Competitive Policies for Online Collateral
Maintenance

Ghada Almashagbeh &

University of Connecticut, Storrs, CT, USA

Sixia Chen &
Adelphi University, Garden City, NY, USA

Alexander Russell &
University of Connecticut, Storrs, CT, USA
I0G, Singapore

—— Abstract

Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost,

and confirmation delay of on-chain transactions. They aggregate off-chain transactions into fewer
on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security
of the underlying ledger, layer-two protocols often work in a collateralized model; resources are
committed on-chain to backup off-chain activities. A fundamental challenge that arises in this setup
is determining a policy for establishing, committing, and replenishing the collateral in a way that
maximizes the value of settled transactions.

In this paper, we study this problem under two settings that model collateralized layer-two
protocols. The first is a general model in which a party has an on-chain collateral C' with a policy
to decide on whether to settle or discard each incoming transaction. The policy also specifies when
to replenish C' based on the remaining collateral value. The second model considers a discrete setup
in which C is divided among k wallets, each of which is of size C'/k, such that when a wallet is full,
and so cannot settle any incoming transactions, it will be replenished. We devise several online
policies for these models, and show how competitive they are compared to optimal (offline) policies
that have full knowledge of the incoming transaction stream. To the best of our knowledge, we are
the first to study and formulate online competitive policies for collateral and wallet management in
the blockchain setting.

2012 ACM Subject Classification Theory of computation — Online algorithms; Applied computing
— Digital cash

Keywords and phrases Blockchain layer-two solutions, Wallets, Collateral management, Online
algorithms, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.26
Related Version Previous Version: https://arxiv.org/abs/2406.17121

Funding Ghada Almashagbeh: supported by NSF under grant No. CNS-2226932.

Acknowledgements We thank Mathias Fitzi for conversations that led to the original formulation of

these questions.

1 Introduction

Distributed ledger technology has provided a financial and computational platform realizing an
unprecedented combination of trust assumptions, transparency, and flexibility. Operationally,
these platforms introduce two natural sources of “friction”: settlement delays and settlement
costs. The Bitcoin protocol, for example, provides rather lackluster performance in both
dimensions, with nominal settlement delays of approximately one hour and average fees of
approximately 1 USD per transaction. Layer-two protocols have been the ready response to

© Ghada Almashaqgbeh, Sixia Chen, and Alexander Russell;

37 licensed under Creative Commons License CC-BY 4.0
6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Béhme and Lucianna Kiffer; Article No. 26; pp. 26:1-26:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ghada@uconn.edu
mailto:schen@adelphi.edu
mailto:acr@uconn.edu
https://doi.org/10.4230/LIPIcs.AFT.2024.26
https://arxiv.org/abs/2406.17121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2

Competitive Policies for Online Collateral Maintenance

these complaints as they can provide instant settlement and, furthermore, can significantly
reduce transaction costs by aggregating related off-chain transactions so that they ultimately
correspond to fewer underlying ledger, or on-chain, transactions. Examples of such protocols
include payment channels and networks [9, 16], probabilistic micropayments [5,7,14], state
channels and networks [6,10,13], and rollups [12,15].

However, in order for layer-two protocols to provide these remarkable advantages without
sacrificing the security guarantees of the underlying ledger, they must collateralize their
activities. In particular, there must be resources committed on-chain that provide explicit
recourse to layer-two clients in the event of a malicious or faulty layer-two peer or server.
Moreover, the total value of the on-chain collateral must scale with the value of “in flight”
transactions supported by the layer-two protocol.

These considerations point to a fundamental challenge faced by layer-two protocols:
determining a policy for establishing, committing, and replenishing the collateral. Such a
policy must ensure sufficient available collateral to settle anticipated transaction patterns while
minimizing the total collateral and controlling the resulting number of on-chain transactions.
Of course, any fixed collateralization policy can be frustrated by the appearance of an
individual transaction — or a sudden burst of transactions — that exceeds the total current
collateral. More generally, it would appear that designing a satisfactory policy must rely on
detailed information about future transaction size and frequency, i.e., transaction distribution.
From a practical perspective, this poses a serious obstacle because real-world transaction
patterns are noteworthy for their unpredictability and mercurial failure to adhere to a steady
state. Analytically, this immediately calls in to question the value of distribution-specific
solutions. These considerations motivate us to elevate distribution independence as a principal
design consideration for collateral policies.

We formulate a distribution-independent approach by adapting to our setting the classical
framework of competitive analysis. In particular, we study two natural models: the k-wallet
model in which the total collateral C' is divided among k wallets of fixed size, and a general
model in which C is viewed as one wallet that allows replenishment of any portion of C.
After fixing only two parameters of the underlying system — the total collateral C' and the
size T of the largest transaction that we wish to support — we measure the performance of
a given collateral policy against the performance of an optimal, omniscient policy. This
optimal policy utilizes the same total collateral, but has full knowledge of the future sequence
of transactions as it commits and replenishes collateral. Naively, this would appear to be an
overly ambitious benchmark against which to measure an algorithm that must make choices
on the fly based only on the past sequence of transactions. Our principal contribution is
to show that the natural policies for these two models perform well, even when compared
against this high bar.

1.1 Contributions

Our formal modeling is intended to reflect the challenges faced by standard layer-two
protocols. The most immediate of the models we consider arises as follows: Consider a
layer-two protocol with a total of C' collateral that must serve an unknown transaction
sequence Tx = (txy,txa,...). As each transaction arrives, the policy may either commit a
corresponding portion of its available collateral to settle this transaction or simply discard
it; in particular, in any circumstances where there isn’t sufficient uncommitted collateral to
cover a given transaction, the transaction must be discarded. The policy may also — whenever
it chooses — replenish its currently committed collateral. This “flush” procedure returns the
committed collateral to the available pool of collateral after a fixed time delay F' and involves

G. Almashaqgbeh, S. Chen, and A. Russell

a fixed cost 7 (so transactions arriving during F' will be discarded if no other sufficient
collateral is available). Thus, the challenge is to schedule the flush events so as to minimize
the total cost while simultaneously maximizing the total value of settled transactions.

