
Partitioned Scheduling with Safety-Performance

Trade-Offs in Stochastic Conditional DAG Models

Xuanliang Deng*, Ashrarul H. Sifat*, Shaoyu Huang, Sen Wang
Jiabin Huang, Changhee Jung, Ryan Williams, Haibo Zeng

aVirginia Tech
bUniversity of Maryland

cPurdue University

Abstract

This paper is motivated by robotic systems that solve difficult real-world
problems such as search and rescue (SAR) or precision agriculture 1. These
applications require robots to operate in complex, uncertain environments
while maintaining safe interactions with human teammates within a speci-
fied level of performance. In this paper, we study the scheduling of real-time
applications on heterogeneous hardware platforms inspired by such contexts.
To capture the stochasticity due to unpredictable environments, we propose
the stochastic heterogeneous parallel conditional DAG (SHPC-DAG) model,
which extends the most recent HPC-DAG model in two regards. First, it uses
conditional DAG nodes to model the execution of computational pipelines
based on context, while the stochasticity of DAG edges captures the uncer-
tain nature of a system’s environment or the reliability of its hardware. Sec-
ond, considering the pessimism of deterministic worst-case execution time
(WCET), it uses probability distributions to model the execution times of
subtasks (DAG nodes). We propose a new partitioning algorithm Least
Latency Partitioned (LLP), which considers precedence constraints among
nodes during the allocation process. Coupled with a scheduling algorithm
that accounts for varying subtask criticality and constraints, the end-to-end
latencies of safety-critical paths/nodes are then minimized. We use tasksets
inspired by real robotics to demonstrate that our framework allows for effi-
cient scheduling in complex computational pipelines, with more flexible repre-

1This work was supported by NSF under Grant CNS-1932074. Haibo Zeng is the
corresponding author. Email: hbzeng@vt.edu

Preprint submitted to Journal of Systems Architecture January 30, 2025

sentation of timing constraints, and ultimately, safety-performance tradeoffs.

Keywords: DAG scheduling, stochastic scheduling, safety-critical timing
constraints

1. Introduction

Modeling and scheduling real-time applications on heterogeneous hard-
ware platforms has received significant attention recently. Due to the in-
creasingly complex functionalities of emerging real-time applications (such as
human-robot search and rescue (SAR) or precision agriculture [1, 2]), fully
utilizing the computing power of heterogeneous hardware becomes an im-
portant problem. Among the modeling approaches, Directed Acyclic Graphs
(DAGs) have become a popular method of late. In DAGs, subtasks and
data transmissions are represented as nodes and edges respectively, which
can capture the dependency between tasks in a straightforward manner [3].
The Heterogeneous Parallel Conditional DAG (HPC-DAG) model, which is
the most expressive DAG task model to date, further accounts for the fact
that a subtask may only execute on certain types of hardware [4]. How-
ever, HPC-DAGs do not consider the stochasticity that an application may
encounter in real-world operations [4, 5, 6, 7]. We propose the stochastic
HPC-DAG model (SHPC-DAG), where nodes and edges are associated with
probabilities to capture the uncertainties at run-time.

Another enhancement in the SHPC-DAG model is the use of probabilis-
tic execution time for each subtask. The majority of scheduling algorithms
utilize the worst-case execution times (WCETs) of tasks for analyzing schedu-
lability, which can be overly pessimistic [8]. In addition, the execution times
of tasks are often associated with some uncertainty before run-time and may
vary due to environmental dynamism and varying sensor inputs [9, 10]. It is
then natural to account for the uncertain nature of a system’s environment
and/or the reliability of its hardware, by representing the execution times of
subtasks as random variables and optimizing the expectation of the objec-
tive function [9]. However, existing studies on DAG scheduling that model
the execution times as random variables [9, 11, 12] all assume that the ran-
dom execution times follow some well-known probability distributions such
as Gaussian or Weibull distributions. Although this assumption allows one to
exploit the mathematical properties of the particular distribution to simplify
analysis, such distributions do not always hold in real-world applications. For

2

example, if robots are assigned distinct behaviors when they are operating
indoors versus outdoors (as in our motivating SAR problem), the execution
time of the same task may vary significantly due to environmental dynamism,
thus making its probability distribution discrete rather than continuous and
difficult to fit by Gaussian or Weibull functions. Another important example
has been demonstrated in [13], where the probability distributions of natural
image data are shown to be long-tailed, and thus non-Gaussian. Thus, we
do not assume a specific type of probability distribution to characterize the
random execution times of subtasks.

For the proposed SHPC-DAG system model, we develop a novel parti-
tioned scheduling algorithm called Least Latency Partitioned (LLP) schedul-
ing consisting of a node-to-processor allocation strategy and a scheduling
algorithm. Compared with the heuristics proposed in [6, 14], our method
utilizes the precedence constraints among subtasks to select the proper pro-
cessor for allocation, aiming at maximal parallel execution and minimal end-
to-end latency. Importantly, our algorithm has polynomial time complexity
in the size of DAG. The Safety-Performance (SP) metric from the study [15]
enables a holistic mission objective in safety-critical systems. The SP metric
ensures safety first and then utilizes remaining timing slack to maximize per-
formance, capturing the idea that additional timing slack may not necessarily
yield a safer system. For robotic systems with complex mission objectives in
dynamic environments, the system may not always need to prioritize safety
concerns, especially when no human is involved. Instead, broader mission
objectives that also take into account performance may better describe the
system needs, which leads to the key idea of SP metric to capture such
safety-performance trade-offs. Our proposed scheduling algorithm utilizes
such metrics in both the allocation and scheduling processes.

This paper studies the stochastic version of the restricted assignment
scheduling problem (RASP) [5]. A specific model with similar assumptions
has also been posed by the 2021 edition of the Real-time Systems Symposium
(RTSS) Industry challenge. To the best of our knowledge, this paper is the
first to consider the stochastic version of the RASP problem (S-RASP) and
makes the following contributions.

• We introduce a novel SHPC-DAG task model that captures the stochas-
ticity of the uncertain environment.

• We propose a novel partitioned scheduling algorithm LLP to optimize
the SP metric. It leverages the precedence constraints among subtasks

3

to maximize parallel execution. We show the algorithm has polynomial
time complexity in the size of the DAG.

• The proposed method LLP outperforms the scheduling algorithm in
HPC-DAG [6] under hard timing constraints, and performs even bet-
ter when changing hard timing constraints to probabilistic constraints.
Our simulation results show an improvement of up to 50% in the ac-
ceptance ratio on random synthetic DAG tasksets.

The paper is organized as follows. Section 2 describes the proposed
SHPC-DAG model. Section 3 gives a brief introduction to the SP metric.
Section 4 and 5 illustrate the proposed allocation strategy and scheduling
algorithm. Section 6 evaluates the proposed algorithms. Section 7 reviews
the related work. Finally, Section 8 concludes our paper with future research
directions.

2. System Model

2.1. Motivating Applications

Many applications of real-time systems, such as autonomous robots, op-
erate in changing environmental conditions (called contexts) [16, 17, 18]. To
clarify our work, we consider the following definition:

Definition 2.1. (Context (CT X)). A context of operation for a real-time
system is a set of detectable environment features that are associated with
a set of computational tasks and timing requirements. Each distinct context
(including the unknown context) is associated with an integer index that
takes values in a finite set,

ctx ∈ N ,N = {0, 1, 2, . . . } (1)

Contexts are required system behavior (computation and timing require-
ments) based on the specific nature of the operational environment. We
argue that although operational environments can contain various uncer-
tainties and unknowns (especially for robots) as well as continuous inputs
to a system that are not easily quantizable, for many applications there still
remain detectable environment features that dictate a system’s desired be-
havior and timing requirements. For instance, when a mobile robot traverses
an environment with humans nearby, the responsiveness of vision-based de-
tection and robot motion controllers is critical as collisions with humans are

4

unacceptable [19]. On the other hand, a recent trend in robotics is that not
all collisions are bad [20], and thus if a robot is operating with no human
presence the requirements on vision and motion responsiveness can be re-
laxed. In this example, the vision-based detection of nearby humans (e.g.,
see [21]) indicates the nature of the operational environment, and from this
(potentially imperfect) detection the required system behavior can be set.
We aim to capture such relationships in the models and algorithms proposed
in this work.

Safety standards for software development in safety critical systems vary
in different domains [22]. Development of software for general safety critical
systems usually follows IEC 61508 [22, 23], which performs risk analysis
and specifies the appropriate safety integrity level (SIL) for each function.
Another example is the RTCA DO-178B that is applied to airborne software
development [24]. In this work, we define the notion of time sensitivity
level (TSL), which refers to the safety levels of subtasks and reflects any
priorities that may exist between functionalities and subsystems under a
specified safety standard.

Definition 2.2. (Time sensitivity level (TSL)). TSL is the criticality of the
subtask regarding its functionality, determined by software safety standard
and application requirements. It takes values in the set of positive integers,

tsl ∈ Z+,Z+ = {1, 2, 3, ...} (2)

According to application-dependent criticalities, TSLs of all subtasks help
to form an ordering in the taskset. The larger the TSL, the earlier the sub-
task should be guaranteed to schedule for meeting application requirements.
For example, subtasks along a computational path for pedestrian detection
would certainly be scheduled as early as possible for autonomous applications
[25], without violating precedence constraints. Note that if the criticalities of
the subtasks (i.e., functionalities) are not specified in the application require-
ments and safety standards, we set all TSLs to the same values by default.

