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Abstract—Modern real-time systems often involve numerous
computational tasks characterized by intricate dependency rela-
tionships. Within these systems, data propagate through cause-
effect chains from one task to another, making it imperative
to minimize end-to-end latency to ensure system safety and
reliability. In this paper, we introduce innovative non-preemptive
scheduling techniques designed to reduce the worst-case end-to-
end latency and/or time disparity for task sets modeled with
directed acyclic graphs (DAGs). This is challenging because
of the non-continuous and non-convex characteristics of the
objective functions, hindering the direct application of standard
optimization frameworks. Customized optimization frameworks
aiming at achieving optimal solutions may suffer from scalability
issues, while general heuristic algorithms often lack theoretical
performance guarantees. To address this challenge, we incor-
porate the “1-opt” concept from the optimization literature
(Essentially, 1-opt means that the quality of a solution cannot
be improved if only one single variable can be changed) into
the design of our algorithm. We propose a novel optimization
algorithm that effectively balances the trade-off between theo-
retical guarantees and algorithm scalability. By demonstrating
its theoretical performance guarantees, we establish that the
algorithm produces 1-opt solutions while maintaining polynomial
run-time complexity. Through extensive large-scale experiments,
we demonstrate that our algorithm can effectively reduce the
latency metrics by 20% to 40%, compared to state-of-the-art
methods.

Index Terms—Real-Time System, Scheduling, Time-Triggered
Scheduling, Optimization, End-to-end latency

I. INTRODUCTION

ENSURING timeliness, short end-to-end latency, and
small data communication time disparity is a paramount

consideration across various domains, including control en-
gineering, body electronics, and automotive systems [1]. For
example, the RTSS2021 Industry Challenge [2] underscores
the importance of bounding worst-case end-to-end latency and
time disparity in non-preemptive autonomous driving systems.
Non-preemptive systems are becoming more popular due to
the wide adoption of Single-Instruction-Multi-Data (SIMD)
computing architectures such as GPU. Since preemption with
GPU usually has a much higher overhead than CPU devices,
embedded GPU devices often only provide limited, if any,
support for preemption [3].
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Scheduling and optimizing systems with respect to Data
Age, Reaction Time, and Time Disparity (DARTD)1 pose
significant challenges [1], [4]–[8] due to their non-convex and
non-continuous characteristics. These attributes hinder the ap-
plication of standard mathematical programming frameworks,
such as integer linear programming and convex optimiza-
tion. However, naively employing highly general optimization
frameworks like meta-heuristics often lacks theoretical perfor-
mance guarantees. Conversely, developing customized frame-
works targeted at yielding optimal solutions [7] encounters
scalability issues, which is particularly important in modern
computation systems, where hundreds of computation tasks
may exist [9], [10]. To tackle these challenges, we propose
a computationally efficient optimization algorithm with some
theoretical performance guarantees.

In this paper, we leverage the 1-opt concept, drawn from
the optimization literature [11], [12] as a foundation in the
development of our optimization algorithm. A solution vector
x ∈ RN for an optimization problem is called 1-opt if
changing any single component xi ∈ x does not result in
an improvement beyond the current solution x. We refer
to algorithms that yield 1-opt solutions as 1-opt algorithms.
In contrast to heuristic algorithms, 1-opt algorithms provide
stronger theoretical performance guarantees. Moreover, they
often demonstrate superior scalability when compared to al-
gorithms aimed at finding optimal solutions.

Nevertheless, constructing 1-opt algorithms for optimizing
non-convex and non-continuous metrics such as DARTD is
very challenging. Naively employing brute-force algorithms
can result in exponential complexity in worst-case scenarios.
To address this, we propose a novel algorithm that employs
a technique to partition the solution space into multiple
convex subspaces, allowing for the efficient utilization of
linear programming (LP) to minimize DARTD within each
subspace. Subsequently, an iterative subroutine efficiently tra-
verses among the subspaces, ensuring that the output is 1-
opt. Furthermore, we prove that the solution of each LP
is local optimal in non-preemptive single-core systems. In
comparison with simple scheduling heuristics such as list
scheduling [13], scheduling with LP can explore a much larger
solution space, leading to enhanced performance. Moreover,
the polynomial run-time complexity of solving LP enhances

1Given a cause-effect chain, data age measures the maximum duration for
which a sensor event influences the computational system, while reaction
time measures the maximum latency for the system to first react to a sensor
event. Additionally, time disparity quantifies the maximum difference in the
generation times of multiple source data from which one task reads input.
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algorithm scalability compared to optimal algorithms that
exhibit exponential run-time complexities in the worst case.
Finally, to further improve the efficiency of LP, we propose
an algorithm capable of efficiently performing non-preemptive
schedulability analysis.
Contributions. Our contributions in this paper are as follows:

1) We employ the 1-opt concept in the development of
schedule optimization algorithms. To the best of our
knowledge, this is the first work to utilize the 1-opt
concept in real-time system scheduling problems, and
it achieves superior performance compared to state-of-
the-art methods.

2) We propose a novel optimization framework designed
to minimize worst-case DARTD, which is proven to
yield 1-opt solutions with only polynomial run-time
complexity.

3) To the best of our knowledge, this is the first work that
considers optimizing time disparity with time-triggered
scheduling.

4) Large-scale experiments demonstrate that 1-opt methods
achieve 20% to 40% latency reductions and enhanced
scalability compared to state-of-the-art techniques.

II. RELATED WORK

As an important indicator of system safety, end-to-end
latency has been thoroughly studied. Numerous analyses have
delved into cause-effect chains or task sets structured with di-
rected acyclic graphs (DAG) dependency [1], [4], [5], [7], [8],
[14], [15]. These analytical approaches address diverse sce-
narios, including different scheduling algorithms (e.g., fixed-
priority scheduling, earliest deadline first scheduling) and com-
munication protocols (e.g., implicit communication, logical
execution time). Moreover, some studies explore temporal
variations across various contexts [16], [17]. Beyond the analy-
sis of end-to-end latency, a considerable body of work focuses
on scheduling and the schedulability of DAG task sets [18]–
[21]. These comprehensive analyses build the foundation for
the optimization works performed in this paper.

General optimization techniques in real-time systems can be
broadly categorized into two categories: heuristic algorithms
with general applicability but lacking solution quality guaran-
tees [10], [22], and optimal algorithms built with sophisticated
assumptions and problem modeling [7], [23], [24]. However,
the latter may encounter scalability issues when facing large-
scale optimization problems and the performance may also
degrade seriously. Considering the challenge of finding the
“perfect” algorithms (optimal and fast) for many real-world
problems, algorithm designers often face a trade-off between
solution quality and run-time complexity.

There are many works that optimize the end-to-end latency
with different types of variables. Within the logical execution
time (LET) protocol, many works consider optimizing the
time to read/write data, where both optimal [25], [26] and
heuristic [27], [28] algorithms have been proposed. Some other
works consider implicit communication protocol, primarily
concentrating on optimizing task schedules [7]. Besides, there
are also works that improve different metrics related to end-
to-end latency by performing priority assignments [29], [30].

