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Abstract—Noise in measurement data is not a new challenge,
but the rise of graph-aware data processing tools, such as Graph
Signal Processing (GSP), offers new opportunities to improve
noise handling by capturing the relationships and interactions
among data points. Due to the physical structure of the power
systems, the measurements collected from these systems can be
represented in the form of graph signals and various GSP-based
techniques are emerging to process such data. This work first
examines the sensitivity of a GSP-based state estimation tech-
nique to measurement noise. It then presents various denoising
techniques, ranging from classical signal processing methods to
novel GSP-based graph filters, and studies their impact on the
quality of graph signals. Finally, the effects of these denoising
filters on state estimation in power systems are evaluated. The
results show that denoising processes that consider both the un-
derlying graph of interactions and the temporal relationships in
data outperform other denoising techniques. While the denoising
techniques presented here are examined in the context of power
systems, they are general enough to be applied to any graph
signal.

Index Terms—Graph Signal Processing, Noise, Denoising,
Graph Filter, Power Systems

I. INTRODUCTION

The integration of advanced data collection and analytics
techniques has significantly improved power system monitor-
ing and operation. However, like in any engineered system,
the collected data and measurements are susceptible to noise.
Noise in measurements can introduce uncertainty in the data
processing and can reduce the performance and accuracy of
system functions; for instance, state estimation.

Graph Signal Processing (GSP) has emerged as a promising
approach in power system data analysis with exciting new
developments. In GSP, a graph signal refers to measurements
or data values that are associated with the nodes of a graph.
A key strength of GSP-based approaches is their ability to
capture the interactions among the data or system entities
through the graph framework. Representing power system
measurements as graph signals, enables applying powerful
tools and techniques from GSP to power systems. Specifically,
recent works have applied GSP-based methods to various
power system functions, such as state estimation [1]–[3] and
stress detection [4]–[6]. The application of GSP in power
system data processing is fast growing; however, the impact of
noise on these techniques has not been thoroughly examined.

In classical signal processing, measurement noise can de-
grade data processing performance, and denoising techniques
are employed to mitigate this issue. While classical signal
denoising techniques (e.g., low pass filtering) can be applied

to individual temporal measurement signals collected at each
each component in power systems, leveraging the additional
information about interactions among components captured by
graph signals can enhance the denoising process. In this paper,
first, the effects of noise in the power systems’ graph signals on
a GSP-based state estimation, introduced in [7], are presented.
Next, various denoising techniques including graph filter-based
denoising and a novel technique based on modified heat kernel
have been presented and their performance are compared with
classical signal denoising methods. Finally, the impact of these
denoising techniques on the performance of GSP-based state
estimation are evaluated. The results confirm that capturing
the interactions among data points using the underlying graph
of graph signals in addition to the temporal relations captured
in classical signals improves the denoising process. Although
this study and the presented graph signal denoising techniques
are discussed in the context of power system state estimation,
they are general enough to be applied to graph signals in other
application domains.

The rest of this paper is organized as following. Section II
presents an overview of related work in the domain of GSP
and denoising. Various noise models in graph signals and the
GSP-based state estimation technique used in this study are
reviewed in Section III and the effects of measurement noise
on the performance of the GSP-based state estimation are
presented. Denoising of graph signals and various techniques
to perform denoising are discussed in Section IV. The results
on the impact of different denoising techniques on the perfor-
mance of the GSP-based technique are presented in Section V.
Finally, conclusion and future research directions are discussed
in Section VI.

II. RELATED WORKS

The literature relevant to this work is reviewed under two
main categories. First, an overview of graph-aware data ana-
lytics techniques applied to power systems, including Graph
Neural Networks (GNN) and GSP, is presented. Next, studies
on modeling, assessing, and addressing noise in these tech-
niques are reviewed.

Since power systems can be represented as graphs and
their measurements processed as graph signals, various GSP-
based approaches are emerging to tackle different problems in
power systems. The applications of GSP ranges from modeling
of power system measurements through graph filters [8]–
[10], detecting and locating stresses in the system including
physical and cyber stresses [11]–[13], state estimation [7], [14]
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and GSP-based analysis for the resilience of power systems
[15]. In addition to GSP, GNN has gained lots of attention
in addressing power system problems. Examples of GNN
applications in power systems include state estimation [16]
and stress detection [17].