2.2. Assumptions

We state our assumptions first for better clarity. We study a single-
rate DAG with the event-driven activation model, which assumes the same
activation periods for all subtasks in the DAG [26]. Contrary to the multi-
rate DAG in [27] where all subtasks activate periodically and independently,
the event-driven activation model is a single-rate model where subtasks are

5

activated simultaneously and execute in the order constrained by data de-
pendencies. Therefore, the intra-task interference could be eliminated as in
single-rate DAG, each subtask is executed only once by following the prece-
dence constraints. In [27], a method is proposed to convert a multi-rate DAG
with timing constraints to a single-rate DAG. Specifically, each subtask exe-
cutes a number of jobs within one hyper-period according to its period, and
synchronization constructs are inserted in the DAG to guarantee that the
original multi-rate DAG and the converted single-rate DAG have equivalent
temporal requirements. Due to the existence of this conversion [27], our re-
sults for single-rate DAG could be applied to multi-rate DAGs without loss of
generality. Finally, we assume DAG subtasks are executed non-preemptively.

2.3. Stochastic Heterogeneous Parallel Conditional DAGs

We propose a new DAG task model, the Stochastic Heterogeneous Par-
allel Conditional Directed Acyclic Graph (SHPC-DAG), which incorporates
both timing and resource constraints for safety-critical systems. Our obser-
vation is that computational pipelines may be executed conditionally due
to uncertainty, recognizing that not all outcomes of computational subtasks
can be perfectly predicted in real-world applications (e.g., extreme events).
Also, the execution times of tasks may not be perfectly known before run-
time and may vary significantly online due to environmental dynamism and
conditions of the hardware platform. Scheduling according to the worst-case
execution time (WCET) may be overly pessimistic. Hence, the SHPC-DAG
model contains two significant extensions compared to the most recent HPC-
DAG model. The first is that the execution time of a computational subtask
is assumed to follow a probability distribution rather than the WCET. The
second is that stochastic conditional nodes and probabilities associated with
their outgoing edges are added to model computational path selection.

Definition 2.3. A real-time application can be modeled by a SHPC-DAG,
denoted as G = (V , E , f, Type, Tag, TSL), where:

• V = {v1, v2, . . . , vn} is the set of nodes in the graph. Each of the
n nodes vi ∈ V is a subtask which represents a block of code that
executes on a specific type of processor. Hence, there are n subtasks in
the application.

• E ⊆ V × V is the set of edges among subtasks that indicates the data
dependencies, with associated probabilities indicating the likelihood of

6

edge traversal during execution. This will be introduced in the next
subsection along with the stochastic conditional node.

• f = {f1, f2, . . . , fn} is the set of probability distribution functions that
characterize the possible values of the subtasks’ execution times. Each
fi can either be discrete (i.e., probability mass function (PMF)) or
continuous (i.e., probability density function (PDF)). For both PMF
and PDF, the inputs are the random execution times of subtasks. For
PMF, the execution times take discrete values in the set of positive
integer numbers Z+ = {1, 2, 3, ...}. Each discrete execution time will
be associated with a probability (i.e., the function output) and the sum
of all probabilities equal to one. For PDFs, the random execution times
take continuous values in a certain range with lower and upper bounds.
The integration of probability density over this range equals to one.

• Type = {type1, type2, . . . , typen} is the set of operation types of all
nodes in V . This may include stochastic Conditional nodes, for which
the formal definition is given in section 2.4. For applications such as au-
tonomous driving, other potential node types may include Sensor and
Sync, which represent the sensor inputs and synchronization constructs
of the application, respectively.

• Tag = {tag1, tag2, . . . , tagn} indicates the type of processors that each
task in V should run on, e.g., CPU, GPU, etc.

• TSL = {tsl1, tsl2, . . . , tsln} is the set of TSLs for all nodes in the graph.

Lastly, we adopt the formal definitions of safety-critical paths and nodes
in [15] to equip SHPC-DAG with safety-critical features.

Definition 2.4. (Safety-critical path [15]). A safety-critical path consists
of a chain of computational tasks that together achieve a critical function-
ality/feature regarding the safety aspect of the application (also known as a
critical cause-effect chain).

Let C denote the set of DAG paths that are safety-critical where each
path is indexed as ℓi, ℓi ∈ C. There may exist many paths in a SHPC-DAG
but not all of them are critical to the safety aspect of the application. The
determination of safety-critical paths is highly dependent on the application
functionality and requirements.

7

Detection/Depth Estimation

SLAM

Simultaneous Localization And Mapping

(SLAM)

Synchronization

Tasks/Jobs
TATask Allocation (TA)

Number of obstacles s > N?

Path Planning

Path Planning

HL Control

HL Control

High Level (HL)

Event Generation Pipeline

Camera Images

LIDAR point

cloud

Sensor Fusion

Figure 1: An illustrative example of our SHPC-DAG model with typical computational
kernels and precedence constraints for subsystems seen in autonomous driving or robotic
search and rescue.

Definition 2.5. (Safety-critical node [15]). Safety-critical nodes are subtasks
along computational paths that achieve some safety-critical functionality of
the application.

s =

{
True, safety-critical node

False, non-safety-critical node

Note that the deadline of a safety-critical node may be independent from
the timing requirements of the paths it is associated with. For some au-
tonomous applications, meeting the deadlines of the application or computa-
tional path alone cannot guarantee the safety in real operation. For example,
in Simultaneous Localization and Mapping (SLAM), mapping should always
be updated on time to ensure that subsequent tasks operate with a correct
map of the environment, which is critical for safety [28]. Thus, the mapping
subtask itself will have an individual deadline in addition to the deadline of
the entire computational path. As in the above definition, an additional set
of node attributes S = {s1, s2, . . . , sn} with boolean values are used to indi-
cate whether the nodes are safety-critical or not. The set of safety-critical
nodes is denoted as Vc, and we have Vc ⊆ V .

8

An illustrative system modeled by the proposed DAG framework is given
in Figure 1. Such a computational setup may be seen as a subsystem in,
for example, autonomous driving or robotic search and rescue. Robotic sys-
tems are equipped with sensors (e.g., cameras, lidars), which take measure-
ments of the surrounding environment. The sensors’ measurements could be
asynchronous due to different sample rates. In the Robot Operating System
(ROS) framework, it provides several configurable sensor fusion packages that
can handle asynchronous multi-rate measurements [29], which is denoted as
the sensor fusion node in Figure 1. The combined inputs are then passed
to the computational subtasks (e.g., path planning, localization and map-
ping) for further processing. Since the whole subsystem about path planning
is crucial for safety problems in autonomous driving, all the path planning
subtasks in both branches are labeled as safety-critical nodes. Based on the
environment that is of a cluttered, uncertain nature, the conditional node
(denoted as a diamond box in the figure) selects which computational path
is used for path planning. We explain that in the next subsection.

2.4. Stochastic Conditional Nodes in DAG Models

SHPC-DAG contains a novel stochastic conditional node structure to
capture the stochastic nature of real-time applications during run-time. Such
type of nodes enables the selection of computational paths in a DAG based on
contexts that occur under uncertainty. Let m denote the number of possible
contexts that can occur during execution (e.g, environmental conditions),
and let CT X = {ctx1, ctx2, . . . , ctxm} denote the set of all contexts. The
specific context that the application will have during execution is unknown
before run-time. During execution, the context will be determined by real-
time information (e.g., sensor inputs) and the embedded detector. In most
existing works, they consider the context returned by the detector as a single
deterministic context across CT X . However, due to the imperfectness of
the detector, it may misjudge the current context. To consider such case,
we propose to use a probability distribution to represent the probability of
occurrence of all possible contexts rather than a single deterministic result.
The attributes (e.g., execution time, processor tag) of the nodes in the SHPC-
DAG will depend on the corresponding context.

Definition 2.6. (Probability Distribution of Context Detection) The de-
tected context of the real-time application will follow a probability distribu-
tion P (ctx), ctx ∈ CT X based on real-time information. The sum of proba-

9

bilities associated with all possible contexts will be 1, i.e.,
∑m

i=1 P (ctxi) = 1,
where m is the number of distinct contexts.

Let k denote the number of all possible branches (i.e., outgoing edges)
that a stochastic conditional node has and B = {b1, . . . , bk} denote the set
of all branches. Each branch is associated with a distinct context ctx. We
assume k ≤ m to make sure that each branch represents a distinct context
and execution path that will not duplicate. During execution the stochastic
conditional node will select only one branch to execute with probability P (bi),
thus

∑k
i=1 P (bi) = 1.

The probability that a real-time application executes along a specific ex-
ecution branch depends on the detected context during run-time. When re-
ceiving the input data from sensors, the embedded detector may determine
the current context is ctxi. However, due to the imperfectness of context de-
tection, the actual context could be ctxj (j ̸= i). This stochasticity needs to
be considered when calculating the probability P (bi) of selecting each branch.

Definition 2.7. (Probability for Each Branch of Conditional Node). Sup-
pose a stochastic conditional node has k outgoing branches under the as-
sumption of m possible contexts in total and k ≤ m. The branch bi will be
selected only if the detected context ctxj satisfies the condition of branch bi
(determined by the conditional statement in conditional node). The proba-
bility P (bi) of selecting branch bi is

P (bi) =
m∑
j=1

P (bi|ctxj) · P (ctxj) (3)

which should satisfy 

k∑
i=1

P (bi) = 1

m∑
j=1

P (ctxj) = 1

Note that the P (bi|ctxj) term will be determined by the accuracy of the
detector2. The classification of the context is conducted by the embedded

2In cases where perfect context knowledge exists, our definition for the stochastic con-
ditional node collapses to a classical conditional node with fixed probabilities associated
with each outgoing edge, as in [10].