This paper differs from existing literature in proposing
to use a new concept, 1-opt, to guide the algorithm design
process. We also designed a novel optimization algorithm
which is proved to find 1-opt solutions and demonstrated to
achieve significantly better performance than the state-of-the-
art methods.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this paper, bold fonts are used to represent vectors or sets,
while light characters denote scalars or individual elements.
The double bars notation ∥∥ denotes norm-2. During iterations,
the kth iteration is denoted by a superscript, such as x(k).

A. System Model
We consider a multi-rate Directed Acyclic Graph (DAG)

model G = (τ ,E), in which each task τi ∈ τ is represented
as a node, and a directed edge Ek ∈ E from τi to τj denotes
that τj reads input from τi. The total number of tasks in
τ is denoted as n. Each task releases jobs (i.e., instances
of the task) periodically with a nominal period. A task τi
is characterized by a tuple {Ti, Ci, Di}, which denotes the
period, worst-case execution time (WCET), and the relative
deadline, respectively. We assume Di ≤ Ti. The kth released
job of τi is denoted as Ji,k and it is released at the time k ·Ti.
The DAG G is not necessarily fully connected. Without loss of
generality, we assume all the tasks are released simultaneously
at time 0. However, if there is an offset when all the tasks
are initially released, our optimization algorithm can also be
applied by modifying the schedulability analysis algorithms
and optimization constraints accordingly.

The hyper-period (i.e., the least common multiple of periods
of all tasks in G) is denoted as H . Within a hyper-period,
each job Ji,k starts execution at time si,k non-preemptively
and finishes at fi,k = si,k+Ci. Such a non-preemptive policy
eliminates preemption overhead, which could be large in GPU
computation. The total number of jobs within a hyper-period
is denoted as N . Potential generalizations into preemptive
systems are discussed in Section VIII-B.

In a DAG G, tasks with chained reading/writing dependency
formulate a cause-effect chain C = {τp0

→ τp1
→ ... → τpk

},
which represents a data communication path. The implicit
communication protocol [31] is utilized in data communication
where each job Ji,k reads data at its start time si,k, and writes
data at fi,k = si,k +Ci even if Ji,k may finish earlier than its
worst-case execution time. Multiple cause-effect chains may
share tasks, and the set of cause-effect chains is denoted as C.

In scenarios where a single task reads data from the outputs
of multiple tasks, we refer to the tasks providing data as
the source tasks, and the task that reads these outputs as
the sink task. The source tasks and the sink task collectively
formulate a “merge” M (For example, see Example 1). The
set containing all merges to be optimized is denoted as M.

The DAG task set is processed by a multi-processor system.
We assume that each job has a known processor assignment
before performing the schedule optimization, and we do not
consider processor migration during execution. For presen-
tation simplicity, we assume using a homogeneous multi-
processor system. However, the heterogeneous computation
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can be handled easily by modifying the resource-bound con-
straint correspondingly after obtaining processor assignments.
In experiments, the processor is assigned following the First-
Come-First-Serve heuristic, same as Verucchi et al. [7] for a
fair comparison. The proposed optimization framework does
not optimize processor assignments.

B. General Schedule Optimization Problem Formulation

We consider the schedule optimization problem of time-
triggered systems, focusing on reducing the worst-case end-to-
end latency and/or time disparity. The optimization variables
for our scheduling problem are called a schedule:

Definition III.1 (Schedule). Given a DAG G = (τ ,E), a
schedule s ∈ RN is a vector of the start time of all jobs of
all tasks in τ within a hyper-period H .

A general schedule optimization problem consists of an
objective function and a set of schedulability constraints:

Minimize
s

F(s) (1)

Subject to :

∀i ∈ {0, ..., n− 1}, ∀k ∈ {0, ...,H/Ti − 1},
k · Ti ≤ si,k ≤ k · Ti +Di − Ci (1a)

ResourceBound(s) = 0. (1b)

Constraint (1a) guarantees every job starts and finishes
within its schedulable range. The resource bound constraint
(1b) specifies that no computation resources are overloaded
(e.g., one CPU core executes more than one job simultane-
ously). The specific form of Eq. (1b) will be introduced later
in Section III-E. A schedule s is feasible (or equivalently,
schedulable) if it satisfies both (1a) and (1b). Given a schedule
s, the finish time fi,k of each job Ji,k in non-preemptive
systems is implicitly decided: fi,k = si,k + Ci.

C. Example Problem: End-to-end Latency Optimization

Each cause-effect chain C could trigger multiple job chains
within a hyper-period. The worst-case data age (reaction time)
of a cause-effect chain C is the length of its longest immediate
backward (forward) job chain [5], [6]. These definitions are
briefly reviewed below:

Definition III.2 (Job chain [5], [6]). Given a cause-effect
chain C = {τp0

→ τp1
→ ... → τpk

}, a job chain CJ is a
sequence of jobs {Jp0,q0 → Jp1,q1 → ... → Jpk,qk}, where
Jpi,qi is the qthi job of τpi

, and the data produced by Jpi,qi is
read by Jpi+1,qi+1 .

Definition III.3 (Length of a job chain). The length of a job
chain CJ = {Jp0,q0 → Jp1,q1 → ... → Jpk,qk} is the time
interval from the start time of Jp0,q0 till the finish time of
Jpk,qk . It is denoted as L(CJ) = fpk,qk − sp0,q0 .

Definition III.4 (Immediate backward (forward) job chain [5],
[6]). A job chain CJ = {Jp0,q0 → Jp1,q1 → ... → Jpk,qk} is
the immediate backward (forward) chain under schedule s if
Eq. (2) (Eq. (3)) is satisfied.

∀i ∈ {1, ..., k}, fpi−1,qi−1
≤ spi,qi < fpi−1,(qi−1+1) (2)

∀i ∈ {0, ..., k − 1}, spi+1,(qi+1−1) < fpi,qi ≤ spi+1,qi+1 (3)

Example 1. Fig. 1 shows a simple DAG with three tasks: τ =
{τ0, τ1, τ2} and two edges: E = {τ0 → τ2, τ1 → τ2}. The
WCET, period, and relative deadline of each task is: {C0 =
1, T0 = 10, D0 = 10}, {C1 = 2, T1 = 20, D1 = 20}, {C2 =
3, T2 = 20, D2 = 20}. The task set is executed on 2 identical
processors unless otherwise stated. The hyper-period is 20.
The schedule variable contains the start time of N = 4 jobs:
s = [s0,0, s0,1, s1,0, s2,0].

Figure 1: Example DAG.
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Figure 2: Longest immediate forward and backward job chains
for cause-effect chain C = {τ0 → τ2}.