We remark that transactions “discarded” in the model above would typically be handled
by some other fallback measure in a practical setting. The flush operation, in practice,
corresponds to on-chain settlement of a family of transactions that releases the associated
collateral so that it can be reused as surety for additional transactions. While we assume
that the flush procedure is associated with a fixed, constant cost for simplicity, in practice
this cost may scale with the complexity of the aggregated transactions. We remark that a
fixed cost directly models Lightning-like payment channels and networks, or escrow-based
probabilistic micropayments, where the total number of participants is bounded.'

In this general setting, we study the natural family of policies determined by a parameter
n € (0,1) that settle transactions as they arrive until an 7-fraction of all collateral is
consumed; at this point the committed collateral is flushed and the process is continued
with the remaining collateral. Our analytic development first focuses on a simpler variation —
of interest in its own right — that we call the k-wallet problem. As above, the policy is
challenged to serve a sequence Tx of transactions with a total of C' collateral; however, the
collateral is now organized into k wallets, each holding C/k collateral, with the understanding
that an entire wallet must be flushed at once. When a wallet is flushed it becomes entirely
unavailable for settlement — regardless of how much of the wallet was actually committed to
settled transactions — until the end of the flush period F', when the collateral in the wallet
is again fully available for future settlement. As above, the policy may settle a transaction
by committing a portion of collateral in one of the wallets corresponding to the size of the
transaction. This version of the problem has the advantage that performance is captured by
a single quantity: the total value of settled transactions.

1.2 A Survey of the Results

Continuing to discuss the k-wallet model, we consider a sequence Tx of transactions, each of
value no more than 7. We focus on the natural FLUSHWHENFULL policy, which maintains
a single active wallet (unless all wallets are currently unavailable) that is used to settle
all arriving transactions; if settling a transaction would leave negative residual committed
collateral in the active wallet, the wallet is flushed and a new wallet is activated as soon as
one becomes available. We prove that this simple, attractive policy settles at least a fraction

1—kT/C
1+1/k

of the total value settled by an optimal, offline strategy with C collateral, even one that
is not restricted to a k-wallet policy but can flush any portion of its collateral at will. We
remark that this tends to optimality for large k and small T' < C'/k. This result also answers
a related question: that of how many wallets one should choose for a given total collateral C
and maximum transaction size T. We find that optimal k in this case is ~ /1 4+ C/T — 1.
As for the more flexible setting — under the general C collateral model — where the policy
may flush any portion of its collateral at will by paying a transaction fee 7, recall that this
poses a bicriteria challenge: maximizing settled transactions while reducing settlement fees.

1 On-chain transaction cost also varies based on network conditions; during periods of high activity
or congestion, transaction issuers may resort to increasing transaction fees to incentivize miners to
prioritize their transactions. As such, 7 above is viewed as the average transaction cost.

26:3

AFT 2024

26:4

Competitive Policies for Online Collateral Maintenance

We study this by establishing the natural figure of merit that arises by assuming that each
settled transaction yields positive utility to the policy that scales with its value (e.g., a “profit
margin”). Thus, the policy seeks to maximize pV — 7f, where V is the total value of settled
transactions, f is the total number of flushes, and p is the profit margin. Here we study the
family of policies that flush when currently committed (but unflushed) collateral climbs to
an n-fraction of C' (n is a policy parameter). We find that this policy achieves total utility of
at least 1/« fraction of that achieved by the optimal omniscient policy, where

_ 1 - p/T—1/C
1-9-T/C p/T—1/(nC)"

In this case, we are also able to determine the optimal constant n* (as a function of C, p,
and 7) that maximizes the policy utility:

n =1 -T/C)-7/(pC).

We remark that our results in the k-wallet setting can also be applied to directly yield results
with this accounting that assigns a flush cost and a profit margin.

We study some additional questions that arise naturally. For example, we show that no
deterministic, single wallet policy can be competitive if the maximum transaction size can be
as large as the wallet size and show that, on the other hand, a natural randomized algorithm
is O(1)-competitive.

(07

1.3 Applications

Online collateral management arises in various layer-two protocols, as well as in Web 3.0 and
decentralized finance (DeFi) applications. For layer-two protocols, payment networks are an
emblematic example: A relay party creates payment channels with several parties, allowing
her to relay payments over multi-hop routes. Each payment channel is tied to a collateral
C such that the relay cannot accept a transaction to be relayed if the remaining collateral
cannot cover it. This applies as well to state channels, where transactions created off-chain —
while the channel is active — are accepted only if their accumulated value does not exceed
the initial fund committed when the channel was created. These configurations adhere to
the general collateral model discussed above.

Probabilistic micropayments follow a slightly different setting. Micropayments are usually
used to permit service-payment exchange without a trusted party to reduce financial risks
in case of misbehaving entities. A client creates an escrow fund containing the collateral
backing all anticipated payments to a set of servers. A server provides a service to the
client (e.g., file storage or content distribution) in small chunks, so that the client pays a
micropayment for each chunk. For any incoming service exchange, the client cannot take it
unless her collateral can pay for it. The client can decide to replenish the escrow fund to
avoid service interruption, thus this also follows the general collateral model. The client may
also choose to divide her collateral among several escrows, each of which has a different or
similar setting with respect to, e.g., the set of servers who can be paid using an escrow and
the total service payment amount. This configuration follows the k-wallet model.