Evaluating and addressing noise is not a new challenge;
however, addressing it for graph-aware data analytics is a
new research direction. The noise in this domain is addressed
mainly in two categories of topology noise and measurement
noise. For instance, the works presented in [18], [19] evaluate
and address the effects of topology noise on GNN models for
state estimation, while the work in [20] evaluates the robust-
ness of a Graph Convolutional Neural network to measurement
noise and errors.

The literature on the denoising process of a noisy graph
signal in power systems is limited. For instance, the effects
of topology noise in GSP techniques is studied in [21]. In
another example, Kroizer et al. in [8] present a two-stage
framework for recovering non-linear graph signals under noise
through finding the graph filter that best approximates the
measurements. Examples of studies on noise in graph signals
in other fields include denoising of 2D sensor array [22],
transportation systems [23], biomedical signals [24] and image
processing [25]–[27].

This work investigates the impact of noise in measurement
graph signals on the performance of a GSP-based state esti-
mation. It then presents various denoising processes, ranging
from classical signal processing filters to graph filters and
their combinations, to evaluate their effects on signal quality.
Finally, through numerical evaluation, it demonstrates how
denoising graph signals in power systems can enhance the
performance of GSP-based state estimation.

III. MODELING NOISE IN GRAPH SIGNALS

A. Graph Signals Review
In GSP, unlike conventional signal processing, which uti-

lizes Euclidean space for signal representation, signals are
defined based on values assigned to the vertices/nodes V =
{v1, v2, . . . , vN}, within a graph G = (V,E), where E
represents the connection between nodes, expressed as E =
{eij : (i, j) ∈ V × V }. In power systems, the nodes can
represent the buses and the connections can represent the
power lines connecting the buses in the system. Therefore,
a time-varying graph signal is described by a vector x(t) with
dimension N , where the elements are the mapping of each
node to a real number x : V → R. For an easier mode
of notation, the graph signal at a specific vertex n and time
instance t can be represented by x(n, t) rather than x(vn, t).
The x(n, t) values associated with the nodes of the graph in
the power system at time instance t can represent various
power attributes including voltage angle, voltage magnitude
and phase angle. When the discussion is about a fixed time
instance, i.e., a snapshot of the time varying graph signal at a
specific time, we use the simplified notation of x(n) for the
value of the node n and x for the vector of values at vertices.
In this work, the graph signals are defined based on the voltage
angles of the buses.

The Laplacian matrix of the graph, denoted as L, and its
elements lij are defined according as

∑N
n=1 wij if i = j

and −wij , otherwise. Here, wij denotes the weight associated
with each line. The weight, wij can be defined to capture
some physical concept about the system. One common way
of defining weights in GSP-based analysis in power systems is
defining the edge weight as the reciprocal of the geographical
distance, dij , between the nodes as wij =

1
dij

, if eij ∈ E and
wij , otherwise. The second approach in defining the weights
is to utilize the admittance of the branch between nodes i and
j as the weight for the link between nodes i and j. In the
analyses presented in this paper, the first type of weights is
utilized unless otherwise stated (the second type of weights is
used in one of the proposed denoising filters as discussed in
Section IV). Graph Laplacian matrix acts as the Shift Operator
for GSP functions and enables defining the spectral domain
for the graph signal analysis. The eigen-decomposition of the
Laplacian matrix, i.e., L = V ΛV ⊤, enables defining the basis
of the graph frequency domain. Here, Λ = Diag(λ1, . . . , λn)
is the diagonal matrix of eigenvalues, and V = (v1, . . . , vn) is
the matrix of eigenvectors. Eigenvalues are the diagonal ele-
ments in Λ, ordered from smallest to largest. Eigenvectors are
the columns of V , each corresponding to an eigenvalue. The
eigenvectors form the basis of the graph frequency domain.
The graph Fourier transform can be defined as X(λf ) = vf .x.

An important process on graph signals is the graph filtering
operation. Similarly to the classical signal filtering, graph fil-
tering has applications in graph signal sampling, reconstruction
and denoising. A linear graph filter is described as the linear
operator [28]:

H =
P∑

p=0

hpL
p = V

(
P∑

p=0

hpΛ
p

)
V T (1)

where P is the filter order and {hp}Pp=0 are the filter coeffi-
cients. This expression shows that the graph filter is analogous
to a linear time-invariant (LTI) filter in discrete-time signal
processing, with graph shifts in alternative to time shifts. In
the work on denoising filters presented in Section IV, the order,
P of the graph signal is set to be 1.