Suppose we have a schedule s = [0, 10, 1, 3]. For the
cause-effect chain C = {τ0 → τ2}, the job chain CJ

0 =
{J0,0 → J2,0} is both an immediate backward job chain
and immediate forward job chain with length L(CJ

0 ) = 6.
CJ
1 = {J0,1 → J2,1} is another immediate forward job

chain with length L(CJ
1 ) = 16. Thus, maxDAC(s) = 6,

maxRTC(s) = 16. The longest job chains for this scenario
are shown in Fig. 2.

Given a schedule s, we use DAC(s) (RTC(s)) to denote
the vector of data age (reaction time) for all job chains of a
cause-effect chain C within a hyper-period.

To summarize, when optimizing the worst-case data age or
reaction time, the objective function in (1) becomes:

F(s) =
∑
C∈C

maxDAC(s) (4)

or
F(s) =

∑
C∈C

maxRTC(s) (5)

D. Example Problem: Time Disparity Optimization

Similar to a cause-effect chain, a merge M may have
multiple job-level merges:

Definition III.5 (Job merge). A job merge MJ contains a
sink job Jj,l and a set of source jobs JSrc

j,l , from which Jj,l
directly reads data:

∀Ji,k ∈ JSrc
j,l , fi,k ≤ sj,l < fi,k+1 (6)

Definition III.6 (Time disparity [2], [26]). The time disparity
of a job merge MJ , denoted as TD(MJ), is defined as the
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difference between the earliest and latest finish times of all
source jobs in MJ .

TD(MJ) = max
J∈JSrc

j,l

fJ − min
J∈JSrc

j,l

fJ (7)

where fJ represents the finish time of a job J .
Given a schedule s, we use TDM(s) to denote the vector

of time disparities for all job merges of M within a hyper-
period. When optimizing the worst-case time disparity metric,
the objective function in (1) is formulated as follows:

F(s) =
∑

M∈M
maxTDM(s) (8)

Other forms of the objective functions are discussed in
Section VIII-A.

Example 2. In Example 1, there is only one merge M in the
DAG with τ2 as the sink task. The corresponding job merge
has J2,0 as the sink job and {J0,0, J1,0} as the source jobs.
The maximum time disparity is maxTDM(s) = 3− 1 = 2.

Theorem 1. The objective functions (4), (5), and (8) are all
non-convex.

Proof. We prove it by providing counter-examples. Remember
that a function f : Rn → R is convex if for all s(1) and s(2)

in its domain and ∀t ∈ [0, 1], we have f(ts(1)+(1−t)s(2)) ≤
tf(s(1)) + (1− t)f(s(2)). We now give a counterexample for
reaction time, and the counterexamples for data age and time
disparity are similar. In Example 1, consider s(1) = [0, 10, 1, 3]
with a reaction time 16, s(2) = [0, 10, 1, 11] whose reaction
time is 14. If we define t = 0.5, then s(t) = ts(1) + (1 −
t)s(2) = [0, 10, 1, 7], but the reaction time of s(t) is 20, which
violates the property required by convex functions.

E. Resource Bound Constraint: Interval Overlapping Test

In a non-preemptive system, the Interval Overlapping Test
(IO Test) analyzes whether processors are overloaded (one
processor executes multiple jobs in parallel) for a given
schedule s. In this case, each job Ji,k can be modeled as an
interval [si,k, fi,k] that starts execution at si,k and finishes at
fi,k = si,k+Ci. Inspired by the demand bound function [32],
we propose an efficient non-preemptive schedulability analysis
for optimization. Intuitively speaking, there are no overloaded
processors if any two job intervals mapped to the same
processor do not overlap.

Theorem 2 (IO test). In non-preemptive systems, there are
no overloaded processors if the following inequality holds for
any two jobs Ji,k and Jj,l assigned to the same processor:

if fj,l ≥ si,k, then fj,l − si,k ≥ Ci + Cj (9)

Proof. Prove by contradiction. If there are overloaded proces-
sors, by definition, there must be two job execution intervals
overlapping with each other. Let’s denote the job with a larger
finish time as Jj,l, the other job as Ji,k, then we have:

fj,l − si,k < Ci + Cj (10)

This contradicts the IO test assumption above.

Theorem 3. Given a set of job intervals I = {[si,k, fj,l]}
sorted based on its start time si,k in increasing order, no
intervals overlap with each other if any two adjacent job
intervals do not overlap with each other.

Proof. Skipped. It can be proved easily by contradiction.

Since a schedule will repeat in every hyper-period, the IO
test only needs to consider all jobs within a hyper-period.
Within partitioned scheduling, each processor has to be tested
separately. The time complexity of the IO test is O(Nlog(N)).

Example 3. Let us continue with the task set in Example 1.
Suppose we only have one processor and have a schedule s =
[0, 10, 1, 3]. If without sorting, the IO test requires verifying
whether the following six pairs of intervals overlap:

{[s0,0, f0,0], [s0,1, f0,1]} {[s0,0, f0,0], [s1,0, f1,0]}
{[s0,0, f0,0], [s2,0, f2,0]} {[s0,1, f0,1], [s1,0, f1,0]}
{[s0,1, f0,1], [s2,0, f2,0]} {[s1,0, f1,0], [s2,0, f2,0]}

With sorting, only the following 3 pairs require verification:

{[s0,0, f0,0], [s1,0, f1,0]} {[s1,0, f1,0], [s2,0, f2,0]}
{[s2,0, f2,0], [s0,1, f0,1]}

If there is no overlap, then the IO test states that the processor
is not overloaded.

Now, we can give the complete form of the resource bound
constraint (1b) in non-preemptive systems:

ResourceBound(s) =

{
0, if s passes IO test
1, otherwise

(11)

F. Model Assumptions
Assumption 1. The start time of each job could take contin-
uous value.

Although the computer time is integer multiples of CPU
cycles, the very high CPU run-time frequency (MHz or GHz)
means that rounding a float-point number into its adjacent
integers only incurs a small precision loss in timing metrics, if
the jobs’ relative reading/writing time order remains the same.

Assumption 2. A feasible schedule (a solution that satisfies
constraints (1a) and (1b)) is available to start the iterative
algorithms introduced next.

Normally, Assumption 2 can be easily satisfied with simple
list schedulers [7]. This paper focuses on optimizing the timing
metrics rather than finding a schedulable schedule, although
such an extension is possible (see Section VIII-C).

G. Challenges
Solving the optimization problem (1) for DARTD is diffi-

cult because the objective function follows a nonlinear, non-
monotonic, non-convex, and non-continuous relationship with
the variables (see Theorem 1 and its proof). Therefore, most
popular optimization frameworks cannot be directly utilized
except integer linear programming (ILP). However, ILP re-
quires introducing many extra binary variables and could suffer
from bad algorithm scalability.
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IV. JOB ORDER AND SCHEDULING

The proposed optimization framework that solves the prob-
lem (1) is built upon the concept of the job order, which
specifies the jobs’ reading/writing relationships and simplifies
the problem into a set of linear programming problems.