Apart from layer-two scalability solutions, online collateral management captures scenarios
related to Web 3.0 and DeFi applications. The framework of decentralized resource markets
build systems that provide digital services, e.g., file storage, content distribution, computation
outsourcing or video transcoding, in a fully decentralized way [1-3]. Due to their open-access
nature, where anyone can join the system and serve others, these systems usually involve

G. Almashaqgbeh, S. Chen, and A. Russell

some form of collateral. In this case, a collateral represents the amount of service a party
wants to pledge in the system. For example, in Filecoin [1] — a distributed file storage
network — a storage server commits collateral proportional to the amount of storage she
claims to own. This server cannot accept more file storage contracts, and subsequently
more storage payments, than what can be covered by the pledged storage (or alternatively
collateral).

In the DeFi setting, online collateral management is encountered in a variety of applica-
tions. Loan management is a potential example [11,17]; incoming loan requests cannot be
accepted unless the loan funding pool can support them. The loan DeFi application then
has to decide a policy for loan request accept criteria (to favor some requests over others
under the limited funding constraint) and when to replenish the loan pool balance.

Another potential application, of perhaps an extended version of our models and policies,
that we believe to be of interest is the case of automated market makers (AMMs) [19]. Here,
a liquidity pool trades a pair of tokens against each other, say token A and token B, such
that a trade buying an amount of token A pays for that using an amount of token B, and
vice versa. Incoming trades are accepted only if the liquidity pool can satisfy them, so in a
sense having tokens that can serve the requested trades is the collateral. Replenishing the
pool fund, or liquidity, can be done organically based on the trades. That is, a particular
trade, say to buy A tokens, reduces the backing fund of token A while increasing it for token
B. Another approach for pool replenishment is via liquidity providers; particular parties
provide their tokens to the pool to serve incoming trades (or token swaps) in return for some
commission fees. These providers can configure when their offered liquidity can be used, i.e.,
at what trading price range, under what is called concentrated liquidity as in Uniswap [4]. An
interesting open question is to develop competitive collateral policies that capture this setting
where settling a transaction does not only depend on whether the remaining collateral C
(i.e., pool liquidity) can cover it, but also on transaction-specific parameters to meet certain
collateral-related conditions. Even the replenishment itself, i.e., providing liquidity, could be
subject by other factors such as the resulting price slippage, so an incoming mint transaction
(in the language of AMMs) that provides liquidity may not be accepted immediately. We
leave these questions as part of our future work directions.

In general, our work lays down foundations for wallet management to address issues
related to robustness, availability, and profitability of the wallet(s) holding the collateral.
Maintaining one wallet may lead to periods of interruption; a party must wait for a while
before a new wallet is created to replace an older expired one. Maintaining several wallets
may help, but given the cost of locking currency in a wallet or renewing it, the number of
active wallets and their individual balances must be carefully selected. Moreover, under this
multi-wallet setting, it is important to consider how incoming transactions are matched to
the wallets, and whether factors such as payment amount or frequency may impact this
decision. A potential extension to our model is considering adaptive policy management,
where the size of the collateral and the number of wallets can be adjusted after each flush
decision to account for these varying factors.

2 The Model; Measuring Policy Quality

As discussed above, we consider the problem of designing an online collateral management
policy in which a collateral fund of initial value C' is used to settle transactions — each with a
positive real value no more than T' - chosen from a sequence Tx = (txy, txs,...). Operationally,
the policy is presented with the transactions one-by-one and, as each transaction arrives, it

26:5

AFT 2024

26:6

Competitive Policies for Online Collateral Maintenance

must immediately choose whether to settle the transaction or discard it. Settling a transaction
requires committing a portion of the collateral equal to the value of the transaction; such
committed collateral cannot be used to settle future transactions. Of course, if there isn’t
sufficient uncommitted collateral remaining to settle a given transaction when it arrives,
the transaction must be discarded. Committed collateral may be returned to service by
an operation we call a flush; we focus on two different conventions for the flush operation,
described below, but in either case the collateral only becomes available for use after a fixed
time delay F. We assess the performance of a particular online policy A against that of an
optimal offline policy OPT that knows the full sequence Tx and can make decisions based on
this knowledge.

Below, we describe two models for the collateral: the discrete k-wallet model and the
general collateral model.

2.1 The Discrete k-Wallet Model

The k-wallet model calls for the collateral to be divided into k wallets, each with C/k
collateral value. Wallets support two operations: (i) a wallet with uncommitted collateral
R may immediately settle any transaction tx of value v < R; this reduces the available
collateral of the wallet to R — v, and (ii) a wallet may be flushed, which takes the wallet
entirely offline for a flush period F' after which the available collateral R is reset to C/k.
As a matter of bookkeeping, we mentally organize time into short discrete slots indexed
with natural numbers: we then treat the transaction tx; as arriving at time(slot) ¢, and set
tx; = 0 for times ¢ when no transactions arrive. We treat the flush period as a half-open and
half-closed interval: if a wallet flushes at time ¢, then it is offline during the time interval
(t,t + F]. In this model, the figure of merit is the total value of settled transactions. We let
Discg’k denote this discrete k-wallet model with maximum transaction size T'.

Settlement algorithms, settled value, and the competitive ratio. A k-wallet settlement
algorithm A is an algorithm that determines, for any transaction sequence Tx, whether to
settle each transaction, which wallet to use, and when to flush each wallet. For such an
algorithm A and a sequence Tx = txq, txa, ..., tx, we let A[Discg’k; Tx] denote the total value
of all transactions settled by the algorithm. In general, we use the notation A[/; Tx] to
denote the value achieved by algorithm A in model . with input sequence Tx. When the
model is clear from context, we simply write A[Tx].

We say that an algorithm A is online if, for every N, any decisions made by the algorithm
at time N depend only on txi,txs,...,txy, i.e., transactions seen so far. We let OPT denote
the optimal (offline) policy; thus OPT[Discg’k; Tx] denotes the maximum possible value that
can be achieved by any policy, even one with a full view of all (past and future) transactions.

