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ABSTRACT

In recent years, there has been a growing interest among re-
searchers and scholars in the analysis of sports activities, driven by
the advancements of machine learning and the increased availabil-
ity of public data. However, there remains a scarcity of compre-
hensive sports video datasets that possess the necessary attributes
to address various research tasks effectively. We present the ”Bad-
minton Benchmark” (BMT-BENCH) to facilitate reproducible ma-
chine learning research in the sports domain. This dataset com-
prises high-quality, high-speed video clips collected from official
badminton tournaments involving two team players. The dataset is
labeled and unlabeled, catering to different research problems such
as video generation and real-time object detection. we feature a base-
line system mainly for video generation tasks and provide a thorough
evaluation of the challenges posed by the dataset’s unique nature.
The dataset is publicly accessible at https://drive.google

.com/drive/folders/1moYDb8tp5K-VDxPJU3sTorfY

E7NnwVpf?usp=sharing and the baseline system is available
at https://github.com/ziangshi/BMT_BENCH_base
line_repo.

Index Terms— Benchmark Dataset, Badminton, Sport Dataset,
Video Generation, Object Detection

1. INTRODUCTION

Sports analytics has received a lot of attention in the sports domain
with advancements in video recording technology and analytics
methods. It has been widely used in complex applications of sports
such as video summarization [6], highlight generation [9], aid in
coaching [10], player’s fitness [11], weaknesses and strengths as-
sessment [12], sports robots [13], etc. While analyzing a sequence
of motion is crucial for these tasks, sports videos, recorded for live
viewing, are commonly collected and leveraged for large-scale data
mining. At the same time, machine learning (ML), especially deep
learning, has shown impressive performance in various computer
vision tasks including object detection and video generation. Deep
learning has also been applied to improve the performance of vari-
ous tasks in the sports domain such as action recognition [20], and
player movement prediction [22, 23, 24].

Historically, high-quality and large datasets have played signifi-
cant roles in advancing research. However, large-scale sports videos
with high resolution remain inaccessible to the ML research commu-
nity. Moreover, manually tagging with labels (e.g., player’s action)
in the video data is time-consuming, which poses a challenge to su-
pervised learning. We remark that existing sports datasets present
issues that may negatively impact future research.

First, due to the substantial costs associated with collecting and
fine-grained labeling by domain experts, the availability of public
badminton datasets is limited. To the best of the author’s knowledge,

Dataset Feature Level Size
BadmintonDB Shot type Stroke-level 9,671 strokes

ShuttleSet22 Player location, Stroke-level 33,612 strokesshot type, score
BMT-BENCH Match Video Clip-level 2,005 clips

Table 1: Comparison with previous badminton datasets.

Fig. 1: Video generation

there are only two sports datasets related to badminton matches:
BadmintonDB and ShuttleSet22. BadmintonDB is extremely small
and there are only 9 matches recorded. Therefore, it is inadequate
for statistical studies on different players. The ShuttleSet22 dataset
only provides the locations of players in each stroke. In real matches,
a lot of factors (e.g., posture and timing) besides the player’s loca-
tion have an influence on the next play. Moreover, both two datasets
are based on stroke level. We argue that fine-grained data is crucial
to model playing patterns in sports with machine learning methods.
Here, we introduce a video dataset to address the shortcomings of ex-
isting datasets. Table 1 shows the difference between our Badminton
Benchmark (BMT-BENCH) and previous datasets. Different from
BadmintonDB and ShuttleSet22, BMT-BENCH provides videos of
badminton matches. The video is manually labeled in fine granu-
larity and shows the interactions between players, shuttlecocks, and
racket movements in badminton tournaments. Last but not least, our
benchmark is comprehensive in terms of both shot type and players.
All play types or strategies are collected to avoid imbalanced data
in machine learning. Both male and female players are involved in
the dataset. Our dataset can empower the rigorous advancements of
machine learning and artificial intelligence in sports.