A. Job Order

Definition IV.1 (Job scheduling time). The job scheduling time
of a job Ji,k is denoted as Ti,k, which could be either the start
time (denoted as T s

i,k, called scheduling start time) or the finish
time (denoted as T f

i,k, called scheduling finish time) of Ji,k.

Since we adopt the implicit communication protocol and
non-preemptive scheduling, a job Ji,k’s reading time is its
start time, and its writing time is its finish time.

Example 4. In Example 1, consider a schedule s =
[0, 10, 1, 3]. The job J0,0 has two scheduling times: scheduling
start time T s

0,0 = 0, and scheduling finish time T f
0,0 = 1.

Definition IV.2 (Job order). Given a set of jobs J , a job order
O of J is an ordered list containing all job scheduling times
(both start and finish) of all the jobs in J . The job scheduling
times are ordered in non-decreasing order.

For notation convenience, we use O(i) to denote the ith job
scheduling time in the job order O. For any two job scheduling
times Ti,k, Tj,l ∈ O, if Ti,k has a smaller index than Tj,l in O,
denoted as Ti,k ≺ Tj,l, then that means Ti,k happens earlier
than or at the same time as Tj,l.

Example 5. Consider the task set in Example 1. There
are four jobs within a hyper-period. For a schedule s =
[s0,0, s0,1, s1,0, s2,0] = [0, 10, 1, 3], its job order is O =

{T s
0,0, T

f
0,0, T s

1,0, T
f
1,0, T s

2,0, T
f
2,0, T s

0,1, T
f
0,1}. We also give two

examples for indexing: O(0) = T s
0,0, O(3) = T f

1,0.

A job order O implies a set of linear constraints on the
schedule s of the optimization problem (1):

∀ i < j, Time(O(i)) ≤ Time(O(j)) (12)

where Time(Ti,k) denotes the time that Ti,k happens. If Ti,k
is a scheduling start time, Time(Ti,k) = si,k, otherwise,
Time(Ti,k) = si,k + Ci.

B. Scheduling with Job Order

Finding a schedule that satisfies a given job order O
is equivalent to solving the problem (1) with extra linear
constraints given by Equation (12). Here we provide the job
order scheduling problem for O:

Minimize
s

F(s) (13)

Subject to :

∀i ∈ {0, ..., n− 1}, ∀k ∈ {0, ...,H/Ti − 1},
k · Ti ≤ si,k ≤ k · Ti +Di − Ci (13a)

ResourceBound(s) = 0 (13b)
∀i ∈ {0, ..., 2N − 2}, Time(O(i)) ≤ Time(O(i+ 1)). (13c)

where the objective function F(s) could be, for example, data
age (4), reaction time (5), or time disparity (8).

Theorem 4. The constraints from a job order O simplify
the problem (13) into a convex problem, specifically, a linear
programming problem, when the optimization objective is
DARTD.

Proof. Given a job order O, the relative start/finish relation-
ship of any two jobs is known, therefore all the job chains and
job merges are decided. Then DA(s) and RT (s) become
linear functions (lengths of all job chains in Definition III.3).
The TD(s) can also be similarly transformed into linear
functions following [26]. Constraints (13a) and (13c) are
evidently linear functions. As for the computational resource
bounds (13b) from the IO test (9), since the given job order
O already specifies the relative order of all the job scheduling
times, the constraint (9) becomes linear inequalities. Therefore,
problem (13) is a linear programming problem.

Next, we use π∗(O) to denote the optimal schedule for the
problem (13). Note that the π∗(O) depends on the specific
forms of objective functions and constraints.

Definition IV.3 (Optimal job order schedule). The optimal job
order schedule, s∗ = π∗(O) = argmins F(s), is the optimal
solution of the optimization problem (13).

Example 6. In Example (1), consider a job order: O =
{T s

0,0, T
f
0,0, T s

1,0, T
f
1,0, T s

2,0, T
f
2,0, T s

0,1, T
f
0,1}, where we assume

J0,0 and J1,0 are assigned to one processor P0, while J2,0
and J0,1 are assigned to another processor P1. Next, con-
sider optimizing the reaction time of a cause-effect chain
C = {τ0 → τ2}. The problem (13) can be transformed into a
linear programming problem as follows:

Minimize
s

max {f2,0 − s0,0, f2,1 − s0,1} (14)

Subject to :

f0,0 = s0,0 + C0, f0,1 = s0,1 + C0 (14a)
f1,0 = s1,0 + C1, f2,0 = s2,0 + C2 (14b)
f2,1 = s2,0 +H + C2 (14c)
0 ≤ s0,0 ≤ D0 − C0, T0 ≤ s0,1 ≤ T0 +D0 − C0 (14d)
0 ≤ s1,0 ≤ D1 − C1, 0 ≤ s2,0 ≤ D2 − C2 (14e)
f1,0 − s0,0 ≥ C0 + C1, f0,1 − s2,0 ≥ C0 + C2 (14f)
s0,0 ≤ s0,0 + C0 ≤ s1,0 ≤ s1,0 + C1 ≤ s2,0 (14g)
s2,0 ≤ s2,0 + C2 ≤ s0,1 ≤ s0,1 + C0. (14h)

The objective function (14) considers the length of two
job chains initiated by J0,0 and J0,1 within a hyper-period.
The constraints (14a), (14b) and (14c) are due to the
non-preemptive scheduling. Constraints (14d) and (14e) are
schedulability constraints. Inequalities (14f) are the resource
bound constraint (13b). There are only two IO-test constraints
because jobs assigned to different processors can overlap.
Constraints (14g) and (14h) posed by the given job order.

Definition IV.4 (Schedulable job order). A job order O is
schedulable if there exists a schedulable schedule s that also
satisfies the job order constraints (13c).
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V. TWO-STAGE OPTIMIZATION SCHEDULING

Although finding the optimal schedule given a job order
is simple and efficient, enumerating all the possible job
orders naively requires high computation costs. Therefore,
we propose an iterative algorithm, Two-stage Optimization
Scheduling (TOM), to search for better job orders. TOM is
proven to find 1-opt solutions.

𝒔(0)

Figure 3: TOM intuition. The solution space is divided into
multiple “sub-spaces”, and the optimal solution within each
sub-space can be found efficiently by solving a linear pro-
gramming (LP) problem. This process is visualized above:
Each job order defines a convex sub-space (because all the
constraints are linear after specifying a job order) and is
informally visualized as a grid in the figure above. The optimal
solution within each grid is denoted as a solid circle. The
original optimization problem, which needs to explore the
whole solution space, is simplified into evaluating only the
optimal solutions within each sub-space.

A. Optimization Concepts Review

Definition V.1 (Global optimality). A solution s∗ for the
problem (1) is global optimal if there is no other feasible
solutions s such that F(s) < F(s∗).