» Definition 2.1. We say that an algorithm A is a-competitive in the k-wallet model if, for
any sequence Tx = txq,...,tx, with mazimum value no more than T,

OPT[Disc5"; Tx] < - A[Disc5"; Tx] + O(1),

where the constant in the asymptotic notation may depend on the model parameters (C, k,
and T'), but not the sequence Tx or its length n.

» Remark 2.2 (Relation to the bin packing problem). We remark on the relationship between
our problem and the well-studied online bin packing problem [8, 18], where an algorithm
must pack arriving objects into bins of constant size, while opening a new bin any time a

G. Almashaqgbeh, S. Chen, and A. Russell

newly arriving object does not fit into any of the current bins. In this context, the k-wallet
model calls for a bounded number of bins (a.k.a., wallets) that can only be reset with the
flush operation. Also, we measure the total settled value rather than the number of utilized
bins. In any case, we adopt the standard classical paradigm of competitive analysis to study
our algorithms, as described previously.

2.2 The General Collateral Model

In contrast to the discrete k-wallet model, where each wallet must be flushed as a whole, the
general setting permits any portion of the collateral to be flushed at any time. The basic
framework is identical: the policy is presented with a sequence of transactions txj,txo, - - -
and must decide whether each transaction will be settled or discarded; the total collateral C'
and the maximum transaction size T" are parameters of the problem. Settling a transaction
requires committing collateral of value equal to the transaction; however, any portion of the
committed collateral can be flushed at any time. As before, each flush period is F' and is
defined to be a half-open and half-closed time interval. We denote this model as Gen5..

Since there is no penalty for flushing collateral in this model, it is clear that any algorithm
may as well immediately flush any committed collateral. Despite the simple appearance
of the model, it is still useful to consider this setting as a comparison reference point for
k-wallet policies, and we define A[Geng ; Tx] to be the total value of transactions settled by
algorithm A in this general model for a transaction sequence Tx (with total collateral C' and
maximum transaction size T).

» Definition 2.3. We say that an algorithm A is a-competitive in the general collateral
model if, for any sequence Tx = txq, ..., tx, with mazimum value T,

OPT[Gen?; Tx] < aA[GenT; Tx] + O(1).

where the O(1) term may depend on model parameters but not on Tx or n.
Note that for any algorithm A defined in the k-wallet model the following is always true:
A[DiscS*; Tx] < OPT[Discs¥; Tx] < OPT[GenS; Tx] .

A more natural model arises by introducing a cost for flushes. In order to reflect the
relative cost of flushes in the context of settled transactions, we introduce two additional
parameters:

1. Profit margin p: a profit p - v is gained when a transaction with value v is settled.
2. Flush cost T: each flush operation costs 7.

We assume throughout that pC' > 7; otherwise there is no value to settling transactions
because the cost of even single flush exceeds the total profit that can be accrued from

the flushed collateral. We let Gen%; denote this model, observing that Gen$ and Gen%?

coincide. In keeping with the notation above, we let A[Gen(Tjg; Tx] denote the total profit
minus flush cost by applying algorithm A in the general model with total collateral C,

maximum transaction size 7', profit margin p, flush cost 7, and transaction sequence Tx.

Then, we have the following.

» Definition 2.4. We say that an algorithm A is a-competitive in the general collateral
model with flush costs if, for any sequence Tx = txq,...,tx, with mazimum value T,

OPT[Gen%;; X < a- A[Gen%;; Tx]+0O(1),

where the O(1) term may depend on the model parameters but not Tx or n.

26:7

AFT 2024

26:8

Competitive Policies for Online Collateral Maintenance

Table 1 Summary of our results. Here » = kT'/C, 7 is the flush cost, p is the profit margin, and
f is the number of flushes.

Discrete k-wallet model
Theorem 3.1: FLUSHALL is (2 — r)/(1 — r)-competitive
Theorem 3.2: FLUSHWHENFULL is (k + 1)/(k(1 — r))-competitive
k=1 | Theorem 3.3: No competitive deterministic settlement algorithm
r=1 B> 1 Theorem 3.5: FLUSHALL is 3-competitive
Theorem 3.6: FLUsSHTWOWHENFULL is 2(k + 1)/k-competitive
General collateral model
maximize V' | Corollary 4.1: FLUSHWHENFULL is (k + 1)/(k(1 — r))-competitive
maximize Theorem 4.4: A, is (1 — 8)/(y/1 —T/C — \/B)?-competitive,
pV —1f where n = /(1 —T/C) and 8 = 7/pC

Transaction size. Our analysis identifies two regimes of interest regarding transaction costs
(for both of the previous models): the “micro-transaction” setting, where T' < C' (arising in
micropayment applications) and “arbitrary” transaction size when T' = C' (arising in more
general settings).

In the next two sections, we analyze policy competitiveness under each model; the discrete
k-wallet model can be found in Section 3 and the general collateral model can be found in
Section 4. Table 1 summarizes our results.

3 The Discrete k-Wallet Setting

We now formally consider the k-wallet setting. Our focal points are two natural policies
described next: FLUSHALL and FLUSHWHENFULL.

3.1 The FlushAll Algorithm

We begin with the simple FLUSHALL algorithm, which uses k wallets placed in (arbitrary,
but fixed) order Wy, ..., Wj. The algorithm packs transactions into its wallets using the first
fit algorithm: each transaction is settled by the first wallet (in the established order) that
can fit the transaction until a transaction arrives that cannot fit into any wallet. At that
time, all k wallets are simultaneously flushed (and so during the flush period F all incoming
transactions will be discarded).

In the following theorems, we use r to denote kT/C, which is the ratio between the
maximum transaction size and the wallet size. Note that » < 1.

g’k model, where

» Theorem 3.1. FLUSHALL is (2 — r)/(1 — r)-competitive in the Disc
r=kT/C.