B. Noise in Graph Signals
Noise in the graph signal can perturb different aspects

of the signal from the graph data (i.e., V and E, and the
weights of the lines) to the measurement data associated with
the nodes of the graph. Here, a review of various forms of
noise in graph signals is presented. In this work, the focus
is on the noise that is corrupting the measurement values
at nodes. Note that these noises can originate from different
sources, including physical processes, measurement devices,
communication channels, and data processing techniques.

1) Measurement Noise: This type of noise corrupts the
measurement values at nodes. Such corruption can be modeled
simply by y(n) = x(n)+r(n) at node n. For the additive white
Gaussian noise (AWGN) case, r(n) is modeled as a Gaussian
distribution with zero mean and a constant standard deviation.
The AWGN can mask low-amplitude signals and can make it
difficult to detect subtle changes and variations in the power
system signals. It is assumed that this noise affects all the
nodes in the system with the same distribution. This is the
noise model considered in this work.
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Another variation of the measurement noise could be
named, nodal noise, in which the additive noise is only present
at certain nodes in the system (i.e., heterogeneous noise
distribution over the nodes). This could occur in power systems
due to uncertainties in current injection or voltage variations
at specific buses. This type of noise is more straightforward
to address for the individual signals at the nodes, while the
general AWGN for the graph signal is more relevant in the
graph signal analysis. To address nodal noise and the extension
of the techniques presented in this paper can be a future
research direction.

2) Topology Noise: This type of noise affects the graph
data (i.e., V and E) and will cause uncertainty in the un-
derlying graph used in graph-aware data analytics techniques
including GSP. In power systems, this kind of noise could
be mistaken for the components’ state of operation (e.g.,
bus or link failure or shut-down due to maintenance and
switching operations or their re-connection). As such, topology
noise can be modeled by node/edge removal, addition or a
combination of both in the topology. This type of noise could
be modeled using a Bernoulli random variable affecting the
status of the components. Similar to measurement noise, it
could be modeled based on a homogeneous or heterogeneous
distribution across the nodes/links.

Note that noise in the weight of the lines could be modeled
either as measurement noise when the weights are attributes of
edges varying in time or it can be modeled as topology noise,
when the weights are static and fixed based on the properties
of the system.

C. GSP-based State Estimation

State estimation is a crucial function in power systems
for monitoring and planning the operation of the system.
Specifically, state estimation is either used for predicting
the next-step ahead of the states of the components or for
recovering the unobservable and missing state information. In
this work, a GSP-based technique for recovering the state of
unobservable nodes in the system (e.g., due to PMU failures
or disconnection or cyber-attacks) presented in [7] is used as
an example to show how the noise in the measurements and
denoising can affect the performance of key functions in power
systems.

Next, this GSP-based state estimation is briefly reviewed.
The idea behind this GSP-based state estimation is to use GSP-
based features of the graph signals and to estimate the missing
information using the information in the rest of the nodes.
Specifically, it assumes that the power system graph signals
are smooth under normal conditions. Two GSP features, global
and local smoothness are used in the estimation process.

Local smoothness measures the degree of change from
one vertex to its corresponding neighboring vertices, and
hence contains the local information in the grid. The local
smoothness of a graph signal for each vertex is given by
s(n) = lx(n)

x(n) , x(n) ̸= 0, where lx(n) is the n-th element of the
vector lx in the Laplacian matrix, L. The global smoothness
of the graph signal x(n), denoted as sglobal =

xTLx
xT x

, measures
the overall fluctuations between vertices. The state estimation
is then formulated as an optimization problem with the goal of

Fig. 1: Performance sensitivity of the GSP-based state estima-
tion under different SNR levels for 10, 20 and 30 unobservable
buses for the IEEE 118 bus system.

maximizing the likelihood of local smoothness across all the
buses while minimizing the global smoothness of the graph
signal (which means assuming a smooth signal). Considering
the non-linearity of this optimization, surrogate optimizer is
utilised to find the solution. The details of the optimization
formulation and the process to solve it can be found in [7]. In
this work, this approach is used to simply show the sensitivity
of functions in power systems to measurement noise.

D. Experimental Setup and Evaluation

To assess the performance of state estimation under various
measurement noise, particularly, the ones with low Signal to
Noise Ratio (SNR), three scenarios with different unobservable
buses (i.e., 10, 20, and 30) are considered over the IEEE 118
bus system. For each scenario, fifty different random sets of
unobservable buses are selected.