Definition V.2 (Local optimality). A solution s∗ for the
problem (1) is local optimal if there exists a small number
δ > 0, such that there is no other feasible solutions s ∈ B(s∗)
where F(s) < F(s∗), B(s∗) = {s | ∥s− s∗∥ ≤ δ}.

Definition V.3 (1-opt, [11], [12]). A solution s1∗ for the prob-
lem (1) is 1-opt if “the objective value at s1∗ does not improve
by changing a single coordinate”, i.e., F(s1∗) ≤ F(s1∗+eic)
for arbitrary unit vector ei = {0, ..., 1, ..., 0} and c ̸= 0.

Although a global optimal solution is also local optimal
and 1-opt, local optimal and 1-opt solutions are not inclusive
of each other. In many real-time system problems, achieving
global optimal or even local optimal solutions within reason-
able time limits is difficult. In these cases, 1-opt provides a
better trade-off between optimality and run-time complexity.

B. Two-stage Optimization Method (TOM)

Due to the non-convex and non-continuous nature of prob-
lem (1), straightforward optimization algorithms necessitate
an infinite number of objective function evaluations to verify
whether a solution is 1-opt. However, the concept of job

order significantly simplifies the problem (1) and allows us to
verify whether a solution is 1-opt with only polynomial time
complexity. Therefore, we propose a two-stage optimization
method (TOM). Fig. 4 shows an overview of TOM. Starting
from an initial feasible schedule, the first stage searches for
better job orders based on an iterative algorithm, while the
second stage finds the optimal schedule by solving problem
(13) for each job order to evaluate.

Start with an initial schedule 

   Extract or update job order 

Search in 's adjacent job order
permutation following Eq. (21)

Find better schedulable job order?

Schedule with job order . Output 

Yes

No

Figure 4: Main optimization framework. We begin with an
initial feasible solution s and its job order O. Then in each
iteration, we search for a better job order in O’s adjacent job
order permutation B(O) and update the best job order found
yet. Eventually, the iteration will terminate at a 1-opt solution.

C. Theorems on 1-opt Conditions
Definition V.4 (Adjacent schedule permutation). The adjacent
schedule permutation B(s) of a schedule s is a set of
schedules, where each schedule B(s)l differs from s by only
one job’s start time.

Definition V.5 (Adjacent job order permutation). Adjacent job
order permutation B(O) of a job order O is a finite set of
distinct job orders. For each job order B(O)l, there is one and
only one job Ji,k that the position of its scheduling start time
T s
i,k, or its scheduling finish time T f

i,k, or both, are different
from those in O. The relative order of all the other jobs’
scheduling time in O and B(O)l remain the same.

Example 7. Following the Example 1, let’s consider a
job order O = {T s

0,0,T f
0,0,T s

1,0,T f
1,0,T s

2,0,T f
2,0,T s

0,1,T f
0,1}. As

an example, B(O) could include an job order such as
{T s

0,0,T f
0,0,T s

2,0,T f
2,0,T s

1,0,T f
1,0,T s

0,1,T f
0,1} by moving J1,0 to the

end of J2,0. An alternative adjacent job order could be
{T s

0,0,T s
1,0,T f

0,0,T f
1,0,T s

2,0,T f
2,0,T s

0,1,T f
0,1} where T f

0,0 is moved to
the back of T s

1,0, which means J1,0 will start execution before
J0,0 finishes. It is schedulable if there is more than 1 processor.

Theorem 5. Consider a schedule s1∗ and its job order O1∗.
s1∗ is a 1-opt solution for the optimization problem (1) if it
satisfies the following conditions:

O1∗ = argmin
O∈B(O1∗)∩Ω

F(π∗(O)) (15)

s1∗ = π∗(O1∗) (16)
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where π∗(O) denotes the optimal schedule obtained by solving
the problem (13) for O, Ω denotes the set of schedulable job
orders following Definition IV.4.

Proof. Consider an arbitrary solution ŝ which differs from
s1∗ by only one job’s start time, and denote the job order of
ŝ as Ô. In the case, we can introduce a function π(·) which
obtains the schedule ŝ = π(Ô). π(·) is possibly different from
π∗(·) in Definition IV.3. Following Definition V.5, we know
Ô ∈ B(O1∗), and therefore

F(ŝ) = F(π(Ô)) ≥ F(π∗(O1∗)) = F(s1∗) (17)

Therefore, s1∗ is 1-opt.

Example 8. Let us continue with Example 1 and consider the
reaction time optimization problem of a chain C = {τ0 →
τ2}. A 1-opt schedule could be s1∗ = [s0,0, s0,1, s1,0, s2,0] =
[9, 10, 18, 11]. This solution is 1-opt because there is no better
feasible solution if only changing one job’s start time while
leaving the other 3 jobs’ start times unchanged.

Lemma 1. If there are six variables which satisfy a1+c1 ≤ b1,
b2 + c2 ≤ a2, then max(|a1 − a2|, |b1 − b2|) ≥ min(c1, c2).

Proof. Prove by contradiction. Assume max(|a1 − a2|, |b1 −
b2|) < min(c1, c2), then we have

a2 − a1 < c1, b1 − b2 < c2 (18)

Combine with the theorem assumptions, we can derive

a2 < a1 + c1 ≤ b1, b1 < b2 + c2 ≤ a2 (19)

The two inequalities above conflict with each other, therefore
the lemma is proven.

Theorem 6. Assume each job has a non-zero execution
time and is executed in single-core systems non-preemptively.
Any schedule s obtained by solving the linear programming
problem (13) is local optimal.

Proof. Prove by contradiction. Assume s is not a local optimal
solution. This implies the existence of another feasible solution
s∗ such that F(s∗) < F(s), where ∥s− s∗∥ < δ, and δ > 0
is a very small number. Denote the job order of s and s∗ as
O and O∗, respectively. Then we must have O∗ ̸= O because
s is optimal for the problem (13) given the job order O.

Since we are considering a non-preemptive single-core
platform, no jobs can run in parallel. Furthermore, since the
job orders are different, there must exist at least two jobs Ji,k
and Jj,l, whose relative execution order is different. Without
loss of generality, assume Ji,k runs earlier than Jj,l in O, and
Jj,l runs earlier in O∗. Mathematically speaking, that means:

si,k + Ci ≤ sj,l, s∗j,l + Cj ≤ s∗i,k (20)

Based on Lemma 1, we have max(|si,k−s∗i,k|, |sj,l−s∗j,l|) ≥
min(C1, C2). Therefore, ∥s−s∗∥ ≥ max(|si,k−s∗i,k|, |sj,l−
s∗j,l|) ≥ min(C1, C2) > δ, which causes a contradiction.
Therefore, the theorem is proved.

Thus, the 1-opt schedule s1∗ from Theorem 5 for a non-
preemptive single-core system is also local optimal.

D. Optimization Algorithm Towards 1-opt Schedules

Following Theorem 5, we can design a simple algorithm
to search for better job orders iteratively. The algorithm will
update the job order following Eq. (21) and terminate when
the iterations converges, i.e. O(k+1) = O(k).