Proof. For a sequence Tx of transactions, subdivide time into epochs according to the
behavior of the FLUSHALL algorithm. The first epoch begins at time 0 and continues through
the first flush of the k wallets; the epoch ends in the last timeslot of this flush period. Each
subsequent epoch begins in the timeslot when the wallets come back online (that is, in the
timeslot just after the previous epoch ends) and continues through the next flush to the end
of the flush period. In general, there may be a final partial epoch at the end of the transaction
sequence; other epochs are referred to as full. Any full epoch can be further broken into two
phases: the accumulation phase when all transactions are settled by FLUSHALL, and the
flush phase, during which no transactions can be settled (as all wallets are offline).

G. Almashaqgbeh, S. Chen, and A. Russell

For any particular full epoch, let V be the total value packed by FLUSHALL into its
wallets in the accumulation phase. We note that V > k(C/k — T) = C — kT, since every
wallet will clearly be filled to at least C/k — T. As for OPT, during the accumulation phase
it can settle at most V' (as this is the value of all transactions appearing in that phase) and
during the flush phase it can settle at most C' (as a unit of collateral can settle at most one
transaction unit in any F' period). Therefore, the ratio between the value settled by OPT
and FLUSHALL in a full epoch is no more than

V+C _C—kT+C _(2-kT/C) _2-r1
cokrsv<e V. = C—kI (1—kT/C) 1—7¢"

Moreover, the same formula above can be said for any partial epoch, since the accumulation
phase comes first.

Thus, the competitive ratio is & = (2 —r)/(1 — r). Observe that when r decreases, the
competitive ratio approaches 2. <

Aside from the simplicity of the analysis, FLUSHALL may have an advantage for certain
sequences of transactions in practice: keeping all k wallets open during the epoch (rather
than optimistically flushing some earlier so as to bring new collateral online earlier) may
permit higher density packing of transactions into the wallets. Indeed, one could consider
leveraging an approximation algorithm for bin packing for the purposes of optimizing this.
On the other hand, in situations where some of the wallets may become nearly full early
in an epoch it seems wasteful to wait to flush these wallets until all others are full. This
motivates the FLUSHWHENFULL algorithm, which attempts to more eagerly flush wallets so
as to bring them online sooner.

3.2 The FlushWhenFull Algorithm

We now consider the FLUSHWHENFULL algorithm, which fills wallets in a round-robin order.
Specifically, transactions are settled by a particular wallet until a new transaction arrives that
cannot fit; at that point the wallet is immediately flushed, and the algorithm moves on to
the next wallet in cyclic order. (In cases where the next wallet is offline, the algorithm waits
for the wallet to finish its flush before processing further transactions, so all transactions
arriving during this wait period will be discarded.)

» Theorem 3.2. For k > 1, FLusSHWHENFULL is (k + 1)/(k(1 — r))-competitive in the
Discg’k model, where r = kT /C.

Proof. Assume, for the purpose of contradiction, that there is a time ¢ for which the interval
I = (0,t] satisfies

VOPT(I) > (k + 1)/(k(1 — 7’)) . VFVVF(I) ,

where Vopr([) and Viewr(I) are the total values of transactions OPT and FLUSHWHENFULL
settle during I, respectively; let t. be the earliest such t.

Since t. is the earliest such time, there must be a transaction tx at t. that is not settled by
FLusHWHENFULL. As FLUSHWHENFULL does not take tx, it must be the case that either
all wallets are offline at ¢, or k — 1 wallets are already offline at ¢, and the remaining wallet
goes offline at ¢, after failing to fit tx. Therefore, every wallet flushes during Iy = (t. — F, t.].
Suppose, without loss of generality, that they do so in order Wy, Wy, - -+ W.

26:9

AFT 2024

26:10

Competitive Policies for Online Collateral Maintenance

If t. < F, then OPT settles transaction value at most C in the interval (0,¢.] since
each wallet settles at most C'/k. In the same interval, FLUSHWHENFULL settles at least
k(C/k — T) since each wallet settles at least C'/k — T. Therefore,

VOPT(I) < C o C < kC " C . k+1
VF\VF(I) _k:(C/k—T)iC—kT kC — k2T k‘c—k’QTik‘(l—T)’

which would contradict our assumption.

Otherwise t. — F' > tg. Observe that of the k wallets, at least Wy, W3, --- W) began
taking transactions during Iy since, if a wallet W;’s transaction activity before its last flush
starts at a time before Iy for any ¢ = 2,--- ,n, then W;_;’s last flush time must also be
before Iy which contradicts the earlier conclusion that all the k wallets’ last flush times are
during Iy. Therefore, those k — 1 wallets together contribute (k —1)(C/k —T) to Vewr(Iy).
The only wallet that may have started taking transactions before Iy is W;. Let t, denote the
last time before ¢, that W7 came back online and ¢,/ denote the time W7 flushes. Note that
tsr € Iy, while t; may or may not be in the interval. Let I, = (t,,ts] and Iy = (ts, tc]; then
we have Vewr (s U Iy) > k(C/k — T) since each wallet starts to take transactions and then
flushes within the interval Iy U I;,. We also have Vopr (1) < Vewr(Is) < C/k since wallet
W is active during I,.