10

Sensor High quality image?

High quality image in
illuminated environment

Synchronized data

High quality image in dark
environment

Synchronization

CPU branch

Low quality image in
illuminated environment

Low quality image in dark
environment

GPU branch

Figure 2: An illustrative example of the structure of our proposed stochastic conditional
node.

detector in robots [21].
Figure 2 illustrates the idea of stochastic conditional node considering two

possible contexts: illuminated environment (i.e., ctx1) and dark environment
(i.e., ctx2). The conditional statement embedded in the conditional node de-
termines whether the data collected is of high quality or low quality (e.g., the
collected images are clear or not), and selects execution branch accordingly.
We consider the stochasticity by associating edges of conditional nodes with
conditional probabilites. For example, it is highly likely that robot could
collect clear images of surroundings in a well-illuminated environment (i.e.,
P (b1|ctx1)). However, the context detector is imperfect. The result of detec-
tion could be a dark environment, but still with good quality images (i.e.,
P (b1|ctx2)). Either case will lead to the upper execution branch.

3. Safety-Performance Metric

Our proposed scheduling approach (Sections 4 and 5) requires an ob-
jective function to optimize when selecting appropriate schedules. While
a typical function such as makespan can be used, we consider a metric
that identifies safety-critical nodes and paths in our SHPC-DAG, allowing
our scheduler to ensure safety wherever necessary and then exploit remain-
ing timing headroom to maximize performance. Specifically, we exploit the
Safety-Performance (SP) metric from the study [15], which defines a series of
penalties/rewards based on violating/satisfying timing constraints in a DAG.
In this work, the term safety refers to the concept of nominal safety, where
the timing of software modules below predefined thresholds can contribute to

11

unsafe behaviors in autonomous systems. Its definition has been well cited
in the autonomous vehicles (AV) area [30, 25].

Below we briefly summarize the definition of SP metric, starting with the
calculation of the response time probability distributions for the nodes and
paths in the graph model.

3.1. Response time probability distributions

When calculating the response time distribution of nodes and safety-
critical paths, we need to consider the maximum and summation operations
of independent random execution times characterized by probability distri-
butions. For many data-driven projects in practice, the analytic form of
the probability density function of execution time may not be available. In-
stead we have measurement data from experiment or simulation in different
environments, i.e., a probability mass function (PMF) defined at discrete
points. The subtask will be executed multiple times on the target hardware
according to several distinct context of operations and measure execution
times under each of the context [31]. Therefore, in this work we analyze the
random variables characterized by PMFs.

Consider X and Y as two independent random variables with PMFs re-
spectively. Let Z be the maximum of X and Y , i.e., Z = max(X, Y), S be
the summation of X and Y . We define the operations as follows.
Maximum Operation. Consider a node in SHPC-DAG that has multiple
predecessors (i.e., the nodes from which there exists a path to the current
node) of which the response times are characterized as probability distribu-
tions. The earliest possible time instant of this node to start execution is
determined by the maximum response times among all its predecessors, de-
noted as starting time (ST). From basic probability theory, the cumulative
distribution function (CDF) FZ(z) of maximum of two independent random
variables X and Y is given as,

FZ(z) = P (max(X, Y) ≤ z) = P (X ≤ z, Y ≤ z)

= P (X ≤ z)P (Y ≤ z) = FX(z)FY (z)
(4)

Based on CDFs of X and Y , we could find the PMF of z by,

P (z) = FX(z)FY (z)− FX(z − 1)FY (z − 1) (5)

where z ≥ 1 and takes only integer values, this process terminates when
FZ(z) = 1 since FZ(z) =

∑
z=1 P (z). For node with multiple predecessors

(e.g., more than two), (4) and (5) can be extended in the same way.

12

Summation Operation. The density function of the summation Z of two
independent random variables X and Y is the convolution of the density
functions of the individual random variables [32, 33].

P (Z = z) =
∞∑

k=−∞

P (X = k)P (Y = z − k) (6)

For discrete convolution in the time domain, we have each probability mass
represented as a data point in an array of length N . To speed up the calcula-
tion, the Fast Fourier transform (FFT) is applied to efficiently compute the
above multiplication when N is a power of 2, yielding improved time com-
plexity O(Nlog(N)). It is known that the convolution of two functions is
the inverse Fast Fourier transform (IFFT) of the product of their individual
Fourier transforms, therefore we could obtain the PMF of Z by taking the
IFFT of the product.

Note that the response time distribution of safety-critical paths is not
simply the linear summation of the nodes’ execution times along the path.
Instead, the precedence constraints in DAG and resource constraints should
both be taken into account when analyzing the response time distributions,
which is different from the work [32] that also considers tasks with proba-
bilistic parameters.

Definition 3.1. (Starting time). The probability distribution of node vi’s
starting time (ST) is determined by the maximum response time (RT) dis-
tributions, defined by (4) and (5), among all its predecessors and the nodes
scheduled ahead of it on the same processor,

STi = max
vj∈pred(vi)∪ahead(vi)

RTj (7)

Definition 3.2. (Response time). The probability distribution of node vi’s
response time (RT) is the convolution of its starting time (ST) and execution
time (ET), both characterized by probability distributions, where * denotes
the convolution operation

RTi = STi ∗ ETi (8)

The response time of a safety-critical path is equal to the response time of
its ending subtask.

13

3.2. Safety-Performance Metric

To begin with, we give the formal definition of penalty in the SP met-
ric when safety-critical paths and/or critical nodes violate their timing con-
straints [15].

Definition 3.3. For a given schedule S, the penalty for safety-critical paths
that violate their timing constraints is given by:

fp
cp(S) =

∑
ℓi∈Cus

pcp(P (Rℓi > τℓi)− λℓi) (9)

Here Cus denotes the set of safety-critical paths that violate a probabilistic
timing constraint, i.e., P (Rℓi > τℓi) > λℓi . The random variable Rℓi denotes
the response time of a critical path ℓi. τℓi is the nominally safe response
time (i.e., deadline) for path ℓi, and λℓi is the probabilistic timing constraint
for ℓi. fp

cp(S) represents a penalty term (p) for critical path violations (cp)
based on schedule S with a generic penalty function pcp(·).

Equation (9) can be interpreted as penalizing every violating critical path
based on the deviation from its probabilistic timing constraint. This equation
can also deal with systems that have hard timing constraint by setting λℓi =
0, which requires that the response time will always meet the nominally safe
response time, i.e., Rℓi ≤ τℓi . If none of the safety-critical paths violate their
timing constraints with schedule S, the penalty fp

cp(S) = 0.

Definition 3.4. For a schedule S, the penalty for the safety-critical nodes
that violate their timing constraints is given by:

fp
cn(S) =

∑
vi∈Vus

pcn(P (Rvi > τvi)− λvi) (10)

Here Vus denotes the set of safety-critical nodes that violate a probabilistic
timing constraint, i.e., P (Rvi > τvi) > λvi . Similar to the terms in the
definition of penalty for critical paths, Rvi , τvi and λvi denote the response
time, nominally safe response time, and probabilistic timing constraint of vi,
respectively. If there are no safety-critical nodes that violate their timing
constraints based on schedule S, then Vus = ∅ and fp

cn(S) = 0, yielding no
penalty.

Next, we introduce rewards gained when timing constraints for safety-
critical paths are all satisfied. The reward term can be non-zero only when
there exists no critical path or node that violates its timing constraints.

14

Definition 3.5 (Path Reward). The reward for all paths, assuming safety-
critical timing constraints are satisfied, is given by:

f r
path(S) =

[∑
ℓi∈C

rs,ℓipath(λℓi − P (Rℓi > τℓi)) + rp,ℓipath(Rℓi)
]
+
∑
ℓi /∈C

rp,ℓipath(Rℓi) (11)

Definition 3.6 (Node Reward). The reward for all nodes, assuming safety-
critical timing constraints are satisfied, is given by:

f r
node(S) =

[∑
vi∈Vc

rs,vinode(λvi − P (Rvi > τvi)) + rp,vinode(Rvi)
]
+

∑
vi /∈Vc

rp,vinode(Rvi)

(12)

Here f r
path(S) and f r

node(S) represent the reward term (r) for all paths and
nodes respectively, regardless of whether they are safety-critical or not. The
generic reward functions rs,ℓipath(·), r

p,ℓi
path(·), r

s,vi
node(·), r

p,vi
node(·) separately reward

safety margins (s) and system performance (p) based on timing for path ℓi
and node vi.