O(k+1) = argmin
O∈B(O(k))∩Ω

F(π∗(O)) (21)

where π∗(O) is the optimal job order schedule of O, Ω denotes
the set of schedulable job orders following Definition IV.4.

Theorem 7. An iterative algorithm that updates the job
order variables following Eq. (21) will terminate after a finite
number of iterations, and the solution found is 1-opt.

Proof. The iterative algorithm will terminate after a finite
number of iterations because a new iteration is initiated only
after finding a feasible, better solution in previous iterations.
Considering that the optimal objective function value is pos-
itive, the algorithm is guaranteed to terminate after a finite
number of iterations. When the algorithm terminates, the two
conditions in Theorem 5 are both satisfied and therefore the
solution is 1-opt.

VI. ENHANCING TOM: STRATEGIES FOR IMPROVED
PERFORMANCE AND EFFICIENCY

A. Skipping Unschedulable Job Orders

Although the feasibility of a job order can be analyzed by
solving the linear programming problem in problem (13), the
average run-time complexity is O(N2.5) [33]. Therefore, we
propose the following lightweight lemma to quickly examine
whether a job order is schedulable with O(N) complexity.
These lemmas are necessary, but not sufficient, conditions of
schedulability:

Lemma 2. Given a job order O, if there exists one job Ji,k
whose scheduling finish time T f

i,k precedes its scheduling start
time T s

i,k, then O is not schedulable.

Lemma 3. Given a job order O, if the maximum number of
concurrent jobs exceeds the total number of processors, then
O is not schedulable.

Proofs of these lemmas are straightforward as they breach
either constraints (13a) or (13b).

B. More Relaxed Constraints in LP

The solution quality of an optimization problem could
become better if its constraints are relaxed. In problem (13),
although we cannot relax the constraints (13a) and (13b)
(hard schedulability constraints), we can relax the job order
constraint (13c) because it is only necessary to maintain the
relative order of jobs that influence the objective functions
(because not all the tasks contribute to the cause-effect chains
or merges) to guarantee that the objective functions can be
equivalently transformed into linear functions.

Example 9. Continue with Example 1, given a job order
O = {T s

0,0, T
f
0,0, T s

1,0, T
f
1,0, T s

0,1, T
f
0,1, T s

2,0, T
f
2,0}, suppose we

only have one processor and want to optimize the reaction
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time of the cause-effect chain C = {τ0 → τ2}. In this
case, the optimal schedule π∗(O) = [s0,0, s0,1, s1,0, s2,0] =
[7, 10, 8, 11], the worst-case reaction time is 7 from the job
chain {J0,0 → J2,0}. Since J1,0 does not influence the length
of the cause-effect chain C = {τ0 → τ2}, only enforcing
the relative job order among {J0,0, J0,1, J2,0} is enough to
transform the objective function (5) into linear functions.
Then the optimal schedule with relaxed constraints become
srelaxed = [s0,0, s0,1, s1,0, s2,0] = [9, 10, 0, 11]. The worst-
case reaction time is reduced to 5.

C. Simple Job Order Scheduler

In cases when the run-time complexity becomes a major
performance bottle-neck, we can use a heuristic scheduling
algorithm with O(N) complexity to replace solving the linear
programming problem (13) that usually requires O(N2.5) time
complexity [33]. The simple job order scheduler adopts a
First-In-First-Out scheduling policy. A job becomes ready for
execution after satisfying two conditions: (i) its release time
has passed; (ii) its previous job scheduling time has happened.
Algorithm 1 shows the pseudocode of the simple job order
scheduler in a simulation environment.

Algorithm 1: Simple Job Order Scheduler
Input: Job order O
Output: Schedule s

1 t = 0 // Record current time
2 for each Ti in O do
3 Ji = GetJob(Ti)
4 if Ti is job scheduling start time then
5 t = max(t, Ji.release time,

NextProcessorAvailableTime() )
6 si = t
7 else
8 if si + Ci ≤ t then
9 t = si + Ci, fi = si + Ci

10 else
11 return 0 // O is unschedulable
12 end
13 end
14 end
15 return s

Example 10. Continue with Example 9, consider the same job
order O = {T s

0,0, T
f
0,0, T s

1,0, T
f
1,0, T s

0,1, T
f
0,1, T s

2,0, T
f
2,0}. If there

is only one computation core, the schedule obtained from the
simple order scheduler is [s0,0, s0,1, s1,0, s2,0] = [0, 10, 1, 11].
In case of two cores, the schedule is [s0,0, s0,1, s1,0, s2,0] =
[0, 10, 0, 10].

Despite its fast speed, the simple job order scheduler suffers
from two major disadvantages: non-exact schedulability anal-
ysis and non-optimal schedule without any theoretical guaran-
tee. It is only encouraged to use if solving the problem (13)
iteratively suffers from a big time-out issue.

VII. IMPLEMENTATION DETAILS

A. Initial Solution Estimation

In the experiments, we use a simple list-scheduling method
[13] to obtain an initial schedule. If multiple jobs become
ready, jobs with the least finish time will be dispatched first.
The processor assignments are decided based on a simple
First-Come-First-Serve strategy. In practice, other methods can
also be used to obtain a feasible initial schedule.

B. Faster Implementation within Time Limits

TOM is implemented slightly differently from (21) for faster
run-time efficiency. When searching for an optimal job order
O(k)∗ within B(O(k)), we immediately accept a new job order
O if it improves O(k). Algorithm 2 shows the pseudocode of
one single iteration. In line 3, BJi(Otmp) denotes the adjacent
job order permutation of Otmp by only changing the index of
Ji’s job scheduling time. Otmp will be updated if a better job
order is found. Following Theorem 7, algorithm 2 also finds
1-opt solutions after algorithm termination.

Algorithm 2: Single Iteration of TOM

Input: Job order O(k), job set J containing all jobs in
a hyper-period

Output: O(k+1)

1 Otmp = O(k)

2 for each job Ji in J do
3 for each job order O in BJi(Otmp) do
4 if F(π∗(O)) < F(π∗(Otmp)) then
5 Otmp = O
6 end
7 end
8 end
9 O(k+1) = Otmp

10 return O(k+1)

C. When to Assign Processor

A simple First-Come-First-Serve (FCFS) policy is used for
processor assignment for each job. In experiments, we utilize
the simple job order scheduler (Section VI-C) to generate the
processor assignment before evaluating a job order (i.e., solv-
ing problem (13)). After obtaining the processor assignments,
we formulate the resource-bound constraints for problem (13).