Additionally, we have Vopr(Isy) < C since the length of Iy is no more than F', leading
to Vopr(Is U Iy) < C/k + C. Therefore,

Vopr(Is U Iy)
Vewr (I U Iy)

_ C/k+C k41 O k41
S kC/k—T) k C—kT k(l—r)

But this contradicts our initial assumption; we conclude that there is no such t. |

3.3 Optimal Wallet Number

When £k is large and r is small, FLUSHWHENF ULL approaches optimality. For a given total
collateral C' and maximum transaction size T, it is natural to ask how many wallets one
should choose so as to optimize the competitive ratio of FLUSHWHENFULL. This amounts
to determining a k that minimizes (k4 1)/(k(1 — kT'/C)). By computing

9 k+1 —0
ok\k(1—kT/C))
we find that the optimal value k* for k is /1 + C/T — 1. Of course, the actual number of

wallets must be an integer. We remark that if k ~ /C/T, then each wallet has size = vVCT
and the competitive ratio is approximately

VC 4+ VT
VO - VT

3.4 Remarks on the profit margin—transaction cost setting

We remark that the competitive analyses above focusing on total settled value immediately
give rise to a bound for the setting that introduces a profit margin p and a flush cost 7.
Observe that, for any algorithm constrained to the k-wallet framework that settles total value
V, the maximum profit is V(p — 7k/C'), as only C/k value can be settled in any single flush.
Thus the profit of OPT is no more than Vopr(p — 7k/C). On the other hand, the profit of

G. Almashaqgbeh, S. Chen, and A. Russell

FLUSHWHENFULL is at least Vewr(p — 7k/(C — kKT)) — O(1), as each wallet is flushed with
at least C'//k — T value (except for the last wallet, which may introduce a O(1) additional
penalty). It follows that the competitive ratio in the profit model is inflated by a factor

p/T —k/C
p/T —k/(C —kT)

over that of the “value-only” k-wallet setting.
Note that the same argument can be applied to FLUSHALL because each wallet is likewise
flushed with at least C'/k — T value (except perhaps for the last flush event).

3.5 Remarks on the Case r =1

If the maximum transaction size can be as large as the wallet size, we make a few additional

observations:

1. No deterministic algorithm can be competitive if there is only one wallet.

2. FLUSHALL is 3-competitive.

3. FLusHWHENFULL is not competitive, but a variation on the scheme that groups wallets
into pairs can solve the problem.

We prove these in the following.

» Theorem 3.3. There is no competitive, deterministic 1-wallet settlement algorithm if
r=1.

Proof. For the sake of simplicity, we assume the wallet size and maximum transaction size
are both 1. Fixing an online algorithm A, consider the following schedule of transactions:
Begin with a rapid succession of one or more microtransactions each having size e,
terminating with the first microtransaction that the algorithm chooses to settle.
1. If the algorithm does not choose to settle any of the microtransactions, end the
succession after 1/e transactions.
2. If the algorithm does choose to settle one, follow it immediately with a transaction of
size 1.
Allow an interval of length F' to pass without any transactions.
Repeat indefinitely.

In any iteration of the above, either case 1 or case 2 applies. In case 1, the online
algorithm settles no transactions, while the optimal offline algorithm settles a total value
of 1. In case 2, the online algorithm settles a single transaction worth e while the optimal
offline algorithm settles a single transaction of size 1. Therefore, the competitive ratio is no
better than 1/¢. As € can be chosen arbitrarily, it follows that the algorithm cannot achieve
any fixed ratio. |

» Remark 3.4. A simple randomized algorithm can achieve constant competitive ratio when
both k and r are 1. We first show that FLUSHALL with 2 wallets is 2-competitive against
OPT with one wallet. During each epoch, which extends from the time the two wallets
come back online after the previous flush until the end of the next flush period, FLUSHALL
settles total value V' > 1. On the other hand, OPT can settle at most V' + 1, that is, during
the time FLUSHALL settles transactions, OPT settles V', and during the flush time period
of FLusHALL, OPT packs 1. Therefore, the competitive ratio is (V 4+ 1)/V < 2. Now we
will let our randomized algorithm that uses one wallet to simulate one of the wallets in the
FLUSHALL algorithm with 2 wallets. At each time when the wallet comes back online, we flip

26:11

AFT 2024

26:12

Competitive Policies for Online Collateral Maintenance

a coin, if it is heads, it simulates the first wallet in FLUSHALL, and if it is tails, it simulates
the second wallet in FLUSHALL. That is, the wallet in the randomized algorithm only settles
the transactions that are taken by the chosen wallet and ignores the other transactions. The
expected value the randomized algorithm can pack in each epoch is half of what FLUSHALL
can pack. Hence the competitive ratio against one-wallet OPT is 4.

» Theorem 3.5. For any number k > 1 of wallets FLUSHALL is 3-competitive if r = 1.

Proof. We use a similar analysis as the proof in Theorem 3.1. Time is divided into epochs,
each of which contains the accumulation phase and the flush phase. For any particular full
epoch, let V' be the total value packed by FLUSHALL into its wallets in the accumulation
phase. We note that V' > C/2. To see this, observe that for any pair of wallets W; and W;
with ¢ < j the final transaction values v; and v; of the wallets must satisfy v, +v; > C/k —
otherwise the transactions in the later wallet 7 would have been placed in the earlier wallet 4
by first fit. Summing these constraints

Z(Ui—‘rvj)ZZ% = (k}—l)zvlzwg = Z’Ulzg

i<j i<j

OPT can settle at most V' + C in this epoch. Considering that V' > C/2, the quantity
V 4+ C <3V, as desired. It follows that the competitive ratio is @ < 3 as desired. <

Unfortunately, when r = 1, the competitive ratio for FLUSHWHENFULL is unbounded.
To see that, again, assume the maximum transaction size and wallet size are both 1. The
adversary can produce a series of suitably spaced transactions alternating in value between
€ and 1. FLUSHWHENFULL will be forced to take all the e-valued transactions and forgo
the high-value transactions, while OPT can decline to process the low-value transactions
in order to process all the high-value ones. Therefore, the competitive ratio would be
1/e. This problem can be solved if we pair consecutive wallets and flush each pair when a
transaction can not be settled by either of the two wallets. Within each pair, the second
wallet takes a transaction when it is too large for the first wallet. We denote this algorithm
as FLUSHTWOWHENFULL, for which we have the following result.

» Theorem 3.6. When k > 1, FLUSHTWOWHENFULL is 2(k + 1) /k-competitive if r = 1.