Finally, with all terms defined, we design our scheduler to optimize the
overall safety-performance metric defined as a weighted sum of terms (9)-(12).
This yields a schedule that trade off safety and system performance relative
to probabilistic timing constraints. An example for the penalty functions is
a linear operator, e.g., pcp(x) = γx, yielding a weighted penalty for timing
constraint violation. For the safety reward functions, an example is a sigmoid
function, e.g., rspath(x) = 1/(1 + exp−x), which models diminishing returns
of rewards for increasing safety margins. For the non-critical, performance-
based reward functions one could consider the right-hand tail of the response
time distribution, e.g., rspath(Rvi) = P (Rvi > x), with x defined as a response
time threshold that yields higher quality computational output. One clear
case of such a timing-performance relationship can be seen in the traveling
salesperson problem (TSP), where increasing computational time can allow
for significantly improved TSP tours as branch-and-bound techniques can be
used instead of greedy solutions [34]. Finally, it is important to note that
instead of transforming the conditional DAG into an ordinary DAG (e.g.,
[35]), we directly analyze the conditional DAG on a path-basis for calculating
the SP metric (details in Section 5). This avoids the cost of additional DAG
transformation and helps focus on the conditional branching of safety-critical
paths.

15

4. The LLP Scheduler: Subtask Allocation

We consider partitioned scheduling for the SHPC-DAG task model on
heterogeneous hardware platforms. Partitioned scheduling has low run-time
overhead due to the absence of thread migration compared to global schedul-
ing [6, 36], and the proper partitioning (i.e., allocating subtasks onto the
processors) is typically determined before scheduling [14]. In this section,
we propose a novel partitioned scheduling algorithm called Least Latency
Partitioned (LLP). It utilizes the proposed SHPC-DAG task model and SP
metric to maximize the probabilistic reward of all safety-critical paths and
nodes, while meeting their timing and performance requirements.

The existing work of HPC-DAG proposed two different allocation meth-
ods that allocate the subtasks on a minimal number of processors and sched-
ule with Earliest Deadline First (EDF) algorithm on each processor [6]: Se-
quential Allocation (HPC-s) and Parallel Allocation (HPC-p). In HPC-s,
subtasks with the same processor tags could be allocated on a single proces-
sor if the schedulability test is passed. If HPC-s fails, HPC-p will remove one
subtask at a time and reallocate it on another available processor until the
remaining subtasks could be schedulable on a single processor.

Our proposed LLP allocation method takes additional factors into ac-
count to maximize parallel execution of subtasks and to reduce end-to-end
path response times. First, LLP avoids situations where processors remain
idle during run-time when subtasks are ready to execute. Since we consider
a non-preemptive model, the computing power of all available processors
should be utilized to maximize parallel execution. Second, LLP considers the
precedence constraints among subtasks during allocation, while HPC-DAG
uses simple heuristics (i.e., best-fit (BF) or worst-fit (WF)) to determine the
allocation. Third, in addition to precedence constraints, LLP further sorts
the subtasks according to the their TSLs, while in HPC-DAG the orderings
of subtasks that do not belong to the critical path (i.e., the path with the
longest response time) are not specified.

The main idea of LLP is to utilize precedence constraints among subtasks
and TSLs in both allocation and scheduling processes to reduce end-to-end
latency and maximize the SP metric of safety-critical paths and nodes. The
LLP allocation process can be divided into the following steps.

Assign time sensitivity levels (TSLs) to subtasks. The TSLs of sub-
tasks are highly dependent on the application requirements and the applied

16

safety standards. Based on the functionality regarding the safety aspect of
the application, each path will be assigned a TSL according to the specific
safety standard (e.g., IEC 61508) that is applied to the system. For safety-
critical nodes along the path, they will be assigned a higher TSL. Note that
for subtasks that are predecessors of the ones along the safety-critical paths,
we use the backward propagation to update their TSLs by inheriting the
maximal TSL among all their successors. If the TSLs of the subtasks are
not specified in the application requirements, we sort all the safety-critical
paths in the SHPC-DAG by expected value of lengths in decreasing order.
Subtasks along the safety-critical path with largest expected value of length
will be assigned highest TSL. The subtasks along shorter safety-critical paths
will be assigned incrementally smaller TSLs until all subtasks are traversed.

Partition SHPC-DAG based on tags. Based on the processor tags (e.g.,
CPU, GPU) associated with subtasks, we divide the SHPC-DAG into differ-
ent subgraphs. Each processor tag will be associated with a set of subtasks
and processors, respectively, that have the same tags. Subtasks will only be
allocated to their corresponding set of processors.

Sort subtasks according to dependencies and TSLs. To respect the
precedence constraints in SHPC-DAG, we use topological sort to obtain com-
plete linear ordering(s) of the subtasks. If two subtasks are independent with
each other, the relative order is determined by the TSLs of the subtasks. The
larger the TSL, the earlier the subtask appear in the ordering. This is to guar-
antee that the more time-sensitive nodes are selected to allocate ahead when
computing resources are less occupied.

Allocate subtasks to processors by LLP. The procedure of allocating
subtasks to computing resources is summarized in Algorithm 1. The sub-
tasks are traversed from the beginning of each ordering (Line 1-3). Only the
processors with the same processor tag as the current node will be considered
at each iteration.

If the current subtask vi has no predecessor with the same tag, we traverse
all the processors with the same tag as vi and use the worst-fit (WF) strategy
to select the target processor for allocation (Line 4-5). The reason is that if
vi has no predecessor with the same tag, then it is ready to execute once all
its predecessors (with different tags if any) finish execution and we want to
find the least occupied processor for it to start as soon as possible.

17

If vi has exactly one predecessor predi with the same tag, and predi has no
other successors with the same tag (i.e., siblings of vi), we allocate vi to the
same processor pi of predi (Line 6-9). Since vi can only start execution after
predi due to the precedence constraint, allocating vi to a different processor
pj will force it to remain idle until predi finishes execution, while during this
interval, other subtasks without dependencies between vi could execute on
pj to maximize parallelism.

If vi does have one predecessor with the same tag and one of its siblings
has been allocated to the same processor of the predecessor, then we traverse
all processors with the same tag as vi and find the target processor by WF
to allow vi to start execution as soon as possible (Line 10).

If vi has multiple predecessors, due to the dependencies, vi can only start
execution once all of its predecessors finish execution. Among all the proces-
sors on which vi’s predecessors have been allocated, find the most occupied
one by the Best-fit (BF) strategy (Line 11-14) among all processors with the
same tag.

We provide a sketch of proof by cases to demonstrate that LLP will always
find an allocation with smaller or equal end-to-end latency than HPC-s and
HPC-p methods in [6].

Proof. If for a specific tag t, the platform only has one corresponding pro-
cessor with the same tag, then both LLP and methods of HPC-DAG will try
to allocate all nodes on the single processor. The results of allocation will be
the same. Else if there are multiple processors with tag t, allocation based
on HPC-s and HPC-p will try to fill processors sequentially and may leave
remaining processors idle during the execution, while LLP tries to utilize
the computing power of all available processors to reduce latency. Assuming
the same scheduling algorithm for each single processor for both methods,
in the cases where allocation by HPC-p occupies all processors as well, LLP
additonally utilizes the precedence constraints and parallelism among sub-
tasks to maximize parallel execution, thus generating an allocation with less
end-to-end latency for safety-critical paths.

5. The LLP Scheduler: Scheduling

5.1. Scheduling Algorithm
For a single-rate (explained in Section 2.2) and non-preemptive SHPC-

DAG, we propose a scheduling algorithm coupled with the allocation algo-
rithm. In the work about HPC-DAG [6], the authors proposed that Earliest

18

Algorithm 1 LLP Allocation Algorithm
Input:

T : Set of processor tags.
L: Set of sorted orderings for all types of processor tags.
n: Cardinality of the set n = |T | = |L|.

1: Initilaize index k ← 1.
2: while k ≤ n do t← Tk, l ← Lk

3: for (vi : l) do
4: if vi has no predecessor in l then
5: Allocate vi to the processor with tag t by WF.
6: else if vi has one predecessor in l then
7: if None of vi’s siblings has been allocated then
8: Allocate vi to the same processor
9: of its predecessor.

10: else Allocate vi to the processor with tag t by WF.

11: else if vi has multiple predecessors in l then
12: Among all the processors onto which vi’s
13: predecessors have been allocated, allocate vi to
14: the processor with tag t by BF.
15: else
16: The allocation of vi fails. Terminate and return failure.

19

Deadline First (EDF) and Deadline Monotonic (DM) could be a representa-
tive scheduler for each processor, given that the intermediate deadlines of sub-
tasks have been assigned. Their methods respect the precedence constraints
in DAG automatically but lack the considerations of TSL and stochasticity
in our problem.

We illustrate the idea of LLP scheduling algorithm. A feasible schedule
on each processor should satisfy two requirements: (1) the precedence con-
straints among subtasks should not be violated and (2) subtasks with higher
TSLs should be guaranteed to execute ahead. As stated in Section 4, the
SHPC-DAG is partitioned by processor tags. For each processor tag, the
topological sorting is applied to obtain the linear ordering Θ of all subtasks
per tag. For each processor, the set of subtasks allocated upon it is denoted
as V . For these subtasks, the initial schedule Si is obtained by sorting sub-
tasks according to Θ with the same tag (Line 3-7). The schedule is then
adjusted by re-sorting subtasks with higher TSLs to the front of the schedule
without violating the precedence constraints (Line 8-13). Pseudo code of the
algorithm is given in Algorithm 2.

5.2. Schedulability analysis

In this section, we assume that subtasks have already been assigned TSLs
and safety-critical labels, and they have been allocated on the corresponding
types of processors. We present the schedulability analysis to test if all tasks
respect their deadlines when scheduled by the LLP algorithm and SP metric.