D. Worst-Case Complexity Analysis

The overall algorithm’s complexity depends on the com-
plexity of each iteration and the total number of iterations.
In the experiments, TOM usually terminates in less than 10
iterations. Following (21), the cost of each iteration depends
on the number of job orders to search and the cost to evaluate
a single job order (problem (13)). In the worst case, the total
number of adjacent job order permutations could be O(N3).
However, techniques from Section VI-A can greatly reduce the
possible permutations. Evaluating a single job order has two
steps: obtaining a schedule and then evaluating the objective
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function. The former could be as fast as O(N) if a simple
job order scheduler is used. In terms of solving the linear
program, the complexity could increase to O(N2.5) in average
case [33] (In reality, since problem (13) is very sparse, the real
run-time speed should be much faster than O(N2.5)). Finally,
evaluating the objective function given a schedule requires
O(N2) complexity in worst cases.

Overall, the worst-case complexity in one iteration is O(N3·
(N2.5 + N2)) if an optimal job order scheduler (solving
problem (13)) is used. However, most experiments finish
optimizing task sets of thousands of jobs within 1000 seconds,
which suggests the average time complexity to be O(N4).

VIII. EXTENSIONS AND LIMITATIONS

This section briefly discusses several possible extensions
and leaves the experiment verification to future works.

A. Alternative Objective Functions

Apart from the objective functions shown in Section III-C
and III-D, TOM also supports other forms of objective func-
tions: such as linear combination of data age, reaction time,
and time disparity. Besides, TOM can also optimize nonlinear
functions of different timing metrics (such as jitters of end-
to-end latency) and solve them with nonlinear programming
methods [10], [34], though without the 1-opt or local-optimal
guarantee anymore.

B. Extension For Preemptive Scheduling

While the TOM framework is designed for non-preemptive
time-triggered scheduling systems, it can be extended to work
with preemptive systems. Firstly, similar to the start time
variables, an extra set of finish time variables has to be
incorporated into the optimization problem formulation. The
schedulability analysis constraints (Section III-E) have to be
replaced with the demand bound function used in [32]. The
concept of job order remains the same because it already
incorporates the finish time.

C. Finding Feasible Initial Schedules

The TOM optimization framework can also be utilized to
find feasible schedules. This sub-section briefly discusses the
theoretical foundations. Since feasibility is a binary metric
that is not friendly for optimization, we utilize “tardiness’
as the optimization objective function (similar to [10]). The
feasibility optimization problem is formulated as follows:

Minimize
s

n−1∑
i=0

H/Ti−1∑
k=0

Barrier(kTi +Di − Ci − si,k) (22)

Barrier(x) =

{
0 x ≥ 0

−x x < 0
(22a)

Subject to :

∀i ∈ {0, ..., n− 1}, ∀k ∈ {0, ...,H/Ti − 1}, kTi ≤ si,k
(22b)

ResourceBound(s) = 0 (22c)

Theorem 8. If a solution s can reduce the objective function
in problem (22) into 0 while also being feasible for prob-
lem (22), then s is a schedulable schedule.

Proof. If the objective function is reduced to 0, no jobs
violate the deadline constraints. Combined with the job release
constraint (22b) and processor overloading constraint (22c),
the schedule s is schedulable by definition.

Theorem 9. List scheduling can always provide a feasible
initial solution to problem (22).

Proof. The schedule found by list scheduling is always fea-
sible for problem (22) because a job is dispatched for ex-
ecution whenever there is an idle processor (satisfying con-
straint (22c)) after the job is released (constraints (22b)).

Theorem 10. The problem (22) can be equivalently trans-
formed into a linear programming problem after adding
an extra set of job order constraints (the inequality con-
straint (13c)).

Proof. Following Theorem 4, we only need to prove that
the objective function (22) can be transformed into linear
functions. This can be easily done by introducing an artificial
variable zi,k for each term following [26]. After that, the
objective function becomes:

Minimize
s

n−1∑
i=0

H/Ti−1∑
k=0

zi,k (23)

with extra linear constraints:

∀i ∈ {0, ..., n− 1}, ∀k ∈ {0, ...,H/Ti − 1},
zi,k ≥ 0 & zi,k ≥ −1 · (kTi +Di − Ci − si,k) (24)

Since both the objective functions and the constraints are linear
functions after transformation, the theorem is proved.

The theorems above show that TOM can also solve the
feasibility problem (22). It is also guaranteed to perform
better than simple scheduling heuristics such as list scheduling
because TOM utilizes them as initial solutions.

D. Limitations

Compared with global optimality, 1-opt provides a weaker
form of theoretical guarantee. However, in general cases,
obtaining global optimal solutions requires significantly higher
computation costs. Therefore, given the same computation
costs, 1-opt could potentially achieve better performance, as
shown in our experiments.

TOM’s computation cost depends on the number of jobs
within a hyper-period. Therefore, there could be a higher com-
putation cost in non-harmonic task sets. However, in realistic
time-triggered scheduling (TTS) systems [35], there cannot
be too many jobs within a hyper-period because that would
incur a high overhead in task management and scheduling.
Therefore, it is expected that the computation cost associated
with TOM should be reasonably low in real-world systems.
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IX. EXPERIMENT

The proposed framework was implemented in C++ and
tested on a computing cluster (AMD EPYC 7702 CPU). We
consider the following methods in experiments:

• List Scheduling [13]. Whenever there are available pro-
cessors, it dispatches the ready job with the least finish
time for execution.

• Simulated Annealing [36]. A general heuristic method for
optimization problems. The initial temperature is 1e8, and
the cooling rate is 0.99, which encourages the algorithm
to explore the solution space. The initial schedule is
obtained from the list scheduling, the same as TOM.

• Verucchi20 [7]. It was proposed to minimize the worst-
case data age and reaction time in multi-rate DAG. The
code implementation is adopted from their official release
repository. If it does not run time out, its solution quality
is close to the optimal solutions. To the best of our
knowledge, it is also the most recent state-of-the-art work
that considers a similar problem setting.

• TOM. The optimization framework proposed in this pa-
per. When solving problem (13), CPLEX [37] is used to
find optimal solutions.

• TOM SimpleScheduler. Similar to TOM, except that the
simple job order scheduler (Section VI-C) instead of LP
is used when obtaining a schedule from a job order.

• TOM Extended. Similar to TOM, except that we also
enabled the relaxations on the linear programming prob-
lem’s constraints, which is introduced in Section VI-B.

If one method runs time-out without a feasible solution, we
use the results of list scheduling during the result analysis.

A. Task Set Generation and Results

The simulated DAG task sets are generated following a
real-world automotive benchmark [9], all the tasks’ periods
are randomly generated from a limited set {1, 2, 5, 10, 20,
50, 100, 200, 1000}, with relative probability distribution: {3,
2, 2, 25, 25, 3, 20, 1, 4}. The overall task set’s utilization
is set to 0.9m, where m is the number of cores available,
4 in our experiments. Each task’s worst-case execution time
is generated by UUnifast [38] while following the multi-
core adaptation implementation in [10]. Each task’s relative
deadline is the same as its period. Task sets generated in this
way usually have hundreds or thousands of jobs to schedule.

