45], a deep convolutional generative adversarial network
is employed to capture implicit features related to failure propagation.
In the analysis of interconnected power systems, the dimensionality of
the data expands, underscoring the importance of ranking and sorting
critical features for the ML models [13].

Moreover, large datasets in this context may exhibit class imbal-
ances, where the number of cascade failure scenarios is smaller com-
pared to nominal scenarios. To address this issue, data preprocessing
algorithms, such as, the synthetic minority oversampling technique
(SMOTE) can be employed to manage class imbalances in cascade
classification problems, as demonstrated in [50]. Moreover, despite the
abundance of data available from the system, the necessary features
for the ML models may not be readily available in the data. Crafting
new features from the existing data and attributes that effectively
encapsulate grid dynamics during the cascade process can enhance the
performance of ML models. As an example, [39] integrated diverse
features from grid topology, node embeddings, and power flow distri-
butions to augment those obtained from the complex network model.
Introducing such combined features enables crafting new features that
can enhance the model performance.

Computational Cost: Just like in other application domains, ML
techniques used for cascade analysis encounter computational chal-
lenges. The vast scale of power systems and the growing volume of
collected data present challenges in terms of scalability for training and
conducting cascade analysis on these systems. Approaches like transfer
learning offer potential solutions by training the model on one system
and transferring the knowledge to similar power systems [145,146].
Furthermore, researchers in the ML domain have focused on optimiz-
ing algorithms and ML models to improve computational efficiency.
Examples of such techniques applied to ML models in cascade analysis
include the design of more efficient model architectures, such as novel
network architectures for ANN [43], CNN [112] or GNN [37] models,
as well as the development of tailor-made optimization algorithms.
These algorithms aim to reduce the need for exhaustive traversal of
large datasets and decrease the computational cost of models, as seen
in the reduced search early termination techniques presented in [18].

Robustness: Similar to ML models in other application domains, ML
models used for cascade analysis are expected to exhibit robustness
and maintain their performance in the face of various challenges in-
cluding input changes, noise, unforeseen scenarios, and cyber attacks.
However, due to the complexity and stochastic nature of cascading
failures, as well as the inability to consider all possible combinations
of events during model training, ML models may encounter robustness
challenges. Unforeseen scenarios, in particular, present a significant
challenge akin to open-set recognition problems, where the ML model
must classify unknown categories of scenarios that the model did
not exhibit during training phase and adapt accordingly. Addressing
such scenarios can involve leveraging statistical and deep learning
methods [147], which aid in consistently handling trained cascading
scenarios while segregating unforeseen cases to refine model training

over time. In such instances, enhancing robustness can be achieved
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by exposing the model to augmented cascading scenarios by feasibly
modifying existing datasets [42] and incorporating human-in-the-loop
ML approaches [148] into the systems.

As a special case of robustness challenges, the ML models devel-
oped for cascade analysis can face cyber-attack challenges. Intentional
manipulation of input data or model parameters can degrade the
performance of cascade analysis, resulting in inaccurate associated
risk assessment or incorrect recommendations with potentially severe
consequences [149,150]. Malicious actions like data poisoning and
the insertion of adversarial examples during training can mislead ML
models, putting the accuracy of cascade analysis at risk. In [151], it is
noted that ML-based cascade prediction models can be susceptible to
False Data Injection Attacks (FDIA), which can adversely affect predic-
tion accuracy. These approaches can improve the model’s adaptability
and resilience in dynamic and complex cascade scenarios. The adop-
tion of explainable and trust-worthy ML models [152], and enhanced
adversarial training [153] in power systems can also be deemed a
viable solution for addressing cyber-security issues in ML-based cascade
analysis, by enhancing the transparency of the models. Due to such
security risks, it is important to recognize the vulnerability of cas-
cade models to cyber-attacks and support them with countermeasures,
including robust design and attack detection. However, assessing the
impact of cyber-attacks on ML models for cascade analysis and devising
attack mitigation mechanisms have not been explored adequately in the
literature, which is suggesting a promising avenue for future research
exploration.

In summary, these open challenges and corresponding recommen-
dations in the domain of ML-based cascading failure analysis present
opportunities for impactful research to support various functions in
different phases of the cascade to improve the resiliency of the power
systems to cascading failures.

7. Conclusion

Cascading failures present a significant threat to power grids, neces-
sitating extensive research efforts in their analysis and understanding.
The combination of advancements in monitoring technologies, the
availability of vast amounts of power system data, and the emergence of
intelligent algorithms have made ML techniques increasingly appealing
for analyzing cascading failures. The presented review in this survey
provides a comprehensive overview of ML-based techniques employed
in the analysis of cascading failures in power systems. By categorizing
these techniques based on the different phases of the cascade process
and examining research on cascade resiliency prior to and after the
occurrence of cascades, this survey offers new insights and a systematic
understanding of ML’s role in modeling, analyzing, and mitigating cas-
cading failures. The organization of these works into relevant categories
contributes to a better understanding of the strengths and limitations of
ML techniques in addressing cascading failures. The gaps in the existing
research also show the importance of further research in this domain
to fully exploit the potential of ML in cascade analysis. Leveraging the
wealth of historical and simulation data via big data analysis and data
mining tools, identifying and incorporating relevant features that can
augment and bolster these models, reducing computational costs with
effective online and transfer learning techniques, and implementing ex-
plainable and trustworthy ML to design secure ML models for cascading
analysis can be notable recommendations that can contribute to the
resolution of current research gaps and fortify the robustness of ML
applications in power system cascade analysis. As power systems con-
tinue to evolve and face new challenges, for instance, due to stochastic
and uncertain renewable resources and the incorporation of energy
storage systems, the integration of ML techniques holds great potential
for advancing our understanding of cascading failures and improving
preventive and corrective measures under new circumstances.
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