Definition 5.1. Let G be a SHPC-DAG that is allocated to the hardware
platform and the obtained schedule is S under LLP algorithm. Let V be the
set of all safety-critical nodes and L be the set of all safety-critical paths.
Denote τvi and τli as the deadlines of the safety-critical nodes and paths
respectively. The λvi and λli are the probabilistic timing constraints used in
SP metric.Task G is schedulable by LLP if and only if,

P (Rvi > τvi)− λvi < 0, ∀vi ∈ V
P (Rli > τli)− λli < 0, ∀li ∈ C
(f r

node(S) + f r
path(S))− (f p

cn(S) + f p
cp(S)) > 0

Based on the definitions in Section 3.2, the SP metric is defined as the
sum of all penalties and rewards. If the timing constraints of safety-critical
nodes/paths are violated, the whole taskset is deemed as unschedulable.

20

Algorithm 2 LLP Scheduling Algorithm
Input:

Θ: Linear ordering of subtasks with the same tag as current processor.
V : Set of subtasks allocated to the current processor.
N : Cardinality of the ordering Θ, N = |Θ|.
n: Cardinality of the set V , n = |V |.

Output:
S: Final schedule of the current processor determined by LLP.

1: Initialize indices i, j, k ← 1.
2: Initial schedule Si = ∅, final schedule S = ∅.
3: for i = 1:N do
4: Search each subtask vi in Θ from the beginning.
5: if vi ∈ V then
6: Si.push back(vi).
7: remove vi from Θ.

8: Adjust initial schedule Si by LLP.
9: for j = 1:n do

10: for k = 1:j do
11: if Si[k].TSL ≤ Si[k+1].TSL
12: &&(!is predecessor(Si[k],Si[k+1])) then
13: swap(Si[k], Si[k + 1]).

14: S = Si.
15: return S.

21

The constraints of these safety-critical nodes/paths can be independent from
those of the whole taskset and must be met to ensure safety. Based on this, if
the sum of rewards (i.e., f r

node(S) for nodes and f r
path(S) for paths) is greater

than penalties (i.e., f p
cn(S) + f p

cp(S)), then task G is deemed as schedulable
under LLP algorithm and SP metric.

5.3. Time complexity analysis

We give the time complexity analysis of the proposed partitioned schedul-
ing algorithm which includes both the allocation and scheduling parts. De-
note N as the number of subtasks in SHPC-DAG, and nt as the number of
subtasks for one specific tag (e.g., CPU). Similarly, denote K as the num-
ber of all processors and kt as the number of processor with a specific tag.
In general, we have N ≥ nt and K ≥ kt since a SHPC-DAG task might
contain computing subtasks that should be executed upon different types of
processors.

For the LLP allocation algorithm, the first step is to update the TSLs of
each subtask and the subtasks will inherit the TSLs of their successors, if any,
in the SHPC-DAG. Since the safety-critical paths and nodes are predefined
by users, for each subtask vi, we need to check the dependency between
every subtask and vi. If the precedence constrains exist, the TSL will be
updated accordingly. For each tag this process will have complexity O(N ∗
(N − 1)/2) = O(N2). The time complexity of topological sort is O(N +
E), where N is the number of subtasks in graph and E is the number of
edges connecting subtasks. It is upper bounded by O(N2). During step 4
the worst case will require the subtask to traverse all the processors with
the same tag to find the most suitable one, which requires kt ∗ O(n) at
most. The overall time complexity of allocation is O(N2) + O(N2) + kt ∗
O(nt) = O(N2). For the scheduling part on each processor, the overall time
complexity will be upper bounded by K ∗ O((nt)

2). In a real application,
the number of processor on platform K is relatively small compared to the
number of subtasks N in application. Therefore the overall time complexity
of the proposed partitioned scheduling algorithm is O(N2).

6. Evaluation

In this section, we evaluate the performance of our proposed allocation
and scheduling algorithm against the state-of-the-art. The test platform
simulates NVIDIA AGX, a widely used hardware in robotic applications.

22

Table 1: Exemplary computational kernels for realistic robotic systems (time in seconds)

Name Deadline (s) Tag WCET Avg.ET
LOAM SLAM 15 CPU 26.5 12.7

RRT Path Planning 50 CPU 20 15
Task allocation 50 CPU 45 30
MPC HL Control 0.01 CPU 0.16 0.01

Midas Depth Estimation 0.5 GPU 0.35 0.32
PWC-net Optical Flow 0.5 GPU 0.57 0.5

It contains 8 CPU processors and 2 GPU processors. Each processor is
considered as a single computing resource [6], i.e., only one subtask at a time
is executed on each processor.

We compared the proposed LLP algorithm with recent works that are
closely related to multiprocessor DAG scheduling.

• HPC-s and HPC-p. These are two partitioned scheduling meth-
ods originally developed for HPC-DAG models on heterogeneous plat-
forms [6, 37].

• AG-partition. A partitioning heuristic for DAG scheduling on mul-
ticore platforms with identical cores [38]. We partition the DAG task
graph into subgraphs by the processor tags of subtasks first, then apply
AG-partition to each subgraph.

• UGC. A hierarchical scheduling algorithm based on reservation sys-
tems for DAG scheduling on homogeneous multi-processor platforms
in study [10]. For fair comparison, the number of reservation servers
is set to the number of processors per processor tag. The execution
time budget is set to the deadline of DAG for the spinning reservation
system.

• A simulated annealing (SA) method.

6.1. Taskset Generation

To validate our task model and scheduler, we conduct experiments on
both synthetic tasksets and a real-world robotic application.

6.1.1. Synthetic Tasksets Generation

Since a robotic system typically contains a base set of computational
subtasks that are widespread in robotic applications, we consider a list of

23

such subtasks in the design of experiments. A comprehensive data analysis
of execution times for such subtasks has been carried out in the study [39].
We take the data from that study to define the execution time probability
distributions needed for generating synthetic tasksets, lending practical rel-
evance to our experimental design. Table 1 summarizes the execution time
statistics of those representative subtasks. It also gives the other temporal
characteristics including subtask deadline and tag.

We select the autonomous robot navigation, one of the most important
problems in robotics, as the test scenario. We define two contexts that are
used to construct the stochastic conditional node. As the robot could operate
in either a crowded environment with the interference from obstacles and
pedestrian, or a spatial space with only few obstacles, the contexts can be
defined as crowded or spatial. The generation process of taskset is based on
well-known methods in the real-time systems literature, as detailed below.

• Type. The type of each subtask is initialized as Computing. The
type can be changed to Conditional in following step if the subtask is
selected as stochastic conditional node.

• Tag. The processor tag assigned to each subtask could either be CPU
or GPU, each with an equal probability of 0.5.

• Probabilities. The probability distributions that characterize the ex-
ecution times of nodes are generated as discrete probability mass func-
tions (PMFs). The robotic system is assumed to operate in two con-
texts with equal probabilities. Therefore, P (ctx1) = P (ctx2) = 0.5.
The four conditional probabilities (refer to Fig. 2), P (b1|ctx1), P (b1|ctx2),
P (b2|ctx1), P (b2|ctx2) associated with outgoing edges of conditional
node are randomly generated such that they satisfy equation (3), i.e.,
P (bi) =

∑2
j=1 P (bi|ctxj) · P (ctxj) and

∑2
i=1 P (bi) = 1.

• Execution times. Based on two defined contexts crowded (ctx1) and
spatial (ctx2), the two possible execution times (ETi) of each subtask
are set to its WCET for ctx1 and 0.5 · WCET for ctx2.

• Task Utilization. The utilization (Ui = Ci/Ti) of each subtask is
defined as the ratio of expected execution time over period, where the
expected execution time is calculated as

∑2
i=1 P (ctxi) · ETi. For each

24

subtask, it is randomly generated as one of the six computational ker-
nels provided in Table 1, with corresponding parameters. For each in-
put utilization, the tasksets are generated using the UUnifast-Discard
algorithm [40].

• Dependencies. We follow the method in He et al.’s experiments [41]
to generate edges among nodes. A random number is uniformly gen-
erated in interval [0,1] and compared with threshold (i.e., parallelism
factor in [41]) to decide whether an edge should be added between two
nodes. For experiments, the default setting of the threshold is 0.4.

• Safety-critical nodes/paths assignments: Depending on real ap-
plication requirements, the LOAM SLAM kernel and RRT path plan-
ning kernel are crucial for safety during navigation [28]. Therefore,
these two kernels are assigned highest TSLs and are selected as safety-
critical nodes. For synthetic tasksets, each node is generated either as
safety-critical node (s = True and TSL = 2) or non-safety-critical node
(s = False and TSL = 1). Any paths that contain safety-critical nodes
are labeled as safety-critical paths. The threshold τli of a safety-critical
path takes value from a range in (200, 300).

• Stochastic Conditional node assignment :As the robot could oper-
ate in two distinct environments (crowded or spatial space), we first find
the set of subtasks in the DAG with exactly two successors, each corre-
sponds to a distinct execution path. Within this set, random subtasks
are selected and assigned as stochastic conditional nodes, and their
types are switched from computing to conditional. Based on our test-
ing scenario, probabilities P (b1|ctx1), P (b1|ctx2), P (b2|ctx1), P (b2|ctx2)
are generated such that constraints in the previous steps are satisified.

For each input utilization, the experiments are conducted 5 times with
1000 DAG tasksets each time. The sum of every per-tag utilization is upper
bounded by the number of processors.