For each of these scenarios, various levels of SNR (i.e., 5 to
30 dB) are simulated through AWGN added on the time series
of bus voltage angles generated for the buses of the system
using MATPOWER [29]. A load pattern from the NYISO [30]
is added to the default MATPOWER loads to simulate the
temporal variations and dynamics of the system.

The performance of state estimation for the unobservable
buses are presented using mean absolute error (MAE) and
maximum absolute error (MaxAE). As demonstrated in Fig. 1,
this GSP-based state estimation shows higher recovery error
in lower SNRs. The result confirms that for different numbers
of unobservable buses, the accuracy of the state estimation
method is sensitive to measurement noise.

IV. DENOISING OF GRAPH SIGNALS

Denoising is the first common approach to alleviate the
effects of noise in data processing. Denoising in classical
signal processing has been long in use through designing low
pass filters. However, graph signals have the extra dimension
of the vertex domain in addition to the temporal domain of
classical signals. As such, while in classical signal processing,
denoising can be applied at individual time series associated
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Fig. 2: Average mean square error (MSE) relative to the
original signal when different denoising techniques are applied
to the time-varying graph signals for the IEEE 118 bus system.
The unfiltered case represents the noisy signal.

with the nodes, the interactions among the nodes through the
graph are not considered in those denoising processes. In this
section, four distinctive denoising processes to be applied to
the time varying graph signals are presented. These include:
A) Denoising each time-series signal using a classical sharp
edge low pass filter (the classical signal processing approach);
B) Denoising the graph signal using low pass graph filters;
C) Denoising the graph signal by applying the classical low
pass filter and the graph filter one after another (combination
of approaches 1 and 2); and D) Denoising the graph signal by
introducing a modified Heat Kernel Method. These approaches
are discussed next.

A. Denoising temporal signals using classical Low-Pass Filter
This approach is the classical denoising process in signal

processing. This includes applying a low pass filter to each
of the time series associated with the nodes of the system to
eliminate the high-frequency random noise. Generally, a cut-
off frequency, λcutoff, is considered in defining the filter in the
frequency domain. The filter can be applied to the spectral
content of the temporal signal to denoise the noisy signal.

B. Denoising graph signals using a Graph Low Pass Filter
The denoising process using graph filters does not consider

the temporal features of the graph signals. Instead it considers
graph signals at specific time instances (snapshots in time) and
considers the relations among the data points over vertices for
denoising. The low-pass graph filter to eliminate the high-
frequency noise generally aims to make the graph signal
smooth over the vertices. An example of such graph filters
used in this study is

H = V · diag
(

1

1 + αλ1
,

1

1 + αλ2
, . . . ,

1

1 + αλn

)
· V T (2)

where λis are the eigenvalues of the graph Laplacian, and α
is a parameter controlling the low-pass filter. In this paper,

α = 0.1 is considered. Note that as the eigenvalues increase,
the filter will more significantly attenuate that frequency.

C. Denoising The Graph Signal Using Both Classical Low-
pass and Graph low-pass filter

In this approach, in order to use both temporal and graph
information for denoising, both of the previous approaches will
be applied to the time-varying graph signal. Specifically, there
are two orders in which these approaches can be combined.
One could be the application of classical low-pass filter
followed by the graph low-pass filter and vice versa. In the
evaluation of these techniques both of these combinations are
considered and they show the same performance.

D. Denoising using a Modified Heat Kernel Graph Filter
In this approach, we proposed a heat kernel graph filter

combined with a moving average technique to denoise the
graph signals. Though heat kernels are particularly suitable
for diffusion models [31], the controlling parameter of the
heat kernel modified for the power system can be effective
in denoising graph signals. The process involves several key
steps, which are detailed below.

Note that the Laplacian matrix L is constructed as discussed
in Section III. The adjacency matrix A is constructed from
the admittance matrix Y by defining the wij = y(i, j), where
y(i, j) are the elements of the admittance matrix.

As the first step, a temporal moving average (MA) filter
[32] is applied to the time-varying graph signal. To smoothen
the noisy signal, moving average can be applied using the
following expression xmov(ti) = 1

T

∑ti
k=ti−T+1 x(k), where

xmov(ti) is the vector of moving average values at time
instance ti over the graph signal x(t) for a window of size T .