In addition to building the datasets, we also perform exten-
sive benchmark experiments for the dataset. Recently, signifi-
cant methodological advances have been made in generative mod-
els [15, 16, 8, 7] which have produced promising results in diverse
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(a) R-CNN (b) YOLO

Fig. 2: Real-time object detection

domains. For example, a diffusion model has been used to gen-
erate high-resolution videos, and the superiority is verified on the
prediction of robot pushing motions [17].

We mainly focus on future frame generation tasks based on the
previous frames containing information of the player’s movement.
Figure 3 displays frames in the generated video. Figure 2 showcases
the suitable usage of datasets on object detection tasks. Through the
experiments and ablation studies, we show the value of the bench-
mark to compare different models in a fair manner. Also, we high-
light research challenges and opportunities provided by our dataset,
especially on (1) movements of multiple agents (i.e., players) and (2)
improving performance on videos with a dark background.

BMT-BENCH is an open-source and ongoing benchmark. Over
time, we plan to label more data and include new deep-learning mod-
els in various tasks. The BMT-BENCH project welcomes input from
the sports and research community. The contributions of this work
are summarized as follows:

• We present the “Badminton Benchmark” (BMT-BENCH) to
facilitate reproducible research and support fairly comparing
different model designs in the sports domain.

• Different from previous datasets, BMT-BENCH includes
videos and fine-grained labels that can empower advance-
ments in machine learning and computer vision.

• We explore the performance of well-known baselines and
highlight research challenges which we hope to stimulate the
machine learning progress in the sports domain.

The rest of this paper is organized as follows. Section 2 reviews the
related works and points out the shortcomings of previous datasets.
In Section 3, we describe the data collection and labeling process.
In Section 4, we present the experimental result. Section 5 discusses
the potential challenges and future works. Finally, we conclude our
paper and discuss the open challenges in Section 6.

2. SHORTCOMINGS OF CURRENT BENCHMARKS

Sports datasets play a crucial role in advancing research and ana-
lytics in the field of sports science, computer vision, and artificial
intelligence. These datasets provide valuable insights into player
movements, actions, and sports-specific challenges, facilitating the
development of models and technologies to enhance sports perfor-
mance, coaching, and analysis.

2.1. Related Works

The availability of public badminton datasets has been limited due
to the substantial costs associated with collecting and fine-grained
labeling by domain experts [4]. In recent times, researchers have
taken the initiative to release badminton datasets with the aim of
supporting the sports community.

For example, the Shuttlecock dataset by Cartron [1] comprises
8,000 images of shuttlecocks, each resized to 640x640 pixels. This
dataset includes annotations for the position of shuttlecocks, making
it a valuable resource for training object detection models.

Additionally, the BadmintonDB dataset by Ban et al. [2] offers
annotations for rallies, strokes, and match outcomes between two
players. It serves as a useful dataset for player-specific match anal-
ysis and prediction tasks, particularly at the stroke level. It’s worth
noting that BadmintonDB primarily features a single matchup, that
of Kento Momota and Anthony Sinisuka Ginting, which limits its
diversity. Furthermore, BadmintonDB covers matches from 2018 to
2020, which may not capture the latest developments and tactics.

In contrast, ShuttleSet22 [3] collects data from high-ranking
matches in 2022, aiming to reflect the state-of-the-art tactic records.
It consists of 30,172 strokes within 2,888 rallies in the training set,
1,400 strokes within 450 rallies in the validation set, and 2,040
strokes within 654 rallies in the testing set, complete with de-
tailed stroke-level metadata. To provide a comparative view of
the differences between ShuttleSet22 and BadmintonDB, we have
summarized the discrepancies in Table 1.

2.2. Sport Dataset

In this context, the badminton dataset stands out as a valuable re-
source for researchers and enthusiasts interested in the sport of bad-
minton. This dataset, tailored to the specific dynamics of badminton
tournaments, offers a unique perspective on the interactions between
players, shuttlecocks, and racket movements. It provides a detailed
and comprehensive view of the sport’s gameplay and captures the
nuances that are essential for in-depth analysis.