6.1.2. Real Taskset

In Figure 1, an exemplary robotic system for autonomous driving has
been presented. The parameters of these computational kernels are given in
Table 1. The path planning kernels in both branches are labeled as safety-
critical nodes with highest TSLs since they are crucial for safety problems in

25

autonomous driving. The conditional node controls the computational paths
used for planning based on the cluttered, uncertain nature of the environ-
ment.

6.2. Results Analysis

We first evaluate the effectiveness of our proposed LLP algorithm over
synthetic tasksets. The comparison consists of three parts: acceptance ratio,
average value of safety-performance metric and run-time. We then evaluate
the method on a real robotic subsystem.

6.2.1. Experiments on Synthetic Tasksets

In real-world operations, occasional deadline misses of subtasks are ac-
ceptable within a certain range. In addition, the execution times of subtasks
are usually unknown beforehand and vary during run-time. Our experiments
take this stochastic nature of subtasks into account by relaxing the proba-
bilistic timing constraint λ in the SP metric (See (9) to (12) in Section 3.2).

Remark. When λ = 0, the system is equivalent to a hard real-time system.

As discussed in Section 3.2, when λ = 0, it means that for a task to
be deemed schedulable, both the response times of safety-critical path/node
have to be smaller than the thresholds and there is no probability tolerance
for the timing constraints.

When λ is non-zero, the timing constraints of the real-time system are
relaxed and becomes stochastic. For example, if λ = 0.01, it means that
the task will be deemed schedulable if it has a 1 − 0.01 = 99% cumulative
probability that the response times of its safety-critical path/node are smaller
than the predefined thresholds based on their probability distributions.

Remark. The acceptable range of the probability tolerance coefficient λ is
set to [0, 0.1].

Relaxing the probability tolerance λ in a small range improves the schedu-
lability. Probability tolerances are selected in a small range to simulate
weakly-hard systems where only small deviations from timing requirements
are permissible.

26

Comparison of Acceptance Ratio. In the first subplot of Figure 3, when the
probability tolerance λ is set to 0, the timing constraints represent a hard
real-time system. In addition, the SP metric is equivalent to a conventional
metric makespan in this case, since there is no tolerance for deadline miss and
the response times have to be smaller than deadlines for schedulable tasks.
The LLP method outperforms other methods because it aims to maximize
SP metric, which is equivalent to makespan for the hard real-time systems
in this case, in the allocation and scheduling process. In addition, it utilizes
TSLs and precedence constraints to further optimize the schedules.

When timing constraints are relaxed by probability tolerance λ, the sys-
tem becomes weakly-hard and LLP still keeps a much higher schedulability
than other methods when the utilization of subtasks increases. When the
probability tolerance λ increases, the schedulability improves as more tasks
will be deemed schedulable if the probability of occasional deadline misses re-
main within a small range characterized by λ. For the combination of HPC-s
allocation and EDF scheduling, when the utilization of task increases, allo-
cating all subtasks on a single processor per tag will more likely results in an
infeasible schedule. Therefore, the acceptance ratio of HPC-s significantly
drops as utilization increases. HPC-p is based on HPC-s by removing and
reallocating one subtask at a time if a processor is fully occupied. It ignores
the relative ordering of subtasks’ TSLs, which could cause the safety-critical
nodes/paths to miss their own independent deadlines. When the maximum
iteration of SA is limited to 2000 (due to timing constraints in real opera-
tion), it cannot approach the global optimum fast enough which causes the
performance gap between LLP and SA. AG-partition method traverses the
available cores and allocate the nodes to the core with minimum cost. Al-
though it also considers precedence constraints to reduce latency, it does not
guarantee the safety-critical nodes to be scheduled first when precedence con-
straints are not violated. UGC needs to verify the feasibility of schedule on
parallel servers beforehand, if the service cannot be guaranteed, the process is
terminated and returns failure. It assumes all servers are identical and allow
nodes to execute on any of the parallel reservation servers that are idle (i.e.,
property 2 in study [10]). However, the precedence constraints among nodes
are not utilized when assigning nodes to available servers, which results in a
difference between UGC and LLP with respect to acceptance ratio.

Comparison of Safety-Performance Metric. In Figure 4, we evaluate the av-
erage safety-performance (SP) metric obtained by different scheduling algo-

27

0 1 2 3 4 5 6 7 8 9
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio
 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(a) λ = 0.00

0 1 2 3 4 5 6 7 8 9
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(b) λ = 0.025

0 1 2 3 4 5 6 7 8 9
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(c) λ = 0.05

0 1 2 3 4 5 6 7 8 9
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(d) λ = 0.075

Figure 3: Acceptance ratio comparison with varied probability tolerance λ.

rithm. SP metric can be interpreted as rewarding for each safety-critical
path and node, a balance of exceeding timing constraints (safety margin)
and system performance related to improved response time. The larger the
SP value, the more that schedule could trade exceeding safety margin for
better performance or focus on improving safety by sacrificing performance
without violating either safety or performance requirement.

In Figure 4, the more relaxed the timing constraints, the larger the differ-
ence between LLP and other methods. SA outperforms HPC-s and HPC-p
since it uses SP as part of the objective function to optimize. LLP outpe-
forms AG-partition because (1) it tries to minimize the end-to-end latency
in allocation process and prioritize the subtasks with higher TSLs in both
allocation and scheduling, which results in more schedulable tasks; (2) LLP
runs faster than AG-partition (shown in Table 2), it is less unlikely for a
task to be deemed as unschedulable due to timeout in LLP. The reasons are
the same for the SA method. LLP outperforms UGC because the execution
times are represented as distributions instead of worst-case execution times

28

0 2 4 6 8
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lu

e
of

 S
P

(n
or

m
al

ize
d)

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(a) λ = 0.025

0 2 4 6 8
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lu

e
of

 S
P

(n
or

m
al

ize
d)

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(b) λ = 0.05

0 2 4 6 8
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lu

e
of

 S
P

(n
or

m
al

ize
d)

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(c) λ = 0.075

0 2 4 6 8
Total Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lu

e
of

 S
P

(n
or

m
al

ize
d)

 LLP
 UGC
 AG-partition
 HPC-s
 HPC-p
 SA

(d) λ = 0.1

Figure 4: Average SP value comparison with varied probability tolerance λ.

in our experiments and UGC are not originally designed for this case. In
addition, TSLs of nodes are not specified and utilized in UGC method.

For better clarity, we omit the hard timing constraint case where λ = 0
since the calculated SP will be zero. We pick αli = αni

= 0.5 and show the
results in Fig 4. The balancing parameters αli , αni

could be tuned within
a certain range (i.e., without violating the minimal requirement for safety-
related timing constraints) based on the application. The trends are similar
for various balancing parameters, we only provide one as representative due
to the space constraint.

All the SP values in figures are normalized with 1000 for better readability.

Comparison of Time Complexity. We compare the efficiency of different
methods by setting fixed probability tolerance λ and safety-performance bal-
ancing parameters αli , αni

. Since probability tolerance λ will affect the ac-
ceptance ratio and balancing parameters will affect the SP value only, we
pick λ = 0.01 and αli = αni

= 0.9 to present a representative result in Table
2.

29

Table 2: Average Execution Time for Different Methods

(time in seconds)
Name/Number of nodes 5 10 15 20 25 30 35 40 45 50

LLP 2.24E-3 7.45E-3 1.41E-2 2.16E-2 3.07E-2 3.99E-2 5.67E-2 7.54E-2 1.14E-1 1.69E-1
UGC 2.07E-3 7.82E-3 1.25E-2 1.69E-2 2.22E-2 2.79E-2 8.14E-3 1.27E-2 1.45E-2 1.67E-2

AG-partition 3.85E-3 7.66E-3 1.59E-2 2.61E-2 3.92E-2 5.74E-2 6.13E-2 9.72E-2 1.52E-1 4.23E-1
HPC-s + EDF 4.47E-3 1.11E-2 1.84E-2 1.33E-2 2.84E-3 5.02E-3 7.12E-3 1.13E-2 1.89E-2 3.27E-2
HPC-p + EDF 4.47E-3 1.11E-2 1.84E-2 2.59E-2 3.36E-2 4.43E-2 5.43E-2 7.04E-2 9.38E-2 1.05E-1

SA 1.57E-1 4.12E-1 6.70E-1 8.20E-1 1.25 1.62 2.72 3.78 5.59 11.9

LLP runs around two orders of magnitude faster than SA in Table 2
because SA is a meta-heuristic that approximates global optimum with a
large number of iterations. Compared with the heuristics for HPC-DAG [6],
LLP runs with the same level of speed but provides a much higher acceptance
ratio. LLP runs around 30% faster than AG-partition on average. The
reason is that for each subtask, AG-partition will first compute its cost when
assigned to a processor. Since this partitioning part requires the calculation
of cost function for all processors, it will be cost-expensive when the number
of subtasks increases. LLP runs as fast as UGC when the size of DAG is
relatively small (i.e., number of nodes is smaller than 25). When the size
of DAG increases, more DAG tasks are deemed as unschedulable by UGC
because the execution time budget of the reservation system is static [10], and
the promised service must be verified. If a feasible schedule that guarantees
the service cannot be found beforehand, the process is terminated and returns
failure directly, which saves scheduling time. To conclude, LLP performs
better than heuristic methods (e.g., HPC-s/p, SA etc.) for real-time systems
that require efficient scheduling. At the cost of slower speed, LLP achieves
better performance than UGC according to SP metric.