In the next step, GFT of the xmov(t), denoted by Xmov(f)
will be calculated for each instance in time. In the final step,
a heat kernel graph filter will be applied to the GFT of the
resulted moving average signal. The heat kernel graph filter is
defined as H = V ·

(
e−τΛ

)
·V T . Here, τ = zavg is defined to be

the average impedance of the lines in the system. It represents
the exponent scaling factor, which specifies the rate of filter
magnitude decrease over frequencies. The filter is applied in
the spectral domain of the signal as Xfiltered(f) = HXmov(f),
where Xfiltered(f) is the spectral domain representation of the
signal after the filter is applied.

V. PERFORMANCE EVALUATION

In this section, the performance of the discussed filters
in Section IV as well as the effects of various denoising
techniques on the performance of the state estimation are
presented. For the evaluation in this section, the experimental
setup presented in Section III. D has been used.

A. Performance Evaluation of Denoising Techniques
There are in total five denoising techniques that have

been applied to the time-varying voltage angle graph signals
simulated for the IEEE 118 test case. The performance of these
techniques in terms of mean-square error (MSE) relative to the
actual value of the signal is shown in Fig. 2. The MSE for
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Fig. 3: Performance of the GSP-based state estimation for dif-
ferent SNR levels and 10 unobservable buses in the IEEE 118
bus system when different denoising techniques are applied to
the noisy time-varying graph signal. Unfiltered case shows the
performance for GSP-based state estimation directly applied
to noisy signal.

the denoising techniques is compared to the unfiltered case
and each other at different SNR levels. It can be observed that
the classical low-pass filter denoising, which only considers
the temporal features of the signal, can improve the quality of
the signal. However, graph filters, which consider the vertex-
domain interactions among values, can improve the quality of
the signal further. Moreover, techniques that use both the tem-
poral and spatial (vertex domain) interactions (i.e., combined
classical low-pass and graph filter and Modified Heat Kernel
filter) improve the quality of the signal and reduce MSE more
relative to the previous two techniques. Finally, our proposed
technique based on modified heat kernel filter demonstrates
significant improvement in terms of performance, especially
for the challenging cases of lower SNRs.

The parameters of the filters for different denoising tech-
niques are listed below for reference. The cut-off frequency for
the classical filter is assumed to be λcutoff = 0.7. As discussed
earlier, the parameter α for the graph low-pass filter is set to
α = 0.1. For the combined classical and graph filters, both
orders with the same aforementioned parameters are used.
Note that as the results suggest the order of the application
of these two filters does not change the quality of the signal
notably. Finally, in the modified kernel method, the average
line impedance zavg of the IEEE 118 bus system is calculated
as 0.1105 ohms and the window size of MA block is set to
T = 20.

B. Performance Evaluation of State Estimation using the
Denoising Filters

When the quality of the signal improves through the de-
noising process, the performance of the functions using such
data is expected to improve. In this section, the performance
of the GSP-based state estimation is evaluated for the case
of 10 random unobservable cases when different denoising
techniques are applied. Due to the unavailability of data in

certain nodes in the system, prior to channeling the signal
through the filters for denoising (specially for the ones that are
graph-based filters), the past time instance estimation of the
values of the unobservable nodes has been used to fill the value
gaps over the graph. While other techniques can also be used
in filling the unobservable data for applying the graph filters,
this technique enables the focus of performance evaluation to
remain on the denoising process. Specifically, for any node
that is unobservable at time instance tn, the value will be
estimated by taking the mean of all the past estimated state
values for that node. As can be observed from Fig. 3, applying
the classical graph filter and the graph low pass filter leads
to improved performance for state estimation in comparison
to the case of using noisy and unfiltered time-varying graph
signals. Moreover, it can be observed that the novel modified
heat kernel filter results in the best performance by effectively
capturing both temporal and spatial information in the signal
for the denoising process.

VI. CONCLUSION

This work explores the effects of noise in graph signals
within power systems on a GSP-based state estimation tech-
nique and methods to mitigate these effects. It demonstrates
that noise in graph signals can significantly impact the accu-
racy of GSP-based state estimation. By analyzing the perfor-
mance of state estimation under varying signal-to-noise ratios
(SNRs) and different numbers of unobservable buses, the sen-
sitivity of the state estimation process to noise is highlighted.
Various denoising techniques, ranging from classical signal
processing low-pass filters to graph filters, are presented and
their effects on signal quality are assessed. Finally, the impact
of these denoising filters on state estimation in power systems
is evaluated. The results indicate that denoising processes that
account for both the underlying graph of interactions and the
temporal relationships in data outperform other techniques.
While these denoising methods are examined in the context of
power systems, they are general enough to be applied to any
graph signal.
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