The DeepSport dataset, primarily designed for ball detection in
sports, can offer valuable insights into object detection and tracking
in a single-viewpoint scenario. However, its focus on ball interac-
tion with players and poor contrast against the background may not
directly align with badminton, which primarily involves player ac-
tions and racket-shuttle interactions. Nonetheless, the efficient CNN
architecture for real-time ball detection in DeepSport could serve as
a source of inspiration for object detection in badminton, although
model adaptation would be necessary to suit the nuances of the bad-
minton dataset.

On the other hand, GolfDB, created with the objective of golf
swing sequencing and detecting key events in the golf swing, shares
similarities with badminton in terms of biomechanical analyses and
the detection of key events in sports movements. The provision of
labeled event frames, bounding box information, player-related data,
and club type and view type details in GolfDB sets it apart from other
datasets. The approach taken in SwingNet, a lightweight deep neu-
ral network introduced in GolfDB, may offer insights into object de-
tection and action recognition in a sports setting, though adaptation
would be necessary to cater to the unique dynamics of badminton.

ShuttleSet22, a dataset specific to badminton, presents a valu-
able resource for studying player actions, shuttlecock interactions,
and stroke-level metadata within rallies. It is highly relevant to bad-
minton analytics and offers a direct parallel to the sport’s gameplay.
The dataset’s stroke-level information and rally-based approach
make it particularly suitable for research objectives. Additionally,
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the dataset facilitates stroke forecasting, aligning with future frame
prediction tasks in badminton.

In contrast, badminton is player-centric and specifically tailored
to the interactions between players, shuttlecocks, and racket move-
ments in the context of badminton tournaments. It aligns directly
with research objectives for object detection (multi or single) and fu-
ture frame prediction in the unique setting of badminton. Badminton
offers a specialized perspective on the sport’s dynamics and is well-
suited for research goals, making it a valuable asset for research in
badminton analytics.

3. DATA OVERVIEW

We have a total of 2,005 un-annotated clips featuring badminton
player rounds, and we’ve employed Shot-By-Shot (S2) Labeling as
our primary labeling method. These clips capture the player’s ac-
tions from the initiation of ball serving until a player scores. All the
images from these clips are stored in PNG file format. Furthermore,
these clips are categorized based on the scoring for each player. The
player on the farther side of the court is denoted as ”red,” while the
player on the closer side is denoted as ”blue.”

3.1. Row data collecting

Based on the accuracy of the movements and to ensure a comprehen-
sive dataset, we carefully selected practice game videos of 19 skilled
players from National Central University’s badminton school team.
These players, comprising 15 male and 4 female players, demon-
strated a skill level just below that of professional athletes, making
their movements and tactical ball skills valuable references for our
analysis. The chosen players allowed us to capture a diverse range
of badminton actions, including distinct stroke types.

Our cooperative relationship with the school team further facil-
itated data collection. Not only did it enable us to record practice
matches featuring players with proficiency in various badminton ac-
tions, but it also provided the opportunity to collect data on less fre-
quent movements or other relevant aspects. It enables the diversity
of tactics and movements used during the matches. This cooperative
approach ensured the comprehensiveness and depth of our dataset.

3.2. Camera Settings

During data collection, we utilized a high-quality camera from The
Imaging Source, specifically the model DFK 37AUX273. This
camera was equipped with specific parameters to capture detailed
video footage of badminton actions. The camera’s resolution was
set at 1280*960 pixels to ensure a clear visual representation of the
badminton movements. Operating at a frame rate of 60fps, the DFK
37AUX273 captured the fast-paced movements inherent in bad-
minton, resulting in smooth and high-definition video recordings.
The XRGB video format was selected to preserve essential color
information during data collection.

Strategic camera placement was considered essential. The cam-
era was positioned approximately 2 meters behind the baseline of
the badminton court and elevated to a height of approximately 4.5
meters. Tilted at a 30-degree angle, the DFK 37AUX273’s lens of-
fered an optimal field of view, reducing distortions and facilitating
precise documentation of the various badminton actions. Utilizing
this specific model from The Imaging Source allowed for the accu-
rate capture of the intricate movements and techniques of the players,
contributing to the comprehensive and detailed dataset.