Proof. The proof is similar to the proof of Theorem 3.2. We use the same notations as
before. Between time interval (¢o,t], FLUSHTWOWHENFULL can settle transaction value at
least C'/2 since each pair settles at least C/k before they flush, while OPT settles at most
C + C/k. Therefore, the competitive ratio is 2(k + 1) /k. <

4 The General Collateral Setting

In this section, we study the general model where the entire collateral C' is held in a single
pool. A collateral maintenance policy can replenish any portion of committed collateral
(used to settle a transaction) at any time. Even with this additional flexibility, a unit of
collateral can only be used for settlement once in a time period of length F’; it follows that
the total settled value of transactions in any time period of length F' is no more than C.
Thus, using the same proof as in Theorem 3.2, we conclude the following, which shows that
FLUSHWHENFULL is competitive even when compared against an adversary who may use
the full power of the general model (while FLUSHWHENFULL continues to be constrained
operate in the k-wallet discrete model).

G. Almashaqgbeh, S. Chen, and A. Russell

» Corollary 4.1. Setting r = kT/C,

E+1

C. Tyl <
OPT[Genp; Tx] < R =)

- FLUsHWHENFULL[Disc3*; Tx] .

The above result concerns the total transaction value V settled by an algorithm. As
mentioned in the introduction, without further constraints on the adversary it’s clear that
the optimal approach (in the general model) is to immediately flush any collateral used to
settle a transaction. In practice, this is unattractive as there is, in fact, a cost associated with
the (typically on-chain) transaction used to refresh collateral. To study this, we introduce
two new parameters: (i.) p, the profit margin: the algorithm is provided a reward of p - v for
settling a transaction of value v, (ii.) 7, the cost of any flush (regardless of the amount of
collateral involved in the flush operation).

We seek to maximize the total profit with flush cost deducted. Formally, we would like to
find an algorithm that selects transactions to settle so that p-V — 7 f is maximized, where V
is the total value of settled transactions and f is the total number of flushes. (Note that by
scaling the figure of merit by 1/7, this is equivalent to maximizing (p/7)V — f and it follows
that the single parameter p/7 suffices; we separate these merely for the purpose of intuition.)
Recall that we use A[Gen%;; Tx] to denote pV — 7f for an algorithm A.

Inspired by the algorithm FLUSHWHENFULL, we consider a family of policies that flush
when the currently committed collateral has reached a specified fraction of C.

4.1 The Threshold Algorithm A,

This algorithm is parameterized by a threshold 7 for which T/C < n < 1. The behavior
of the algorithm is determined by the running quantity R, the current total collateral that
has been committed to settle transactions, but not (yet) flushed. The algorithm proceeds
as follows: When a new transaction tx arrives, it is settled if and only if there is sufficient
remaining collateral. Immediately after settling a transaction, if R > nC (so that there is at
least nC committed but unflushed collateral), then it flushes exactly nC collateral.

The following analysis derives the competitive ratio of A, and then computes the optimal
value of 7, denoted by n*, that minimizes this competitive ratio.

C
> Lemma 4.2. OPT[Geng,TX] S mAn[Geng,TX]
Proof. The proof is similar to the proof of Theorem 3.2, so we are somewhat more brief. For
contradiction, assume there is a (first) time ¢, for which the interval I = (0, t.] satisfies

Vopr(I) > C/(C =nC ~T) -V, (I),

where Vopr(I) and Vi, (I) are the total values of transactions OPT and A,; settle during I,
respectively.

Since t, is the earliest such time, there must be a transaction tx at t. that is not settled
by A,. As A, does not take tx, there are two possibilities: 1) all collateral is offline at t.;

2) the remaining uncommitted collateral is insufficient to settle tx. Let Iy = (t. — F,te].

Recall that collateral is flushed sequentially in portions of size nC, and that any such portion
will only start to take transactions after (or at the same time that) the previous portion
has been flushed. Let Wy, refer to the remaining portion of unflushed collateral at time t.,
if any, and to the last-flushed portion of collateral otherwise. Let Wy, Wy, - -+ Wy _1 refer
to the portions of collateral flushed during all prior flush events throughout Iy. We have
Zf:l W, =C.

26:13

AFT 2024

26:14

Competitive Policies for Online Collateral Maintenance

If t. < F, then OPT settles transaction value at most C in the interval (0,t.]. In the
same interval, A, settles at least C' —T" since the uncommitted collateral is no more than 7'
Therefore,

Vorr(I) _ _C C

Va,) SC-T S C—nC-T"

which would contradict our assumption.

Otherwise t, — F' > tg. Observe that of the k portions, Wy, W3,--- | and W) began
settling transactions during Iy since if a portion W;’s transaction activity before its last flush
starts at a time before Iy for any i = 2,--- ,n, then W;_;’s last flush time must also be before
I;. The only portion that may have started settling transactions before Iy is W;. Since Wy
has size equal 7C' and the uncommitted collateral in Wy, is at most T', Vi, (Iy) > C —nC —T.

Again, we have Vopr(Iy) < C since the length of Iy is F'. Therefore,

Vort(If) < C
VAW(If) ~C-nC-T"

This contradicts our initial assumption so we conclude that there is no such .. <

» Theorem 4.3. Let p € (0,1) and T > 0 be a profit margin and flush cost. For a threshold
n € (0,1] the algorithm A, is a-competitive in the Gen(TJ;; model for

B 1 . p/T—1/C
1-9-T/C p/T—1/(nC)"

Proof. For simplicity, assume that at the end of the sequence Tx any committed but
unflushed collateral is flushed in both algorithms. Note then that the algorithm A, flushed
total collateral equal to the total settled value and, furthermore, that each flush processes
exactly nC collateral with the exception of the last which may be smaller. It follows that
the total number of flushes is exactly [A,[Gens; Tx]/(nC)]. We conclude that