6.2.2. Experiments on Real Tasksets

We utilize the exemplary robotic system in Figure 1 as the real taskset for
the experiments. The probability mass function (PMF) of execution time for
each computational kernels is constructed based on the parameters in Table 1,
where the PMF consists of the worst-case execution time (WCET), minimum
execution time and average execution time with corresponding probabilities
reported in the study [39]. Two path planning nodes are labeled as safety-
critical nodes based on the application requirement.

Similar to the experiments of synthetic tasksets, we apply different schedul-
ing algorithm to this specific DAG taskset and run the experiments for 1000
times with various deadlines and probability tolerance λ. The deadline of the

30

application takes value in the interval [75,120], which corresponds to various
operating context and timing requirements.

Table 3: Average run-time of varied scheduling algorithms (time in seconds)

LLP UGC AG-partition HPC-s HPC-p SA
5.01E-4 4.86E-4 6.12E-4 7.47E-4 7.42E-4 2.29E-3

Table 4: Average SP metric with varied probability tolerance λ

LLP UGC AG-partition HPC-s HPC-p SA
λ = 0.025 0.682 0.479 0.473 0.079 0.099 0.475
λ = 0.050 0.696 0.481 0.472 0.099 0.099 0.468
λ = 0.075 0.712 0.492 0.474 0.100 0.109 0.495

As can be seen from Table 3, LLP runs as fast as UGC method with
a difference of 3%, which aligns with results in Table 2 because the size of
real taskset is relatively small. LLP runs faster than other methods with a
minimum of 20% run-time improvement. For varied probability tolerance λ in
Table 4, the SP metric schedule under LLP outperforms other methods with
a significant margin. Although LLP runs slightly slower than UGC method
in Table 3, it achieves much higher SP value with an average improvement
of 42%.

7. Related Work

Existing work on the DAG task model mostly focuses on introducing
extensions to the DAG task to describe the complexity of real-time appli-
cations [4]. Conditional DAG (C-DAG) introduces a conditional node that
represents if-then-else structures for conditional execution [35, 42, 43, 44, 45].
Heterogeneous DAG, is another extension of the DAG task model. It asso-
ciates each subtask with a tag to specify the kind of processing unit that
each subtask should run upon [5, 6, 46, 47, 48, 49]. However, the stochastic
nature of unknown execution times during run-time is absent in these stud-
ies, and they all use the WCETs of computational subtasks for response-time
analysis, which may be overly pessimistic [8].

While the stochastic DAG scheduling problem has been studied in the lit-
erature [9, 11, 12, 50], they all assumed that random execution times followed
specific probability distributions (e.g., the Gaussian distribution). Ueter et.
al. considered a probabilistic version of the C-DAG in [10]. In contrast with

31

our present work, the probabilistic aspects of [10] only focus on the outgoing
edges of the conditional node. They still consider the WCETs of nodes in
the scheduling process with the assumption of an identical multi-core sys-
tem, which is different from our S-RASP problem. In our work, we do not
make assumptions of specific probability distributions for random execution
times of subtasks. In addition, we consider the probabilistic nature both in
the computing and conditional nodes, and propose a general solution to the
scheduling problem on heterogeneous platforms.

Searching for an optimal schedule for tasks modeled by DAGs is con-
sidered to be NP-hard, therefore most existing scheduling algorithms are
heuristics [3]. Recently, Baruah [5] formulated the scheduling problem as an
integer linear programming (ILP) problem, which is an exact test with time
complexity O(n3) that may serve as a baseline against which the performance
of heuristics can be compared. However, the stochastic nature of execution
times of computational kernels is absent in this recent work as well.

8. Conclusion and Future Work

This paper proposed a partitioned scheduling algorithm called LLP which
consists of novel allocation and scheduling algorithm for stochastic hetero-
geneous conditional DAG scheduling, which takes the stochastic nature of
execution time and conditional nodes within the DAG tasks into account.
We use a multi-objective metric called the Safety-Performance (SP) metric
to explore the trade-offs between timing constraints and system performance
for safety-critical systems. Furthermore, unlike existing works for stochastic
scheduling, we do not make any assumptions about the specific distributions
of random execution times, instead we propose a convolution based method
to evaluate the response times of safety-critical paths and nodes against the
stochastic timing constraints. The proposed algorithm LLP outperforms the
state-of-the-art DAG scheduling algorithms for multi-processor systems. In
future work, we plan to extend our work with multiple DAGs and SP metric
with a third objective function of software reliability.

References

[1] L. Heintzman, A. Hashimoto, N. Abaid, R. K. Williams, Anticipatory
planning and dynamic lost person models for Human-Robot search and
rescue, in: 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021, pp. 8252–8258.

32

[2] M. Rangwala, J. Liu, K. S. Ahluwalia, S. Ghajar, H. S. Dhami, oth-
ers, DeepPaSTL: Spatio-Temporal deep learning methods for predicting
Long-Term pasture terrains using synthetic datasets, Agronomy (2021).

[3] J. Huang, R. Li, X. Jiao, Y. Jiang, W. Chang, Dynamic dag schedul-
ing on multiprocessor systems: Reliability, energy, and makespan, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 39 (2020) 3336–3347. doi:10.1109/TCAD.2020.3013045.

[4] M. VERUCCHI, M. BERTOGNA, A comprehensive analysis of dag
tasks: solutions for modern real-time embedded systems, PhD Thesis
(2021).

[5] S. Baruah, An ilp representation of a dag scheduling problem, Real-
Time Systems (2021) 1–18.

[6] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari,
M. Bertogna, The hpc-dag task model for heterogeneous real-time
systems, IEEE Transactions on Computers 70 (2021) 1747–1761.
doi:10.1109/TC.2020.3023169.

[7] H.-E. Zahaf, N. Capodieci, R. Cavicchioli, M. Bertogna, G. Lipari, A c-
dag task model for scheduling complex real-time tasks on heterogeneous
platforms: preemption matters, arXiv preprint arXiv:1901.02450 (2019).

[8] S. Edgar, A. Burns, Statistical analysis of wcet for scheduling, in: Pro-
ceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat.
No.01PR1420), 2001, pp. 215–224. doi:10.1109/REAL.2001.990614.

[9] K. Li, X. Tang, B. Veeravalli, K. Li, Scheduling precedence constrained
stochastic tasks on heterogeneous cluster systems, IEEE Transactions
on computers 64 (2013) 191–204.

[10] N. Ueter, M. Günzel, J.-J. Chen, Response-time analysis and op-
timization for probabilistic conditional parallel dag tasks, in: 2021
IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 380–392.
doi:10.1109/RTSS52674.2021.00042.

[11] L.-C. Canon, E. Jeannot, Evaluation and optimization of the ro-
bustness of dag schedules in heterogeneous environments, IEEE

33

Transactions on Parallel and Distributed Systems 21 (2010) 532–546.
doi:10.1109/TPDS.2009.84.

[12] K. Cao, J. Zhou, P. Cong, L. Li, T. Wei, M. Chen, S. Hu, X. S.
Hu, Affinity-driven modeling and scheduling for makespan optimiza-
tion in heterogeneous multiprocessor systems, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38 (2019)
1189–1202. doi:10.1109/TCAD.2018.2846650.

[13] V. Feldman, C. Zhang, What neural networks memorize and why:
Discovering the long tail via influence estimation, arXiv preprint
arXiv:2008.03703 (2020).

[14] D. Casini, A. Biondi, G. Nelissen, G. Buttazzo, Partitioned fixed-priority
scheduling of parallel tasks without preemptions, in: 2018 IEEE Real-
Time Systems Symposium (RTSS), IEEE, 2018, pp. 421–433.

[15] A. H. Sifat, X. Deng, B. Bharmal, S. Wang, S. Huang, J. Huang, C. Jung,
H. Zeng, R. Williams, A safety-performance metric enabling computa-
tional awareness in autonomous robots, IEEE Robotics and Automation
Letters 8 (2023) 5727–5734. doi:10.1109/LRA.2023.3300251.

[16] P. Pedro, A. Burns, Schedulability analysis for mode changes in flexible
real-time systems, in: EUROMICRO Workshop on Real-Time Systems,
1998.

[17] A. Shafti, P. Orlov, A. A. Faisal, Gaze-based, context-aware robotic
system for assisted reaching and grasping, in: 2019 International Con-
ference on Robotics and Automation (ICRA), IEEE, 2019, pp. 863–869.

[18] M. Shen, Y. Gu, N. Liu, G.-Z. Yang, Context-aware depth and pose es-
timation for bronchoscopic navigation, IEEE Robotics and Automation
Letters 4 (2019) 732–739.

[19] K. Li, Y. Xu, J. Wang, M. Q.-H. Meng, SARL*: Deep reinforcement
learning based Human-Aware navigation for mobile robot in indoor en-
vironments, in: 2019 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2019, pp. 688–694.

[20] P. Lin, The robot car of tomorrow may just be programmed to hit you,
Machine Ethics and Robot Ethics (2020).

34

[21] L. Chen, S. Lin, X. Lu, D. Cao, H. Wu, C. Guo, C. Liu, F.-Y. Wang,
Deep neural network based vehicle and pedestrian detection for au-
tonomous driving: A survey, IEEE Trans. Intell. Transp. Syst. 22 (2021)
3234–3246.

[22] P. Graydon, I. Bate, Safety assurance driven problem formulation for
mixed-criticality scheduling, Proc. WMC, RTSS (2013) 19–24.