3.3. Data Preprocessing

We employed a wide-angle lens and positioned the camera high up
to simulate the broadcast camera used in formal games. However,
the distortion caused by the wide-angle lens can impact the training
of the model, leading to inaccuracies in court coordinates, deviations
in player and shuttlecock positions, and consequently, errors in the
training results. To address this, we utilized OpenCV to calculate the
necessary calibration parameters for removing lens distortion. This
involved obtaining the 2D coordinates of a chessboard in the 3D
world and integrating the information captured from multiple angles
of the chessboard image into the calculation.

Before video correction, the originally straight boundary lines
of the court appeared significantly curved under the wide-angle lens.
This curvature could introduce errors in judging court boundary
lines, affecting the accuracy of player and shuttlecock positions.
After correction, the degree of curvature was significantly reduced,
improving the accuracy of spatial representation compared to the
pre-correction state. However, due to the correction, the screen was
compressed. Therefore, it was necessary to cut out the necessary
parts of the video and reprocess them into the required size after
correction.

3.4. Human/Expert labeling

Human labeling was a critical aspect of data processing. Five stu-
dents, including a member of Central University’s badminton team
and two from different badminton clubs, actively participated in the
labeling process. Their expertise and experience in the sport ensured
accurate identification and labeling of the diverse badminton actions
captured in the video data.

The labeled data underwent meticulous review by the head
coach of Central University’s badminton team. The coach diligently
examined the annotations, addressing any discrepancies or errors en-
countered during the labeling process. This rigorous review process
ensured the reliability and validity of the labeled data, minimizing
potential errors.

3.5. Labeling process

We use Shot-By-Shot (S2) Labeling as our main labeling tool. This
tool consists of four parts: recording basic game data, cropping the
video for each round, recording the score, and labeling micro-level
game data.

The process of labeling a badminton match video involves four
stages. The first stage involves obtaining the match video and record-
ing fundamental details about the competition. In the second stage,
the beginning, end, and score of each rally are marked. Stage three
focuses on pre-processing the video, which includes distortion cor-
rection and cropping. In stage four, each shot is analyzed in detail
including the type of stroke.

3.6. Data Post-processing

Upon completing the data labeling, our research embarked on the
task of segmenting the competition’s content, which consisted of
two primary areas. First, we addressed video segmenting: the full-
length match videos were strategically divided into individual clips
corresponding to specific stroke types. This segmentation was exe-
cuted post data annotation, enhancing its applicability in video cat-
egorization or action recognition tasks. The slicing was performed
based on ffmpeg, following the use of the Shot-By-Shot (S2) Label-
ing tool, with segmentation guided by the labeled CSV file generated
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by this tool. File naming followed a convention encapsulating essen-
tial details like date, time, ID, start and end timestamps, and types
of stroke. Second, our data augmentation process filled gaps where
some actions were less commonly found in actual gameplay. We en-
riched the dataset by employing controlled ball-feeding techniques
and utilized the previously described camera setup to capture the di-
versity and complexity of players’ actions. These combined efforts
serve to create a robust and nuanced dataset, vital for our analytical
and recognition tasks within the context of the sport.

4. BADMINTON FUTURE FRAME GENERATION

We provide two sets of data for distinct task to perform. To gener-
ate future frames, our primary approach involves evaluating various
deep neural network models with the ”Unlabeled Badminton” partial
dataset, focusing on tasks related to video generation and predicting
future frames. The future frames would predict the players’ stroke
movement based on previous frames of actions. It’s important to
note that the ”Unlabeled Badminton” dataset typically contains vari-
ous frames lengths for the video clip depicting rounds of badminton
players. These frames are carefully chosen to minimize the occur-
rence of duplicate frames that depict similar player movements. No-
tably, within this specific dataset, the shuttlecock in the game is in-
tentionally left without labels to maintain the clarity of image frames
and prevent the model from receiving misleading information.

The ”Labeled Badminton” partial dataset is specifically de-
signed for real-time object detection tasks. Within this dataset, each
image frame undergoes a pre-processing stage where the shuttlecock
is labeled with bounding box; the storage of label information in the
chosen data format depends on the specific needs of the models.
Importantly, for this dataset, we exclusively select rounds in which
the shuttlecock remains within the camera’s field of view throughout
the entire match, ensuring continuity in tracking its trajectory.