(07

A,,[Gen%;; Tx] = p- A, [Geng; Tx] — 7 - {

A, [Gen$; Tx]
nC

C.
© p Ay [GenC: T 7 (A[Gnc” +1>

T

= A, [Gen%; Tx] (— nC) —0(1). (1)
OPT flushes at least once when it commits C collateral, therefore

OPT[Gen$; TX]

OPT[Gen%;; Tx] < p-OPT[Gen%; Tx] —7- -

= OPT[Gen%; Tx](p—7/C). (2)
‘We combine these to conclude that

OPT[Gen%;; Tx] < OPT[GenS; Tx|(p — 7/C) < A,[Gen; Tx]ﬁ(p —7/C)
C p—71/C Lon),

C—nC-T p—1/(nC)

< An[Gen%;; TX]

as desired. The second inequality holds because of the inequality in Lemma 4.2. <

G. Almashaqgbeh, S. Chen, and A. Russell

Optimal value of 7. The optimal value of n (which we denote n*) satisfies:

ﬁ 1 . p/T—1/C _
3n<1nT/C p/Tl/(nC)> 0

which leads to the optimal value n*, where 8 = 7/(pC):

n=vQ1-T/C)-B.

Intuitively, as 5 approaches 0, the flush fee becomes negligible, and the algorithm should
flush as often as possible. Using this optimal #*, the competitive ratio is (1—3)/(y/1 —T/C—
v/B)?, which approaches 1 as 3 approaches 0. As a final result, we have the following theorem.

» Theorem 4.4. Choosing n = +/B(1 —T/C), the competitive ratio for A, is

1-5
(VI-T/C—B)?

5 Conclusion

We constructed a modeling framework for collateral management policies of layer-two
protocols in the blockchain setting. This framework targets two natural models encountered
in practice: the k-wallet model in which the collateral C' is divided among k wallets, and the
general model in which C' is viewed as one wallet (or collateral pool). We adopt the standard
classical paradigm of competitive analysis in which an online algorithm A, that only knows
the transactions encountered so far, is compared against an optimal algorithm OPT that
has full knowledge of the transaction stream including future transactions. Our analysis is
agnostic to transaction distribution and only requires knowing the maximum transaction
size (i.e., value). Given the dynamic nature of blockchain applications and the unpredictable
behavior of their transactions and workload, developing transaction distribution-independent
techniques is highly desirable.

Using our framework, we study natural collateral management policies for the k-wallet
and the general models, and we show how competitive they are compared to OPT. This is
measured in terms of the total transaction value that can be settled and when to replenish
the collateral to allow settling future transactions. The general model also studies the
replenishment cost and how this affects the utility of the policy. We also derive the optimal
configuration for the policy parameters, in terms of the number of wallets and the fraction of
the committed collateral to be replenished.

To the best of our knowledge, this work is the first to study the collateral management
problem for layer-two protocols. Our future work include extending this model to account
for more factors, e.g., transaction specific conditions rather than just a transaction value,
and develop dynamic policies in which the number of wallets, and even the collateral value
itself, can change over time based on the experienced transaction stream.

—— References

1 Filecoin. URL: https://filecoin.io/.

2 Golem. URL: https://golem.network/.

3 Livepeer. URL: https://livepeer.com/.
4 Uniswap protocol. https://uniswap.org/.

26:15

AFT 2024

https://filecoin.io/
https://golem.network/
https://livepeer.com/
https://uniswap.org/

26:16

Competitive Policies for Online Collateral Maintenance

10

11

12

13

14

15

16

17

18

19

Ghada Almashaqgbeh, Allison Bishop, and Justin Cappos. Microcash: Practical concurrent
processing of micropayments. In International Conference on Financial Cryptography and
Data Security, pages 227-244. Springer, 2020.

Manuel MT Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels. Cryptology ePrint
Archive, 2020.

Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and Pratyush
Mishra. Decentralized anonymous micropayments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 609-642. Springer, 2017.

Yoga Jaideep Darapuneni. A survey of classical and recent results in bin packing problem.
UNLV Theses, Dissertations, Professional Papers, and Capstones, 2012.

Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages 3—18. Springer,
2015.

Stefan Dziembowski, Sebastian Faust, and Kristina Hostakovéa. General state channel networks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 949-966, 2018.

Rundong Gan, Le Wang, Xiangyu Ruan, and Xiaodong Lin. Understanding flash-loan-based
wash trading. In Proceedings of the 4th ACM Conference on Advances in Financial Technologies,
pages 74-88, 2022.

Alex Gluchowski. Zk rollup: scaling with zero-knowledge proofs. Matter Labs, 2019.

Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry. Sprites
and state channels: Payment networks that go faster than lightning. In International conference
on financial cryptography and data security, pages 508-526. Springer, 2019.

Rafael Pass and Abhi Shelat. Micropayments for decentralized currencies. In CCS, pages
207-218. ACM, 2015.

Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts. White paper,
pages 1-47, 2017.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. Technical Report (draft), 2015.

Kanis Saengchote. Decentralized lending and its users: Insights from compound. Journal of
International Financial Markets, Institutions and Money, 87:101807, 2023.

Steven S Seiden. On the online bin packing problem. Journal of the ACM (JACM), 49(5):640—
671, 2002.

Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized exchanges
(dex) with automated market maker (amm) protocols. ACM Computing Surveys, 55(11):1-50,
2023.

	1 Introduction
	1.1 Contributions
	1.2 A Survey of the Results
	1.3 Applications

	2 The Model; Measuring Policy Quality
	2.1 The Discrete k-Wallet Model
	2.2 The General Collateral Model

	3 The Discrete k-Wallet Setting
	3.1 The FlushAll Algorithm
	3.2 The FlushWhenFull Algorithm
	3.3 Optimal Wallet Number
	3.4 Remarks on the profit margin–transaction cost setting
	3.5 Remarks on the Case r = 1

	4 The General Collateral Setting
	4.1 The Threshold Algorithm A_eta

	5 Conclusion