Task dependencies are generated randomly following He
et al. [39]. After generating individual tasks, we go through
each pair of tasks and randomly add an edge from one task
to another with a given probability, 0.9 in our experiments
(smaller probabilities are usually insufficient to generate many
cause-effect chains in the DAG). The number of tasks in a task
set ranges from 5 to 20. Cause-effect chains are generated as
the paths between random pairs of tasks using the shortest
path algorithm in Boost Graph Library [40]. Task merges are
generated by randomly selecting a sink task and then collecting
all source tasks on which the sink task directly depends.

For a task set with n tasks, there are n to 2n random
cause-effect chains and ⌊0.25n⌋ to n random task merges.
The maximum number of source tasks in a merge varies from

2 to 9 following ROS [16]. The lengths and activation patterns
of the cause-effect chains adhere to distributions outlined in
Table VI and Table VII of the automotive benchmark [9]. To
meet distribution criteria, we initially generate plenty of task
sets, evaluate the likelihood for each task set, and then sample
1000 random task sets weighted by the likelihood for each
given number of tasks. All task sets are schedulable under the
list scheduling method. The run-time limit for scheduling one
task set is 1000 seconds per method.

We tested the performance of each method in optimizing
data age, reaction time, and time disparity separately. The
experiment results are reported in Fig. 5. All performance gaps
are compared against the list scheduling method:

Fmethod −FList Scheduling

FList Scheduling
× 100% (25)

B. Result Analysis and Discussion

Overall, TOM and its extensions significantly outperform
other methods in various experiments. Next, we provide a
more detailed analysis of different aspects.

1) Comparison with baseline methods: Compared with
other baseline methods, the performance improvements of
TOM and TOM Extended are not obvious when the number
of tasks is small (n = 5). This is because the solution space
is very small and most methods can find good solutions.
However, as the number of tasks increases, Verucchi20 quickly
reaches time limits and can barely find schedulable schedules
or schedules with low end-to-end latency. Simulated annealing
always starts its iteration with a feasible schedule. However,
due to its inefficient solution space exploration techniques, it
usually requires a long time to find a good solution, which
often exceeds the given time limit and therefore cannot show
much performance improvement. In contrast, guided by 1-opt,
TOM and TOM Extended are able to explore the solution
space efficiently while still maintaining good solution quality.
These experiment results show the benefits of both 1-opt
optimality and the proposed TOM optimization algorithms.

2) TOM vs TOM SimpleScheduler: The performance im-
provements of TOM against TOM SimpleScheduler show the
benefits of the LP formulation. Compared with simple heuris-
tics such as list scheduling, LP explores a larger solution space,
can find non-work-conserving schedules, and thus achieves
better solution quality. The disadvantage of the LP approach
is the higher computation cost. To compensate for the extra
computation costs, many heuristics are proposed in this paper
without sacrificing the theoretical guarantee, such as using fast
necessary conditions to filter un-schedulable job orders (Sec-
tion VI-A), exploring the sparse structure in implementation
(the resource bound constraints are sparse linear constraints).
However, TOM SimpleScheduler could still be an option in
situations with many tasks/jobs.

3) TOM vs TOM Extended: The performance improve-
ments of TOM Extended against TOM show the effectiveness
of the heuristics (Section VI-B) to further improve upon 1-opt
while maintaining a similar run-time speed. Since the results
obtained from both TOM Extended and TOM are 1-opt (if not
running time-out), it implies that there are potentially many
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(b) Reaction Time Performance
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(c) Time Disparity Performance
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(d) Data Age Running Time
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Figure 5: Performance gap and running time for optimizing end-to-end latency and time disparity on synthetic task sets.

1-opt solution candidates with varying solution qualities in
the whole solution space. If applicable, utilizing heuristics to
further improve upon 1-opt solutions is beneficial.

4) Time-out issue: It is possible that TOM does not finish
iterations before running time out. In these cases, TOM
degrades into heuristic algorithms without a theoretical guar-
antee. However, the trend in Fig. 5 shows that running time-out
does not seriously degrade the solution quality even though
more than 30% cases running time out when n = 20 (around
4000 jobs per task set). We expect TOM to work reasonably
well for task sets with less than 104 jobs if the time limit is
1000 seconds. Optimizing larger task sets, such as those with
105 jobs, would require a much longer time limit.

5) Data Age vs Reaction Time: Experiments show that
data age and reaction time optimization have similar results.
Furthermore, reducing one metric usually reduces the other,
which is broadly consistent with the findings in [14]. This
observation may improve the algorithm efficiency in cases
where both data age and reaction time need to be optimized:
we may just consider only one metric in the objective function
and leave the other out.

C. Time Disparity Optimization Result

Although the overall results on time-disparity optimization
are good, Fig. 5c shows that the performance seems to become
worse when the number of tasks increases from 5 to 8. This
is mainly due to the nature of the problem itself, rather
than the limitations of the optimizers. For example, consider
two merges where one merge has 2 source tasks and 1 sink

task, and another merge has the same sink task, the same
2 source tasks, and 2 more extra source tasks. In this case,
the maximum source time disparity of the second merge
could never become smaller than the first merge. In practice,
adding more source tasks does not necessarily make the list
scheduling perform worse after reaching certain limits, but
it does make the optimization more difficult, and limits the
performance improvements even for global optimal solutions.

X. CONCLUSIONS

In this paper, we investigate a multi-rate DAG scheduling
problem to reduce the worst-case end-to-end latency and/or
time disparity metrics. Given the potentially vast number of
variables within the solution space, we advocate for guiding
the scheduling design with 1-opt. Our optimization algorithm
introduces a novel technique called job order to partition
the solution space into multiple convex sub-spaces. This
partitioning strategy allows utilizing linear programming to
minimize DARTD within each subspace. Building upon this
partition, our algorithm iteratively traverses among the sub-
spaces, ensuring that the output is 1-opt. In contrast to
alternative optimization algorithms, such as meta-heuristics
algorithms lacking any theoretical performance guarantees,
or optimal algorithms that may require exponential run-time
complexity, the 1-opt algorithm balances the trade-off between
theoretical performance guarantee and run-time complexity.
We rigorously prove that our optimization algorithm achieves
1-opt solutions while maintaining polynomial run-time com-
plexity. Further optimization heuristics are also proposed to
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improve the algorithm’s performance and efficiency without
compromising the 1-opt solution guarantee. Experimental re-
sults indicate significant improvements over state-of-the-art
methods in both performance and computational efficiency.

REFERENCES

[1] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in IEEE Real-Time Systems Symposium,
2009.

[2] PerceptIn, “2021 rtss industry challenge.” http://2021.rtss.org/
industry-session/, 2021.

[3] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the cuda scheduling hierarchy: a performance
and predictability perspective,” in IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pp. 213–225, 2020.

[4] J. Abdullah, G. Dai, and W. Yi, “Worst-case cause-effect reaction latency
in systems with non-blocking communication,” in Design, Automation
& Test in Europe, pp. 1625–1630, IEEE, 2019.

[5] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen, M. Dürr,
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