These two datasets serve different purposes, each tailored to spe-
cific tasks. Significantly, the datasets demonstrate their suitability
for future frame prediction tasks, owing to their high-speed frame
rates. We consider the following representative models below as our
baseline systems.

• SVG [26]: Stochastic Video Generation with a Learned Prior.
The model use recurrent inference networks to estimate the
latent distribution for each time step and product future frame
prediction in pixel level.

• IVRNN [27]: Improved Conditional VRNNs for Video Pre-
diction. This approach involves with an improved VAE model
for video predictions. It uses hierarchical latent and a higher
capacity likelihood network to improve upon previous VAE
approaches on longer temporal space.

• FutureGAN [28]: Encoder-decoder GAN model that pre-
dictes future frames of a video sequence condition on a se-
quence of past frames.

• RetroGAN [29]: Retrospective Cycle GAN. A unified gener-
ative adversarial network for predicting accurate and tempo-
rally consistent future frames over time through retrospective
cycle constraints

• RVD [30]: Residual Video Diffusion. A Denoising diffusion
probabilistic model generates future frames by correcting a
deterministic next-frame prediction using a stochastic resid-
ual acquired by an inverse diffusion process

Model PSNR SSIM LPIPS FVD
RVD 15.4889 0.6080 0.0659 1129.1934

IVRNN 35.8143 0.9894 0.0062 967.3911
SVG-LP 33.3668 0.9796 0.0167 1663.7945

RetroGAN 25.7551 0.8904 0.0574 1344.5718
FutureGAN 27.8907 0.7305 0.0421 1601.2293

Table 2: Badminton Future Frame Generation Performance

Model PSNR SSIM LPIPS FVD
RVD(4,8) 29.8227 0.9531 0.0158 1437.3270

RVD(2,10) 29.3458 0.9440 0.06374 1533.4711
IVRNN(4,8) 21.6440 0.8176 0.1736 1934.3771
IVRNN(2,10) 22.0285 0.8312 0.1575 2325.2832

Table 3: Ablation study on training with different context frame se-
quence length, where(c,p) denotes c context frames and p prediction
frames

The models yield average prediction accuracy results assessed
through various numerical metrics, including the commonly em-
ployed Frechet Video Distance, which compares predicted future
frames to actual frames. Additionally, other performance metrics
such as Peak Signal-to-Noise Ratio, Structural Similarity Index
Measure, and Learned Perceptual Image Path Similarity are em-
ployed to evaluate the model’s performance in the context of future
frame prediction datasets.

4.1. Badminton Future Frame Generation

The results presented in Table 2 provide a comprehensive overview
of the performance metrics for the task of future frame prediction,
where the models are tasked with predicting 12 future frames based
on 8 input frames. The metrics under consideration encompass Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS), and Fréchet
Video Distance (FVD).

Among the models, RVD showcases the lowest PSNR and SSIM
values, indicative of relatively lower pixel-level fidelity and struc-
tural similarity with the ground truth frames. However, it is worth
noting that RVD attains a notable FVD score, which suggests that
it maintains a certain level of temporal consistency in the generated
video sequences. These results highlight a trade-off between pixel-
level accuracy and temporal coherence in RVD’s predictions.

IVRNN, in contrast, excels in terms of SSIM, achieving signif-
icantly higher values. This performance indicates that IVRNN gen-
erates future frames with superior pixel-level fidelity and structural
similarity when compared to the ground truth frames. Moreover,
IVRNN’s exceptionally low LPIPS score implies that it attains a re-
markable level of perceptual similarity to the reference frames. The
model’s FVD score denotes a reasonable level of video consistency.
IVRNN’s strong performance suggests its potential for high-quality
future frame prediction tasks.

The results presented in Table 2 showcase the varying strengths
and weaknesses of the models in the context of future frame predic-
tion. IVRNN stands out with exceptional PSNR, SSIM, and LPIPS
scores, indicating its ability to generate high-quality and perceptu-
ally similar future frames.