[23] R. Bell, Introduction to iec 61508, in: Acm international conference
proceeding series, volume 162, Citeseer, 2006, pp. 3–12.

[24] L. A. Johnson, et al., Do-178b, software considerations in airborne
systems and equipment certification, Crosstalk, October 199 (1998) 11–
20.

[25] H. Zhao, Y. Zhang, P. Meng, H. Shi, L. E. Li, T. Lou, J. Zhao, Safety
score: A quantitative approach to guiding safety-aware autonomous ve-
hicle computing system design, in: 2020 IEEE Intelligent Vehicles Sym-
posium (IV), 2020, pp. 1479–1485. doi:10.1109/IV47402.2020.9304602.

[26] A. Vincentelli, P. Giusto, C. Pinello, W. Zheng, M. Natale, Optimizing
end-to-end latencies by adaptation of the activation events in distributed
automotive systems, in: 13th IEEE Real Time and Embedded Technol-
ogy and Applications Symposium (RTAS’07), IEEE, 2007, pp. 293–302.

[27] M. Verucchi, M. Theile, M. Caccamo, M. Bertogna, Latency-aware gen-
eration of single-rate dags from multi-rate task sets, in: 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
IEEE, 2020, pp. 226–238.

[28] L. Schmid, V. Reijgwart, L. Ott, J. Nieto, R. Siegwart, C. Cadena, A
unified approach for autonomous volumetric exploration of large scale
environments under severe odometry drift, IEEE Robotics and Automa-
tion Letters 6 (2021) 4504–4511.

[29] D. Ratasich, B. Frömel, O. Höftberger, R. Grosu, Generic sensor fu-
sion package for ros, in: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 286–291.

35

[30] S. Shalev-shwartz, S. Shammah, A. Shashua, On a For-
mal Model of Safe and Scalable Self-driving Cars (2017) 1–37.
arXiv:arXiv:1708.06374v6.

[31] S. B. Amor, Scheduling of Dependent Tasks with Probabilistic Execu-
tion Times on Multi-core Processors, Ph.D. thesis, Sorbonne Université,
2020.

[32] D. Maxim, L. Cucu-Grosjean, Response time analysis for fixed-priority
tasks with multiple probabilistic parameters, in: 2013 IEEE 34th Real-
Time Systems Symposium, IEEE, 2013, pp. 224–235.

[33] A. M. Mood, Introduction to the theory of statistics. (1950).

[34] D. L. Applegate, R. E. Bixby, V. Chvatál, W. J. Cook, A Computational
Study, Princeton University Press, 2006.

[35] J. Sun, N. Guan, J. Sun, Y. Chi, Calculating response-time bounds for
openmp task systems with conditional branches, in: 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
IEEE, 2019, pp. 169–181.

[36] W.-H. Huang, M. Yang, J.-J. Chen, Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share?, in: 2016 IEEE Real-Time Systems Symposium (RTSS), IEEE,
2016, pp. 111–122.

[37] S. Baruah, An ilp representation of a dag scheduling problem, Real-
Time Systems (2021) 1–18.

[38] S. Ben-Amor, L. Cucu-Grosjean, Graph reductions and partitioning
heuristics for multicore dag scheduling, Journal of Systems Architecture
124 (2022) 102359.

[39] A. H. Sifat, B. Bharmal, H. Zeng, J.-B. Huang, C. Jung, R. K. Williams,
Towards computational awareness in autonomous robots: an empirical
study of computational kernels, Complex & Intelligent Systems (2023)
1–27.

[40] R. I. Davis, A. Burns, Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems, in: IEEE
Real-Time Systems Symposium, 2009. doi:10.1109/RTSS.2009.31.

36

[41] Q. He, M. Lv, N. Guan, Response time bounds for dag tasks with arbi-
trary intra-task priority assignment, in: 33rd Euromicro Conference on
Real-Time Systems (ECRTS 2021), Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

[42] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, The global edf
scheduling of systems of conditional sporadic dag tasks, in: 2015
27th Euromicro Conference on Real-Time Systems, 2015, pp. 222–231.
doi:10.1109/ECRTS.2015.27.

[43] J. C. Fonseca, V. Nélis, G. Raravi, L. M. Pinho, A multi-dag model for
real-time parallel applications with conditional execution, in: Proceed-
ings of the 30th Annual ACM Symposium on Applied Computing, 2015,
pp. 1925–1932.

[44] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, G. C.
Buttazzo, Response-time analysis of conditional dag tasks in multi-
processor systems, in: 2015 27th Euromicro Conference on Real-Time
Systems, IEEE, 2015, pp. 211–221.

[45] R. Pathan, P. Voudouris, P. Stenström, Scheduling parallel real-time
recurrent tasks on multicore platforms, IEEE Transactions on Parallel
and Distributed Systems 29 (2017) 915–928.

[46] S. Chang, X. Zhao, Z. Liu, Q. Deng, Real-time scheduling and analy-
sis of parallel tasks on heterogeneous multi-cores, Journal of Systems
Architecture 105 (2020) 101704.

[47] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, W. Liu, Response time
bounds for typed dag parallel tasks on heterogeneous multi-cores, IEEE
Transactions on Parallel and Distributed Systems 30 (2019) 2567–2581.

[48] M. A. Serrano, E. Quinones, Response-time analysis of dag tasks sup-
porting heterogeneous computing, in: Proceedings of the 55th Annual
Design Automation Conference, 2018, pp. 1–6.

[49] K. Yang, M. Yang, J. H. Anderson, Reducing response-time bounds for
dag-based task systems on heterogeneous multicore platforms, in: Pro-
ceedings of the 24th International Conference on Real-Time Networks
and Systems, 2016, pp. 349–358.

37

[50] B.-A. Slim, C.-G. Liliana, D. Maxim, Worst-case response time anal-
ysis for partitioned fixed-priority dag tasks on identical processors, in:
2019 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), IEEE, 2019, pp. 1423–1426.

Author biographies

Xuanliang Deng is currently a Ph.D. student in the Elec-
trical and Computer Engineering department at Virginia
Tech. He received his master’s degree in Electrical and Com-
puter Engineering from Georgia Institute of Technology. His
research interests include real-time system scheduling and
optimization.

Ash is an Engineer and Researcher with a knack for solv-
ing real life problems and utilizing digital technologies for
improving human life. He completed a bachelor’s in Electri-
cal and Electronic Engineering from Bangladesh University
of Engineering and Technology. He then did his Master’s

and subsequent PhD in Electrical and Computer Engineering from Virginia
Tech. Ash is driven for excellence in research and his PhD research was on
Computational awareness for timely and resilient autonomous robots.

Shao-Yu Huang received the B.S. degree in computer sci-
ence from National Yang Ming Chiao Tung University, Tai-
wan, in 2019. He is currently working toward the Ph.D.
degree in computer science with Purdue University, USA.
His research interests include compilers, computer architec-
ture, soft error resilience, and real-time systems.

Sen Wang is a Ph.D. student at Virginia Tech. He received
his M.S. from Georgia Tech, and B.S. from Northeastern
University in China. His research interests lies in the in-
tersection between optimization and real-time systems and
robotics.

38

Jia-Bin Huang is a Capital One endowed Associate Pro-
fessor in Computer Science at the University of Maryland
College Park. He received his Ph.D. degree from the Depart-
ment of Electrical and Computer Engineering at the Univer-
sity of Illinois, Urbana-Champaign. His research interests
include computer vision, computer graphics, and machine
learning. Huang is the recipient of the Thomas & Margaret

Huang Award, NSF CRII award, faculty award from Samsung, Google, 3M,
Qualcomm, and a Google Research Scholar Award.

Changhee Jung (Senior Member, IEEE) received the PhD
degree in Computer Science from Georgia Institute of Tech-
nology, Atlanta, Georgia, in 2013. He is currently an Asso-
ciate Professor of Computer Science at Purdue University,
West Lafayette. His research interests span the field of com-
pilers and computer architecture with an emphasis on per-
formance, reliability, and security.

Ryan K. Williams (Member, IEEE) received the B.S. de-
gree in computer engineering from Virginia Polytechnic In-
stitute and State University, Blacksburg, VA, USA, in 2005,
and the Ph.D. degree in electrical engineering from the Uni-
versity of Southern California, Los Angeles, CA, USA, in
2014. He is currently an Assistant Professor with the Electri-
cal and Computer Engineering Department, Virginia Poly-

technic Institute and State University, where he runs the Virginia Tech Lab-
oratory for Coordination at Scale. His research interests include control,
cooperation, and intelligence in distributed multiagent systems, topological
methods in cooperative phenomena, and distributed algorithms for optimiza-
tion, estimation, inference, and learning. Dr. Williams was the recipient of
the Viterbi Fellowship, the NSF CRII and CAREER grants for young in-
vestigators. He was the finalist for the Best Multirobot Paper at the 2017
IEEE International Conference on Robotics and Automation, and has been
featured by various news outlets, including the L.A. Times.

39

Haibo Zeng is with the Department of Electrical and Com-
puter Engineering at Virginia Tech, USA. He received his
Ph.D. in Electrical Engineering and Computer Sciences from
the University of California at Berkeley. He was a senior re-
searcher at General Motors R&D until October 2011, and an
assistant professor at McGill University until August 2014.
His research interests are embedded systems, cyber-physical

systems, and real-time systems. He received five paper awards in the above
fields.

40