In Figure 3, we visualize the generated frames from input frames
(context). Specifically, 4 frames (Frame 0 to Frame 3) are fed into
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Fig. 3: Predict future 4 frames with 4 input frames

two video generation models (RVD and IVRNN) to generate future
4 frames (Frame 4 to Frame 7). We can observe the generated frames
are similar to the ground truth. Compared with IVRNN and ground
truth, RVD based on a diffusion model can further improve the qual-
ity of images. For example, we can see that the white line in the site
is much smoother. We also investigate the performance of IVRNN
when the number of frames to be generated increases. Compared
with IVRNN 4+4 which predicts 4 future frames with 4 input frames,
IVRNN 4+8 predicts 8 future frames and the quality of generated
images is slightly lower. It indicates the number of frames to be
generated has a negative effect on the training process.

In Figure 4, we show the performance of RVD while the set-
ting is varying. The label “3-5” indicates that we use the previous
4 frames to generate future 4 frames with RVD. Similar to IVRNN,
when the number of input frames and the number of frames to be
generated increase, the image quality will decrease slightly.

4.2. Ablation Study

We conducted ablation studies to assess the influence of the number
of context frames applied during the model training stage. The per-
formance of predictions, based on an alignment of 12 frames, varied

depending on the chosen number of context frames and predicted
frames. As depicted in Table 3, the RVD model consistently exhibits
relatively higher performance, indicating robustness, particularly in
short context frame sequences. On the other hand, the performance
of the IVRNN model appears to be affected by the number of con-
text frames used during training. While the specific metrics show
variability, a consistent observation is that a shorter context frame
sequence tends to negatively impact the model’s predictive perfor-
mance

5. OPEN CHALLENGES

We remark that there are several challenges to generate videos in the
sports domain, especially for badminton:

1. There are multiple agents (players and shuttlecock) in the
videos. It is different from existing benchmarks with only
one object in the video. While one player is closer to the cam-
era, it poses a challenge to balance the quality of animation
between different agents.

2. Intuitively, the context (i.e., the layout of the field) is impor-
tant for video generation. It is unknown how to leverage white
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Fig. 4: Varying # of frames in context for RVD

line marks to further improve the quality of generated videos.
3. The dark background and reflection further pose challenges

in video generation.
As we look forward, several areas of future work present them-

selves for further exploration and improvement:

1. Refine the object detection models, leveraging the labeled
shuttlecock information in ”Labeled Badminton,” and explore
techniques to improve object tracking.

2. Enhance the quality of future frame predictions by investi-
gating advanced neural network architectures, data augmen-
tation methods, and fine-tuning strategies.

3. Extend the evaluation of the object detection algorithms and
frame prediction models, incorporating additional perfor-
mance metrics, such as PSNR, SSIM, and LPIPS.

4. Investigate the potential for real-time object detection within
the context of live badminton matches, considering the con-
straints and challenges of real-world applications.

6. CONCLUSION

In conclusion, the datasets utilized in this study, the ”Unlabeled Bad-
minton” and ”Labeled Badminton,” have proven to be highly suitable
for both object detection and future frame prediction tasks. The ”Un-
labeled Badminton” dataset, with its high-speed frame rates, lends it-
self well to the challenges of video generation and predicting future
frames. The absence of labeled shuttlecock information maintains
the clarity of image frames, making it a valuable resource for fu-
ture frame prediction. On the other hand, the ”Labeled Badminton”
dataset is purpose-built for object detection and shuttlecock trajec-
tory prediction, with shuttlecock labeling and continuity in tracking
ensuring its suitability for such tasks.

The combination of these datasets enables researchers to explore
a wide range of tasks related to badminton, from real-time object de-
tection to video generation. The variety and quality of data available
within these datasets offer exciting opportunities for future research.

We discuss the open challenges of generating video in extreme
settings such as dark backgrounds and multiple objects. These future

directions will not only advance the field of computer vision but also
contribute to a deeper understanding of badminton dynamics and the
development of intelligent systems for the sport.
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